The Journal of Neuroscience, November 1, 1997, 17(21):8621-8644

Linearity and Normalization in Simple Cells of the Macaque Primary

Visual Cortex

Matteo Carandini,' David J. Heeger,2 and J. Anthony Movshon'

1Howard Hughes Medical Institute and Center for Neural Science, New York University, New York, New York 10003, and
2Department of Psychology, Stanford University, Stanford, California 94305

Simple cells in the primary visual cortex often appear to com-
pute a weighted sum of the light intensity distribution of the
visual stimuli that fall on their receptive fields. A linear model of
these cells has the advantage of simplicity and captures a
number of basic aspects of cell function. It, however, fails to
account for important response nonlinearities, such as the
decrease in response gain and latency observed at high con-
trasts and the effects of masking by stimuli that fail to elicit
responses when presented alone. To account for these nonlin-
earities we have proposed a normalization model, which ex-
tends the linear model to include mutual shunting inhibition
among a large number of cortical cells. Shunting inhibition is
divisive, and its effect in the model is to normalize the linear
responses by a measure of stimulus energy. To test this model

we performed extracellular recordings of simple cells in the
primary visual cortex of anesthetized macaques. We presented
large stimulus sets consisting of (1) drifting gratings of various
orientations and spatiotemporal frequencies; (2) plaids com-
posed of two drifting gratings; and (3) gratings masked by
full-screen spatiotemporal white noise. We derived expressions
for the model predictions and fitted them to the physiological
data. Our results support the normalization model, which ac-
counts for both the linear and the nonlinear properties of the
cells. An alternative model, in which the linear responses are
subject to a compressive nonlinearity, did not perform nearly as
well.
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A longstanding view of simple cells in the primary visual cortex is
that they compute a weighted sum of the light intensities falling
on their receptive field (Hubel and Wiesel, 1962; Movshon et al.,
1978a; Carandini et al., 1997b). This linear model is depicted in
Figure 14 and is usually taken to include a rectification (thresh-
olding) stage to account for the transformation of intracellular
signals into firing rates.

Although many aspects of simple cell responses are consistent
with the linear model, there also are important violations of
linearity. For example, scaling the contrast of a stimulus would
identically scale the responses of a linear cell. At high contrasts,
however, the responses of simple cells show clear saturation
(Maffei and Fiorentini, 1973). Moreover, simple cells are subject
to cross-orientation inhibition; the responses to an optimally
oriented stimulus can be diminished by superimposing an orthog-
onal stimulus that is ineffective in driving the cell when presented
alone (Morrone et al., 1982; Bonds, 1989; Bauman and Bonds,
1991).

According to a view that has emerged in recent years, the
nonlinearities of simple cells could be explained by extending
the linear model to include a gain control stage (Albrecht and
Geisler, 1991; Heeger, 1991, 1992b, 1993; DeAngelis et al., 1992;
Carandini and Heeger, 1994; Nestares and Heeger, 1997; Tol-

Received May 29, 1997; revised Aug. 20, 1997; accepted Aug. 22, 1997.

This work was supported by National Institutes of Health Grant EY2017 and a
Howard Hughes Medical Institute investigatorship to J.A.M. and by National Insti-
tute of Mental Health Grant MH50228 and an Alfred P. Sloan research fellowship
to D.J.H. We thank L. P. O’Keefe, A. B. Poirson, and C. Tang for help in collecting
the data and M.J. Hawken, L.T. Maloney, and R.M. Shapley for helpful
suggestions.

Correspondence should be addressed to Matteo Carandini, Center for Neural
Science, 4 Washington Place, New York, NY 10003.

Copyright © 1997 Society for Neuroscience 0270-6474/97/178621-24$05.00/0

hurst and Heeger, 1997a,b). In particular, one of us (Heeger,
1991, 1992b) proposed a normalization model (Fig. 1B), in which
the linear response of every cell is divided (or “normalized”) by
a number that grows with the activity of a large number of cortical
cells, the normalization pool. The normalization model attributes
the selectivity of a cell to the initial linear stage and its nonlinear
behavior to the division stage. For example, the model predicts
response saturation because the divisive suppression increases
with stimulus contrast, and the model predicts cross-orientation
inhibition because the normalization pool includes neurons with
a wide variety of tuning properties, many of which respond to
orthogonal gratings.

Previously, we have suggested a possible biophysical imple-
mentation of the normalization model (Fig. 1B) (Carandini
and Heeger, 1994). The cell membrane is modeled as an RC
circuit, composed of a resistor and a capacitor in parallel. The
linear stage injects synaptic current into the cell, and normal-
ization operates by controlling the conductance of the resistor,
i.e., the membrane conductance. The cells in the normalization
pool effectively inhibit each other by increasing the membrane
conductance of each other. This shunting inhibition controls the
gain of the transformation of input current to output mem-
brane potential. A rectification stage converts the latter into a
firing rate.

To test this model against large data sets obtained in monkey
primary visual cortex, we recorded the responses of simple cells in
area V1 of paralyzed, anesthetized macaques, while presenting a
variety of visual stimuli. These stimuli included drifting gratings,
plaids composed of two drifting gratings, and drifting gratings
superimposed on full-screen spatiotemporal white noise. The
gratings had a wide range of contrasts, temporal frequencies,
spatial frequencies, and orientations. We derived equations for
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Figure 1. Two models of simple cell function. A, The linear model,
composed of a linear stage (receptive field) and a rectification stage. The
linear stage performs a weighted sum of the light intensities over local
space and recent time. This sum is converted into a positive firing rate by
the rectification stage. Rectification is a nonlinearity, so the “linear
model” is not entirely linear. B, The normalization model extends the
linear model by adding a divisive stage. The linear stage feeds into a
circuit composed of a resistor and a capacitor in parallel (RC circuit). The
conductance of the resistor grows with the pooled output of a large
number of cortical cells. This effectively divides the output of the linear
stage.

the model responses to such stimuli, and we found that these
equations provided good fits to the neural responses.

Portions of this work have been presented briefly elsewhere
(Carandini and Heeger, 1994, 1995).

MATERIALS AND METHODS

Experiments were performed on five cynomolgus macaque monkeys
(Macaca fascicularis) and four pigtail macaque monkeys (M. nemestrina)
ranging in weight from 1.5 to 4 kg.

Preparation and maintenance

Animals were initially anesthetized with ketamine HCI1 (10 mg/kg) and
premedicated with atropine sulfate (0.05 mg/kg) and acepromazine
maleate (0.1 mg/kg). Anesthesia continued on 1.5-2.0% halothane in a
98% 0O,-2% CO, mixture while the initial surgery was performed.
Indwelling catheters were introduced into the saphenous veins of each
hindlimb, and a tracheotomy was performed.

The animal was then mounted in a stereotaxic instrument, and halo-
thane anesthesia was replaced by a continuous infusion of sufentanil
citrate (typically 4-6 pgkg ~'hr ~!, beginning with a loading dose of 4
ng/kg). EEG, ECG, and arterial blood pressure were monitored contin-
uously, and any signs of arousal were corrected by modifying the rate of
anesthetic infusion. The monkey was artificially respirated with a mix-
ture of O,, N,O, and CO, adjusted so that end-tidal CO, was maintained
at 3.8—4.0%. Rectal temperature was kept near 37°C with a heating pad.

A small craniotomy was performed, usually 9-10 mm lateral to the
midline and 3-4 mm posterior to the lunate sulcus. This location often
yielded two encounters with the primary visual cortex, with eccentricities
first at ~2-5° and then at ~8-15°. A small slit in the dura was made, and
a vertical hydraulic microdrive containing a glass-coated tungsten micro-
electrode (Merrill and Ainsworth, 1972) in a guide tube was positioned.
The craniotomy was covered with a chamber containing 4% agar in
sterile saline solution.

On completion of surgery, animals were paralyzed to minimize eye
movements. Paralysis was maintained with an infusion of vecuronium
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bromide (Norcuron, 0.1 mg-kg ~*+hr 1) in lactated Ringer’s solution with
dextrose (5.4 ml/hr). The pupils were dilated and accommodation par-
alyzed with topical atropine. The corneas were protected with zero
power gas-permeable contact lenses; supplementary lenses were chosen
to focus the eyes on a tangent screen plotting table set up at a distance
of 57 in. To maintain the animal in good physiological condition during
experiments (typically 72-96 hr), intravenous supplementation of 2.5%
dextrose/lactated Ringer’s was given at 5-15 ml/hr. Animals received
daily injections of a broad-spectrum antibiotic (Bicillin) as well as an
anti-inflammatory agent (dexamethasone) to prevent cerebral edema.

Stimuli

Stimuli were generated by a Truevision AT Vista board operating at a
resolution of 582 X 752 and a frame rate of 106 Hz, the output of which
was directed to a Nanao T560i monitor (mean luminance, 72 c¢d/m?,
subtending 10-25° of visual angle). Nonlinearities in the relation be-
tween applied voltage and phosphor luminance were compensated by
appropriate look-up tables. Stimulus strength is measured in units of
contrast, defined as the difference between the highest and lowest inten-
sities, divided by the sum of the two.

Drifting luminance-modulated sinusoidal gratings were presented
alone or superimposed on another grating or on a noise background.
Superposition was obtained by interleaving, i.e., by presenting the two
components in alternate frames. When two gratings were presented
together they had the same temporal frequency and differed in orienta-
tion and/or spatial frequency. Their contrast could be varied indepen-
dently. The noise background was composed of square pixels, the size of
which was chosen for each cell to be approximately one-fourth of the
spatial period of the optimal grating. Occasionally we used one-
dimensional noise (bars rather than squares). The intensity of each
square was randomly refreshed at 13.4 or 26.8 Hz and assumed one of
two possible values.

All the stimuli had the same mean luminance. The grating and plaid
stimuli were vignetted by a square window, the size of which was chosen
to elicit the maximal responses. The noise masks occupied the whole
screen. In their absence the surrounding field was uniform.

Experiments. Experiments consisted of two to nine consecutive blocks
of stimuli. Each block consisted of a random permutation of 5-90 stimuli.
Randomization was adopted to minimize the effects of adaptation and
other nonstationarities. The stimuli had equal duration (generally 5-10
sec) and were separated by uniform field presentations lasting about
4 sec.

Experimental protocol. Receptive fields were initially mapped by hand
on a tangent screen. When the activity of a single neuron was isolated, we
established the dominant eye of the neuron and occluded the other eye.
We then positioned the receptive field on the face of the monitor, and
quantitative experiments proceeded under computer control.

To characterize each cell we performed the following sequence of
measurements using single gratings: (1) orientation and direction tuning;
(2) spatial frequency tuning; (3) temporal frequency tuning; and (4)
stimulus size tuning. Each of these measurements was performed at the
optimal values of the parameters as obtained from the previous measure-
ments. Cells were classified as simple or complex on the basis of the
frequency component of their response to the drifting grating eliciting
the maximum number of spikes, as classified by Skottun et al. (1991). If
the cell was simple we proceeded to the core experiments in this study.
These were of three types:

(1) Grating matrix experiments, consisting of drifting sinusoidal stimuli
having 5-10 different contrasts, two to four different temporal frequen-
cies, and two to four different orientations or spatial frequencies. A
typical experiment would involve three orientations or spatial frequen-
cies, three temporal frequencies, and five contrasts, yielding a total of 45
stimuli.

(2) Plaid experiments, consisting of sums of two gratings with contrasts
that were independently varied. Often the two directions were opposite,
and the “plaid” was a counterphase flickering grating. A typical experi-
ment would involve two orthogonal gratings with contrasts that assumed
five possible values, yielding a total of 25 different stimuli.

