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We introduce a method that permits faithful extraction of the
decay time course of the synaptic conductance independent of
dendritic geometry and the electrotonic location of the syn-
apse. The method is based on the experimental procedure of
Pearce (1993), consisting of a series of identical somatic volt-
age jumps repeated at various times relative to the onset of the
synaptic conductance. The progression of synaptic charge re-
covered by successive jumps has a characteristic shape, which
can be described by an analytical function consisting of sums
of exponentials. The voltage jump method was tested with
simulations using simple equivalent cylinder cable models as
well as detailed compartmental models of pyramidal cells. The
decay time course of the synaptic conductance could be esti-
mated with high accuracy, even with high series resistances,
low membrane resistances, and electrotonically remote, distrib-

uted synapses. The method also provides the time course of
the voltage change at the synapse in response to a somatic
voltage-clamp step and thus may be useful for constraining
compartmental models and estimating the relative electrotonic
distance of synapses. In conjunction with an estimate of the
attenuation of synaptic charge, the method also permits recov-
ery of the amplitude of the synaptic conductance. We use the
method experimentally to determine the decay time course of
excitatory synaptic conductances in neocortical pyramidal
cells. The relatively rapid decay time constant we have esti-
mated (t ;1.7 msec at 35°C) has important consequences for
dendritic integration of synaptic input by these neurons.
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Knowledge of the time course of the synaptic conductance is of
fundamental importance to our understanding of synaptic trans-
mission. The kinetics of the synaptic conductance influences
neuronal function in many ways, from shaping the resulting
synaptic potential and setting the time window for synaptic inte-
gration to determining the synaptic charge (particularly relevant
when a significant fraction of the current is carried by ions such as
Ca21). Furthermore, comparing synaptic conductance time
course with receptor channel kinetics provides valuable informa-
tion about the processes underlying synaptic transmission.

Synaptic conductance is conventionally measured by recording
the synaptic current with somatic voltage clamp. In cells where all
synapses are electrotonically close to or at the soma, such as
cerebellar granule cells (Silver et al., 1992, 1995), neuroendocrine
cells (Schneggenburger and Konnerth, 1992; Borst et al., 1994),
unipolar brush cells (Rossi et al., 1995) and neurons in the
auditory pathway (Forsythe and Barnes-Davies, 1993; Zhang and
Trussell, 1994; Isaacson and Walmsley, 1995), this method can

reliably measure the conductance time course. Alternatively, one
can select for somatic synapses using cable model predictions
(Finkel and Redman, 1983; Nelson et al., 1986). However, in most
neurons, the majority of synapses are located at a considerable
electrotonic distance from the soma, and therefore somatic volt-
age clamp of these synapses is associated with substantial atten-
uation and distortion of the synaptic current (Johnston and
Brown, 1983; Rall and Segev, 1985; Major, 1993; Spruston et al.,
1993; Mainen et al., 1996). This problem has proved to be rather
intractable, and although several solutions have been proposed to
date (see Discussion), none are completely satisfactory.

Recently an experimental technique was introduced by Pearce
(1993), which uses somatic voltage jumps at various times during
the synaptic conductance to determine how long after the onset of
the synaptic current the synaptic conductance remains active. The
principle of the technique is that a voltage jump that increases the
synaptic driving force will only recover additional synaptic charge
if the jump occurs while the conductance is still active. The
technique was used to show that the GABAergic synaptic con-
ductance generated by activation of distal synapses in hippocam-
pal CA1 pyramidal neurons has a prominent slow component;
however, a quantitative determination of the conductance time
course was not made. This technique was subsequently applied to
excitatory synapses in various neuronal types, also to demonstrate
that the synaptic conductance at these synapses has a prolonged
component (Barbour et al., 1994; Mennerick and Zorumski, 1995;
Rossi et al., 1995; Kirson and Yaari, 1996).

Here we show using simulations in a variety of neuronal models
that by measuring the time course of recovered charge this exper-
imental technique can be used to determine the decay time course
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of the synaptic conductance with a high degree of accuracy. A
simple analytical function providing a quantitative description of
the results is presented, and limitations and potential applications
of the method are explored. We use the method to estimate the
time course of the excitatory synaptic conductance in neocortical
pyramidal cells.

MATERIALS AND METHODS
Simulations
All simulations were performed using NEURON (Hines, 1993) running
on Sun Sparcstations (Sun Microsystems, Mountain View, CA). The
integration time step was 10 msec. The synaptic conductance consisted of
a sum of two or three exponentials, one for the rise (always 0.2 msec,
unless otherwise indicated) and one or two for the decay. A “delta pulse”
synaptic conductance was simulated using a 1 nS conductance with
duration of 0.1 msec. Except for the equivalent cylinder simulations and
the simulations shown in Figure 8, synaptic contacts were placed at the
head of explicitly modeled spines. The series resistance of the recording
pipette was always 0.5 MV, except where otherwise indicated, which is
achievable in experiments using the neuronal types shown here (5 MV
compensated by 90%). Unless otherwise indicated, the decay time con-
stant of synaptic currents recorded at the soma was fit using a single
exponential function, starting at the time point when the current had
decayed to ;90% of the peak amplitude.

Equivalent cylinder model. The geometry used in the equivalent cylin-
der simulation was as follows (see Fig. 1A): soma, 10 mm long, 10 mm
diameter, 10 segments; and dendrite, 500 mm long, 1.2 mm diameter, 100
segments. Electrical parameters were: Ri 5 150 Vcm; Rm 5 50,000 Vcm 2;
and Cm 5 1.0 mF cm 22, giving an electrotonic length of the dendrite of
L 5 0.5. The passive reversal potential was 265 mV.

CA3 pyramidal cell model. The CA3 pyramidal cell model was based on
cell CA3_15 in the article by Major et al. (1994), which is from a 19-d-old
rat. The morphology was converted from the native format to that of
NEURON using a program written in Mathematica (Wolfram Research,
Champaign, IL). The electrotonic length of each segment was ,0.01.
The electrical parameters were Ri 5 250 Vcm; Rm 5 180,000 Vcm 2; and
Cm 5 0.66 mF cm 22; with a passive reversal potential of 265 mV. Spine
corrections were performed as described by Major et al. (1994), and the
axon was not included in the simulations. The spine at the excitatory
synaptic contact had a neck length of 0.66 mm, a neck diameter of 0.2 mm,
a head length of 0.5 mm, and a head diameter of 0.45 mm.

Neocortical pyramidal cell model. The morphology of the layer 5 pyra-
midal cell was taken from the work of Markram et al. (1997) and comes
from a postnatal day 14 rat (same neuron as shown in red in Markram et
al., their Fig. 13). The electrotonic length of each segment was ,0.02.
The values for passive cable properties were Ri 5 150 Vcm; Rm 5 30 000
Vcm 2; and Cm 5 0.75 mF cm 22, and the passive reversal potential was set
to 270 mV (Mainen and Sejnowski, 1996). The measured dendritic
membrane area was multiplied by a factor of 2 to account for spines. The
axon was included, but axon collaterals were omitted. The neck length of
the explicitly modeled spines was 1.0 mm, neck diameter was 0.35 mm,
and head length and diameter were both 0.7 mm (Peters and Kaiserman-
Abramof, 1970).

Active conductances were added to the model as described in Mainen
and Sejnowski (1996), based on the parameters in their original
NEURON files (available via World Wide Web at http://www.cnl.
salk.edu/CNL/simulations.html). Two changes were made with respect
to the original files of Mainen and Sejnowski (1996): (1) the reversal
potential for Ca 21 was not constant at 1140 mV but updated according
to the Nernst equation assuming [Ca 21]o 5 2 mM; and 2) the time step
was 10 msec instead of 25 msec.

Experiments
Whole-cell patch-clamp recordings were made from the soma of visually
identified thick tufted layer 5 pyramidal cells in slices of rat neocortex as
described previously (Stuart et al., 1993; Markram et al., 1997). Wistar
rats (14–18 d) were killed by decapitation, and sagittal neocortical slices
(250–300 mm) were cut on a Vibratome (Dosaka) in ice-cold extracel-
lular solution containing (in mM): 125 NaCl, 2.5 KCl, 25 glucose, 25
NaHCO3 , 1.25 NaH2PO4 , 2 CaCl2 , and 1 MgCl2. The slices were
incubated at 34°C for 45 min and then kept at room temperature before
transfer to the recording chamber. With the use of an upright microscope
(Axioskop, 403-W/0.75 numerical aperture water-immersion objective;

Zeiss, Oberkochen, Germany) and infrared differential interference con-
trast videomicroscopy (Stuart et al., 1993), layer 5 pyramidal neurons
were easily identified by their large somata, prominent axon initial
segment, and thick apical dendrites projecting to higher layers.

