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Movement triggered by sensory stimuli requires that the net-
works generating the motor commands receive an adequate
driving input, which, in general, is a transformed version of the
initial sensory signal. We investigated the nature of this trans-
formation in a task in which monkeys categorize the speed of
tactile stimuli as either low or high, reaching for one of two
pushbuttons to indicate their choice. Extracellular recordings
from primary motor cortex revealed two types of neurons se-
lective for the speed categories: ones that fire at higher rates for
low versus high speeds, and others that do the opposite. These
differential responses are task-specific; no firing rate modula-
tion was seen when identical arm movements were triggered by
visual cues or when stimuli were delivered passively. Analyses
using decoding and modeling techniques produced two main
results. First, the neurons accurately encode the chosen cate-

gory; an observer measuring their responses can exhibit a
psychophysical performance during categorization identical to
the monkey’s. Second, by analyzing separately the trials in
which hits and errors were scored, it is possible to distinguish
purely sensory activity from activity exclusively related to arm
motion. The recorded responses did not match either of these
alternatives but were consistent with a model in which the
category-tuned neurons are the link between the output of the
sensory categorization process and the motor command used
to indicate the animal’s decision. Thus, the observed activity
seems to encode a preprocessed version of the sensory stim-
ulus and to participate in driving the arm motion.
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A large body of evidence has accumulated establishing that pri-
mary motor cortex (M1, area 4) is involved in the control of
voluntary movements (Evarts, 1981; Georgopoulos, 1995). Neu-
ronal activity in this area strongly correlates with the parameters
of arm motion, such as force and direction (Georgopoulos et al.,
1988, 1992; Schwartz et al., 1988; Johnson et al., 1996), and with
the geometry and mechanics of the joints (Thach, 1978; Caminiti
et al., 1990, 1991; Werner et al., 1991; Scott and Kalaska, 1997).
Activity in M1 related to sensory events or cues has been reported
too (Lamarre et al., 1983; Martin and Ghez, 1985). Using para-
digms that involve the manipulation of sensory information as
well as the execution of arm movements, other studies have
uncovered complex responses not uniquely related to motor per-
formance but instead reflecting either sensory processing or in-
termediate sensorimotor representations (Alexander and
Crutcher, 1990; Crutcher and Alexander, 1990; Hocherman and
Wise, 1991; Mountcastle et al., 1992; Ashe et al., 1993; Riehle et
al., 1994; Pellizzer et al., 1995; Shen and Alexander, 1997; Zhang
et al., 1997). If well characterized, the stimulus-related signals at
the sensorimotor interface should provide insight into the nature
of the neural computations implemented to solve a behavioral
task, especially when compared with representations of the sen-

sory stimuli at earlier stages. These studies have demonstrated the
participation of M1 in visuospatial and sensory- and task-related
processing. However, to investigate the general problem of how
sensory stimuli are mapped onto motor responses, it might be
useful to impose an intermediate computation between the input
and output stages of the process, so that these are strongly
dissociated.

What kind of input drives the activity of motor cortical neurons
during sensory-guided reaching? The present experiments ad-
dress this question. Such input must be derived from the sensory
stimulus detected by the monkey and should thus correlate with it
or with some transformed version of it. We used a paradigm in
which monkeys classify the speed of a probe moving across the tip
of one finger and press one of two switches to indicate which
category, low or high, was chosen (Romo et al., 1996). The input
signal, motion speed, is varied systematically. The output of the
task, the arm movement, does not depend directly on the stimulus
but on a function of the stimulus, its category, which the monkey
has to compute to obtain a reward. Therefore, the following
questions can be posed. First, is there a neuronal signal in M1 that
correlates with speed category? In other words, is there a neural
representation of the monkey’s decision in M1? Second, its exis-
tence is assumed simply because the monkey’s choice has to be
communicated to the motor networks, but is it possible to show
that such activity is involved in triggering or directing limb
movements? Here we report on M1 neurons that respond to
tactile motion only when the animal categorizes such a stimulus.
We first describe the paradigm, neuronal responses found, and
control experiments. This is followed by analytical results that (1)
quantify the relationship between measured activity and psycho-
physical performance and (2) suggest a functional role for these
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Copyright © 1997 Society for Neuroscience 0270-6474/97/180499-13$05.00/0

The Journal of Neuroscience, January 1, 1998, 18(1):499–511



neurons as an intermediate step between the categorization pro-
cess and the arm movement command.

MATERIALS AND METHODS
Categorization paradigm. The study was performed on four male mon-
keys, Macaca mulatta, 4.5–6 kg. The task and related procedures are
similar to those described previously by Romo et al. (1996, 1997) and
Merchant et al. (1997). The monkey sat on a primate chair with its head
fixed. The left hand was restrained through a half-cast and kept in a
palm-up position. The right hand operated an immovable key (elbow
joint at ;90°) and two pushbuttons in front of the animal, 25 cm away
from the shoulder and at eye level. The centers of the switches were
located 7 and 10.5 cm to the right of the midsagittal plane. In all trials the
monkey first placed the right hand on the key and later projected it to one
of the switches.

Stimuli were delivered by a custom-built tactile stimulator (Romo et
al., 1993b) with a 2 mm round tip. They were applied to the glabrous skin
of the distal segments of fingers 2–4 of the left, restrained hand. The
probe was oriented perpendicular to the skin and traversed a constant
distance of 6.5 mm in a fixed direction, distal to proximal, and with a
constant force of 20 gm. It moved at one of 10 speeds between 12 and 30
mm/sec, and the monkey had to indicate whether the speed was low (12,
14, 16, 18, or 20 mm/sec) or high (22, 24, 26, 28, or 30 mm/sec) by
projecting the right hand to one of the pushbuttons. Correct categoriza-
tion was rewarded with a drop of liquid. Low speeds correspond to the
medial button, and high speeds correspond to the lateral one. Hence the
speeds were of two types, low or high, and the arm movements were also
of two types, medial or lateral. Each animal took ;1.5 months of training
to achieve a 75–90% correct performance level. However, before the M1
recordings all monkeys had worked on the task for at least 2 additional
months. Animals were handled according to institutional standards that
meet or exceed those of the National Institutes of Health and Society for
Neuroscience.

The sequence of events at each trial was as follows: the probe was
lowered and indented the skin, and the monkey had to react to the
indentation by placing its right hand on the immovable key within 1 sec;
after a variable delay period between 1 and 4.5 sec, the probe started
moving (ON) at one of the 10 speeds; after the probe stopped moving
(OFF) the monkey released the key (KR) in a time not exceeding 600
msec and projected the free hand to one of the target switches in ,500
msec; if the selected category was the correct one, the animal received a
reward. The time elapsed between the end of probe motion and the onset
of arm movement (OFF to KR), when the animal released the key, is the
reaction time. The time elapsed between the key release and the target
switch interruption is the movement time.