(3) Noise-masking experiments, in which the contrast response to
drifting gratings was measured in the presence of noise at different
contrasts. A typical experiment would involve nine grating contrasts and
two noise contrasts (0 and 0.5), yielding a total of 18 different stimuli.
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Data analysis

Amplified and bandpass-filtered signals from the microelectrode were
fed into a hardware window discriminator. A computer interface (Cam-
bridge Electronic Design 1401 Plus) collected the pulses triggered by
each action potential and the synchronization signals from the video
graphics board.

Response measure. Our measure of cell response is the first harmonic r
of the spike trains, a complex number indicating the amplitude and phase
of the best-fitting sinusoid having the same temporal frequency as the
stimulus. This number is obtained from the spike train by computing r =
(1/D)Z cos(2mft,) + i sin(2mft,), where D is the stimulus duration, f is
the temporal frequency of the stimulus, and the #, are the times of the
individual spikes. The amplitude of the first harmonic has units of spikes
per second. The responses r obtained in an experiment constitute a
matrix r = {r,,,}, where the subscripts indicate the sth stimulus presented
in the bth stimulus block. We denote the mean across blocks of the
responses as the vector r = {r,}. For example, in an experiment in which
three blocks of 25 different stimuli were run, the matrix r would contain
75 elements, and the vector r would contain 25 elements.

Correction for eye movements. Inspection of the spike rasters often
revealed a few discrete misalignments across stimulus blocks in the
responses to individual stimuli, which are best explained by the presence
of small eye movements. For drifting grating stimuli the sole effect of
these eye movements would be a shift in response timing. We reduced
this effect by shifting in time all the responses in each block by an amount
chosen to minimize o2 the variance across blocks of the responses.
Because all the responses in a block are translated by the same amount,
this method would completely remove the effect of the movements only
if they occurred exactly between blocks. In all other cases it is just an
approximation that reduces the variance of the data. No attempt was
made to correct the effect of possible eye movements on the responses to
plaids or to gratings in the presence of noise.

Estimation of the variance. The number of blocks in our experiments
(two to nine) was not sufficient to obtain reliable estimates of the
variance o2 of the responses to each stimulus s. For this reason we
estimated the dependence of o2 on |ry|, the amplitude of the mean
responses. As a functional form for this dependence we chose the simple
relation o2 = « |r|?, where a and B are free parameters. This expression
provided very good fits to the data. In the fits, the scale factor « was on
average 2.11 * 0.18, and the exponent B was on average 1.18 = 0.02,
consistent with previous findings that the variance of the responses of V1
neurons is proportional to their mean (Dean, 1981b; Tolhurst et al., 1983;
Bradley et al., 1987; Vogels et al., 1989).

Model fits. The models discussed in Results were fit to the responses to
all stimuli in an experiment. Different experiments were fitted indepen-
dently and thus yielded different sets of parameters. To fit the predictions
of a model m = {m} to the data we performed a weighted least squares
fit; i.e., we searched for the parameters a that minimized the error
function

Error(a) = > |my(a) — r,|/o?,

where the o2 are the estimated variances. To avoid giving too much
importance to data points of low amplitude, when fitting the models of
the visual responses we took all the o2 < 1 to be equal to 1.

Percentage of the variance. To gain an intuitive assessment of the
quality of the fits provided by a model, we computed the percentage of
the variance across stimuli for which the model accounted. To define this
measure it is useful to consider the (mean square) distance between two
sets of responses x = {x,} andy = {y,}:

d(x,y) = UN X |x, =y,

where the sum is over the stimuli s, and N is the number of stimuli. The
percentage of the variance accounted for by the model may then be
expressed as:

%variance = 100 * [1 — d(m, t)/d(F, F)],

where F is the response mean computed across stimuli and across blocks.
In this expression, the numerator is the distance between the model
predictions and the mean cell responses; the denominator is the variance
across stimuli of the mean cell responses. For example, if the model
predicts the mean responses exactly, then it accounts for 100% of the
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variance. More realistically, if the mean error between the model pre-
dictions and the responses is d(m, r) = 10 spikes/sec, and the responses
in the data set have very different amplitudes and/or phases, so that their
variance is large, say d(r, F) = 100 spikes/sec, then the model accounts for
90% of the variance in the data.

Bootstrap test. Although the percentage of the variance is an intuitive
measure of the quality of the fits, it has the disadvantage of taking into
account only the variability across stimuli and not the variability across
blocks. If a cell were very noisy, our experiments would yield bad
estimates of its mean responses r,; in this case the model would account
for a small percentage of the variance in the data even if it reflected the
exact physical reality underlying the responses. To test the quality of the
model predictions taking into account all the statistical properties of the
data, we performed a bootstrap hypothesis test (Efron and Tibshirani,
1991). The advantage of bootstrapping is that it does not assume that the
response variability follows a particular (e.g., Gaussian) distribution.

We tested whether we could reject the null hypothesis that the mean of
the probability distribution underlying the neural responses was identical
to the predictions of the model. Let r, be the vector of responses
obtained in the b-th block of stimuli. If for example an experiment
involved 25 different stimuli and was repeated four times, there would be
four vectors of responses, r;, r,, r;, and r,, and each would contain 25
elements. Let m be the prediction of the model obtained by fitting all the
r,. The null hypothesis states that the mean u, of the probability
distribution from which the r,, are drawn is identical to the prediction of
the model:

Hy: p, = m.

As a test statistic we chose the distance between the model predictions
and the empirical average of the responses:

t=d(m,r).

Having observed a value ¢°* by evaluating the test statistic on the actual
experimental data, we calculated the probability of observing at least that
large a value if the null hypothesis were true. This probability is the
achieved significance level (ASL) of the test:

ASL = Probi{r = r*™H,}.

The smaller the ASL, the stronger the evidence against H,.

To compute the ASL with the bootstrap method, we converted our
data set r into one with an empirical distribution function that obeyed
H,. This was simply done by shifting the data so that the mean responses
were exactly equal to the model predictions, ¥ = r — ¥ + m (Efron and
Tibshirani, 1993). We then computed the bootstrap estimate of the ASL
by repeating the following steps 1000 times: (1) Draw a sample data set
r* with replacement from ¥. For example, if the experiment was repeated
four times, a possible draw would be r* = {f,f,¥,F,}; another one could
be r* = {f,ff,f;}, and so on. (2) Compute the test statistic on the
sample, t* = d(m, r*).

The bootstrap estimate of the achieved significance level of the test is
equal to the percentage of samples for which the ¢* values are larger than
the observed value ¢°.

MODEL

The normalization model is depicted in Figure 1B. To keep the
model mathematically tractable, we adopt a number of simplifi-
cations. To begin, we define the driving current of a simple cell to
be the current that would be measured by clamping the voltage of
the cell at rest. Then we assume that (1) the relation between the
visual stimuli and the driving current is linear; (2) the cell
membrane is a single passive compartment; (3) the firing rate is
a rectified copy of the membrane potential; (4) cells inhibit each
other (possibly through inhibitory interneurons) by increasing the
membrane conductance of each other; and (5) the pool of cells
that inhibit each other contains cells tuned to a wide variety of
stimulus attributes.

The linear stage. As a visual stimulus is projected on the retina
it can be described by its light distribution, I(x,y,t), which varies in
the two spatial dimensions x,y and in time ¢. This representation
ignores the color of the stimulus and assumes monocular viewing.
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The light distributions of the stimuli used in this study modulated
about a fixed mean /. In these conditions the output of the retina
is to a first approximation proportional to the local contrast,
c(ey,t) = [I(x,y,t) — I}/l (Shapley and Enroth-Cugell, 1984). We
will use the term contrast and the symbol ¢ (without arguments) to
denote the maximal value of the local contrast c(x,y,?). A uniform
field has zero contrast, whereas a grating modulating between
zero and twice its mean intensity has unit contrast.

We consider the driving current in simple cells to be linearly
related to the output of the retina and thus to the local contrast.
The driving current I,(¢) is obtained by weighting the local
stimulus contrast c(x, y,t) at each location and time by the value of
the receptive field W of the cell at that location and at that time,
and by algebraically summing the results:

Id(t)=fff W(xy,T) c(x,y,t—T) dx dy dT. (1)

This linear equation is at best an approximation. Possible bio-
physical conditions that would lead to it being exact were sug-
gested in a previous study (Carandini and Heeger, 1994), and are
summarized in Discussion.

In this study, the driving current /, (and thus the receptive field
W) will be estimated rather than measured directly. Direct mea-
surement of I, would require intracellular in vivo voltage-clamp
experiments.

RC circuit. We adopt an extremely simplified biophysical model
of a cell membrane: a circuit composed of a resistor and a
capacitor arranged in parallel (RC circuit). According to this
model, the membrane potential V(¢) obeys the following equation:

CdVidt + gV = I, 2)

where C is the membrane capacitance, g(¢) is the total membrane
conductance, and I4(f) is the driving current. In the absence of
visual stimuli the driving current is zero, and the membrane
potential is driven to its resting value, which we have taken to be
zero.

Rectification. As a first approximation, the transformation from
the membrane potential V' to the spike rate R can be modeled by
rectification (Movshon et al., 1978b; Jagadeesh et al., 1992; Car-
andini et al.,, 1996). Rectification is a function that is zero for
membrane potentials below a threshold, V,..n, and grows lin-
early: R(?) « max(0, V(f) — Vinresn)- This function is depicted for
three different values of the threshold V.., by the straight lines
in Figure 2A4.

Rectification is however not very easily handled in mathemat-
ical derivations. We thus approximate rectification (Vy, eqn > 0)
with half-rectification (Vy,,eqn, = 0) followed by elevation to the
power n:

R o« max(0, V)". 3)

The quality of this approximation is shown by the dashed curves
in Figure 2A4. The value of the exponent n grows with the distance
of the threshold V. from the resting potential V. If the
threshold is very close to rest, then n ~ 1 (“half-rectification”). If
the threshold is a bit above rest, e.g., 6 mV higher, then n ~ 2
(“half-squaring”). If the threshold is far above rest, thenn ~ 3 or
more.

Conductance and cortical activity. We now make the central
assumption that cells belong to a normalization pool, the members
of which inhibit each other by increasing the conductance g of
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Figure 2. Interrelations and effects of the principal variables in the
normalization model. A, Relation between membrane potential /' and
firing rate R. For simplicity in this study the resting potential is taken to
be V' = 0. The thick, intermediate, and thin lines depict rectification with
thresholds Viy,esn = 0, 6, and 12 mV, respectively. The dashed curves
indicate approximations to rectification obtained with power functions,
with exponents n = 2 (thick dashes) and n = 3 (thin dashes). B, Relation
between pool activity and membrane conductance. The abscissa plots the
overall response of the pool, kK X R; the ordinate plots the increase in
membrane conductance g/g, — 1 (Eq. 4). C, Effects of conductance on the
size and time course of the membrane potential responses. The curves are
the membrane potential responses to a current step with onset at time
zero, for three different values of the conductance g. As the conductance
doubles (thin to thick curves), it reduces both the gain and the time
constant of the cell.

each other. This form of inhibition is known as shunting inhibition
and unless all the neurons in the pool are inhibitory would require
the presence of inhibitory interneurons.

The particular function that we choose to relate the conduc-
tance g and the overall activity of the pool X R is illustrated in
Figure 2B. Its mathematical expression is

g=8/ 1 -k 2R, (4)

where the parameter k determines the effectiveness of the nor-
malization pool. This function is completely ad hoc and is not
currently supported by physiological evidence. Our reasons for
choosing it are evident in Appendix, in which we derive closed
form equations for the responses of the model.