Recordings were made using an Axopatch 200A amplifier (Axon
Instruments, Foster City, CA). The internal patch pipette solution con-
tained (in mM): 100 potassium gluconate, 20 KCl, 10 HEPES, 10 EGTA,
4 Na2-ATP, and 4 MgCl2 (295 mOsm, pH adjusted to 7.3 with KOH); in
most experiments internal solutions also included 1 mM QX-314
(Alomone Laboratories) to block voltage-gated channels (particularly
sodium channels) (Strichartz, 1973) and 0.5 mM ZD 7288 (Tocris) to
block the hyperpolarization-activated cation current (Harris and Con-
stanti, 1995). NMDA and GABAA receptors were blocked using 30 mM
D-APV, 50 mM picrotoxin, and 50 mM bicuculline methiodide, and CaCl2
and MgCl2 were increased to 3 mM to reduce polysynaptic activity.
Membrane potentials were not corrected for the liquid junction potential.
Currents were filtered at a bandwidth of 2 kHz (23 dB) using an
eight-pole low-pass Bessel filter and sampled at 20 kHz using pCLAMP
software (Axon Instruments). Series resistance (3–20 MV; overall mean,
9.8 6 1.2 MV) was monitored continuously and compensated by 85–90%.
All experiments were performed at 35 6 1°C.

Excitatory synaptic currents were evoked by a stimulation pipette filled
with extracellular solution located 100–300 mm from the soma of the
neuron being recorded from, usually near its primary apical dendrite.
Care was taken to select inputs without detectable polysynaptic contri-
butions and with minimal “jitter” in the timing of individual currents.
The peak amplitude of the EPSCs was typically 10–15 times that of
spontaneously occurring EPSCs. Voltage jumps from 270 to 290 mV
were alternated with voltage jumps combined with synaptic stimulation.
Jumps at different times relative to the onset of the conductance were
randomized and interleaved to mitigate the effects of systematic changes
in the experimental conditions over time (e.g., synaptic “rundown” or
increases in series resistance). The stimulation rate was 0.25–0.33 Hz.

Residual synaptic currents were obtained by subtracting the response
to voltage jumps applied without synaptic stimulation from the response
to jumps with stimulation. From 10 to 42 individual subtracted currents
were averaged for each time point on the charge recovery curve (see
Results). Synaptic charge was measured over an interval of 20–50 msec
after the onset of the synaptic current. Sweeps that contained large
spontaneous events were excluded from analysis. Charge recovery curves
with the lowest noise levels were selected for analysis. Noise levels were
quantified by dividing the SD of the fit residuals of the charge recovery
curve by the difference between the maximum and minimum values of
the fit curve; only complete charge recovery curves for which the value of
this “noise index” was #0.11 were accepted (n 5 8 of 18 experiments).
Statistical errors attributable to synaptic and instrumental noise were
estimated by Monte Carlo simulation of synthetic charge recovery curves
(Press et al., 1992). Gaussian noise (same noise index as the experimental
charge recovery curves) was added to the charge recovery with mean
experimental parameters. The resulting simulated charge recovery
curves were fit by the same procedure as the experimental charge
recovery curves. All values are given as mean 6 SEM.

RESULTS
Attenuation and filtering of synaptic currents under
poor space-clamp conditions
The nature of the problem faced when attempting to voltage clamp
dendritic synaptic currents via a somatic electrode is illustrated in
Figure 1B using the simple equivalent cylinder model shown in
Figure 1A. There are two closely related components of inade-
quate space clamp that must be considered: attenuation of the
signal along the cable, and the reduction in driving force at the
synapse caused by local depolarization or hyperpolarization (also
known as “voltage escape”). The outcome of these two effects is
that the current recorded at the soma from synapses located on the
dendrites is a substantially filtered version of the synaptic current
expected under perfect clamp conditions, with the rise time, peak,
and decay being subject to considerable distortion, dependent on
the electrotonic distance of the synapse from the soma and the
kinetics of the conductance. These features have been described in
detail previously (Johnston and Brown, 1983; Rall and Segev, 1985;
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Major, 1993; Major et al., 1993; Spruston et al., 1993), but there are
several aspects of particular relevance to the method that deserve
special emphasis. First, the current flowing at the synapse during
somatic voltage clamp is not identical to the current that would be
flowing during perfect clamp of the synapse. This difference is
attributable to the voltage escape at the synapse, which reduces the
driving force of the synaptic current and distorts its shape. Second,
for a given location and peak conductance the voltage escape, and
thus the distortion of the synaptic current, is greatest for the
synaptic conductances with the slowest kinetics, because they con-
tinue to charge the membrane capacitance for a longer period. The
magnitude of this effect on the current recorded at the soma will be
mitigated by the fact that slow conductances suffer less attenuation
by the cable, because attenuation is frequency-dependent in a
passive system (Rall, 1967; Jack et al., 1983; Spruston et al., 1994).
Third, while the kinetics and the peak of the synaptic current suffer
the most distortion, the attenuation of synaptic charge is much less
severe. Furthermore, the attenuation of charge at a given location
is relatively independent of the kinetics of the current; in these
simulations, there was ,10% difference in the recovered charge for
conductances with different kinetics even for the most distal syn-
apses. This residual difference is attributable to the greater voltage
escape caused by slower conductances: when the voltage escape
converges toward zero, the attenuation of synaptic charge becomes
independent of the kinetics of the synaptic conductance (Rall and
Segev, 1985; Major et al., 1993).

The voltage jump method described in this paper circumvents
the filtering of the synaptic current by the cable and provides a
reliable estimate of the synaptic conductance time course for even
the most electrotonically distal synapses. The method is particu-
larly concerned with (and is most effective for) fast synaptic
conductances, which suffer the most severe distortions under
conditions of inadequate space clamp.

Measuring charge recovery
The experimental procedure for recovering synaptic charge, fol-
lowing the method introduced by Pearce (1993), is demonstrated
using a simple equivalent cylinder simulation in Figure 2. Accord-
ing to this procedure the somatic voltage is held at the apparent
synaptic reversal potential, and a hyperpolarizing voltage jump is
made, providing a driving force to generate synaptic current. The
voltage jump is repeated in the presence and absence of synaptic
activation, and the resulting somatic currents are subtracted, thus
eliminating the capacitive transient that accompanies the voltage
jump. This procedure gives a residual synaptic current with a time
course and amplitude that depend on the relative time of the jump
and the onset of the synaptic conductance (see Fig. 3A). If the jump
occurs sufficiently long before the onset of the conductance, then
the residual current will approach identity with the synaptic current
recorded at that potential under steady-state conditions. On the
other hand, if the jump occurs a sufficiently long time after the
onset of the synaptic conductance, then it will eventually recover no
current at all, because the synaptic conductance will have termi-
nated. The current resulting from each jump therefore results from

an interaction between the time course of the increase in driving
force at the synapse and the kinetics of the conductance itself.

The synaptic charge associated with each residual current is
plotted against the time of the respective jump in Figure 3B. The
resulting “charge recovery curve” has a sigmoidal shape consist-
ing of an exponential “onset” and “offset” with a transition at ;0

Figure 2. Experimental protocol for measuring charge recovery. Same
equivalent cylinder as in Figure 1; synapse at X 5 0.15; peak conductance,
1 nS; rise and decay time constants, 0.2 and 3.0 msec, respectively. Top,
220 mV voltage jump applied at the soma via the somatic electrode. The
somatic holding potential is set to 4.10 mV, making the voltage at the
synapse equal to the reversal potential (0 mV). The somatic voltage-clamp
command is shown in the top trace; the voltage at the synapse is shown in
the middle trace; and the (truncated) somatic clamp current is shown in
the bottom trace. Middle, The synaptic conductance is activated 1 msec
before the same voltage jump. The time course of the synaptic conduc-
tance is shown by the dashed line, with the amplitude equal to that of the
perfectly clamped synaptic current. The somatic clamp current in the
presence (solid line) and absence (dotted line) of the synaptic conductance
is shown. Bottom, Residual synaptic current (thick trace) after subtraction
of somatic clamp current under the two conditions. The synaptic current
expected under perfect voltage clamp at a constant holding potential of
220 mV is superimposed as a dashed line.