Because we were interested in finding motor cortical activity related to
sensory events, it was crucial to minimize or eliminate modulatory effects
arising from the well known dependence on arm movement direction
(Schwartz et al., 1988; Georgopoulos et al., 1986, 1988, 1989) or on
parameters that covary with it. The setup was thus arranged to filter out
the classic directionally tuned responses. The distance between target
switches was 3.5 cm, and these were 18 cm away from the immovable key.
Thus the difference between medial and lateral movements was ;11°. On
average, the directional cells reported by Schwartz et al. (1988, their Fig.
13) fire at frequencies that range between ;5 and 25 spikes/sec, corre-
sponding to their antipreferred and preferred directions, respectively.
Therefore, on average, directional cells modulate their firing rates by
;20 spikes/sec when movement direction changes by 180°. The expected
effect of an 11° change in direction is thus on the order of 1 spike/sec.
Under these conditions some activity related to arm motion may be
expected, but it should be practically identical for the two arm
movements.

Visual instruction task. A simpler task, in which the same arm move-
ments were triggered by visual cues, was used as a control (Romo et al.,
1997). Trials in this test started with the probe touching the skin and one
of the target switches being illuminated (ON), after which the monkey
had to hold the immovable key. Then, after a variable delay period
during which the light was kept on, the light was turned off, and the probe
was simultaneously lifted (OFF); the monkey was rewarded for pressing
the previously illuminated button. In this case the probe tip was lowered
and raised but did not move across the skin. Arm movements in this
situation were identical to those in the categorization task but were cued
by visual stimuli.

Muscle activity. To evaluate the consistency with which arm movements
were performed, electromyographic (EMG) activity was continuously

monitored through Teflon-coated, stainless steel wires chronically im-
planted in the right arm. Every day M1 neurons were recorded simulta-
neously with the extensor digitorum communis, the biceps brachii, or the
triceps brachii. In separate sessions, these and additional muscles from
the shoulder, neck and trunk were also recorded, along with activity from
the forearm and arm muscles of the left side. Muscles ipsilateral to the
responding arm studied in these extra sessions were the anterior and
lateral deltoids, the thoracic paraspinal, and the suprascapular and in-
frascapular trapezius (see Merchant et al., 1997, their Fig. 2). EMGs were
filtered, rectified, and converted into digital pulses representing multiunit
activity. For the traces in Figure 2, this multiunit activity was used to
construct histograms. First, spike counts, averaged over several trials,
were computed for every 5 msec bin and were divided by the bin size to
obtain instantaneous firing rates. These raw histograms were then
smoothed by convolution with a Gaussian function of unit area and SD
s 5 5.25 bins 5 26.25 msec. The final smoothed histograms may also be
interpreted as muscle spike densities (the original analog signals might
have served as continuous indicators of muscle activity but unfortunately
were not saved).

Neuronal responses. Neuronal activity from M1 was recorded extracel-
lularly from the left hemispheres of the four macaque monkeys by using
glass-coated platinum–iridium microelectrodes (2–3 MV). On all record-
ing sessions, acceptable penetration sites were first identified. The crite-
rion was that, throughout the penetration track (maximum depth of 2000
mm), neurons were found that responded both during the task and to
passive movements of the right arm. The passive responses had to be
related to shoulder and elbow joints; when they were associated with
wrist and finger movements the penetration was discarded. If these
conditions were met, then other neurons with different characteristics but
recorded in the same penetration were also studied and considered in the
analysis.

For all recorded neurons, tuning curves were obtained by calculating
the mean firing rate and SD as a function of speed (see Figs. 3C, 4C, filled
symbols and error bars). We define fi(s) and si(s) as the mean firing rate
and SD, respectively, of neuron i at speed s, where s takes any of the 10
values between 12 and 30 mm/sec that were used. Firing rates were
computed by counting the spikes in each of three possible periods of
activation: during stimulation, during the reaction time, and during
movement. Mean values and SDs were obtained by considering a number
of trials, typically 10, for each speed. A neuron was considered differen-
tial or category-tuned if it passed two tests: (1) a Kruskal-Wallis test to
determine whether its mean firing rate was significantly ( p , 0.05)
modulated by speed, and (2) a Wilcoxon test to determine whether the
mean firing rates for the low and high categories were significantly ( p ,
0.01) different (Siegel and Castellan, 1988). For neurons that responded
differentially in more than one of the three periods, only activity during
the reaction time was considered in the analysis. For neurons that had
phasic responses or long latencies, a window with a fixed 210 msec length
(after the latency) was used instead of the full duration of the activation
period.

Firing rate histograms for individual neurons were similar to those
constructed for muscle activity. The mean spike count, averaged over a
number of trials, was computed every 10 msec. The counts were divided
by the bin size, and the resulting firing rate histogram was then smoothed
by convolution with a Gaussian function of unit area and SD s 5 2.75
bins 5 27.5 msec.

In some of the figures, sigmoidal functions were used to fit the data of
mean firing rate versus speed. The following equation was used:

R 5 A1 1
A2 2 A1

1 1 exp~2~s 2 s0!/w!) , (1)

where s is the stimulus speed, A1 and A2 are the minimum and maximum
values of R, respectively, s0 is the value at which r 5 (A1 1 A2 )/2, and w
determines the slope of the function. These fits were used only for
display purposes, to show that the differential neurons behave like switch-
es; they were not used in the analyses.

Response latencies for individual trials were computed using a proce-
dure similar to the Poisson spike train analysis developed by Hanes et al.
(1995) (Thompson et al., 1996). First, the mean firing rate of a neuron
during the whole trial was computed. Then, for all clusters of n consec-
utive spikes, the probability of the neuron firing that cluster was com-
puted assuming a Poisson spike generation process with a constant rate
equal to the measured mean rate. Clusters with rates above the mean and
with probability below a predetermined criterion were considered part of
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the activation period. The first cluster to fall below the criterion deter-
mined the onset of activity, or latency. Similarly, the last cluster falling
below the criterion determined the offset of activity. The two parameters,
n and the criterion, could be adjusted for each cell so that a desired
condition was satisfied, for example, that the resulting distribution of
latencies, considering all trials, had minimum variance.

Anatomical study. Recording microelectrodes were inserted through a
stainless steel chamber placed above M1. Electrode penetrations were
made into the arm region, as determined by the neurophysiological
criteria described above. Records were kept of the coordinates with
respect to the edges of the chamber, where thin wires (125 mm), like
those used for the microelectrodes, were inserted and used as guide
points. In the final recording sessions, microlesion marks were made at
several depths by passing negative current through the electrode tip (10
mA for 20 sec). Blocks of the left hemispheres containing the central and
arcuate sulci were sectioned every 50 mm and stained with cresyl violet.
The penetrations were then located with respect to the guide points and
microlesions, using the micrometer readings. Figure 1 shows a composite
of all penetration sites at which differential neurons were found; they
have been projected onto one of the brains studied. Penetrations were
confined to the anterior bank and crown of the central sulcus, medial to
the level of the genu of the arcuate sulcus and lateral to the precentral
dimple.