The membrane conductance g affects both the size and the time
course of the responses. Figure 2C shows the responses of the
membrane to a current step for three values of the conductance g.
If the conductance is very small, the response is slow, and there is
high gain (that is, the voltage response to a given current is high).
If the conductance g is very large (the membrane is very leaky), it
has small gain and is fast in charging and discharging the
capacitor.

The conductance of each cell is minimal in the absence of any
visual stimulus, because all of the cells in the normalization pool
are silent. The conductances are larger for a visual stimulus that
is effective in driving the cells in the pool. This decreases the gain
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Figure 3. Responses to drifting sine gratings of different contrasts. The curves are fits of the normalization model. The fits were performed on a larger
data set, which included the responses to 72 different drifting gratings (8 contrasts, 3 orientations, and 3 temporal frequencies). A, Period histograms of
the responses to four different contrasts. Scale bar in spikes per second. B, C, Response amplitude and phase as a function of contrast, computed from
the first harmonic of the spike trains. D, Polar plot of the responses in B and C. Every point in the plot corresponds to a sinusoid with an amplitude that
is given by the distance from the origin, and the phase of which is given by the angle with the horizontal axis. As the contrast increases the responses
get larger (far from the origin), and their phases advance (they turn counterclockwise). Asterisks indicate the predictions of the normalization model at
the different stimulus contrasts. Circles have radius 1 SEM (N = 3) computed from the estimated variance. Error bars in B and C are £1 SEM, computed
from circles in D. Cell 3921008 [directional index (DI) = 0.1; preferred spatial frequency (SF) = 0.9 cycles/®, stimulus size (SZ) = 4.5°], experiment 4.
Parameters: 7, = 37 msec; 7, = 9 msec; n = 1.34.

and the time constant of the cells in the pool so that they are more
responsive and better able to follow the fine temporal changes of
the stimulus.

The normalization pool. Our final assumption regards the com-
position of the normalization pool. We assume that the cells in
the pool are tuned to all stimulus orientations and directions and
to a broad range of spatial and temporal frequencies.

Solution of the model. The variables in the model depend on
each other in a circular way: (1) the firing rate R of each cell
depends on its membrane potential V' (Eq. 3; Fig. 24); (2) the
membrane potential I of each cell depends on its driving current
14 and on its conductance g (Eq. 2); and (3) the conductance g of
each cell depends on X R, the total firing rate of the cells in the
normalization pool (Eq. 4; Fig. 2B). This arrangement results in
negative feedback, because increases in the overall response X R
increase the conductance g, which in turn reduces the overall
response % R. This guarantees that the conductance g remains
finite (2 R < 1/k in Eq. 4).

The model is a nonlinear neural network (Grossberg, 1988)
and is in general quite complicated, because both the driving
current and the conductance vary over time. Nevertheless, the
model was designed so that for the visual stimuli used in this
study—drifting sine gratings, plaids, and noise—we can derive
approximate closed form equations for its responses. These equa-
tions, together with their derivation, are detailed in Appendix.

RESULTS

We report here on 149 data sets obtained from a total of 54 cells
that were clearly identified as simple and were held long enough
to be tested with at least two blocks of one of the core experi-
ments in our protocol. In particular, we report on 51 grating

matrix experiments from 34 cells, 76 plaid experiments from 27
cells, and 22 noise-masking experiments from 17 cells.

The cells in the sample exhibited a broad spectrum of tuning
properties. The orientation tuning of the cells ranged from 14° to
124° half-width, with one-third of the cells showing a tuning
sharper than 24° and one-third broader than 51°. The directional
index of the cells (DI; Reid et al., 1987) ranged over the whole
spectrum from 0 to 1. Direction selectivity was prominent (DI >
0.6) in about one-third of the cells.

Responses to gratings

Figure 34 shows the period histograms of the responses of a
typical simple cell to drifting sinusoidal gratings with four differ-
ent stimulus contrasts. Consistent with the linear model, the
responses look like rectified sinusoids.

Dependence on contrast

There are subtle aspects of the responses that are not consistent
with a strictly linear model. One is response saturation (Maffei and
Fiorentini, 1973; Dean, 1981a; Albrecht and Hamilton, 1982;
Ohzawa et al., 1982; Li and Creutzfeldt, 1984; Sclar et al., 1990;
Bonds, 1991; Carandini and Heeger, 1994). For a linear neuron,
scaling stimulus contrast by a certain amount would scale the
responses by the same amount. The responses of the cell in Figure
3, instead, increase only marginally as the contrast doubles from
0.5 to 1. Another nonlinearity is reflected in the latency of the
responses. For a linear cell response latency would be unaffected
by stimulus contrast. Simple cells, instead, display phase advance
(Dean and Tolhurst, 1986; Carandini and Heeger, 1994; Albrecht,
1995); i.e., they respond sooner to high-contrast stimuli than to
low-contrast stimuli. For example, the cell in Figure 3 responds
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Figure 4. Responses to drifting sine gratings at two different orientations, —15° ( gray) and —45° (white). Fits of the normalization model (curves) were
performed on a larger data set than shown, which included 72 stimulus conditions (8 contrasts, 3 orientations, and 3 temporal frequencies). A, Period
histograms. Rows correspond to different contrasts, columns to different orientations. B, C, Response amplitude and phase as a function of contrast. To
facilitate comparison in C the responses to each grating were shifted vertically so that the values predicted by the model would overlap. D, Polar plot
of the responses in B and C. Cell 3921009 (DI = 0.5; SF = 0.4; SZ = 2.2), experiment 8; N = 3. Parameters: 7, = 28 msec; 7, = 3 msec; n = 1.6.

~20 msec sooner to the stimulus with unit contrast than to the
stimulus with 0.12 contrast.

These effects on response size and latency are reflected in the
amplitude and phase of the first harmonic of the responses (Fig.
3B,C). For contrasts <0.2 the amplitudes (Fig. 3B) grow roughly
linearly with contrast (the slope in double logarithmic coordinates
is close to 1), and the phases (Fig. 3C) stay substantially constant.
As the contrast increases, the amplitudes saturate and the phases
advance.

Figure 3D replots the data in the polar plane where response
amplitude is represented as distance from the origin, and re-
sponse phase is represented as the angle with the horizontal axis.
As the contrast increases the data points get farther from the
origin (response amplitude increases), and they turn counter-
clockwise (response phase advances).

The predictions of the normalization model are characterized
by two equations, one for response amplitude and one for re-
sponse phase. The best fit model parameters were determined by
simultaneously fitting both the amplitude and phase of the re-
sponses. The model captures the saturation in response amplitude
(Fig. 3B) because it postulates that increasing contrast increases
the activity of the normalization pool, which increases the mem-
brane conductance, and thus decreases the gain of the membrane.
The model captures the advance in response phase, because the
increase in membrane conductance decreases the time constant,
so at high contrasts the membrane introduces shorter delays than
at low contrasts. The fits provided by the normalization model are
substantially more accurate than those provided by the linear
model; according to the linear model the data in Figure 3B should
lie on a diagonal line (no amplitude saturation), and the data in
Figure 3C should lie on a horizontal line (no phase advance).

The equations for response amplitude and phase predicted by
the model are derived in Appendix. We present here the equation

for response amplitude, because it helps further illustrate the
behavior of the model. According to the model, the amplitude of
the responses R of a simple cell to a grating of contrast ¢ and
temporal frequency f is:

. B ) c n
amplitude(R) = amplltude(L)Vm] s (5)

where the quantities L, o(f), and n are determined, respectively,
by the linear, normalization, and rectification stages of the model
(Fig. 1B). L is the response of the linear receptive field of the cell
to the grating at unit contrast (Eq. 1). The normalization stage
divides this quantity by Vo (f)* + ¢2, where o (f) grows with the
temporal frequency f of the stimuli. Finally, n is the exponent of
the rectification stage (Eq. 3; Fig. 24).

The dependence of response amplitude on stimulus contrast is
quite simple; at low contrasts, ¢ << o(f), the denominator is
approximately constant, and the responses grow as c”. At high
contrasts, instead, the ¢ in the denominator has a strong effect,
and the responses saturate. Equation 5 is similar to a hyperbolic
ratio, which was empirically found to provide good fits to the
amplitude of the contrast responses of V1 cells (Albrecht and
Hamilton, 1982; Sclar et al., 1990). Indeed, our ad hoc choice of
the dependence of conductance on the activity of the normaliza-
tion pool (Eq. 4) was made with this expression in mind.

Different orientations

Figure 4 shows the contrast responses of a simple cell to two
drifting gratings differing in their orientation. As shown in Figure
4A4, the responses elicited by the grating drifting at —15° (left
column) were ~40% larger than those elicited by the grating
drifting at —45°. This proportion remained substantially constant
in the face of prominent saturation above a contrast of 0.25.
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Figure 5. Contrast responses for gratings with two different spatial frequencies: 1.4 ( gray) and 1.1 (white) cycles/degree. Fits of the normalization model
(curves) were performed on a larger data set than shown, which included 40 stimulus conditions (10 contrasts, 2 spatial frequencies, and 2 temporal
frequencies). Contrasts <0.12 elicited <1 spike/sec. 4, Period histograms. Rows correspond to different contrasts, columns to different spatial frequencies.
B, C, Response amplitude and phase as a function of contrast. Responses to each grating in C were shifted vertically so that their values predicted by
the model would overlap. D, Polar plot of the responses in B and C. Cell 3821019 (DI = 0.8; SF = 1.4; SZ = 1.9), experiment 5; N = 6. Parameters: 7,

= 18 msec; 7, = 8 msec; n = 4.

This property can be observed more precisely in Fig. 4B. The
contrast responses obtained at the two different orientations are
vertical shifts of each other on a logarithmic response scale,
implying that the ratio of the responses to different orientations
was constant, irrespective of the stimulus contrast. Another way
to describe this behavior is to say that the orientation tuning
scaled with contrast, a property that has been repeatedly observed
for both orientation tuning and spatial frequency tuning (Movs-
hon et al., 1978c; Albrecht and Hamilton, 1982; Sclar and Free-
man, 1982; Li and Creutzfeldt, 1984; Skottun et al., 1987).

As with response saturation, phase advance was controlled by
the contrast of the stimulus per se, rather than by the firing rate
of the cell. Even though the absolute phases of the responses to
the two gratings differed by about 180° (Fig. 4D) the relative
timing of the responses (difference in response phase) was inde-
pendent of stimulus contrast. This is illustrated in Fig. 4C, where
the phases of the responses to each grating were shifted vertically
so that the fits provided by the normalization model would
overlap.

The curves predicted by the normalization model provided
good fits to the data in Figure 4. Because saturation and phase
advance depend on the stimulus contrast, and not on the size of
the responses elicited in a cell, their presence is not simply the
result of nonlinearities in the spike-encoding mechanism or in
other attributes of a single cell. Rather, their presence indicates
the existence of a contrast gain control mechanism in the visual
cortex such as that described by the normalization model.

In fact, the model mandates the orientation invariances in the
contrast responses, both in amplitude and in phase. In the expres-
sion for the response amplitude (Eq. 5), stimulus contrast and
stimulus orientation are separable. The expression can be seen as
the product of two factors, [amplitude(L)]” and (c/V o (f)* + c¢?)".
The first factor depends on L, the response of the linear receptive
field of the cell to the grating at unit contrast, so it depends on

orientation but not on contrast. The second factor depends only
on the contrast ¢ and on the temporal frequency f of the grating.
For a fixed temporal frequency the shape of the contrast re-
sponses is entirely controlled by this second factor, which is
independent of stimulus orientation. A similar argument can be
made for the phase responses predicted by the model: the expres-
sion for response phase (Appendix, Eq. 13) is the sum of two
terms, one that depends on stimulus orientation but not on
contrast, and one that depends on stimulus contrast but not on
orientation.