4

Figure 1. Space-clamp errors affecting the measurement of dendritic synaptic conductances. All traces in B are from the same equivalent cylinder shown
schematically in A (soma not to scale), with L 5 0.5 and with synapses at three different electrotonic locations on the cable (X 5 0, 0.15, and 0.5). The
peak synaptic conductance was 1 nS in each case, consisting of the sum of a rising (t 5 0.2 msec) and a decaying (t 5 1, 3, or 10 msec) exponential. B,
In each panel the voltage at the synaptic location (Vsyn) is shown as the top trace. The bottom traces show the current recorded at the soma (thick line),
the current actually flowing at the synapse (thin line), and the synaptic current expected under perfect voltage-clamp conditions (dashed line). The
numbers at the right of each panel show the relative magnitude of the peak ( pk), the decay time constant (t), and the charge ( Q) of the somatic current
versus the perfectly clamped synaptic current. The scale bar at the bottom right applies to all panels.
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msec, i.e., at the beginning of the synaptic conductance. The
determinants of the two components of the curve will be exam-
ined in the following section.

Charge recovery after the onset of the synaptic
conductance is determined by the conductance
time course
Figure 4 shows several charge recovery curves from a synapse at
the same location as in Figures 2 and 3 with a range of kinetics for
the synaptic conductance. It is clear from Figure 4 that the
portion of the charge recovery curve that follows the onset of the
synaptic conductance is determined by the decay time constant of
the synaptic conductance; when the decay of the conductance is
effectively instantaneous, as with the delta pulse, then no charge
is recovered after t 5 0 msec. For the more realistic synaptic
conductances in Figure 4B–D, the decay of the charge recovery
closely matches the actual decay time course of the synaptic
conductance. This finding holds for the condition trise ,, tdecay of
the conductance, as is true for most synaptic conductances found
to date. Generally, it was found that for a monoexponentially
decaying synaptic conductance, the later the start time of the fit,
the better the correspondence between the fit decay and actual
decay, because starting the fit at later times helps avoid potential
distortions attributable to voltage escape (see below). Of course,
when the synaptic conductance time course is unknown it may be
an oversimplification to assume that it has a single exponential
decay (e.g., see Pearce, 1993).

Charge recovery before the onset of the synaptic
conductance is determined by the electrotonic
distance of the synapse
Figure 5 demonstrates that the early component of the charge
recovery, before the onset of the synaptic conductance, reflects
the time course of the voltage change at the synapse produced by
the somatic voltage command. This was shown by placing a delta
pulse synaptic conductance at various distances from the record-
ing site, thereby eliminating the influence of synaptic kinetics on
the charge recovery. Under these conditions, the charge recovery
curve for a synapse located at the soma was essentially a step
function, whereas the curve for more distal synapses became
progressively more rounded. The same was true for the voltage
response to a somatic voltage jump at different distances. The
symmetry between the time course of the two curves is demon-
strated by overlaying the scaled voltage response on top of the
charge recovery, as shown in Figure 5D.

A simple analytical function describes the charge
recovery curve
In a linear system, the voltage response at the synapse to a
somatic voltage step can always be described by a sum of expo-
nentials (Rall, 1969; Major et al., 1993) [we follow the convention
of Major et al. (1993) in setting resting membrane potential and
the reversal potential of the synaptic conductance to zero]. This
sum is often dominated by a single exponential, with time con-
stant tv (see Fig. 3A):

Vsyn~s, t! 5 aVcomQ~t 2 s!~1 2 e2~t2s!/tv!, (1)

Figure 3. Charge recovery depends on the time of the voltage jump.
Same conditions as in Figure 2. A, 20 superimposed sweeps of somatic
voltage jumps (Vcom, top traces) at different times relative to the onset of
the synaptic conductance. The interval between jump traces is 1 msec; the
earliest jump is 7 msec before the onset of the synaptic conductance, and
the latest is 12 msec after onset of the conductance. Also shown are the
voltage at the synapse (Vsyn), the time course of the synaptic conductance
( gsyn), and the “recovered” somatic currents (Isoma) obtained by subtract-
ing the somatic clamp current in the presence and absence of the synaptic
current for each jump. B, Plot of the charge associated with the recovered
somatic synaptic currents (Isoma) versus time of the somatic voltage jump;
0.5 msec jump intervals.

3

Figure 4. Charge recovery after the onset of the synaptic conductance is determined by the synaptic decay. A–D, Charge recovery plots for synaptic
conductances with different kinetics: a delta pulse ( A) or a double-exponential function with the same rising exponential (0.2 msec) and different decay
time constants (1, 3, and 10 msec in B–D, respectively). Peak conductance 1 nS in each case; all synapses were located at X 5 0.15 using the same
equivalent cylinder as in Figure 1. A single-exponential decay has been fit to the decay of the charge recovery in B–D; note the close correspondence
with the decay time constant (tdec) of the original synaptic conductance in each case. E, Each charge recovery curve has been normalized by its value
at the onset of the synaptic conductance and superimposed. The individual points of each curve have been joined by a line for clarity.
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where a is the steady-state attenuation factor of the voltage
command, Vcom, at the soma, U is the Heaviside step function:

Q~ x! 5 H1 ~ x $ 0!
0 ~ x , 0!,

and s is the time of the voltage step with respect to the onset (t 5
0) of the synaptic conductance, g(t).

For simplicity, we first choose a d function synaptic
conductance:

g~t! 5 ĝd~t!. (2)

The resulting current flowing at the synapse (neglecting voltage
escape):

Isyn~s, t! 5 Vsyn~s, t! g~t! (3)

can be integrated over time to give the synaptic charge:

Qsyn~s! 5 E
2`

`

Isyn~s, t!dt 5 aVcom ĝQ~2s!~1 2 es/tv!, (4)

which of course depends on the time of jump, s (see Fig. 3B). The
charge recovered at the somatic voltage clamp electrode:

Qsoma~s! 5 a2Vcom ĝQ~2s!~1 2 es/tv! (5)

is a constant fraction a of the total synaptic charge (Redman,
1973; Rinzel and Rall, 1974; Carnevale and Johnston, 1982; Jack
et al., 1983; Rall and Segev, 1985; Major et al., 1993).

The assumption of a d function synaptic conductance is unre-
alistic, and therefore we repeat the calculation in Equation 4 with
a synaptic conductance that rises instantaneously to a peak at t 5
0 and then decays exponentially with time constant tdec:

g~t! 5 #gQ~t!e2t/tdec, (6)

which yields a recovered charge:

Qsoma~s! 5 5
a2Vcom #gtdec~tdec 1 tv~1 2 es/tv!!

tdec 1 tv
~s # 0!

a2Vcom #gtdec
2 e2s/tdec

tdec 1 tv
~s . 0!

(7)

that changes exponentially with a single time constant equal to tv

for voltage jumps occurring before the onset of the synaptic
conductance and a single time constant equal to tdec afterward
(compare Figs. 5 and 4). The ratio of the amplitudes of the onset
and offset phases of the charge recovery is equal to tv /tdec.
Because integration is a linear operation, the integral in Equation
4 can still be evaluated if both the voltage response at the synapse
and the synaptic conductance are described by sums of exponen-
tials. The time constants of the charge recovery for s # 0 are given
by the time constants of the voltage response, and the time
constants of the charge recovery for s . 0 are given by the time
constants of the synaptic conductance. We illustrate this for the

case that the voltage response at the synapse is a sum of two
exponentials:

Vsyn~s, t! 5 aVcomQ~t 2 s!~av1 1 av2 2 av1e
2~t2s!/tv1 2 av2e

2~t2s!/tv2!,
(8)

and the synaptic conductance is represented by three exponen-
tials (one for the rise and two for the decay):

g~t! 5 Q~t!~2~ #g1 1 #g2!e2t/tri se 1 #g1e2t/tdec1 1 #g2e2t/tdec2!. (9)

In this case the recovered charge is:

Qsoma~s # 0! 5

a2VcomS ~av1 1 av2!~2~ #g1 1 #g2!trise 1 #g1tdec1 1 #g2tdec2!