Simulation and decoding methods. In all computer simulations, the
responses of a population of N category-tuned neurons were generated
multiple times. On a given iteration, corresponding to one trial of the
categorization task, the firing rate of neuron i is given by

ri 5 @ fi~s! 1 si~s!~eiÎ1 2 r 1 hÎr!#1 , (2)

where s is the stimulus speed, ei and h are uncorrelated Gaussian random
variables with zero mean and unit variance, and r is the mean pairwise
correlation coefficient between the neurons. The square brackets indicate
rectification: [x]1 5 0 if x , 0 and [x]1 5 x otherwise; this guarantees that
no negative rates are produced. Here fi(s) is the same measured quantity
described above; it corresponds to the tuning curve of neuron i, obtained
by counting the recorded spikes in the activation period of the neuron
and averaging over trials (see Neuronal responses). Similarly, si(s) cor-
responds to the previously measured SD. For each neuron and each
speed, these two quantities are fixed. In contrast, the values of the
Gaussian variables ei and h are renewed in each iteration. Notice,
however, that h is the same for all neurons. Gaussian random variables
are generated by the computer according to a standard algorithm (Press
et al., 1992): a set of uniformly distributed values, produced by a random
number generator, are mathematically transformed such that the result-
ing quantities have a Gaussian distribution. The notation {ri} refers to a

set of N firing rates from N neurons simulated according to the above
equation.

For each neuron, this model (Eq. 2) produces firing rates that vary
from one iteration to another but that are statistically indistinguishable
from the experimentally measured ones (if the implicit assumption of
Gaussian statistics is correct, which was true for most neurons tested). To
see this, consider the angle brackets, ^&, to indicate average value or
expectation at a fixed speed. Then, to state mathematically that ei has
zero mean and unit variance corresponds to ^ei& 5 0 and ^ei

2& 5 1.
Similarly, ^eih& 5 0 indicates that ei and h are independent. From this and
Eq. 2 it follows that, for each speed s, the mean of the simulated firing
rates of neuron i is ^ri& 5fi(s), and its variance is ^(ri 2 fi(s))2& 5 si

2(s). The
quantities r and h allow the effect of neuron–neuron correlations to be
considered in a simplified manner. For each speed, the correlation
coefficient (Pearson’s r) between the simulated responses of neurons i
and j is:

^~ri 2 ^ri&!~rj 2 ^rj&!&

Î^~ri 2 ^ri&!
2&Î^~rj 2 ^rj&!

2&
5 ^h2&r 5 r. (3)

By definition, r varies between 21 and 1. In most simulations it is set to
zero, except when the effects of correlations are explicitly investigated.
This model for correlated fluctuations is essentially identical to the one
used by Britten et al. (1992).

Decoding methods coupled to computer simulations were used (Sali-
nas and Abbott, 1994, 1995; Sanger 1996) to construct neuronal perfor-
mance curves directly comparable to the psychometric data that quantify
the monkeys’ behavior. We refer to these as neurometric curves. When
decoding, a set of N firing rates from N neurons tuned to some quantity
x is used to construct an estimate xest of the true value that x had when the
rates were (simultaneously) measured. A decoding method is a particular
recipe to combine the N rates with previous knowledge about the firing
statistics of the neurons to generate xest. Signal detection theory has been
used previously to compare psychophysical behavior and expected behav-
ior—xest is never actually computed—based on the optimal processing of
individual neuronal responses (Britten et al., 1992; Shadlen et al., 1996;
Thompson et al., 1996; Merchant et al., 1997; Romo et al., 1997). We
chose decoding techniques instead because they provide, on a trial by
trial basis, a real construct that, unlike the signal detection method, is not
limited to single neurons and can be applied to neuronal populations.
The estimates produced by decoding may also approximate ideal perfor-
mance quite closely.

Forty neurons, 20 selective for low and 20 selective for high speeds,
had at least eight trials per speed and were included in the decoding
analysis. Their simulated responses, {ri}, were used, rather than their
true responses, because this allows large numbers of trials to be gener-
ated as if all neurons had been recorded simultaneously. In the computer,
an iteration of the decoding procedure runs as follows: a speed is
selected, and the responses of N neurons chosen randomly from the
population of 40 are generated according to Eq. 2; then the N firing rates
are fed into a decoding method, which produces an estimate of the speed
category, and finally the estimated category is compared with the cate-
gory that the selected speed belonged to, resulting in either a hit or an
error. After several thousand iterations the fraction of correct categori-
zations as a function of speed, i.e., the neurometric curve, is obtained.

Two entirely different decoding techniques were used: the maximum
likelihood method and the comparison method. By Bayes’ theorem the
probability that the category was C, given the set of firing rates {ri}, is:

P~Cu$ri%! 5
P~$ri%uC! P~C!

P~$ri%!
. (4)

The maximum likelihood approach (Salinas and Abbott, 1994, 1995;
Sanger, 1996) chooses as the estimated the category, high or low, that
which maximizes the above expression with respect to C. In our case
P( C) 5 1/2, and P({ri}) is independent of C, so only P({ri}uC), a
measured quantity, needs to be maximized. To construct P({ri}uC),
Gaussian statistics and independence between neurons were assumed.
Based on the Gaussian hypothesis, the probability that the single neuron
i fired at a rate ri , given that the speed was s, is:

P~rius! 5
1

Î2psi~s!
expS2

~ri 2 fi~s!!2

2si
2~s! D , (5)

where fi(s) and si(s) are the measured mean firing rate and SD of neuron
i, respectively. Additional corrections may be included to take into

Figure 1. Lateral view of the left cerebral cortex of monkey 3 indicating
recording sites. Dots correspond to microelectrode penetration sites in
which differential responses were found for the four animals studied.
Penetrations were located in the arm region of the primary motor cortex.
AS, Arcuate Sulcus; CS, central sulcus; IPS, intraparietal sulcus.
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account that ri cannot be negative; commonly the impact of these cor-
rections is small. Assuming independence between neurons, the proba-
bility of observing a set of firing rates {ri}, given that the speed was s, is
simply the product of the individual probabilities:

P~$ri%us! 5 P
i

N

P~rius!. (6)

Maximizing this expression with respect to s gives the most probable
speed. The estimated category can be set as the category to which the
most probable speed belongs. Alternatively, one can average all the
probabilities P({ri}us) for speeds belonging to a given category:

P~$ri%uC! 5 O
s

P~$ri%us! P~suC!, (7)

where P(suC) 5 1/5 for all the speeds that belong to category C, and
P(suC) 5 0 for those values of s that do not belong to C. To find the
estimated category one needs to determine which of the two values, C 5
low or C 5 high, maximizes Equation 7, having substituted Equations 5
and 6 into it. This is the procedure that was used in the simulations. The
only parameter in the maximum likelihood method is the number of
decoded neurons, N.

The comparison decoding method is essentially the same strategy
reported previously in studies of visual motion discrimination (Britten et
al., 1992; Shadlen et al., 1996). In the corresponding simulations, two
quantities are computed based on the N synthetic firing rates {ri}: the
sum of all the firing rates of neurons that are selective for low speeds, SL ,
and the sum of the firing rates of those selective for high speeds, SH. The
two sums or pooled signals are then compared, and the estimated
category C is:

C 5 H low
high

if SL . cSH

if SL , cSH
(8)

The constant c is included to compensate for overall differences in firing
rates across the two populations (see Fig 5; note the average values at 20
mm/sec). The value used, c 5 0.58, was chosen to optimize the match
between psychometric and neurometric performance. This comparison
rule is akin to a winner-take-all network with only two competing units
(Hertz et al., 1991). When the category-tuned neurons are assumed to
trigger a movement, the procedure is identical, except that SL . cSH
corresponds to a medial movement, and SL , cSH corresponds to a
lateral one. Notice that, from the algorithmic point of view, decoding the
speed category and generating an arm movement are exactly the same.
The difference is a matter of interpretation, but it is worth stating; in the
first case an observer estimates the speed category from the neuronal
activity, whereas in the second case the same activity drives a network
that produces an arm movement; the network itself acts as the decoder,
because each speed category corresponds to a movement.