Different spatial frequencies

Changing the spatial frequency of a grating had the same effect on
the contrast responses as changing orientation; response ampli-
tude was shifted vertically on a logarithmic scale, and response
phase was shifted vertically on a linear scale. Figure 5 shows an
example in which the responses elicited by the 1.4 cycles/degree
grating (Fig. 54, left column) were ~70% larger than those
elicited by the 1.1 cycles/degree grating (right column). This
proportion held substantially constant in the face of response
saturation. The fits of the normalization model (continuous
curves) capture all these properties of the responses. Indeed, the
very same argument about separability in the model responses of
contrast and orientation can be made for contrast and spatial
frequency.

Different temporal frequencies

Changes in the stimulus temporal frequency had very different
effects from changes in orientation or spatial frequency. In par-
ticular the above-mentioned invariances of the contrast responses
did not hold for stimuli differing in temporal frequency. Rather,
we found that increasing the temporal frequency increased the
contrast at which the responses saturated and decreased the total
phase advance. Similar results (for the amplitude of the re-
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sponses) were obtained in the cat by Holub and Morton-Gibson
(1981) and in the monkey by Hawken and collaborators (1992;
also see Albrecht, 1995, Appendix).

Figure 6 illustrates these phenomena. At low temporal frequen-
cies the responses saturated at low contrasts (Fig. 64, left col-
umns), but at high temporal frequencies they did not show much
saturation (right columns). This behavior can be better observed
in an amplitude plot (Fig. 6B); the contrast responses differ in
their horizontal position, so they could not be superimposed by a
vertical shift, as was the case with the contrast responses to
different orientations or spatial frequencies.

The effect of temporal frequency on the contrast responses can
be rephrased in terms of the effect of contrast on the temporal
frequency tuning. Increasing stimulus contrast increased the re-
sponsivity of the cells to the high temporal frequencies. This
phenomenon is most visible in Figure 6D, which can be seen as a
set of temporal frequency curves measured at different contrasts.
Although at low contrasts the cell was essentially low-pass, at high
contrasts the cell was mildly bandpass, with the 6.5 Hz stimulus
eliciting 46% stronger responses than the 1.6 Hz stimulus. From
the quality of the fits it is clear that the normalization model
captures this behavior. The linear model, on the other hand,
predicts that increasing the contrast should just scale the re-
sponses, with no effect on the temporal frequency tuning.

The effect of contrast on the temporal frequency tuning of the
normalization model can be understood by observing the effects
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of changing the conductance on the temporal frequency tuning of
an RC circuit (Fig. 7). Increases in conductance reduce the gain
of the membrane more at low frequencies than at high frequen-
cies, substantially increasing the cutoff frequency of the mem-
brane. Because the conductance grows with stimulus contrast, at
low contrasts the cutoff frequency of the membrane is low, and
the low-pass character of the membrane dominates the responses.
At higher contrasts the cut-off frequency of the membrane is
higher, and the tuning of the responses is determined by the linear
receptive field providing input to the membrane. In the case of
the cell in Fig. 6, the fits of the model indicate that the tuning of
the linear receptive field was bandpass.

Figure 7 also illustrates an example of how phase advances in
an RC circuit with increased conductance. The vertical arrows in
the bottom panel of Figure 7 indicate the total phase advance
predicted by the model at the four temporal frequencies tested in
the experiment of Figure 6. The best fit model parameters predict
that phase advance between zero and unit contrast is largest for
the 6.5 Hz stimulus (51.9°), marginally smaller for the 3.3 and 13
Hz stimuli (44.4° and 46.9°), and smaller still for the 1.6 Hz
stimulus (29.5°). The expression for the total phase advance
predicted by the model is:

phase advance = arctan(2mfr,) — arctan(2zfr)), (6)

where f is the stimulus temporal frequency, and 7, and T, are,
respectively, the time constant of the membrane at 0 and at unit
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Figure 7. Effects of changing the conductance g = 1/R in an RC
circuit. Circuit parameters, and their dependence on contrast, are
estimated from the experiment in Figure 6. Continuous curves show the
transfer function at rest (low conductance); dashed curves show the
transfer function at unit contrast (high conductance). Arrows indicate
decrease in gain (fop) and phase advance (bottom) at four temporal
frequencies (1.6, 3.3, 6.5, and 13 Hz).

contrast. The maximal phase advance is achieved at a frequency
equal to 1/27V 7y1)).

The data in Figure 8 exemplify the dependence of phase
advance on temporal frequency. For this cell the best fit model
parameters predict that the phase advance should be minimal
(11.3°) at 1.6 Hz and increase with temporal frequency: 20.77° at
3.3 Hz, 31.8° at 6.5 Hz, and 35.7° at 13 Hz. The data clearly
confirm this trend, which was typical of our sample. Indeed, most
of the figures in this study display data acquired with temporal
frequencies of ~6 Hz. We wanted to provide examples of contrast
responses showing clear saturation and clear phase advance. As
predicted by the model, we found that temporal frequencies <3
Hz yielded strong saturation but little phase advance, whereas
temporal frequencies much >6 Hz showed large phase advances
but little saturation.

The increase in phase advance with increasing temporal fre-
quency can also be seen as a decrease in integration time, the slope
of a line fitted to a phase versus temporal frequency plot of the
data. A similar phenomenon—together with dramatic changes in
the temporal frequency tuning of the cells—was observed in cat
by Reid et al. (1992) using broad-band high-energy stimuli. The
authors of that study pointed out that these behaviors could be
explained by changes in the membrane conductance of cortical
cells. The normalization mechanism that we propose works ex-
actly that way, and indeed we have shown that it predicts effects
similar to those observed by Reid and collaborators (Carandini
and Heeger, 1993).

An entire data set

The curves predicted by the model illustrated in the preceding
figures were the result of fits to entire data sets, not just to the
data appearing in the figures. For example, the responses in
Figure 3 were obtained in a grating matrix experiment that
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Figure 8. Phase advance and temporal frequency. Curves are predictions
of normalization model. 4, Period histograms. Rows correspond to dif-
ferent contrasts, columns to different temporal frequencies. B, Response
phase as a function of contrast. Gray levels indicate the temporal fre-
quency as in 4. Fits were performed on a larger data set than shown,
which included 60 stimulus conditions (5 contrasts, 4 temporal frequen-
cies, and 3 spatial frequencies). Cell 3921008 (same as Fig. 3), experiment
7; N = 3. Parameters: 7, = 27 msec; 7, = 7 msec; n = 1.2.

included 72 different drifting gratings, with eight different con-
trasts, three different orientations, and three different temporal
frequencies. The full set of responses to these stimuli are shown
in Figure 9. This example illustrates the principal properties of
the contrast responses; changing orientation shifts the amplitude
responses vertically on a logarithmic scale and the phase re-
sponses vertically on a linear scale. Amplitude saturation is more
prominent at low temporal frequencies; phase advance is more
prominent at higher temporal frequencies.

The 18 curves predicted by the normalization model (9 for
amplitude and 9 for phase) provide satisfactory fits to the data.
Whereas the vertical position of each curve depends on the linear
stage of the model, the shape of all the curves (including their
horizontal position) depends on the normalization and rectifica-
tion stages. In particular, the vertical position of each curve is



8630 J. Neurosci., November 1, 1997, 17(21):8621-8644

Carandini et al. « Linearity and Normalization in Simple Cells

100t 100¢ 100 ¢
50 50¢ 50
@
o 20 20¢ 20
=<
(%
& 1ot 10F 10F
3 E
5 5 5r 5
Q.
[2] b
[]
0% 2 2 2
15' 1¢ 1k
11l ol Ay 1l el 111l 111l
or 0O 270+ 1351
-45-_Q—©-QeQ’©’O 225__@_@_@@/999 | o
-90 L 451
§ 180
T 135 135+ or
& 180 | 9ol 45t
L
& 225+ e -90 F
-270 t ok -135 | €
-315 a5l -180 ‘
£ ||||I 1

0.03 0.1 0.3 1 0.03

0.1 0.3 1

0.03 0.1 0.3 1
Contrast

Figure 9. An entire grating matrix data set. The cell was tested with three different temporal frequencies (A4, 3.3 Hz; B, 6.6 Hz; C, 13 Hz), three different
orientations (white, 120° gray, 80°; black, 40°), and nine different contrasts. Some period histograms for these responses are shown in Figure 34. The
shapes of the 18 curves are determined by only 3 parameters: 7, = 37 msec; 7, = 9 msec; n = 1.34. Eighteen additional parameters determine the vertical

positions of the eighteen curves. Cell 3921008, experiment 4; N = 3.

determined by one parameter, corresponding to the amplitude or
phase of the response of the linear stage to each grating at full
contrast. The shape and horizontal position of all the curves,
instead, are determined by a total of three parameters. The first
two are the time constants 7, and 7, of the membrane at rest and
at full contrast; these characterize the normalization stage and
[by determining o(f)] control the horizontal position of the
amplitude curves and the steepness of the phase curves. The third
parameter is the exponent n, which characterizes the rectification
stage. It controls the steepness of the amplitude curves below
saturation, and has no effect on the phase curves.

Responses to plaids

We now consider the responses to a wider set of visual stimuli:
plaids composed of two drifting gratings having the same tempo-
ral frequency. The gratings differed in orientation and/or in
spatial frequency, and their contrasts ¢, and ¢, assumed a variety
of different values.

Cells in the cat primary visual cortex display a phenomenon
known as “cross-orientation inhibition” (Morrone et al., 1982;
Bonds, 1989; Gizzi et al., 1990), in which the responses to optimal
stimuli are inhibited by the presence of stimuli of nonoptimal
orientation, which would elicit negligible responses if presented
alone. More generally, there are numerous reports of conditions
in which cells in the cat visual cortex are inhibited by stimuli that
elicit no response when presented alone. This inhibition has been
found to be independent of direction of motion, largely indepen-
dent of orientation, and broadly tuned for spatial and temporal

frequency (Bishop et al., 1973; Dean et al., 1980; Burr et al., 1981;
Hammond and MacKay, 1981; Morrone et al., 1982; De Valois
and Tootell, 1983; Kaji and Kawabata, 1985; Gulyas et al., 1987,
Bonds, 1989; Nelson, 1991; DeAngelis et al., 1992; Geisler and
Albrecht, 1992). Cross-orientation inhibition can be elicited with
one grating in each eye, although suppression with both gratings
in the same eye is typically stronger (Ferster, 1981; Ohzawa and
Freeman, 1986a,b; Freeman et al., 1987; DeAngelis et al., 1992;
Sengpiel and Blakemore, 1994; Sengpiel et al., 1995; Walker et
al., 1996).