1 av1tv1e
s/tv1S ~ #g1 1 #g2!trise

trise 1 tv1

2
#g1tdec1

tdec1 1 tv1

2
#g2tdec2

tdec2 1 tv1
D

1 av2tv2e
s/tv2S ~ #g1 1 #g2!trise

trise 1 tv2

2
#g1tdec1

tdec1 1 tv2

2
#g2tdec2

tdec2 1 tv2
DD (10)

Qsoma~s . 0! 5

a2VcomS~av1 1 av2!~2~ #g1 1 #g2!trisee2s/trise 1 #g1tdec1e
2s/tdec1 1 #g2tdec2e

2s/tdec2!

1 av1tv1S~ #g1 1 #g2!trisee2s/trise

trise 1 tv1

2
#g1tdec1e

2s/tdec1

tdec1 1 tv1

2
#g2tdec2e

2s/tdec2

tdec2 1 tv1
D

1 av2tv2S~ #g1 1 #g2!trisee2s/trise

trise 1 tv2

2
#g1tdec1e

2s/tdec1

tdec1 1 tv2

2
#g2tdec2e

2s/tdec2

tdec2 1 tv2
DD.

To allow well conditioned fits of charge recovery data, the ampli-
tudes av1

and av2
in Equation 10 were normalized according to av1

1 av2
5 1. The factors a2, Vcom, g#1 and g#2 were combined in two

overall amplitudes of the fit function, g1
* 5 a2Vcomg#1 and g2

* 5
a2Vcomg#2 , which were free parameters of the fit. Constant offsets
in s and Qsoma(s) can also be introduced to allow latency varia-
tions and jumps from other potentials than the apparent reversal
potential of the synaptic conductance.

In practice it may not always be necessary (or possible) to fit the
entire analytical function. As demonstrated above, the charge
recovery can be separated into two components, with the second
determined by the kinetics of the conductance (see Fig. 4 and Eqs.
7 and 10). This can be exploited experimentally in situations in
which the time of recording is limited or in which only the decay
of the synaptic conductance is of interest. By making a series of
jumps at different times after the onset of the synaptic conduc-
tance and then fitting the decay of the recovered charge with an
exponential function, an estimate can be made of the decay of the
conductance (assuming that trise ,, tdecay). It is also possible to
fit multiple exponential functions to the decay; in this case, the

4

Figure 5. Charge recovery before the onset of the synaptic conductance reflects the voltage change at the synapse caused by the somatic voltage
command. All simulations are from the same equivalent cylinder as in Figure 1. A–C, Left panels, Synaptic voltage (Vsyn) in response to a somatic
voltage-clamp step (of arbitrary amplitude) at three different locations; right panels, charge recovery curves for a synaptic delta pulse (1 nS peak
conductance) at the same three locations. D, Superimposition of the synaptic voltage responses on the respective charge recoveries; both the charge
recoveries and the voltage responses have been normalized by their respective maxima, and the time axis of the voltage response has been inverted. Note
the exact correspondence of the voltage time course and the charge recovery in each case.
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time constants will be extracted faithfully, but the relative ampli-
tudes of the faster components will be underestimated. This
“shortcut” could in principle allow the voltage jump method to be
applied to spontaneous synaptic currents, by triggering voltage

jumps (using a software or hardware trigger) with a variable delay
after the synaptic current crosses a threshold amplitude. Some
jitter will be introduced in the time of the jump if the spontaneous
currents have widely different amplitudes and/or rise times; this

Figure 6. Effects of local depolarization (voltage escape) on the reliability of the charge recovery method. A–C, Simulations from the same equivalent
cylinder as in Figure 1, with the synapse at a constant location (X 5 0.15) and with a range of peak synaptic conductances as indicated (rising and
decaying time constants, 0.2 and 3.0 msec respectively). A, Voltage at the synapse (Vsyn); B, current flowing at the synapse (Isyn); C, Current recorded
at the soma (Isoma). The charge recovery plots from the various conductances are shown unscaled in D and scaled by the peak charge in E. The graph
in F compares the decay time constant obtained by fitting either the somatic current or the charge recovery curve (tfit; fit beginning 7 msec after onset
of the conductance in each case) with the actual decay time constant of the synaptic conductance (tsyn). Note that the time constant estimated by the
charge recovery is relatively faithful to the actual synaptic decay time constant except at very high values of peak conductance.

3

Figure 7. Simulations of the voltage jump method in a CA3 pyramidal cell model. A, Morphology of the CA3 pyramidal cell with which the simulations
were performed showing the location of the simulated synapse, which was placed on a spine head ( filled circle). B–G, A synaptic conductance (peak, 0.5
nS) consisting of a double-exponential function (trise 5 0.2 msec; tdec 5 2.5 msec) was used; the conditions in B–D and E–G are identical, except that
the series resistance of the somatic pipette was 0.5 MV in B–D and 20 MV in E–G. B, E, Somatic clamp current resulting from activation of the synaptic
conductance (thick trace) as well as the synaptic current expected under conditions of perfect space clamp. The 20–80% rise times of the currents were
1.00 msec in B and 1.71 msec in E. The decay time course of the somatic clamp current could be fit with a single exponential function with t 5 6.44 msec
in B and 12.90 msec in E. C, F, Currents recovered by a series of 220 mV voltage jumps from 265 mV (1 msec interval between jumps). D, G, Charge
recovery curves measured from the traces in C and F together with the best fit of the analytical function (Eq. 10). Note the different onset of the two
curves. For the low series resistance condition the best fit was with the following parameters: tv1

5 1.58 msec (40%); tv2
5 8.53 msec (60%); trise 5 0.22

msec; and tdec 5 2.55 msec (here and wherever appropriate, Eq. 10 was modified such that tdec1
5 tdec2

5 tdec ). For the high series resistance condition
the best fit was with tv1

5 2.15 msec (5%); tv2
5 12.75 msec (95%); trise 5 0.19 msec; and tdec 5 2.56 msec. A single-exponential fit to the decay of the

charge recovery curve gave tdec 5 2.54 msec in both cases. H–J, An NMDA receptor-mediated synaptic conductance was simulated at the same location
(peak, 0.1 nS; trise 5 5.0 msec; tdec 5 40 msec) with 0.5 MV series resistance, assuming zero external Mg 21. H compares the perfectly clamped synaptic
current with the measured somatic current. The 20–80% rise time of the somatic current in H was 7.17 msec, and current was fit with a
double-exponential function with trise 5 9.6 msec and tdec 5 39.8 msec. The currents recovered by voltage jumps from 265 to 285 mV are shown in
I, and the respective charge recovery curve is shown in J. The values of the best fit of the analytical function were tv1

5 1.45 msec (41%); tv2
5 8.58 msec

(59%); trise 5 5.15 msec; and tdec 5 40.4 msec. A single-exponential fit to the decay of the charge recovery curve gave tdec 5 41.2 msec.
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can be corrected for by later normalizing the time of each jump to
a reference point on the rise. As with evoked synaptic conduc-
tances, the mean decay time course of the underlying conduc-
tances can then be estimated from the charge recovery curve.

The voltage jump method also works in
current-clamp mode
In principle, a change in driving force at the synapse can be
generated either with a voltage command under voltage clamp or
by injecting a fixed amount of current to generate a reproducible
voltage change in current-clamp mode. Because the analytical
solutions for both the “time integral” of synaptic potentials and
the synaptic charge in voltage clamp depend only on the charge
flowing at the synapse (Major et al., 1993), one can fit the curve
of the time integral of the synaptic potentials obtained after a
series of identical square current pulses with Equation 7 or 10. In
this case, the measured tv will be determined by the membrane
time constant tm, because tm determines the dendritic voltage
response to a square current step (neglecting the faster equaliza-
tion time constants, which generally have much smaller ampli-
tudes for a long current step). Although the kinetics of the
synaptic conductance can be extracted reliably as described
above, because tm .. tdecay for most neurons and synaptic con-
ductances, the amplitude of the time integral curve will be dom-
inated by the component attributable to tm (the onset). There-
fore, for determining the time course of the synaptic conductance
it is always preferable to use voltage clamp rather than current
clamp, because tv for voltage clamp will always be smaller than tm

[except in the limiting case, in which they are identical (Major et
al., 1993)] and thus will provide better signal-to-noise ratios for
extracting trise and tdecay. Voltage clamp will also reduce the
voltage excursion at the synapse (although only slightly for some
synapses) and thus also distortion in the synaptic current. For
these reasons all subsequent simulations as well as the experi-
ments were done in voltage-clamp mode.