RESULTS
Motor performance
Throughout the experiments, the key-to-switch movements per-
formed by the monkeys were highly stereotyped; the animals
could even perform the task in total darkness. This observation
was confirmed by continuously monitoring at least one muscle of
the right arm; neuronal recordings were usually accompanied by
muscle recordings. Figure 2 illustrates the activity of the three
muscles that were frequently monitored. Each of the five traces in
each panel represents an average of ;10 trials during which the
same stimulus speed was used. The responses to medial and
lateral movements are very similar, particularly during the onset
of activity, which occurs ;50 msec before the key release. Sepa-
rate experiments in which these and other muscles were studied
gave similar results (see Materials and Methods; Merchant et al.,
1997, their Fig. 2). Differences in muscle activity between the two
movements were always small, and activity was hardly ever de-
tected earlier than 50 msec before the onset of arm movement.
The regularity of motor performance was also reflected in the
reaction and movement times, which averaged 372 6 35 (SD) and

229 6 41 msec, respectively. These quantities showed minimal
variations from day to day.

Neuronal responses
All recordings in this study were confined to the arm region of M1,
as determined by neurophysiological criteria explained in Materials
and Methods. Figure 1 shows the loci of all electrode penetrations
in which differential responses were found, which included almost
all penetration sites. Additionally, the experimental setup was
arranged so that the arm movements to the two target switches
were as similar as possible, to minimize the modulation caused by
directional tuning (Schwartz et al., 1988; Georgopoulos et al., 1986,
1988, 1989). As expected, a large majority of the total of 477
recorded neurons responded but did so irrespective of stimulus
speed or movement direction. In other words, the activity of most
neurons was modulated by the task in some way, but this modula-
tion did not change as a function of speed. More than half of these
responsive but nontuned cells increased their firing rate during the
reaction time and/or during the arm motion (n 5 249). About
one-fifth of the neurons (n 5 101) displayed intense preparatory
activity starting after the hand was placed on the key and usually
stopping at the onset of probe movement (Tanji and Evarts, 1976;
Alexander and Crutcher, 1990). Some other neurons were active
exclusively during stimulation (n 5 32) or started firing during
stimulation and sustained the discharge throughout the reaction or
movement periods (n 5 24).

Apart from these nontuned neurons, 71 (14.9%) did respond

Figure 2. Muscle activity during the categorization task. The three rows
correspond to three muscles recorded in different sessions: extensor
digitorum communis (EDC), biceps brachii (BIC), and triceps brachii
(TRI ). All trials were aligned with arm movement onset, i.e., with key
release (KR), indicated by the continuous vertical lines. The dashed lines
indicate the average probe movement offset (OFF ). The target switches
were reached at ;230 msec after KR. From the muscle spike trains
recorded in each trial, smoothed histograms were constructed. Each trace
represents a mean smoothed histogram averaged over ;10 trials. Only
correct categorizations were considered here. In each panel, five traces
have been superimposed. These correspond to the five speeds that are
associated with the same arm movement, medial (lef t column) or lateral
(right column). The traces are comparable to the histograms shown in
Figures 3B and 4 B. Activity rises ;50 msec before key release and is
similar for the two movements.
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differentially, typically reacting much more intensely to one of the
two speed categories versus the other. They were thus of two
types: selective for low and selective for high speeds. Examples
are shown in Figures 3 and 4. About half of the category-tuned
neurons (n 5 32) responded only during the reaction time,
between the end of stimulation and the onset of hand–arm
movement. Others were active also (n 5 7) or exclusively (n 5 12)
during stimulation, and some others were active also (n 5 5) or
exclusively (n 5 15) while the movement was executed. It should
be noted that none of these units responded when the experi-
menter displaced the monkey’s arm passively. The firing rates as
functions of stimulus speed typically have sigmoidal shapes (Figs.
3C, 4C), which are most evident when the responses of several
neurons selective for the same speed category are averaged, as
was done in Figure 5. These plots show that, on average, the
differential modulation is fairly strong, on the order of 15–20

spikes/sec. The curves behave like complementary switches, with
graded changes at ;20 mm/sec and saturating at the extremes.
Indeed the data points are very well fit by sigmoidal functions. In
contrast, speed tuning in the primary sensory area is altogether
different. Neurons in the primary somatosensory cortex (S1)
respond to the same tactile stimuli in two ways: their firing rates
either increase linearly with speed or stay constant, but above
baseline, for all speeds (Romo et al., 1996) (E. Salinas and R.
Romo, unpublished results). The results described below suggest
that the differential responses in M1 act as a sensorimotor
interface.

Forty-two category-tuned neurons were tested in a control
experiment in which the monkeys made identical movements
toward the target switches but were guided by visual cues. Only 13
neurons gave responses that were significantly different for the
two movements (Wilcoxon, p , 0.01), whereas 17 responded

Figure 3. Responses of a neuron in
primary motor cortex (M1) selective
for low speeds. A, Spike rasters re-
corded during the tactile categoriza-
tion task. This cell is activated during
the reaction time, between stimulus
offset and key release, and fires at
higher rates for low speeds. Stimulus
speed is indicated on the lef t. Each row
corresponds to one trial. For each
speed, 10 trials are shown in order of
increasing reaction time. Small dots
correspond to action potentials, and
large symbols correspond to behavioral
events: stimulus onset (ON ), stimulus
offset (OFF ), and release of the behav-
ioral key (KR), in that order. For clar-
ity, the times at which the monkey
pressed the target switches are not
shown; they occur ;230 msec after
KR. Stimulation time varies with
speed, because the distance traversed
by the probe was kept constant. B,
Instantaneous firing rate histograms
for the data shown in A. Spike counts

in each 10 msec bin were averaged over trials and smoothed using a Gaussian window (see Materials and Methods). The long vertical line indicates
stimulus offset. The scale bar applies to all histograms. C, Mean firing rate during the reaction time (OFF to KR) as a function of stimulus speed. Each
point is the average over the 10 corresponding trials shown in A; error bars indicate 61 SD. For the sigmoidal fit (Eq. 1) the following parameters were
used: A1 5 6.2; A2 5 21.0; s0 5 20.8; w 5 20.72. Firing rate units are spikes per second.

Figure 4. Responses of a neuron in
M1 that is selective for high speeds.
The same labels and conventions as in
Figure 3 apply. The following param-
eters were used for the sigmoidal fit:
A1 5 7.6; A2 5 27.8; s0 5 20.1; w 5
0.64.
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nonselectively, and 12 did not increase their firing rates above
baseline. Therefore, more than two-thirds of the differential neu-
rons drastically changed their behavior when the categorization
process was absent, but the same movements were triggered by
another sensory modality. Figure 6 shows an example. During
categorization, this neuron fired at ;40 and 18 spikes/sec for its
preferred and nonpreferred categories, respectively. In contrast,
during the visually cued task the neuron always fired at ;5
spikes/sec, very close to baseline. Afterward this unit was tested
again in the categorization task and again showed a strong pref-
erence for low speeds.