Our results indicate that cross-orientation inhibition is present
in most cells of the monkey primary visual cortex. An example of
this is shown in Figure 10, which shows the responses of a simple
cell to a plaid with components that drifted in orthogonal direc-
tions. Although one of the gratings (grating 1) was quite effective
in driving the cell (Fig. 104, left column), the other (grating 2)
elicited almost no spikes when presented alone (top row). Its
presence, however, clearly suppressed the responses to the first
grating. The inhibitory effect of the second grating can be ob-
served more precisely in Figure 10B, which shows the contrast
responses of the cell for four different contrasts of grating 2. As
observed by Bonds (1989) in the cat, the presence of the second
grating shifts the contrast response to the right on a logarithmic
scale. This shift to the right would not be explained by the linear
model; if cross-orientation inhibition were attributable to a linear
interaction between two (possibly subthreshold) linear responses,
it would subtract from the responses a fixed quantity. The re-
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Figure 10. Masking by an orthogonal grating. Responses to a plaid experiment in which one component was nearly optimally oriented (grating 1), and
the other was orthogonal and ineffective in driving the cell when presented alone (grating 2). Curves are fits of the normalization model. A, Period
histograms for different contrasts of the components. Rows, Different contrasts of grating 1 (c, ). Columns, Different contrasts of grating 2 (c,). As ¢, was
increased, the responses decreased in size (cross-orientation inhibition). B, Response amplitude as a function of ¢,, for different values of ¢, (white to
black: 0.06, 0.12, 0.25, and 0.5). As ¢, increased, the contrast responses shifted to the right; more and more contrast of grating 1 was needed to maintain
a set level of firing. C, Same data, plotted as a function of c,, for different values of ¢, (white to black: 0, 0.06, 0.25, and 0.5). Cell 3921024 (DI = 0.4;
SF = 0.1; SZ = 6.8), experiment 9; N = 3. Parameters: 7, = 158 msec; 7, = 5 msec; n = 2.3.

sponses to the first grating would saturate at the same contrast,
irrespective of the contrast of the second grating. As shown in
Figure 10, this is not the case.

The shift to the right of the contrast responses corresponds to
an effective scaling of stimulus contrast. This is the behavior
predicted by the normalization model (Heeger, 1992b), which, as
illustrated by the curves in Figure 10, provided good fits to our
plaid data. Approximate equations for the amplitude and phase of
the responses of the model to plaids are derived in Appendix. The
expression for response amplitude is:

amplitude(c,L(¢) + c,L,(¢)) "
\,/(r(f)z +ci+c3

amplitude(R) « , (7
where ¢, and ¢, are the contrasts of the two gratings, L,(¢) and
L,(¢) are the responses of the linear receptive field to the indi-
vidual gratings at unit contrast, and the remaining symbols have
the same meaning as in the expression for the response to indi-
vidual gratings (Eq. 5). Since the receptive field of the cell is
linear, its response to the plaid is just a linear combination of its
responses to the individual gratings, ¢,L,(¢) + ¢,L,(¢). The nor-
malization stage divides that by approximately Vo (f)? + ¢Z + c3
(see Appendix). If, as in Figure 10, grating 2 alone does not elicit
any response (L, =~ 0), then the effect of an increase of ¢, in the
denominator is to shift the contrast response to the right on the
log contrast axis (Heeger, 1992b).

The pure rightward shift of the contrast responses occurs only
when the cell is completely unresponsive to the masking grating.
When each grating in the plaid elicits (even minimal) responses
when presented alone, their combined effect is more complicated.
In this case the sinusoidal responses of the linear receptive field
to the individual gratings are added together before the normal-
ization stage. Depending on their relative phase they can add
constructively or destructively. An example of this is shown in
Figure 11. The top and bottom rows in Figure 114 show the period
histograms of the responses of a cell to two gratings of different

spatial frequency. Both gratings elicited strong responses, with
phases differing by approximately 90°. The responses to the
“plaids” obtained by summing the gratings are shown in the
middle row.

The sum of sinusoids is best understood in a polar plot (Fig.
11B), in which every sinusoid corresponds to a vector, and the
sum of sinusoids is just a sum of vectors. The dark gray data points
are the responses to grating 1; the white data points are the
responses to grating 2. The light gray data points are the responses
to the plaid obtained by superimposing the two gratings. The
squares indicate the linear predictions for the plaid responses
obtained by summing (vectorially) the responses to the individual
gratings. The actual plaid responses show more saturation (they
remain closer to the origin) than these linear predictions. They
also occur earlier (their angle with the horizontal axis is larger)
than the linear predictions. Although not perfect, the fits of the
normalization model (continuous curves) capture both phenom-
ena. This is because the local stimulus energy of the plaid is
greater than that of the individual gratings. In the model this
results in higher membrane conductance, which causes a decrease
in gain and time constant.

Figure 12 illustrates another example of plaid responses. In this
case two orthogonal gratings were able to drive the cell. Grating 2
was not as effective as grating 1, but it did elicit some spikes when
presented alone. The dependence of the responses on the contrasts
of the gratings is complicated: depending on the contrast of grating
1, increasing the contrast of grating 2 either enhanced or sup-
pressed the responses. This behavior would be hard to explain at
the level of a single cell. Instead, as shown by the continuous curves
fit to the responses, it is precisely predicted by the normalization
model. The contrasts of the two gratings, ¢, and c,, appear both in
the numerator and in the denominator of Equation 7. Increasing
one of the two can result either in an enhancement or in a
reduction in the response, depending on the amplitudes and phases
of the underlying linear responses L, and L,.
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Figure 13 illustrates the responses of the same cell to different
plaids. The top panel in Figure 134 replots the amplitude data of
Figure 12, and the bottom panel shows the corresponding phase
data, illustrating that increasing the contrast of either grating
resulted in phase advance. In Figure 134 grating 2 drifted at 90°
with respect to grating 1, and it elicited responses that were
smaller by about a factor of five. When grating 2 was replaced by
one drifting at 30° with respect to grating 1, it elicited responses
that were only marginally smaller than those to grating 1 (Fig.
13B, top panel). The phases of the responses to the two individual
gratings were almost opposite (Fig. 13B, bottom panel), ~0° for
grating 1 and ~135° for grating 2. As a result the two stimuli
interacted destructively, as witnessed by the dip in the diagonal
region of the top panel in Figure 13B. In that region increasing the
contrast of any of the two gratings reduced the amplitude of the
responses. The model clearly captures this phenomenon, which is
principally attributable to its linear stage. When the spatial phase
of grating 2 was changed by 90° (Fig. 13C), this phenomenon
disappeared. Now increasing the contrast of either grating in-
creased the size of the responses.

Responses to gratings and noise

We now consider responses to gratings in the presence of noise.
In the absence of a grating stimulus, the only visible effect of
noise was a generally mild elevation in the mean firing rate (from
0.8 = 0.3 to 2.0 = 0.6 spikes/sec). When presented together with
an effective grating stimulus, however, the noise provided strong
inhibition. This is consistent with the predictions of the normal-
ization model, because the presence of the noise mask increases
the stimulus energy.

An example of our results is shown in Figure 14. In the absence
of a grating stimulus, the noise elicited few spikes (Fig. 144, top
row). By contrast, the cell was effectively stimulated by the drifting
grating (left column). Increasing noise contrast decreased the size
of the responses (Fig. 14C), shifting the contrast responses to the
right (Fig. 14D). The other major effect of the noise masks was to

reduce response latency. Indeed, as illustrated in Figure 14 B, the
highest noise contrast (black points) caused the phase to advance
to its maximum, so that the grating contrast could have no further
effect on response phase.

As exemplified by the continuous curves in Figure 14, the
normalization model provided good accounts of the effects of
noise masks. To fit the noise-masking data we made the simpli-
fying assumption that the noise would be unable to drive the
linear receptive field of the cells, so that its sole effect would be to
provide divisive normalization. More precisely, we used the same
equations that we fit to the plaid responses, except that the first
harmonic of the linear response L, to the noise mask was set to
zero. The noise contrast ¢, then only appeared in the denomina-
tor of Equation 7. This approximation neglects the mild increase
in mean firing rate caused by the noise but captures the fact that
the power of the noise was spread over a large band of frequencies
and was thus negligible at the frequency of the test stimulus (the
first harmonic).

There is a further difference between the fits to the noise data
and those to the plaid data. Whereas the two gratings in a plaid
were assumed to be equally effective in driving the normalization
pool, the effectiveness of the noise mask in driving the normal-
ization pool was controlled by an independent parameter «, which
scaled the mask contrast c,. The values of « that resulted from the
fits were equally spread between the boundaries 0.1 and 10. In 10
of 22 data sets they were larger than 1.0, indicating that the noise
mask provided more divisive inhibition than the drifting grating.

The interpretation of this result is complicated, however, by the
fact that the noise masks (but not the gratings) occupied the
whole screen of the monitor, extending well beyond the receptive
fields of the recorded cells. As in the cat (Blakemore and Tobin,
1972; Nelson and Frost, 1978; DeAngelis et al., 1994; Li and Li,
1994), the regions outside the receptive field of monkey V1 cells
can provide strong inhibition (De Valois et al., 1985; Born and
Tootell, 1991; Sillito et al., 1995; Levitt and Lund, 1997). We do
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Figure 12. Masking with a grating that is effective in driving the cell.
Responses to a plaid experiment in which one component was nearly
optimally oriented (grating 1), and the other was orthogonal but still
elicited some response when presented alone (grating 2). 4, Period
histograms for different contrasts of the components. Rows, Different
contrasts of grating 1 (¢, ). Columns, Different contrasts of grating 2 (c,).
When presented alone, grating 1 elicited strong responses (left column),
grating 2 weak responses (fop row). B, Response amplitude as a function
of ¢, for different values of ¢, (white to black: 0, 0.06, 0.12, and 0.5).
Increasing c, increased the size of the responses when grating 1 was
absent; it inhibited the responses for intermediate contrasts of grating 1,
and it had little effect for high contrasts of grating 1. Cell 392r013 (DI =
0.9; SF = 0.4; SZ = 3.4), experiment 12; N = 3. Parameters: 7, = 136
msec; 7, = 1.4 msec; n = 2.22.

not know which portion of the divisive inhibition exerted by our
noise masks should be ascribed to the stimulation of these
regions.

Quality of the fits

We evaluated the quality of the fits both by calculating the
percentage of the variance accounted for by the model and by
computing bootstrap estimates of the ASL statistic (see Materials
and Methods). The results of this analysis are summarized in
Table 1.
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Percentage of the variance

For most data sets (166 vs 33), the normalization model ac-
counted for >80% of the variance. The median percentage of the
variance accounted for by the model was 92.9% for grating matrix
data sets, 85.5% for plaid data sets, and 87.3% for noise masking
data sets. These values can be assessed more intuitively by con-
sidering the quality of the fits in some of the previous figures. The
model accounted for 95.7% of the variance of the grating matrix
data set in Figure 9, for 89.7% and 89.8% of the variance of the
plaid data sets in Figures 10 and 12, and for 87.6% of the variance
of the noise mask data set in Figure 14. The data sets chosen for
the figures in this study were mostly in the third quartile in terms
of quality of the fits to each experiment type.

Achieved significance level

To take into account the variability of the responses in our
evaluation of the model we tested the hypothesis that the mean of
the probability distribution underlying the neural responses was
identical to the predictions of the model. This hypothesis was
tested using the bootstrap procedure described in Materials and
Methods. The model passed the test at the 5% significance level
for 47 of 51 grating matrix data sets, for 61 of 76 plaid data sets,
and for 20 of 22 noise-masking data sets. For plaid data sets, no
systematic difference in the quality of the fits was found between
experiments in which the two components differed in orientation
(35 data sets), those in which they differed in spatial frequency (28
data sets), and those in which they differed in both attributes (13
data sets).

Comparison with other models

We compared the quality of the fits obtained with the normaliza-
tion model with those of three different models: the linear model,
an elaborated normalization model, and an alternative model in
which saturation is brought about by a compressive nonlinearity.
Figure 15 presents the results of this analysis for our plaid
experiments. The abscissas plot the percentage of the variance
accounted for by the normalization model, and the ordinates plot
the percentage of the variance accounted for by the other models.
Experiments that were better fitted by the normalization model
result in data points that are below the diagonal.