Effect of voltage escape at the synapse
The analytical function derived above assumes that the voltage
escape associated with the synaptic current at the synaptic site is
negligible. Because some voltage escape will inevitably be asso-
ciated with somatic voltage clamp of dendritic synapses, it is
therefore necessary to test how voltage escape affects the accu-
racy of the method. This was done using the equivalent cylinder
model by progressively increasing the magnitude of the peak
synaptic conductance at a given location. The results of such
simulations are shown in Figure 6. As the synaptic conductance is
increased, the voltage escape at the synapse progressively ap-
proaches the synaptic reversal potential, causing substantial dis-
tortions both in the current flowing at the synapse as well as in the
current recorded at the soma. The charge recovery curves ob-

tained from the same synapses show a progressive distortion and
slowing after t 5 0. When comparing the decay time constant fit
to the charge recovery curve with the actual time course of decay
of the conductance (Fig. 6F), serious errors (.10%) were found
only for the largest conductances ($20 nS). These errors could be
reduced further by changing the fit range; fits with a later onset
produced greater accuracy (although, as pointed out above, this is
not feasible for conductances that may contain a slow compo-
nent). By contrast, the time constants fit to the decay of the
current measured at the soma were seriously in error for all
conductance values chosen; delaying the onset of the fit produced
little improvement in accuracy.

These findings suggest that the voltage jump method can reli-
ably extract the decay time course of the synaptic conductance
over a wide range of magnitudes of the conductance, but that the
substantial voltage escape associated with very large, highly local-
ized synaptic conductances may reduce its accuracy. The ampli-
tude of the voltage escape will depend not only on the magnitude
of the conductance but also on the geometry of the cell as well as
its electrical properties. To test the method rigorously, it is
therefore of great importance to carry out simulations in com-
partmental models of real neurons, with realistic values for the
membrane parameters and the synaptic conductance.

Application to pyramidal cell geometries
CA3 pyramidal cell
Figure 7 shows a test of the voltage jump method in a detailed
compartmental model of a CA3 pyramidal cell (Major et al.,
1994). As shown previously (Major et al., 1994), a synaptic input
placed on the distal apical dendrites is substantially filtered and
attenuated by space-clamp errors (Fig. 7B). The voltage jump
protocol was performed at a holding potential of 265 mV. Be-
cause the analytical function assumes that the system is passive, it
should not matter from which holding potential the jumps are
made or which voltage is jumped to, as long as there is a change
in synaptic driving force; the charge recovery curve is simply
shifted downward on the y-axis by the difference in synaptic
charge at the two holding potentials. By fitting the charge recov-
ery with Equation 10, it was possible to extract the decay of the
synaptic conductance with high accuracy (,5% error; for details,
see legend to Fig. 7). To determine the effect of high membrane
conductance on the accuracy of the method, Rm was decreased
from 180,000 to 20,000 Vcm2 (which reduced the input resistance
from 305 to 43.4 MV). Under these conditions, as might be
expected to occur in vivo because of tonic synaptic bombardment,
the method extracted the decay time course of the conductance to
within 2% error (data not shown). The method also maintained
high accuracy under conditions of high series resistance (20 MV;
Fig. 7E–G). Note that in these simulations, the time course of the

4

Figure 8. Simulation of a distributed inhibitory conductance in a CA3 pyramidal cell. A unitary connection made by a presynaptic “bitufted” inhibitory
neuron is modeled, based on the work of Miles et al. (1996, their Fig. 2). The locations of the 8 individual contacts on apical and basal dendritic shafts
are shown using dots in A. Each synaptic contact had an identical synaptic conductance, with a peak conductance of 1 nS and a reversal potential of 0
mV. The rising time constant was 0.2 msec in all cases, and the decay time constant was either a single exponential of 5 msec ( B–D) or a double
exponential of 5 msec (80%) and 30 msec (20%). B and E compare the somatic clamp current with the perfectly clamped EPSC. The 20–80% rise times
of the currents were 1.66 msec in B and 1.89 msec in E. The decay of the somatic clamp current could be fit by a single exponential with t 5 9.5 and
22.2 msec, respectively. C, F, Recovered currents from successive voltage jumps from 265 mV. D, G, Charge recovery curves, which have been fit with
the analytical function. For the monoexponentially decaying conductance, the best fit of the analytical function was with the following parameters: tv1
5 3.24 msec (57%); tv2

5 10.93 msec (43%); trise 5 0.66 msec; and tdec 5 5.22 msec; fitting the decay of the charge recovery curve with a single
exponential gave tdec 5 5.16 msec. For the conductance with a biexponential decay the best fit was with the following parameters: tv1

5 3.26 msec (59%);
tv2

5 11.11 msec (41%); trise 5 0.48 msec; tdec1
5 5.17 msec (77%); and tdec2

5 30.54 msec (23%). A double-exponential fit to the decay of the charge
recovery gave tdec1

5 5.02 msec (66%); and tdec2
5 30.48 msec (34%).
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initial phase of the charge recovery (and the tv values extracted by
fitting the analytical function) were much slower than with low
series resistance, consistent with the greater effective electrotonic
distance of the synapse in the high series resistance condition.

To test whether it is also possible to extract accurately the rise
time of a slow synaptic conductance, an NMDA receptor-
mediated EPSC (Kirson and Yaari, 1996) was simulated at the
same synaptic location in Figure 7H–J. Although the decay of this
synaptic current was not significantly distorted because of its slow
time course, the rise time was slowed substantially (from trise 5
5.0 to 9.6 msec). The analytical function was able to extract the
rise time (as well as the decay) to within 3% of its original value,
indicating that the method may also be useful for this purpose.

To examine the effectiveness of the method for distributed
conductances in the CA3 pyramidal cell, an inhibitory connection
was simulated (Fig. 8), with the location of the contacts based on
a reconstructed connection between an interneuron and a simul-
taneously recorded CA3 pyramidal cell (Miles et al., 1996, their
Fig. 2). Either single- or double-exponentially decaying conduc-
tances were simulated at each contact (Pearce, 1993). When the
decay of the synaptic conductance was double-exponential, the
fast component of the decay was filtered more heavily than
the slow component, such that the synaptic current measured at
the soma could be fit with a single exponential with a t interme-
diate to the two time constants of the conductance decay. Because
the synapses in this simulation were at widely distributed elec-
trotonic locations, when applying a somatic voltage jump each
synapse experienced voltage transients with a different time
course. This caused slight distortions of the rise time extracted
with the analytical function. The decay appeared to be relatively
little affected by this nonuniformity, as with both the single- and
double-exponentially decaying conductances, it was possible to
extract the time constants and their relative amplitudes to a high
degree of accuracy (,5% error). To test the effect of the synaptic
conductance kinetics on the accuracy of the method, we also
performed simulations under the same conditions with a conduc-
tance decay time constant of 1 msec. The decay time constant
extracted by the method was 1.01 msec (data not shown), con-
firming that high accuracy could be maintained even with rapid
input kinetics.

Neocortical pyramidal cell
The most stringent tests of the method were performed using a
detailed compartmental model of a layer 5 pyramidal cell
(Markram et al., 1997), a cell type that has one of the most

extensive dendritic trees of any neuron in the brain. A morpho-
logically reconstructed unitary input made by an adjacent, simul-
taneously recorded layer 5 pyramidal cell was simulated
(Markram et al., 1997), which made eight contacts at widely
dispersed electrotonic locations (mean X 5 0.71; range, 0.063–
1.4). When this distributed input was activated, the analytical
function extracted the decay time constant of the synaptic con-
ductance to within 5% error, despite substantial filtering of the
synaptic current waveform (Fig. 9B–D). Errors remained small
(,5%) when the magnitude of the conductance at each contact
was quadrupled to 4 nS, when the decay time constant of the
synaptic conductance was reduced to 1 msec, and when the series
resistance was increased to 5 MV (not shown).