In another control situation the tactile stimuli were delivered
passively. The stimuli were identical to those used during cate-
gorization, but the animal’s key was removed, and the movements
of its right arm were restricted. None of the five category-tuned
neurons tested responded in this condition (Wilcoxon, p . 0.34).
An example is shown in Figure 7. For this cell, 100 categorization
trials were run first, followed by 100 passive trials, followed by a
second block of categorization trials. During passive stimulation
the neuron fired very weakly at all speeds, as opposed to the
intense, selective activity exhibited while categorizing. These
tests show that the majority of the responses were not only
stimulus-specific but also task-specific. As a comparison, note that
S1 neurons responded identically in the passive and categoriza-
tion conditions (Romo et al., 1996).

Neuronal versus behavioral performance
The psychophysical performance exhibited by the monkeys dur-
ing the recording sessions can be compared with the performance
expected solely on the basis of a population of category-tuned
neurons. Decoding techniques were used to construct neuromet-
ric performance curves from the recorded activity. These curves
represent the average accuracy with which an observer can de-

termine the speed category at a given trial, given only two pieces
of information: the set of category-tuned responses (e.g., firing
rates) at that trial and some previous characterization of the
response statistics of the neurons. In our case, this characteriza-
tion corresponds to the tuning curves and SDs of the cells (as in
Figs. 3C, 4C). To decode we first used the maximum likelihood
method, which under certain assumptions is statistically optimal
(Salinas and Abbott, 1994, 1995; Sanger, 1996). Figure 8 com-
pares psychometric and neurometric performance. Figure 8A
shows the performance of the monkeys averaged over all trials in
which the 40 category-tuned neurons included in this analysis
were recorded. The curve is not symmetric; categorization at 20
mm/sec is noticeably worse than at 22 mm/sec, and a large drop
in performance occurs between 18 and 20 mm/sec. In Figure 8B,
open symbols represent the accuracy obtained by decoding from a
single, selected neuron. Based on the responses of this single
neuron, the observer performs with an accuracy close to that of
the animal itself. This interesting phenomenon has been pointed
out and discussed before (Britten et al., 1992, 1996; Rieke et al.,
1996; Shadlen et al., 1996). Filled symbols correspond to the
accuracy for n 5 1 averaged over the 40 neurons. On average, the
performance of a single neuron is actually quite lower than that
of the monkeys. Notice, however, that the shapes of this curve and
the psychometric one are not too different. The major discrep-
ancy is a vertical shift between them, which suggests that a good
match might be achieved by including more neurons. This is
confirmed in Figure 8C, which shows the average decoding accu-
racy using n 5 4 neurons. The curve is similar to the one for n 5
1 but is shifted upward. It agrees very closely with the psycho-
metric curve; in particular it correctly replicates its asymmetry.

To prove that this agreement does not depend critically on an
optimal decoding or readout, we also used an entirely different,
much simpler approach that we call the comparison method. It is
based on computing and comparing two quantities, SL and SH,
which are the sums of all of the responses of neurons selective for
low and high speeds, respectively. A similar two-pool strategy was
used by Britten et al. (1992) and Shadlen et al. (1996) to compare
psychophysical and neuronal population performance in a visual
motion discrimination task. The fraction of correct categoriza-
tions obtained with this method, for n 5 19, is shown in Figure
8D. The match between this curve and the psychometric one is as
good as with maximum likelihood. The excellent agreement in-
dicates that the differential responses encode the speed category
with the same precision as the animal itself. They are represen-
tations of the category that require no further processing. Indeed,
the firing rates of S1 neurons either increase linearly with speed
or stay constant for all speeds (Romo et al., 1996), and the
similarly decoded curves do not agree with the monkey’s perfor-
mance with either method. In particular, the curve for n 5 1 is
much smoother, totally lacking the characteristic triangular shape
at ;20 mm/sec (Salinas and Romo, unpublished results).

These results can be affected by correlations in the firing
fluctuations of the neuronal population (Britten et al., 1992;
Zohary et al., 1994; Shadlen et al., 1996). Parameter r in Eq. 2
represents the mean pairwise correlation coefficient between the
neurons and was used to evaluate the effect of these correlations
(in previous simulations r 5 0). In this case it is useful to consider
the category-tuned neurons selective for low and high speeds as
belonging to two distinct neuronal pools, such that within-pool
correlations, i.e., between neurons selective for the same catego-
ries, may be different from across-pool correlations, i.e., between
neurons selective for different categories. In general, introducing

Figure 5. Mean firing rates for the two populations of category-tuned
neurons. Top, The tuning curves of 20 neurons selective for low speeds
(as in Fig. 3C) were averaged. Error bars indicate 61 SD with respect
to the 20 means. The continuous line is a fit to Equation 1 with the
following parameters: A1 5 5.6; A2 5 22.5; s0 5 20.5; w 5 21.6.
Bottom, Average tuning curve for 20 neurons selective for high speeds.
The continuous line was fitted with the following parameters: A1 5
12.1; A2 5 30.4; s0 5 20.1; w 5 1.1.
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small pairwise correlation coefficients (r ' 0.05) always had a
minimal impact on the results. When correlations across pools
were identical to those within pools, even fairly large values were
tolerated. For example, with r 5 0.25 the points in Figure 8D
changed by an average of 0.5%, with a maximum of 2.2%. In
contrast, for r 5 0.25, neuronal performance did degrade appre-
ciably when neurons belonging to different pools were not corre-
lated (for these simulations each pool required its own, indepen-
dent variable h in Eq. 2). However, a good match with the
psychophysics could still be obtained by increasing N. In the
computational studies of visual motion discrimination, two neu-

ronal pools were also included, and across-pool correlations were
considered to be zero (Shadlen et al., 1996). Although the corre-
lations among differential neurons were not measured, our simu-
lation results suggest that their impact depends on how they are
distributed across functional units and on precisely how these
units interact. A similar point has been raised by Lee et al. (1998)
regarding directionally tuned neurons.

Analysis of latencies
The times of onset of increased neuronal activity, or latencies,
were measured on individual trials for 33 category-tuned neurons

Figure 6. Neuronal responses during categorization and during the visual instruction task. The spike rasters in A and the histograms in B depict the
responses of a neuron that is selective for low speeds during the categorization task; they are similar to those in Figure 3. C, Spike rasters for the same neuron
tested in the visual control task, during which the animal made identical arm movements to the target switches, medial ( M ) and lateral (L), but no
categorization took place. Large symbols indicate events: light off and key release, in that order. D, Firing rate histogram for the data shown in C. The neuron
was first tested in the categorization task (100 trials), then in the visual task (40 trials), and again during categorization (100 trials). The histograms in B and
D are based on all the data collected; they represent 20 trials per class. The scale bar applies to all histograms. E, Mean firing rates for all medial and lateral
movements made during categorization (black bars) and during the visual task ( gray bars). Error bars indicate 1 SD. Firing rate units are spikes per second.
The strong differential activity seen during categorization disappears when the same movements are triggered by visual cues.