Because the linear model has fewer parameters than the nor-
malization model (five vs seven for plaid data sets), it is bound to
provide worse fits. Indeed, we already know the failures of the
linear model: it does not predict amplitude saturation, or phase
advance, or noise masking, or any of the other nonlinearities that
we have mentioned in this study. The extent of the difference in
quality of the fits can be taken as a quantitative measure of the
importance of the two extra parameters postulated by the nor-
malization model. As shown in Figure 154, in most cases the
normalization model provided a substantial improvement over
the linear model. For plaid experiments, the median value for the
percentage of the variance accounted for by the linear model was
70.5%, as opposed to 85.5% for the normalization model.

Similar results were obtained with the other two types of
experiments in our protocol. For grating matrix experiments the
median values of the percentage of the variance were 84.2% for
the linear model and 93.0% for the normalization model. With
noise-masking experiments the median values were 56.4% for the
linear model and 87.3% for the normalization model.

We then considered an extension of the normalization model,
an anisotropic normalization model. This model is equivalent to
the normalization model except that it relaxes one of its most
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Figure 13.  Amplitude (fop) and phase (bottom) of the responses of a cell to three different plaids, for different contrasts ¢, and ¢, of the two components.
Circles connected by dashed lines are actual responses; continuous curves are fits of the normalization model. Grating 1 was the same in all three
experiments. Its orientation was close to optimal. 4, Grating 2 was orthogonal to grating 1. B, Grating 2 drifted 30° away from grating 1. C, Same as B,
but phase of grating 2 was delayed by 90°. Cell 392r013 (same as Fig. 12), experiments 12, 9, and 8. Parameters: 4, 7, = 40 msec; 7, = 1.3 msec; n =

2.1; B, 1y = 35 msec; 7, = 1.4 msec; n =

stringent constraints, i.e., that the normalization pool be equally
responsive to a broad range of visual stimuli. It is the same model
that we fitted to the noise data, and it involves the additional free
parameter «, allowing for a difference in the size of the responses
of the pool to the two stimulus components. The parameter «
scales the contrast ¢, of the second grating in the denominator of
Equation 7 and in the equation for response phase provided in
Appendix. As illustrated in Figure 15C, the anisotropic model
provided only a marginal improvement over the normalization
model in the quality of the plaid fits. In particular, the median
value for the percentage of the variance accounted for by the
anisotropic model was 86.9%;, only 1.3% better than the normal-

1; C, 7y = 52 msec; 7, = 1.7 msec; n = 1.1.

ization model. This hardly justifies the use of its additional
parameter to account for our plaid data.

Finally, we considered an alternative to the normalization
model, in which the linear stage is followed by a compressive
nonlinearity. Intuitively, this model postulates that gain control is
proportional to the efficacy of a stimulus in driving the cell. This
model could be implemented by having the initial linear stage
contribute both to the driving current and to the conductance
increase. More precisely, the model is defined by the same Equa-
tions 1-3 that define the normalization model, with Equation 4
replaced by g = g, + k amplitude(L).

For plaid data sets, the compressive nonlinearity model can be
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10 spikes/s

Figure 14. Masking with spatiotemporal white noise.
An optimal drifting grating was presented together with
full-screen two-dimensional flickering binary noise. Fits
of the normalization model (curves) were performed on
a larger data set than shown, which included 72 stimulus
conditions (9 grating contrasts and 8 mask contrasts). 4,
Period histograms for different grating contrasts (rows)
and noise contrasts (columns). When presented alone,
the grating elicited strong responses (left column), the
noise very weak responses (fop row). B, Polar plot of the
contrast responses for three different noise contrasts
(white to black: 0, 0.19, and 0.5). Increasing noise contrast
decreased response amplitude and advanced response
phase. Error circles are omitted to avoid clutter but can
be estimated from following panels. C, Response ampli-
tude as a function of noise contrast. Grating contrasts
(white to black): 0.06, 0.12, and 0.25. D, Response ampli-
tude as a function of grating contrast, for different noise
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compared on an equal footing with the normalization model,
because it has the same number of free parameters. This com-
parison is illustrated in Figure 15B. In many cases the normal-
ization model provided substantially better fits than the compres-
sive nonlinearity model. For plaid data sets the median value for
the percentage of the variance accounted for by the compressive
nonlinearity model was 80.8%, as opposed to 85.5% for the
normalization model.

Where the difference in performance between the two models
was most impressive, however, is in the noise-masking data sets;
for these data sets the median value for the percentage of the
variance accounted for by the compressive nonlinearity model
was 58.4% as opposed to 87.3% for the normalization model. The
compressive nonlinearity model does not predict that noise would
mask the responses of simple cells.

0.05 0.1
Grating contrast

L contrasts. Gray levels as in B. Cell 3941015 (DI = 0.6;
0.2 SF = 2.3; SZ = 6.8 for the stimulus, 7.8° for the mask),
experiment 7. Parameters: 7, = 82 msec; 7, = 2.6 msec;

n = 1.85.

Model parameters and cell properties

We now examine the parameters obtained from the fits of all our
data sets. Because these parameters have a biophysical interpre-
tation, we can use them to gauge the plausibility of the mecha-
nisms that we have postulated, rectification and shunting inhibi-
tion. We also compare the results obtained from different
experiments on the same cell, and we use the model to summa-
rize the general properties of the cells in our sample.

Exponent

The exponent n determines the gain of the transformation from
membrane potentials to firing rates (Figure 24). The estimated
values of this parameter were spread between 1 and 4, which was
the region in which they were allowed to vary. Approximately
one-fourth of the data sets yielded an n of 1, and one-fourth

Table 1. Quality of the fits of the normalization model

Percentage of the variance

Achieved significance level

Experiment N <50% 50-80% 80-90% >90% <2.5% 2.5-5% 5-10% >10%
Grating matrix 51 0 4 13 34 2 2 9 38
Plaids 76 4 20 33 19 9 6 11 50
Noise masking 22 0 5 8 9 1 1 2 18
All 149 4 29 54 62 12 9 22 106
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Figure 15. Performance of four different models, measured by the per-
centage of the variance accounted for in the data. Each data point
corresponds to a plaid experiment. The abscissas plot the performance of
the normalization model, and the ordinates plot performance of three
other models. A, Linear model. B, Compressive nonlinearity model. C,
Anisotropic model.

yielded an n of 4. The median estimated value was n = 2.37 for
grating experiments, n = 2.38 for plaid experiments, and n = 2.61
for noise-masking experiments. These values should not however
be assigned much confidence, as in many cases different values of
the exponent yielded only minor differences in the quality of the
fits (Tolhurst and Heeger, 1997b). In any event, values close to 2
are consistent with the results of Albrecht and Hamilton (1982)
and Sclar et al. (1990), who fitted the amplitude of the responses
with an equation similar to our Equation 5.

Time constants

The remaining two parameters of the normalization model are
the membrane time constant in the absence of a visual stimulus,
7y, and the membrane time constant in the presence of a grating
of maximal contrast, 7,. The range of time constants that we
obtained by fitting all of our data sets is illustrated in Figure 16.
The time constant at rest 7, (abscissas) was constrained to be
between 1 and 1000 msec for grating matrix data sets (Fig. 164)
and between 1 and 250 msec for plaid (Fig. 16B) and noise-
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masking (Fig. 16C) data sets. For grating matrix data sets the
estimated values lie mostly between 10 and 50 msec, with a
median value of 25 msec. For plaid data sets the median value was
51 msec. Noise-masking experiments yielded much higher values;
if one excludes the 2 (of 22) data sets for which the estimated time
constant at rest was <1 msec (that we attribute to noisy measure-
ments), the median value of the time constant at rest was 150
msec. The ratio 7, /7, between the time constant at full contrast 7,
(ordinates) and the time constant at rest 7, was constrained to be
between 0.01 and 1 for grating matrix data sets and between 0.03
and 1 for plaid and noise-masking data sets. The estimated values
of 7, are substantially lower than those of 7,, with a median of 4.9
msec for grating matrix data sets, 5.4 msec for plaid data sets, and
7.5 msec for noise-masking data sets.

On selected cells we performed an analysis of the dependence
of the fit quality on the time constants. The percentage of the
variance accounted for by the model was maximal along diagonal
regions in plots of 7, versus 7, suggesting that the fits constrained
the ratio 7,/7, better than the individual values of the time
constants.

For grating matrix data sets the ratio 7,/7, was mostly >0.1
(Fig. 164) and had a median value of 0.23, which corresponds to
a fourfold increase in conductance. A value of 1 would corre-
spond to no conductance increase, i.e., to the linear model. Plaid
data sets yielded substantially smaller values for ,/7, (Fig. 16 B).
The median value of this ratio in plaid data sets was 0.11,
suggesting a 10-fold increase in model conductance. Noise-
masking data sets (Fig. 16C) yielded even more extreme values;
excluding the two data sets for which 7, was <1 msec, the median
ratio 7, /7, was 0.056, corresponding to an increase in estimated
conductance by a factor of 18. A conductance increase of this
extent is unlikely to be possible in real cells (see Discussion).

Variability across experiments

It is clear from Figure 16 that the three different types of exper-
iments yielded quite different estimates of the model parameters.
This could be an effect of adaptation; the responses of V1 cells are
known to depend on the history of stimulation (Maffei et al.,
1973; Movshon and Lennie, 1979; Ohzawa et al., 1985; Sclar et al.,
1989; Carandini and Ferster, 1997b; Carandini et al., 1997a).
Indeed, many cells gave different responses to a same visual
stimulus in different experiments. For 60 of 69 drifting gratings
that were presented in more than one experiment on a given cell,
the responses elicited in different experiments were statistically
different (p < 0.05, bootstrap test, 54 experiments in 23 cells).
Moreover, the difference in response across experiments ap-
peared to be consistent across contrasts, often consisting of hor-
izontal and/or vertical shifts of the contrast response curves. An
example of this is illustrated in Figure 17, which shows the
contrast responses of a simple cell as obtained in two consecutive
grating matrix experiments.

Adaptation is known to depend both on the contrast (Sclar et
al., 1989) and on the type of stimulus (Movshon and Lennie, 1979;
Carandini et al., 1997a) presented in the recent past. It affects the
sensitivity of the cells, mostly by shifting the contrast response
functions to the right in a logarithmic scale (Ohzawa et al., 1985;
Sclar et al., 1989). The adaptation behavior of some cells in our
sample was explicitly measured and is reported elsewhere (Poir-
son et al., 1995; Carandini et al., 1997a).
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Figure 16. Time constants of V1 simple cells estimated by the normal-
ization model from grating matrix data sets (A4), from plaid data sets (B),
and from noise masking data sets (C). Scatter diagrams plot the time
constant at rest 7, (abscissa) versus the time constant at full contrast 7
(ordinate). Time constants <1 msec are omitted. Dashed line indicates the
identity 7, = 7,. Continuous lines in lower right corners indicate bounds in
fitting procedure. Histograms show the distribution of ratios 7, /7). These
include data sets with both time constants <1 msec that are missing from
scatter diagrams.