To investigate the influence of active conductances on the
method, the simulations were repeated incorporating an active
membrane model of neocortical layer 5 pyramidal cells containing
a variety of voltage-gated conductances, which reproduces the
firing pattern of these neurons (Mainen and Sejnowski, 1996).
Simulations with the active model at 1 nS peak conductance per
contact produced results that were very similar to those found
with the passive model, consistent with the lack of distortion in
the synaptic current (Fig. 9E, inset). When the peak synaptic
conductance was increased to 4 nS/contact, however, an obvious
“boosting” component could be observed in the decay of the
synaptic current (Fig. 9H, inset). The boosting current arose
almost exclusively via activation of sodium and calcium conduc-
tances in the apical tuft branches (not shown); virtually no boost-
ing was observed at the peak of the synaptic current, primarily
because the measured peak is dominated by current from basal
inputs, which are better clamped.

The extra charge contributed by the active conductances
caused clear distortions in the charge recovery curve, with an
extra component emerging in the onset of the charge recovery,
representing jumps made just before the beginning of the synaptic
conductance. The shape of this extra component results from a
highly nonlinear process involving the increase in the driving
force caused by the hyperpolarization, which is still weak enough
at “late” times to permit activation of voltage-gated channels.
Despite this distortion, the charge recovery after t 5 0 msec
remained dominated by the decay of the synaptic conductance;
when a single exponential was fit to this component, the decay was
estimated to within 10%. Similar results were obtained when the
decay time constant was reduced to 1 msec (not shown). In this
model, therefore, the errors caused by active conductances de-

4

Figure 9. Simulation of a distributed synaptic connection in an active layer 5 pyramidal cell model. A reconstructed synaptic connection made by a single
presynaptic layer 5 pyramidal neuron is simulated, with 8 contacts (marked by dots in A) distributed on apical and basal dendritic spines (Markram et
al., 1997). All synaptic conductances are identical (trise 5 0.20 msec; tdec 5 2 msec). The model either was passive (B–D) or contained active
conductances (E–J), as described in Materials and Methods. The peak synaptic conductance at each contact was either 1 or 4 nS; the kinetics of the
currents and charge recoveries obtained from the 1 and 4 nS passive simulations was nearly identical, and therefore only the results from the 1 nS
simulation are shown. B, E, and H compare the somatic clamp current at a holding potential of 265 mV with the perfectly clamped EPSC for the passive
and active model. Insets in E and H compare the clamp current in the active model with that of the corresponding simulation in the passive model (same
period as in the main panels; scale bars apply to the larger traces). Note that in the simulations with 1 nS peak conductance, the active and passive models
produce a virtually identical EPSC, whereas in the 4 nS simulation the EPSC in the active model clearly shows an additional current component in the
tail of the EPSC. The 20–80% rise times of the somatic EPSCs were 0.36 msec in each case. The decay of the somatic EPSCs could be fit by a single
exponential with t 5 3.3 msec in the passive simulations as well as in the active 1 nS simulation, and with t 5 3.7 msec in the 4 nS active simulation.
C, F, I, Recovered currents from successive 220 mV hyperpolarizing voltage jumps from a holding potential of 265 mV. D, G, J, Respective charge
recovery curves measured from the recovered currents. In D and G, the curves have been fit with the analytical function. The best fit in the passive model
gave tv1

5 0.36 msec (69%); tv2
5 11.3 msec (31%); trise 5 0.22 msec; and tdec 5 2.02 msec; whereas in the active model the values were tv1

5 0.23 msec
(69%); tv2

5 11.6 msec (31%); trise 5 0.34 msec; and tdec 5 1.90 msec. A single-exponential fit to the decay of the charge recovery gave tdec 5 2.00 msec
in both cases. Because of the distortion of the charge recovery in the 4 nS active simulation, a fit of the analytical function was not possible. However,
the decay phase of the charge recovery was fit with a single exponential of 1.90 msec.
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pend on various factors, particularly the size of the synaptic
conductance (Fig. 9E,H) and the holding potential. These find-
ings demonstrate that care must be taken to choose the appro-
priate voltage range over which to carry out the voltage jumps,
and that tests must be done to evaluate the possible contribution
of voltage-gated conductances.

Experimental application of the voltage jump method
to neocortical pyramidal cells

The voltage jump method was used to determine experimentally
the time course of excitatory synaptic conductances in layer 5
neocortical pyramidal cells. We evoked EPSCs resulting from the

Figure 10. Determining the time course of excitatory synaptic conductances in neocortical pyramidal neurons using the voltage jump method. All traces
taken from a somatic whole-cell recording of a layer 5 neocortical pyramidal neuron at 35°C; the internal solution contained 1 mM QX-314 and 0.5 mM
ZD 7288. A, The neuron was held at 280 mV, and a series of voltage jumps (from 295 to 265 mV in 5 mV steps) was given to test for membrane
linearity, bracketing the voltage range used for determining the charge recovery. The resulting currents are shown below the voltage commands (average
of 5 traces each; the series resistance of 6.0 MV was compensated by 90%). B, The currents were scaled by the command voltage and superimposed to
demonstrate linearity. An EPSC was evoked by stimulation of afferent fibers near the apical dendrite and is shown at two different holding potentials
in C (averages of 25 traces). D, The traces in C have been scaled by their peak amplitudes and superimposed. The 20–80% rise times of the currents
were 1.15 and 1.13 msec at 270 and 290 mV, respectively, and the decay time constants were 6.2 and 6.1 msec, respectively. E, Charge recovery curve
obtained for this EPSC with jumps from 270 to 290 mV. Each point represents the average of 21–26 separate trials. The values of the best fit using the
analytical function (thick line) were tv 5 3.36 msec; trise 5 0.54 msec; and tdec 5 1.47 msec. Fitting the decay of the charge recovery with a single
exponential function gave tdec 5 1.59 msec.

3

Figure 11. Attenuation of synaptic currents and estimation of synaptic charge in layer 5 pyramidal cells. The location of the 5 synapses used in the
simulation is shown by arrowheads in A. All synapses had identical conductances (peak gsyn 5 1.0 nS; trise 5 0.20 msec; and tdec 5 2 msec), and each
synapse was activated individually. The somatic holding potential was at the resting potential (270 mV). B, Voltage escape at the synapse (Vsyn). C,
Synaptic current flowing at the synapse (Isyn). Note that the reduction in driving force as a consequence of the voltage escape causes a corresponding
reduction in the amplitude of the synaptic current. D, Synaptic current measured at the soma (Isoma) after activation of synapses at different locations.
Note the striking distortion and reduction in peak amplitude of the currents originating at progressively more distal locations. The 20–80% rise times
of the synaptic currents measured at the soma were soma synapse, 0.18 msec; 30 mm, 0.25 msec; 100 mm, 0.37 msec; 300 mm, 0.78 msec; and 1000 mm,
3.12 msec. The decay time constants for somatic currents originating at the different locations were soma synapse, 2.00 msec; 30 mm, 2.24 msec; 100 mm,
2.62 msec; 300 mm, 4.14 msec; and 1000 mm, 12.6 msec. E, Attenuation of voltage in response to a somatic voltage step at different locations in the
dendritic tree. F, Shift of apparent synaptic reversal potential with increasing distance of the synapse from the somatic recording site (reversal potential
of the synapse set to 0 mV). G compares the attenuation of synaptic charge predicted from reversal potential shifts with the actual attenuation of synaptic
charge. The predicted attenuation factor (a) was calculated according to Equation 11, and the actual attenuation factor was determined by dividing the
integral of current recorded at the soma by the integral of the current flowing at the synapse. Note that for synapses at all distances the predicted and
actual values fall along the unity line. H compares the predicted charge with charge associated with the perfectly clamped EPSC. Each point represents
the predicted charge divided by the synaptic charge expected with perfect clamp for synapses at different locations, and for three different peak
amplitudes of the synaptic conductance (0.1, 1.0, and 4.0 nS).
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activation of only one or a few presynaptic fibers (peak amplitude,
546 6 50 pA at 270 mV; n 5 25). The evoked EPSCs had an
average 20–80% rise time of 0.89 6 0.03 (range, 0.55–1.20) msec
at 270 mV, and their decay could be fit well using a single
exponential function with a time constant of 3.83 6 0.24 (range,
2.1–6.3) msec. The linearity of the membrane between 270 and
290 mV was examined by recording the membrane currents in
response to a series of depolarizing and hyperpolarizing voltage
jumps of different amplitudes starting from a holding potential of
280 mV. When scaled by the jump amplitude, these currents
superimposed well for jumps of different amplitude (see Fig.
10B). To check for distortions in the EPSC caused by activation
of voltage-gated conductances, the time course of the EPSC was
compared at 270 and 290 mV. At 290 mV, the 20–80% rise
time was 0.86 6 0.04 msec ( p 5 0.07, paired t test), and the decay
time constant was 3.74 6 0.22 msec ( p 5 0.06; see Fig. 10C,D). To
confirm that activation of voltage-gated conductances did not
affect the synaptic current and to assess possible distortions
caused by voltage escape, the synaptic conductance was reduced
by application of a submaximal concentration (40 mM) of the
noncompetitive AMPA receptor antagonist GYKI 52466 (Pater-
nain et al., 1995). While the peak amplitude of the EPSC at 270
mV was reduced to 24 6 3% (n 5 3) compared with control, the
20–80% rise time and decay time constant of the EPSC were
106 6 2% ( p 5 0.08) and 108 6 9% ( p 5 0.4) of the control
values, respectively. These findings indicate that the EPSCs were
not substantially distorted by voltage escape or by the activation
of voltage-gated conductances.