Figure 7. Neuronal responses during categorization and
during passive stimulation. Left, Instantaneous firing rate
histograms for a neuron selective for low speeds during
categorization. Stimulus speed is indicated on the lef t. Here
trials have been aligned with stimulus onset (ON ), indicated
by the long, vertical line, rather than with stimulus offset
(OFF ). Right, Responses of the same neuron when identical
tactile stimuli were delivered but the monkey’s key was
removed and its arm movements were restricted. In this
condition the cell does not respond. This neuron did not
respond in the visual instruction task either. The histograms
for categorization are based on 20 trials per speed, 10 before
and 10 after the passive test. The histograms for passive
stimulation are based on 10 trials per speed. The scale bar
applies to all plots.
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that responded during the stimulation and/or reaction periods.
These times were obtained with respect to three events in the task
that served as zero time references: probe movement onset (ON),
probe movement offset (OFF), and arm movement onset (KR). If
the responses are tightly linked to one of these events, then the
latency distribution in which that event was the reference should
exhibit significantly smaller variance than the other two distribu-
tions (Hanes et al., 1995). This should be particularly evident in
the categorization paradigm, because stimulation times changed
with speed—to keep the distance traversed by the probe constant.
The times of neuronal activity offset were analyzed similarly. As
a first check on these methods, they were applied to the muscle
recordings. As expected, all responses were found to be time-
locked to KR. Considering all the data in Figure 2, on average the
muscles reacted 54 6 35 (SD) msec before the key release. As a
further check, the technique was applied to 12 nontuned neurons
that clearly increased their activity during stimulation but did so
very similarly for all speeds. Their firing rates started rising
shortly after ON. For 11 of these cells the method determined
that activity onset was indeed time-locked to ON (F tests, p ,
0.01), in agreement with visual inspection of the spike rasters. On
average, these neurons increased their firing rates 86 6 49 msec
after the probe started moving. In contrast, when applied to the
33 differential neurons, the method detected only two units (one
shown in Fig. 7) with onsets and offsets time-locked to ON, three
units with onsets and offsets time-locked to KR, and one unit with
only offset time-locked to KR (F tests, p , 0.01). For the rest of
the neurons the variances of the latency distributions for the three
events considered were not significantly different. Therefore, al-
though some differential neurons (15 of 71) increased their activ-
ity only during the arm movements, these results suggest that

many of them were not uniquely synchronized with sensory or
motor events and were probably involved in intermediate types of
processes.

Analysis of error patterns
For each speed category, the monkeys made movements to both
switches, one direction corresponding to correct and the other to
incorrect categorizations. Therefore, for each neuron, mean fir-
ing rates may be computed separately for the four combinations
of speed category and movement direction (low–medial, high–
medial, high–lateral, and low–lateral). This results in a hit–error
pattern of four elements. These patterns can be compared with
those expected from purely sensory or purely motor-related neu-
rons; idealized versions of these are shown in Figure 9. The
two-letter labels indicate category (low, L; high, H) and move-
ment direction (medial, M; lateral, L), in that order. LM corre-
sponds to low speed and medial movement, and so on. Errors
belong to the HM and LL classes; hits fall in the LM and HL
classes. Ideal sensory neurons are expected to modulate their
firing rates exclusively as functions of the stimulus, irrespective of
the arm movement. They should not show differences either
between the LM and LL classes or between the HM and HL
classes. On the other hand, the responses of ideal motor neurons
are expected to correlate exclusively with arm movement, irre-
spective of the stimulus; no differences are expected either be-
tween the LM and HM classes or between the HL and LL classes.
For later reference, we define the following notation for these
differences:

DCAT 5 $FL M 2 FL L , FHM 2 FHL%

DMOV 5 $FL M 2 FHM , FHL 2 FL L%, (9)

Figure 8. Comparison between psychometric and neuro-
metric performance. A, Psychophysical performance of
the monkeys in the categorization task. Behavioral per-
formance is quantified by the fraction of correct categori-
zations as a function of stimulus speed. For comparison,
the same data are indicated by dashed lines in the rest of
the plots. The results in the other panels were obtained
from the analysis of 40 category-tuned neurons. Each point
in A represents ;500 trials from the sessions in which the
40 neurons were recorded. Connecting lines are drawn only
to guide the eye. The rest of the curves represent the
expected performance of an observer that measures the
responses of the category-tuned neurons and estimates or
decodes from them the speed category. B, Accuracy in
categorization based on decoding of a single selected
neuron (open circles) and based on one neuron on average
over the population of 40 cells ( filled circles). At each trial,
speed category was estimated from one simulated re-
sponse by using the maximum likelihood algorithm. For
the average curve, a neuron was selected randomly in each
iteration; for the single-neuron curve the same neuron was
selected every time. Points are based on 50,000 iterations.
The large number guarantees that the computed averages
are close to the true averages. C, Average accuracy in
categorization based on four category-tuned neurons and
obtained with the maximum likelihood method. In each
iteration, the category was estimated from the responses of
four randomly chosen neurons. Points are based on 50,000
iterations. D, Average accuracy in categorization based on
19 category-tuned neurons and obtained with the compar-
ison method (Eq. 8, c 5 0.58). Points are based on 100,000
iterations. When the observer combines the responses of
several neurons, he can perform the task almost exactly as
the monkeys.

506 J. Neurosci., January 1, 1998, 18(1):499–511 Salinas and Romo • Categorization Signals Become Motor Commands in M1



where DMOV represents the differences in firing rate between hits
and errors for the same movements, DCAT represents the differ-
ences in firing rate between hits and errors for the same speed
category, and FLM is the mean firing rate for class LM, etc. To
rephrase what was stated above, for ideal sensory neurons DCAT

should be zero, and DMOV should be nonzero, with similar mag-
nitudes in the two combinations. For ideal motor neurons exactly
the opposite is expected.

From the experimental data, mean firing rates were computed
for the four category–movement combinations. For each
category-tuned neuron only combinations with at least seven
trials were included in the analysis; neurons with less than seven
trials in the two error classes were excluded. This left a total of 18
neurons. Figure 10 (black bars) shows the resulting hit–error
patterns of four of them. They systematically deviate from the
idealized templates shown in Figure 9. The largest difference in
rate is between the two hit classes, LM and HL, and the firing
rates for error classes, HM and LL, are in between. This was
typical of the full sample. Only two neurons had patterns fully
consistent with those of ideal motor units. For these, the two
terms of DCAT and the difference between hit classes were signif-
icant (t test, p , 0.05), whereas the DMOV terms and the difference
between error classes were not. All other neurons had combina-
tions of significant and nonsignificant rate differences that
matched none of the idealized patterns of Figure 9.