Phase advance and saturation

Given that the model provides a good fit to our data, it can be
used to summarize some properties of the cells in our sample.
Figure 18 illustrates the relation between two characteristics of
the contrast responses, both derived from the estimated (and
when necessary extrapolated) responses to single gratings drifting
at 6.5 Hz. On the ordinate is the total phase advance between zero
and unit contrast. On the abscissa is an index of saturation be-
tween zero and unit contrast. This index is based on the semi-
saturation contrast c,,, the contrast that elicits half-maximal
responses. The saturation index is defined as (1 — ¢y, )/c, ). It is
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Figure 17.  An example of response variability across experiments. Data
points represent responses of the same cell to the same stimuli in two
different experiments. Stimuli were gratings drifting at 3.3 Hz. Error bars
represent 1 SEM. The first experiment (black) involved a block of 40
stimuli (10 contrasts, 2 temporal frequencies, and 2 spatial frequencies;
N = 6). The second experiment (white) was initiated 58 min after the first
and involved a block of 90 stimuli (10 contrasts, 3 orientations, and 3
temporal frequencies; N = 5). Unit 3891019, experiments 5 and 6.

<1lifc,, >0.5 (the contrast responses do not saturate much), and
>1 if ¢,,<0.5 (the contrast responses are saturated at most
contrasts). In addition, because it is inversely proportional to the
semisaturation contrast, the saturation index is a measure of the
contrast sensitivity of the cells.

Figure 18 shows that saturation and phase advance were posi-
tively correlated. For a linear cell saturation is absent, so the
saturation index is <1, and phase advance is 0. Saturation and
phase advance both grow with the effectiveness of the normaliza-
tion stage. As a result, the position of a data point in Figure 18 is
related to the linearity of the responses. Very linear responses are
on the lower left, and very nonlinear (strongly normalized) re-
sponses are on the upper right.

The three types of experiments in our protocol yielded differ-
ent estimates of the phase advance and saturation in the contrast
responses. The contrast responses measured during grating ma-
trix experiments (white) had lower phase advances than those
measured during plaid experiments (gray). The contrast re-
sponses recorded during noise-masking experiments (black) dif-
fered from those recorded in the two other types of experiments
in that they tended to have larger phase advances for any given
amount of saturation. This difference may originate from the cells
being in different states of adaptation after prolonged exposure to
full-field spatiotemporal noise backgrounds than after prolonged
exposure to spatially localized drifting gratings.

DISCUSSION

Simple cells in V1 have a limited dynamic range, a limit to how
strong an output signal they can generate and, hence, a limit to
the range of inputs over which they can respond differentially. As
we have seen (Fig. 4B, 54), the ratio of the responses to any two
stimuli is constant, irrespective of the stimulus contrast, even in
the face of response saturation. In addition, the relative timing of
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Figure 18. Saturation and phase advance for all the data sets in this
study, estimated (at 6.5 Hz) from the fits of the normalization model.
White, Grating matrix data sets. Black, Noise-masking data sets. Gray,
Plaid data sets. The abscissa shows the saturation index: values of =1
indicate little or no saturation (see text). The ordinate shows the total
phase advance between 0 and unit contrast.

the responses is constant, even in the face of phase advance.
These invariances, which we attribute to normalization, are crit-
ical for encoding visual information (e.g., about motion, orienta-
tion, binocular disparity, etc.) independently of contrast.

The issues of gain control and limited dynamic range are, of
course, not restricted to V1 neurons. Gain control has been
measured and modeled in a variety of other neural systems,
including turtle photoreceptors (Baylor and Hodgkin, 1974), ret-
inal ganglion cells (Shapley and Victor, 1978), movement detec-
tors in the fly visual system (Reichardt et al., 1983), the vestibulo-
ocular reflex (Lisberger and Sejnowski, 1992), and velocity-
selective neurons in area MT of the primate cortex (Heeger et al.,
1996; Simoncelli and Heeger, 1997). In particular, our model and
our analyses are conceptually similar to the work of Shapley and
Victor (1978). Moreover, Reichardt et al. (1983) addressed the
same specific issue of retaining linearity in the presence of gain
control that we encountered in this study and proposed a recur-
rent shunting inhibition scheme not too different from the one we
have proposed. The normalization model of simple cell responses
is also analogous to models of retinal adaptation and normaliza-
tion (Sperling and Sondhi, 1968; Shapley and Enroth-Cugell,
1984; Grossberg and Todorovic, 1988), in which the stimulus
intensity at a particular point is normalized with respect to the
mean stimulus intensity.

Plausibility of the assumptions of the model

Although successful in fitting the data with very few parameters,
the normalization model is based on a number of simplifications,
some less plausible than others.

Linearity of the inputs

The linearity of the inputs to simple cells that we have postulated
requires that the responses of lateral geniculate nucleus (LGN)
neurons be linear functions of the stimulus contrast distribution.
This requirement is better fulfilled by the parvocellular (P) layers
of the LGN than by the magnocellular (M) layers. Evidence in
this respect is available from studies of the responses of retinal
ganglion cells (Benardete et al., 1992; Lee et al., 1994; Benardete
and Kaplan, 1997) and of LGN cells (Derrington and Lennie,
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1984; Sherman et al., 1984; Carandini et al., 1993; Movshon et al.,
1994).

In particular, Movshon et al. (1994) performed noise-masking
experiments in the LGN that are identical to those described in
this study for V1 simple cells. An analysis of their data using the
normalization model yielded the following conclusions: (1) the
vast majority of P cells had substantially linear contrast responses,
with no clear saturation and little phase advance (<30°); (2) the
responses of P cells were only weakly affected by noise masks;
contrast sensitivity was mostly unchanged, and phase advance was
reduced only in the small portion of cells that did show some in
the first place; (3) by contrast, M cells tended to have nonlinear
contrast responses, with strong saturation and strong phase ad-
vance (mostly >45°); and (4) noise masks had strong effects on
the responses of M cells; saturation dropped by a factor of 2,
reflecting a large loss in contrast sensitivity, and phase advance
virtually disappeared.

Altogether, these observations reinforce the view that P cells
are substantially linear, and that M cells are nonlinear. The large
difference in contrast saturation between M and P cells is consis-
tent with the well established difference in contrast sensitivity
between the two cell types (Kaplan and Shapley, 1982; Shapley
and Perry, 1986). The difference in phase advance between M
and P cells is also well established, having been mentioned by
Derrington and Lennie (1984) and explicitly measured by Sher-
man et al. (1984). Many aspects of M cell responses (phase
advance, saturation, effect of masking on sensitivity, and phase
advance) suggest that their nonlinearity might be attributable to
a gain control mechanism. It has been proposed (Benardete et al.,
1992) that this mechanism is similar to that observed by Shapley
and Victor in cat retinal X ganglion cells (Shapley and Victor,
1978; Victor, 1987).

Even though P cells constitute ~90% of the monkey LGN
(Dreher et al., 1976), many simple cells also receive M inputs
(Malpeli et al.,, 1981). Indeed, although the two streams are
segregated in layer 4C (Hubel and Wiesel, 1972; Hendrickson et
al., 1978; Blasdel and Lund, 1983), they eventually combine in the
upper layers (Lahica et al., 1992; Nealey and Maunsell, 1994;
Yoshioka et al., 1994). In particular, for those neurons that do
receive M input, the first 7-10 msec of activation may be attrib-
utable exclusively to the M signal (Maunsell and Gibson, 1992).

Could all of the nonlinearities that are present in simple cells
originate from their receiving a preponderant M input? Com-
pared with the LGN cells in the study by Movshon et al. (1994),
the V1 simple cells in the present study displayed a wide range of
nonlinearity, with some being as nonlinear as the most nonlinear
M cells and some being as linear as the most linear P cells. In
addition, simple cells typically showed less saturation than LGN
cells that exhibited the same phase advance.

There is, however, evidence that the nonlinearities described in
this study have a strong cortical component. Some of this evi-
dence was obtained in the cat. Bonds (1989) reported that genic-
ulate cells do not show any evidence of cross-orientation inhibi-
tion, and Morrone et al. (1982) found that an orthogonal contrast-
modulated grating elicits frequency-doubled suppression,
indicating that suppression originates in complex cells or in pools
of simple cells. In addition, Reid et al. (1992) found that high-
energy broad-band stimulation decreased the latency of the cor-
tical responses to a much larger degree than would be possible for
geniculate responses. Evidence for a strong gain control mecha-
nism in monkey V1 was provided by Hawken et al. (1992, 1996),
who measured temporal frequency tunings at different stimulus
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contrasts both in the LGN and in V1. They reported that (as
observed in the cat by Orban et al., 1985) there is a significant
low-pass filter between LGN and V1, and that both the gain and
the time constant of that filter change with the stimulus contrast.
The details of these changes are consistent with the normalization
model. In particular, they found that increasing stimulus contrast
increased the sensitivity of V1 cells to the high temporal frequen-
cies, with the average high-cutoff frequency changing from 17 Hz
at 8-16% contrast to 27 Hz at 64% contrast (similar to the results
described in the present study; cf. Fig. 6C). On the other hand, the
average increase in high-cutoff frequency of LGN cells (both M
and P) was negligible, suggesting that the origin of this phenom-
enon is cortical.

Shunting inhibition

Shunting inhibition is a widely cited proposal for how neurons
might perform division (Fatt and Katz, 1953; Coombs et al., 1955;
Koch and Poggio, 1987). Its defining property is that it affects
only the conductance of the cell, without introducing any current
when the cell is at rest. The idea that there are strong inhibitory
circuits in the cortex, and that these circuits operate through
shunting inhibition, arose first as a result of a seminal study by
Krnjevi¢ and colleagues (Dreifuss et al., 1969). They showed that
electrical stimulation of the cortical surface produced very large
(up to 300%) increases in membrane conductance. Similar effects
were obtained by iontophoretic application of GABA. These
results were extended by Rose (1977), who observed that ionto-
phoresing GABA over V1 cells yielded divisive effects on their
visual responses.

On the other hand, intracellular in vivo studies have yielded
scarce evidence for large conductance increases in V1 cells.
Berman et al. (1991) measured cell conductance in the presence
of drifting bar stimuli of different orientations and reported
conductance increases of <20%. These results were confirmed by
Ferster and Jagadeesh (1992), who measured the conductance
with synaptic current rather than with injected current, and by
other recent measurements (Carandini and Ferster, 1997b). More
encouraging results were obtained by Allison et al. (1996), who
explicitly studied the dependence of conductance on contrast and
found conductance increases of up to 30%. Larger conductance
increases, as large as 300%, were inferred by Hirsch et al. (1995a)
from the visual responses to steps of light and directly measured
by Borg-Graham et al. (1996) using a voltage-clamp approach.

Is shunting inhibition really the mechanism for normalization?
Our results (Figure 16) indicate that this would call for very large
conductance increases associated with visual stimulation. In par-
ticular, although the conductance increases estimated from grat-
ing matrix data sets (4-500%) are large but not inconceivable
(Bernander et al., 1991), those estimated from plaid and noise-
masking experiments may be too large to be realistic. Our esti-
mates of conductance increase, however, are inflated by the
assumption of linearity of the inputs to simple cells. If we knew
the precise balance of M and P input to our simple cells, we could
ascribe some of the nonlinearities to the LGN input. Similarly, if
we knew the details of active, nonlinear processing in the den-
drites (e.g., calcium spikes; Hirsch et al., 1995b), we could ascribe
some of the nonlinearities to dendritic integration. Knowledge of
these factors would most likely allow the model to fit the simple
cell responses and to require smaller, more realistic conductance
increases.
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Composition of the normalization pool
A question that remains largely unanswered is the precise com-
position of the normalization pool.

First, we have no way to tell whether the pool contains simple
cells, complex cells, or both. The results of Burr et al. (1981) in
the cat suggest that it could originate either in complex cells or in
a number of simple cells with receptive fields that have different
spatial positions or phases.