The voltage jump protocol was applied using jumps between
270 and 290 mV. Jumps at different times relative to synaptic
stimulation were interleaved, and a large number of individual
sweeps were averaged for each jump time to reduce the contri-
bution of noise associated with synaptic variability. The resulting
charge recovery curves were fit with Equation 10, as shown in
Figure 10E. Single-exponential functions provided a good fit to
both the onset and offset of the curve, and it was usually necessary
to constrain trise to 0.1–0.6 msec. The time constant of the voltage
at the synapse was 2.93 6 0.44 msec, and the decay time constant
of the synaptic conductance was 1.74 6 0.18 msec (n 5 8). The
SEM predicted by Monte Carlo error analysis (see Materials and
Methods) was 0.24 msec for tv and 0.28 msec for tdec.

Estimating the attenuation of synaptic charge
Although the voltage jump method provides the kinetics of the
synaptic conductance under conditions of inadequate space
clamp, it offers no direct information about its magnitude. The
peak amplitude of the conductance can be calculated, however, if
the total synaptic charge is known in addition to the conductance
kinetics. Determining the total synaptic charge from the somati-
cally recorded current is possible given the attenuation of synap-
tic charge, a (introduced in Eqs. 1 and 5). Analytical solutions
demonstrate that in a linear system the attenuation of synaptic
charge from the synapse to the soma is equivalent to the atten-
uation of steady-state voltage from the soma to the synapse
(Redman, 1973; Rinzel and Rall, 1974; Carnevale and Johnston,
1982; Jack et al., 1983; Rall and Segev, 1985; Major et al., 1993).
If the reversal potential of the synaptic conductance is known, it
is possible in principle to estimate the attenuation of steady-state
voltage between the soma and the synapse in any geometry by
comparing the apparent synaptic reversal potential measured at
the soma with the expected value (Carnevale and Johnston, 1982;
Jack et al., 1983; Rall and Segev, 1985). Here we estimate the

attenuation factor a using the layer 5 pyramidal cell model and
provide quantitative predictions of the magnitude of errors in a
resulting from the voltage escape caused by having a finite syn-
aptic conductance.

Figure 11 shows the attenuation of the synaptic current, the
voltage escape at the synapse, and the resulting distortion of the
current flowing at the synapse for five identical synapses at
different locations in the layer 5 pyramidal cell model. Synaptic
charge under perfect clamp will differ from the charge measured
by somatic voltage clamp because of (1) the attenuation of syn-
aptic charge between synapse and soma, a, and (2) the reduction
in synaptic driving force caused by voltage escape. The attenua-
tion of voltage in the dendritic tree during a somatic voltage step
at the five synaptic locations is shown in Figure 11E. This atten-
uation causes a corresponding shift in the apparent reversal
potential of the synaptic current, shown in Figure 11F. The
steady-state attenuation factor a, representing the attenuation of
voltage from soma to synapse, can then be calculated according to
the following equation (cf. Carnevale and Johnston, 1982; Rall
and Segev, 1985):

a 5
2Vrest 1 Erev

2Vrest 1 Erev 1 DErev
, (11)

where Erev is the reversal potential of the synaptic conductance,
DErev is the shift in reversal potential from the expected value,
and Vrest is the resting potential of the cell. Confirmation that the
value of a is identical to the attenuation of the charge associated
with the synaptic current as it spreads from the synapse to the
soma is provided in Figure 11G, where at each synaptic location
the attenuation predicted from the reversal potential shift is
identical to the actual attenuation of the charge flowing at the
synapse, as expected from theory.

As pointed out above, the synaptic charge predicted from
reversal potential shifts will not be identical to the charge ex-
pected under perfect voltage-clamp conditions because the volt-
age escape distorts the current flowing at the synapse by reducing
its driving force (Fig. 11B,C). The magnitude of this error de-
pends on the size of the synaptic conductance and the electro-
tonic location of the synapse. This is shown in Figure 11H, which
compares the synaptic charge predicted from Equation 11 with
the synaptic charge expected under perfect voltage clamp for
synapses at different distances and with different peak conduc-
tances. The predicted charge generally corresponds closely to the
actual synaptic charge (#10% error for the most distal 1 nS
synapses), with the error converging toward zero as the conduc-
tance becomes smaller. In summary, these simulations describe a
procedure that provides a relatively accurate measure of synaptic
charge in any neuronal geometry, assuming that (1) the neuron
behaves passively; (2) the reversal potential of the synaptic cur-
rent is known; (3) the neuron is held at resting potential; and (4)
the voltage escape associated with the synaptic current is rela-
tively small. If these conditions hold, and the time course of the
conductance is known (e.g., from using the voltage jump method),
then it is possible to provide an estimate of the peak amplitude of
the conductance.

DISCUSSION
We have demonstrated that measuring the recovery of synaptic
charge with a series of voltage jumps can provide several impor-
tant pieces of information: charge recovered by jumps made
before the onset of the synaptic conductance reveals the voltage
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change at the synapse in response to the voltage step; and charge
recovered by jumps made after the onset of the synaptic conduc-
tance reveals the kinetics of the conductance. We describe a
simple analytical function which makes it possible to extract these
features from experimental data, independent of the neuronal
geometry. This approach therefore circumvents the serious dis-
tortions in the kinetics of the synaptic current caused by space-
clamp errors and provides an index of the electrotonic location of
the synapse. We use the method to estimate the decay time course
of the excitatory synaptic conductance in neocortical pyramidal
cells, where space-clamp problems are severe for most synapses.
We also show that by combining the method with an estimate of
charge attenuation, it is possible in principle to reconstruct all
aspects of the synaptic conductance waveform.

Comparison with previous approaches
Smith et al. (1967) used phase changes in a carrier sine wave
applied at the soma to detect membrane impedance changes
during synaptic potentials in motoneurons. Although this tech-
nique resolved the time course of conductance changes at proxi-
mal synapses, it was incapable of detecting distal conductance
changes (as predicted theoretically by Rall, 1967). This is because
the frequency of the carrier signal must be high to achieve
sufficient time resolution, and consequently it rapidly attenuates
as it spreads into the dendrites. In contrast, the present method
uses a voltage transient with predominantly low-frequency com-
ponents (the voltage step response) as a “windowing function,”
which is shifted in small steps over the synaptic conductance,
conserving both high sensitivity to distal conductance changes
and arbitrarily high time resolution. As a consequence of the need
for multiple sweeps, the method cannot measure sweep-to-sweep
fluctuations in conductance kinetics but instead reports the mean
conductance time course of the active synapses.

Another approach is to estimate the filtering of synaptic cur-
rents using compartmental models of neurons (Johnston and
Brown, 1983; Hestrin et al., 1990; Jonas et al., 1993; Spruston et
al., 1993; Soltesz et al., 1995; Mainen et al., 1996). Given such
estimates, it is possible in principle to determine the synaptic
conductance time course by “working backward” from the mea-
sured current with a compartmental model of the same neuron.
However, even the most carefully conditioned models still suffer
from potentially serious nonuniqueness in the model parameters
(Major et al., 1994). Furthermore, the location of the active
synapses is usually unknown and difficult to determine. Conse-
quently the range of error estimates is relatively broad, even for
synaptic connections at which good estimates exist for the loca-
tion of active synapses (Jonas et al., 1993). By contrast, the
present method is independent of neuronal geometry and thus
requires no knowledge of the electrotonic structure of the neuron
being recorded from (as long as care is taken to exclude major
sources of error). However, combining the voltage jump approach
with compartmental modeling may be very powerful, as discussed
below.