A model of the functional role of differential activity
Both the analysis of errors and of latencies failed to identify
activity exclusively related to sensory or motor aspects of the task.
To explore whether the differential responses play an intermedi-
ate sensorimotor role, a model was constructed in which the
category-tuned neurons react to the stimulus, exactly as measured

from their tuning curves, and the evoked responses are then
converted into an arm movement. The model is a straightforward
extension of the comparison decoding method. The output of the
decision process is converted into a motor action by assuming that
the two pooled signals, SL and SH, drive the directional neurons
in M1, such that when SL . cSH the movement is medial, and
when SL , cSH it is lateral. This comparison rule acts like a
winner-take-all network with two output units (Hertz et al.,
1991). From a computer simulation of this model, a neuron-
specific hit–error pattern can be obtained, exactly as done for the
real data. In each cycle of the simulation, a speed is selected, and
the responses of N neurons are simulated; SL and SH are com-
puted, and a movement is produced according to the comparison
rule; finally, a hit is scored when either the category is low and the
resulting movement is medial or the category is high and the
movement is lateral; otherwise an error is scored. For each
neuron, its simulated firing rate at a given iteration is used to
update its mean for the corresponding category–movement com-
bination that resulted in that iteration. The predicted patterns can
be compared with the measured ones.

The gray bars in Figure 10 are the results from the model. The
agreement with the measured patterns is extremely good, consid-
ering that the results for each neuron are based on the dynamics
of the whole population. It should be stressed that these are
parameter-f ree predictions, because the only adjustable quantities
in the model, N and the constant c, were fixed at the values used

Figure 9. Mean firing rates in hit and error trials expected from idealized
sensory- and motor-related neurons. Each of the four hit–error patterns
shown consists of four mean firing rates, sorted according to speed
category (low or high) and arm movement (medial or lateral). The four
category–movement combinations are low–medial (LM ), high–medial
(HM ), high–lateral (HL), and low–lateral (LL); LM and HL correspond
to hit trials, and HM and LL correspond to error trials. Ideal sensory
neurons responding differentially during the categorization task should do
so in relation to the speed category, irrespective of the arm movement,
whereas ideal motor units should correlate exclusively with the arm
movement, irrespective of the category.

Figure 10. Mean firing rates in hit and error trials for four category-
tuned neurons. The x-axis indicates the four category–movement combi-
nations; labels are explained in Figure 9. Each panel corresponds to one
neuron. The top two were classified as selective for low speeds, and the
bottom two were classified as selective for high speeds. Black bars corre-
spond to the experimentally measured rates. For each neuron, each bar,
corresponding to a given category–movement combination, was com-
puted by averaging the firing rate of the neuron over all trials in which that
combination occurred. Gray bars indicate the predictions from a model in
which the evoked activity of the category-tuned neurons drives the motion
of the hand–arm, according to the relative values of the summed re-
sponses SL and SH. The same parameters as in Figure 8 D were used: n 5
19; c50.58. Error bars indicate 1 SD.
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for Figure 8D, which best matched the psychometric curve. The
predicted patterns involve no ad hoc fitting whatsoever. In Figure
11 the measured differences in mean firing rates between hit and
error trials, DMOV and DCAT , have been plotted against the values
predicted by the model. If the recorded neurons behaved like
ideal sensory units, the points for DCAT would cluster around the
y 5 0 line, and those for DMOV would be systematically larger in
magnitude than the predictions. Alternatively, if the neurons
behaved like ideal motor units, the opposite would be true; the
DMOV points would be close to zero, irrespective of the predic-
tions, whereas the DCAT points would deviate toward larger mag-
nitude values. Most of the points in the graph fall close to the
diagonal line. The obvious outliers are marked with asterisks and
belong to the two neurons mentioned earlier, which resembled
idealized, motor-related units. When these points are excluded,
the best fit line is very near the diagonal.

These results demonstrate that the variations in firing rate
observed between hits and errors, i.e., across stimulus–response
combinations, can be explained by assuming that the neural
machinery in charge of generating the arm movements reads out
the motion instruction from the activity of the category-tuned
neurons. Although the comparison rule was used as the basis for
the model, actually predicted hit–error patterns can be generated
by interpreting the output of any decoding method as the move-
ment direction rather than the speed category. This is equivalent
to assuming that the category-tuned responses drive the motor

reaction with an efficiency equal to that of the particular decoding
method but without specifying how the readout is implemented
at the circuit level. The comparison model is simple and suggests
a network implementation that, as discussed below, is relatively
plausible from a biological standpoint. In simulations in which the
movement direction was generated by the maximum likelihood
estimate, the results were similar to those of Figures 10 and 11.
Thus the crucial property of the model is that it converts the
stimulus into a movement by using the characterized responses as
an intermediate step.

DISCUSSION
In the paradigm used, the speed of a tactile stimulus is classified
as either low or high, and the decision is indicated by pressing
either a medial or a lateral switch with the hand contralateral to
the stimulus. We described a small fraction, approximately one-
seventh, of the neurons in M1 contralateral to the moving arm
that fire differentially during the task. It is highly unlikely that this
activity is associated with muscle precontraction, because the
EMG traces were consistently flat during most of the activation
periods and did not show large differences across movements. The
modulation is not an artifact caused by biases in the reaction
times either, because these were very regular and almost identical
for low and high speeds [376 6 34 (SD) and 368 6 41 msec,
respectively). Proprioceptive input is also excluded, because none
of the cells responded when the animal’s arm was displaced
passively. And although eye movements were not controlled in
this study, it seems that they do not influence the activity of M1
neurons (Mushiake et al., 1997).

We considered the observed firing rate modulation with respect
to two alternatives: that it is the result of selectivity for speed
category (sensory hypothesis), or that it is related to preference
for an arm movement (motor hypothesis). The results of control
experiments and data analyses indicate that, in fact, it relates to
both sensory and motor components of the task. We review the
evidence supporting this conclusion. (1) When the animals per-
formed the same arm movements toward the target switches but
were guided by visual cues, only one-third of the tested neurons
maintained their differential activity. This persistent modulation
was, in several cases, noticeably weaker than during categoriza-
tion. Thus for two-thirds of the neurons the measured modulation
was entirely conditional on categorization. The categorization
process was specifically required, because neither the stimuli
alone nor passive movements of the monkey’s arm evoked a
response. This argues in favor of a sensory-derived input driving
the category-tuned neurons. However, those that did respond in
the visual task, together with the two that did not fit the compar-
ison model, suggest that some neurons covary mostly with the arm
movements. These neurons are also surprising, because the mag-
nitude of their differential activity for movements differing by
;11° is, on average, slightly smaller that the mean modulation
across 180° for classic directional neurons (Schwartz et al., 1988).
Hence it is possible that a small fraction of M1 neurons have
directional tuning properties much narrower than reported pre-
viously. These cells would be easy to miss in directional para-
digms sampling at large angle steps. (2) When speed category was
estimated from the simulated responses of category-tuned neu-
rons, the resulting neurometric curves matched the monkeys’
performance extremely accurately. Thus the measured tuning
curves, which are the basis for the simulations, encode the output
of the categorization process very precisely. In future studies, it
will be of interest to explore how the neurometric estimates