Second, we do not know whether inhibition comes from a few
cells that integrate the output of the pool or from a large number
of cells each of which summates the output of small portions of
the pool. In the cat, the inhibitory cells that seem best placed to
control the cortical gain are the basket cells, the output of which
is equally distributed across different orientation columns (Kis-
varday and Eysel, 1993; Kisvarday et al., 1994).

Third, we do not know the precise overall tuning of the inhib-
itory pool. In its basic formulation (Heeger, 1992b) the normal-
ization model postulates that the suppression is independent of
stimulus orientation and independent of spatiotemporal fre-
quency over a broad range of frequencies. In the cat, this assump-
tion of “isotropy” in the normalization pool is consistent with
measurements by DeAngelis et al. (1992), who found that sup-
pression was essentially independent of orientation. Alternate
models advocate the need for frequency- and orientation-specific
inhibitory mechanisms to refine selectivity. Indeed, the responses
of a simple cell are often suppressed by superimposing stimuli
with spatial frequencies and orientations that flank the preferred
spatial frequency and orientation of the neuron (Movshon et al.,
1978c; Morrone et al., 1982; De Valois and Tootell, 1983; De
Valois et al., 1985; Hata et al., 1988; Bonds, 1989; Bauman and
Bonds, 1991). Although this flanking suppression can be observed
in some cases directly in the membrane potential of the cells
(Carandini and Ferster, 1997a), in other cases it could be a
distortion introduced by the spike-encoding stage. This has been
shown with modeling studies by Heeger (1992b) and Nestares and
Heeger (1997), who have argued that even if the normalization
pool were broadly tuned, the presence of the spike-encoding stage
(an accelerating static nonlinearity) would generate an apparent
flanking suppression. As we have seen, our data do not allow us
to reject the isotropic model in favor of one with substantial
tuning in the normalization pool. Our experiments were not,
however, designed to provide a strong test of the isotropy assump-
tion, and further measurements are required in this respect.

Limitations of the model

A limitation of the model is that it is local in space. It was not
designed to account for the strong surround inhibition displayed
by many cortical cells (Blakemore and Tobin, 1972; DeValois et
al., 1985; Born and Tootell, 1991; DeAngelis et al., 1994; Li and
Li, 1994; Levitt and Lund, 1997, and references therein). Al-
though surround suppression could in principle result from the
same mechanism that provides masking, it is not clear that its
nature is divisive. Indeed, there is evidence that divisive gain
control is highly spatially selective (DeAngelis et al., 1992). In
addition, some V1 neurons exhibit center—surround interactions
that are significantly more complicated than divisive normaliza-
tion; for some very specific stimulus configurations, introducing a
stimulus in the surrounding field can facilitate the response of a
neuron (Maffei and Fiorentini, 1976; Nelson and Frost, 1985; van
Essen et al., 1989; Gilbert and Wiesel, 1990; Kapadia et al., 1995;
Sillito et al., 1995; Gilbert et al., 1996). These issues are currently
under investigation in our laboratory (Cavanaugh et al., 1997).
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Another limitation of the model is that it is local in time; it does
not take into consideration the phenomenon of adaptation. The
data sets that we have fitted were all obtained by randomizing the
order of presentations, in the hope of achieving an average level
of adaptation. To some extent, adaptation can be framed within
the context of the normalization model; it can be treated as
masking by assuming that gain control has a long memory (Hee-
ger, 1992a). It is, however, unlikely that adaptation operates
through the same mechanism that provides masking. First, adap-
tation was shown in the cat to result from a tonic hyperpolariza-
tion (Carandini and Ferster, 1997b), which is not observed during
masking (Carandini and Ferster, 1997a). Second, there are some
adaptation results that cannot be explained simply by changing
the gain of a cell. In particular, after long exposure to a high-
contrast grating, the response to that grating is often reduced
more than its response to other gratings, both in cats (Movshon
and Lennie, 1979; Albrecht et al., 1984; Saul and Cynader,
1989a,b) and in monkeys (Carandini et al., 1997a).

Biophysical implementation of the model

Although the normalization model is completely described by
Equations 1-4, this description lies somewhere between a bio-
physical one and a phenomenological one. A thorough biophysical
description of the model should specify how V1 simple cells
would have a linear receptive field that results in the injection of
a driving current I, without altering their conductance g, and how
the activity of the normalization pool would increase the conduc-
tance g without affecting the driving current /.

We have recently proposed a model that meets these conditions
(Carandini and Heeger, 1994). This model is based on a push-
pull arrangement of feed-forward excitation and inhibition, and
on feedback shunting inhibition within the normalization pool.
For example, according to the model an ON subregion of a simple
cell would be the result of excitation from ON-center LGN cells
and inhibition from OFF-center LGN cells. Increases in conduc-
tance attributable to increased excitation would be matched by
decreases in conductance attributable to decreased inhibition,
and vice versa. The total conductance would depend only on a
shunt conductance g, ... that grows with the overall activity of the
normalization pool, and that has an equilibrium potential exactly
identical to the resting potential of the cell.

According to this view the only role of intracortical feedback is
to provide shunting inhibition. This proposal differs from a num-
ber of recent recurrent models that generally consider intracortical
feedback crucial in sharpening the selectivity conferred by the
inputs from the lateral geniculate nucleus (Ben-Yishai et al., 1995;
Douglas et al., 1995; Somers et al., 1995; Suarez et al., 1995; Maex
and Orban, 1996). Although the feed-forward view is supported
by recent evidence (Reid and Alonso, 1995; Ferster et al., 1996),
the initial linear stage of our model should not necessarily be
identified with a feed-forward arrangement. A linear receptive
field could, in principle, be constructed with pure feed-forward
connections, pure feedback connections, or a combination of
feed-forward and feedback.

According to some of the forementioned recurrent models
(Ben-Yishai et al., 1995; Somers et al., 1995) V1 cells receive a
broadly tuned excitatory input from the LGN, which is substan-
tially sharpened by intracortical excitation from similarly tuned
cells and by broadly tuned intracortical inhibition. A computa-
tional analysis of these models, however, indicates that they would
not account for many of the phenomena described in the present
study (Carandini and Ringach, 1997). In particular, these recur-
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rent models ascribe contrast saturation and phase advance en-
tirely to the LGN input. In addition, these models do not account
for masking by gratings and by noise, nor do they predict the
associated phase advances or decreases in integration time. Fi-
nally, the recurrent models make some unlikely predictions, e.g.,
that the orientation tuning measured with plaids should be strik-
ingly different from that measured with gratings (Carandini and
Ringach, 1997).

On the other hand, the recurrent models may be more correct
than ours in the relative importance they ascribe to geniculocor-
tical excitation versus corticocortical excitation. A future goal for
our research is to integrate the best aspects of the normalization
model and of the recurrent models, perhaps by postulating a role
for cortical feedback in determining the linear receptive fields of
V1 simple cells.

APPENDIX

Here we derive approximate closed-form equations for the re-
sponses of model cells to the stimuli employed in this study. The
derivation is based on the assumptions stated in Equations 1-4.

Predicted responses to gratings

Consistent with results obtained in the cat and monkey (Albrecht
and Hamilton, 1982; Sclar et al., 1990), we assume the average
exponent for the cells in the normalization pool to be n = 2
(Heeger, 1992a). As a result, in the absence of normalization the
response of each cell in the normalization pool to a drifting sine
grating is a half-squared sinusoid. We call this rectified and
squared linear response the “unnormalized response.” It is given
by max(0, I,;)>.

The receptive fields of adjacent simple cells tend to exhibit
either 90° or 180° phase relationships (Palmer and Davis, 1981;
Pollen and Ronner, 1981; Foster et al., 1983; Liu et al., 1992). We
can thus reasonably assume the normalization pool to contain
quadruples of cells with the same amplitude response but with
phases 90° apart. For drifting sine grating stimuli, then, the sum of
the un-normalized responses of the four units in each quadruple
is constant over time and is proportional to the square of the
stimulus contrast ¢ (Adelson and Bergen, 1985). This follows
directly from sin? + cos® = 1. The sum of the unnormalized
responses of all the cells in the pool is thus a neural measure of
local stimulus energy: = max(0, I,)* « c?.

If the membrane conductance changes slowly, dg/dt ~ 0 (so that
V =~ 1,4/g), it is possible to directly relate two unknowns, the
overall response of the pool £ R and the total conductance g of
each cell:

> R« > max(0, V)? < > max(0, I)%g* = c¥/g”  (8)

There is another equation relating those unknowns: the defi-
nition of g (Eq. 4). It is thus easy to combine the two to eliminate
2 R and to obtain a relation between conductance and stimulus
energy:

g = \g + kc?, 9)

where this new constant k is proportional to the £ in Equation 4.
This relation is exact only at steady state, when the conductance
g is constant in time. We have confirmed with numerical simula-
tions that the model does reach such a steady state for drifting
grating stimuli. Once in steady state the cell membrane behaves
as a linear system. Stimulation with gratings of contrast ¢ thus
results in sinusoidal membrane potentials V. It is easy to show (by
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taking the Fourier transform of both sides of Eq. 2) that the
amplitudes and phases of these sinusoids are given by:

litude(V) = amplitude(c L)
amplitude = g\/ﬁ Q)
phase(V) = phase(c L) — atan(27f7).

10)

where T = C/g is the membrane time constant, f is the stimulus
temporal frequency (in hertz), and ¢ L(¢) is I4(¢), the output of the
initial linear stage.

Because the amplitude of the first harmonic of the nth power is
proportional to the nth power of the amplitude of the first har-
monic, we can rewrite the previous equations to express the first
harmonic of the firing rate R:

(11)

) amplitude(c L) 1"
amplitude(R) « | ————

gyl + (2mfr)?
phase(R) = phase(V).

A few rearrangements yield the expressions for the first har-
monic responses of the normalization model to a drifting grating
that are used throughout this study:

amplitude(R) « [amplltude(L) WT
(12)
27fT,
phase(R) = phase(L) = atan_ g —Tye
0/ 11
| ‘ (13)
where
1+ (27fry)?
a(f)?= () — 1 (14)

The stimulus variables are the contrast ¢ and the temporal fre-
quency f. The model parameters are the amplitude and phase of
the response L of the linear receptive field to the grating at full
contrast, the time constant at rest, 7, = C/g,, the time constant at
full contrast, 7, = C/Vk* + g5, and the exponent n of the spike
encoding stage.

Predicted responses to plaids
The expressions derived above for the firing rate of simple cells to
drifting sinusoidal gratings can be approximately extended to stim-
uli composed of two gratings. We restrict our attention to the case
in which the two gratings have the same temporal frequency f.
Let ¢, and ¢, be the contrasts of the two gratings. Let L, and L,
(sinusoids) be the responses of the linear receptive field to the
individual gratings. The driving current is just the sum of the
linear responses weighted by the contrasts:

I4(t) = c,Ly(t) + c,L5(2). (15)

The quantity X I,(¢)? is not in general constant in time, because
it contains a component at twice the temporal frequency of the
stimulus. So we must assume that the membrane conductance
reflects the average firing rate of the neurons in the normalization
pool. The responses may be averaged over time (e.g., with slow
synapses) and/or over space (i.e., by assuming that the normal-
ization pool is large enough that it includes neurons with different
receptive field positions).

J. Neurosci., November 1, 1997, 17(21):8621-8644 8641

Then the conductance is approximately constant over time, and
the same arguments used above may be applied to yield:

amplitude(c,L(t) + c,L,(t))
//O'(f)z +teite

amplitude(R) o [ ]l, (16)

phase(R) = phase(c L (t) + c,L(t))

f7o
_ atan< U+ (rofm? = D + c%))’ (17)

where o is defined in Equation 14.
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