Several groups have used the response to single voltage jumps
at the soma, either alone (Llano et al., 1991) or interacting with
synaptic conductances (Hestrin et al., 1990; Isaacson and Walms-
ley, 1995; Sah and Bekkers, 1996) to estimate the filtering of
synaptic currents (also see Silver et al., 1995). Llano et al. (1991)
proposed that decay time constants of synaptic currents that were
slower than the characteristic charging time constant of the distal
compartment of juvenile Purkinje cells are not distorted by space-
clamp problems. Their two-compartment model is not, however,

useful for synaptic conductances with decay kinetics comparable
to or faster than the charging time constant and is unlikely to be
applicable to other neuronal geometries. Somatic voltage jumps
have also been used either to eliminate synaptic driving force
(Isaacson and Walmsley, 1995; Sah and Bekkers, 1996) or to
activate Mg21 block of NMDA receptors (Hestrin et al., 1990).
The rate of the resulting relaxation in the somatic synaptic cur-
rent (“switch-off”) provides a measure of the electrotonic location
of the synapse. However, to make quantitative predictions about
the filtering of the synaptic current based on the switch-off, a
compartmental model of the cell is required (Sah and Bekkers,
1996).

Finally, dendritic recording of synaptic currents (Häusser,
1994) can be used to reduce the electrotonic distance between the
clamp site and dendritic synapses. However, because only syn-
apses close to the dendritic recording site will be well clamped, it
is necessary to selectively activate nearby synapses or to select
spontaneous events based on electrotonic proximity (Häusser,
1994). In principle one could combine dendritic voltage-clamp
recording with the voltage jump method to improve resolution of
the most distal synaptic conductances.

Sources of error
The voltage jump method assumes that the synaptic conductance
is identical from one jump to the next. Real synapses, however,
display trial-to-trial variability in amplitude and time course. This
variability introduces noise into the charge recovery curve. The
influence of synaptic and instrumental noise on the accuracy of
the parameter estimates will be different for each experimental
situation. Certain synaptic connections are more favorable than
others with respect to synaptic variability; connections that make
many contacts with high release probability (such as the cerebel-
lar climbing fiber synapse) will be particularly suited to the
method, owing to the resulting low synaptic coefficient of varia-
tion. When increasing the number of active synapses in an at-
tempt to reduce variability in the synaptic response, a tradeoff is
expected between noise in the charge recovery and problems
associated with voltage escape; the larger the synaptic signal, the
better the resolution of the method, but also the greater the risk
that voltage escape may distort the synaptic current (see below).
If noise is a problem, then collecting more sweeps or increasing
voltage jump amplitude is usually preferable whenever possible.
The cortical synapses studied here show considerable trial-to-trial
variability (Markram et al., 1997); therefore, averages of many
individual sweeps were necessary to construct charge recovery
curves with acceptable noise levels.

When fitting charge recovery curves contaminated by noise,
several issues must be considered. First, deciding the number of
exponential components required may be a problem, because
separation of closely spaced exponentials can be difficult even if
data are free of noise (Provencher, 1976). Changing the number
of exponential components for one part of the curve can affect the
relative amplitudes of other exponential components (cf. Eq. 10).
Also, by assuming a monoexponential decay of the synaptic
conductance when it is in fact biexponential, the “effective” single
tdec (see Major, 1993) may be overestimated. Second, estimates of
trise may be associated with considerable uncertainty, especially if
it is fast, because information about the rise time is contained in
only a few points of the charge recovery curve. If the rise time is
an important unknown parameter, then greater time resolution is
needed around t 5 0 msec (i.e., more closely spaced jumps).

Even under the noise-free conditions of the simulations, the
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voltage jump method does not extract the time course of the
synaptic conductance with perfect accuracy. The reason for this
discrepancy is that the method measures the kinetics not of the
synaptic current expected under perfect voltage-clamp conditions
but, rather, of the actual current flowing at the synapse, which will
be distorted by voltage escape. The extent of voltage escape will
therefore determine how well the kinetic parameters extracted by
the method reflect those of the actual synaptic conductance. In
simulations using models of neurons with realistic synaptic con-
ductances, errors caused by voltage escape were relatively small
(,10%). Nevertheless, voltage escape may represent a greater
problem under certain conditions, for example, when activating a
large number of closely spaced synapses. This can be assessed by
applying a nonsaturating dose of a noncompetitive antagonist (or
a competitive antagonist with slow dissociation kinetics) to re-
duce the size of the synaptic conductance. If the shape of the
measured synaptic current does not differ after this treatment,
then the effects of voltage escape can be safely neglected.

Active membrane conductances may also distort the charge
recovery. The contribution of active conductances will depend
primarily on their I-V relation. Also, if their activation kinetics
are slow relative to the synaptic conductance kinetics, or if the
channels are located far from the synapses (e.g., in the axon), then
their contribution will be less important. Interestingly, despite the
distortions in the charge recovery observed in the neocortical
pyramidal cell model, the synaptic conductance decay was rela-
tively faithfully reported, indicating that it predominates under
these conditions. Nevertheless, to fit Equation 10 reliably, both
the jumps and the synaptic current should show passive behavior,
as demonstrated in our experiments. This was ensured by record-
ing at hyperpolarized potentials and by applying intracellular
blockers via the recording pipette.

Potential applications of the method
The voltage jump method should be useful for determining the
time course of synaptic conductances lacking appreciable voltage
dependence in any neuron where space clamp is not guaranteed.
The relative insensitivity of the method to membrane conduc-
tance and series resistance means that it could be used to measure
the time course of synaptic conductances in vivo, where mem-
brane conductance is higher (because of tonic synaptic activity)
and where good space-clamp conditions are especially difficult to
achieve. The method should also be useful for monitoring
changes in synaptic conductance time course when space-clamp
conditions are not constant, such as during development. Using
the method, it should be possible to test whether distal synaptic
currents have slower kinetics than proximal ones (Pearce, 1993),
a mechanism that may compensate for electrotonic attenuation of
distal inputs (Jack et al., 1981; Stricker et al., 1996). The method
is not restricted to examining synaptic conductances; the kinetics
of any conductance that lacks appreciable voltage dependence,
such as certain sodium-activated (Koh et al., 1994) or calcium-
activated (Sah and Bekkers, 1996) potassium conductances, can
also be determined.

The ability of the method to estimate the time course of the
voltage change at the conductance location in response to a
somatic voltage step should be particularly useful, because it
offers an index of the electrotonic distance of the conductance.
This allows one to compare the relative electrotonic distance of
different synapses (cf. Sah and Bekkers, 1996). Furthermore,
because the time course of the voltage change at the synapse is
known, one can estimate the physical distance of the synapses

from the recording site with a compartmental model. Another
possibility is to use arbitrary conductance changes to map the
electrotonic structure of the dendritic tree. For example, focal
application of neurotransmitter (to generate a conductance)
could be combined with voltage jumps to map the electrotonic
geometry of the neuron in regions that may be inaccessible to
direct recording, providing constraints for compartmental models
of such neurons. Finally, the method could also be used with
arbitrary voltage command waveforms (as long as the response
can be described by sums of exponentials). This may allow pre-
diction of the filtering experienced by physiologically relevant
signals, such as action potentials and synaptic potentials, as they
propagate in the dendritic tree.

Rapid decay time course of the excitatory synaptic
conductance in neocortical pyramidal cells
The relatively rapid decay time course of the excitatory synaptic
conductance in neocortical pyramidal cells we have estimated is
consistent with recordings of selected spontaneous EPSCs (Stuart
and Sakmann, 1995), assuming residual space-clamp error in the
latter measurements, as well as with the deactivation kinetics of
AMPA-type glutamate receptor channels in these neurons (Hes-
trin, 1993; Jonas et al., 1994), correcting for temperature using a
Q10 of ;2 (Silver et al., 1996). This result has important physio-
logical implications. The decay of the EPSC largely determines
the decay of the EPSP at its site of generation (Rall, 1967; Jack et
al., 1983; Softky, 1994). The rapid decay of the conductance
ensures that the time window for local synaptic integration in the
dendritic tree remains brief, consistent with the proposed role of
cortical pyramidal cells as coincidence detectors of synaptic input
(Abeles, 1991; Softky, 1994; König et al., 1996).
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