Figure 11. Measured versus predicted differences in firing rate between
hit and error classes for a population of 18 category-tuned neurons. Filled
squares indicate differences in mean firing rate between hit and error trials
for the same speed category, DCAT (Eq. 9). Open symbols indicate differ-
ences in mean firing rate between hit and error trials for the same
movement, DMOV. All differences were computed from the predicted and
measured hit–error patterns, like those shown in Figure 10. For idealized
sensory- or motor-related neurons, half of the points should cluster
around the y 5 0 line, and the other half should have magnitudes larger
than predicted. Asterisks correspond to data from the 2 neurons that
behaved like idealized motor units (Fig. 9). The continuous line corre-
sponds to a linear least squares fit of all points, excluding those marked
with asterisks; the slope is 0.95. Most neurons behave according to the
model, firing in relation to both sensory and motor events in the task.
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change in time when the temporal dynamics of the neurons are
taken into account (see Zhang et al., 1997). (3) Analysis of the
latencies on a trial by trial basis was unable to reveal any consis-
tent correlation between the onset or offset of neuronal activity
and the timing of sensory and motor events in the task. This is
interpreted as meaning that neuronal firing was related to both
aspects of the task. (4) The differences in firing rate between
error and hit trials were not consistent with either of the idealized
alternatives but were in agreement with a model in which the
differential responses are used by downstream networks to gen-
erate the arm movement command. According to this model, the
differential neurons are selective for the speed categories, but
because their activity has an impact on the motor output, their
firing rates correlate with both category and movement.

As mentioned previously, the exact mechanism by which
category-tuned neurons participate in the command to move the
arm is not crucial for the results, as long as they do contribute to
arm movement generation. However, the model based on the
relative magnitude of two pooled signals provides a specific
implementation that is biologically plausible. The main require-
ment is that neurons in a downstream layer compare the two
signals and react to the larger one. This computation can be
readily performed by a biological neural network under fairly
general conditions, which M1 seems to satisfy. Modeling studies
have shown that some networks may exhibit competitive dynam-
ics such that two inputs of different magnitudes spread over two
subpopulations in the network will produce only a single peak of
activity, centered on those neurons receiving the strongest input
(Kopecz, 1995; Salinas and Abbott, 1996). The essential condition
for this competition to occur is that similarly tuned neurons excite
each other and differently tuned neurons inhibit each other, and
inferred synaptic connections between M1 directional neurons
appear to have this form (Georgopoulos et al., 1993).

Our results are consistent with previous work describing sen-
sory, motor, and complex activity in M1 (Alexander and
Crutcher, 1990; Crutcher and Alexander, 1990; Hocherman and
Wise, 1991; Riehle et al., 1994; Shen and Alexander, 1997; Zhang
et al., 1997). These studies used promovement versus antimove-
ment paradigms in which motor reactions were triggered by visual
stimuli, and demonstrated a rich repertoire of responses, many of
them not exclusively associated with the parameters of arm mo-
tion. In particular, Shen and Alexander (1997) and Zhang et al.
(1997) found activity that correlated with the visuospatial loca-
tion of the targets (sensory component), as well as activity that
reflected the current instruction given at each trial. However, as
pointed out by Shen and Alexander (1997), rather than the
physical location of the target, the sensory component might have
reflected the initial or default target of limb movement. In the
present work, a categorization process was inserted as an inter-
mediate step between the sensory encoding stage and movement
execution. In contrast to the visuomotor studies, we did not
observe purely sensory activity, in the sense that no neurons were
found that directly encoded the metrics of the stimulus. The
differential responses are, strictly speaking, not sensory. They do
not encode stimulus speed per se; they encode a function, a
transformed version of it. From the tuning curves it is impossible
to resolve speeds near the range limits, 12 and 30 mm/sec, and
their sigmoidal form is in sharp contrast with the initial repre-
sentation of the motion signal found in S1 (Romo et al., 1996)
(Salinas and Romo, unpublished results). The category-tuned
neurons are more similar to those reported neurons that correlate
with the current instruction and that are thus task-dependent.

Using the flutter submodality, Mountcastle et al. (1992) found
similar differential activity in M1; however, in that work task
dependence was not tested. The results of the present modeling
studies suggest not only that these responses are complex, i.e.,
neither purely sensory- nor purely motor-related, but also that
their functional role is to link the sensory categorization process
and the motor command. The complex activity observed in visuo-
spatial tasks may play an analogous role: to shift from an initial
sensory representation of target location to a final motor repre-
sentation (Shen and Alexander, 1997; Zhang et al., 1997).

In S1, no responses that decrease with speed have been re-
corded (Romo et al., 1996) (Salinas and Romo, unpublished
observations). Nevertheless, S1 is essential for the animals to be
able to categorize (Zainos et al., 1997). Hence, by the time it
reaches M1, the neural representation of the motion signal has
been dramatically modified. The categorization task can thus be
viewed as a sequence of transformations or recodings such that
the original stimulus representation is translated into a form
interpretable by the motor apparatus (Fig. 12). The final form of
the code might also provide a substrate for the perceptual expe-
rience associated with the task and may be primarily determined
by one processing step in a localized cortical area, as has been

Figure 12. Proposed model of information flow in the categorization
task. The tactile stimulus evokes activity in primary somatosensory cortex
(S1), which is essential for the categorization process (Zainos et al.,
1997). Responses in S1 either increase linearly with speed or are the same
for all speeds. Additionally, they are identical during categorization and
during passive stimulation (Romo et al., 1996). This activity is trans-
formed into sigmoidal responses that encode the speed category, in an
unidentified area (?) (although this could also happen in a distributed
manner). This information is relayed to the motor networks to indicate
the animal’s decision, giving rise to the M1 neurons selective for low ( L)
and high (H ) speeds. These interact with the rest of the M1 circuitry to
generate an arm movement toward the appropriate location.
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argued by Britten et al. (1992, 1996), Shadlen and Newsome
(1996), and Shadlen et al. (1996) with regard to area MT, in the
case of visual motion discrimination. Therefore, although the
category-tuned neurons reflect the animal’s performance very
accurately, it is unlikely that they participate directly in the
decision-making process. Rather, they probably constitute a copy
of the output of the sensory categorization process that is relayed
to M1 only when the decision needs to be expressed through an
arm movement. A common input requiring no major adjustment
to the code would explain why category-tuned responses similar
to those described here have also been found in other motor-
related areas (Romo et al., 1993a, 1997; Merchant et al., 1997).
This would also explain why most differential responses appear
after the end of stimulation; only after the actual categorization
process takes place can the decision information reach M1 (see
also the latencies for differential activity reported by Mountcastle
et al., 1992).

The small proportion of category-tuned neurons found in M1
(approximately one in seven) and their proposed functional role
are consistent with an idea proposed by Georgopoulos and col-
laborators (Lukashin et al., 1994; Georgopoulos, 1995). They
suggested that M1 may be thought of as functionally divided in
two parts: a large, general-purpose network involved in all kinds
of movements, and other, small, specialized subnetworks that
may, under certain circumstances, control the large network
(Lukashin et al., 1994; Georgopoulos, 1995). They specifically
identified subnetworks involved in the recall and execution of
memorized movements (Ashe et al., 1993). Our findings suggest
that the category-tuned neurons may belong to another type of
task-specific control subnetwork, which converts preprocessed
tactile information into arm movements.
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