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Induction of NF-kB Activity during Haloperidol-Induced Oxidative
Toxicity in Clonal Hippocampal Cells: Suppression of NF-kB and

Neuroprotection by Antioxidants
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Haloperidol (HP), a dopamine receptor antagonist, is cytotoxic
to mouse clonal hippocampal HT22 cells in a concentration-
dependent manner and causes cell death by oxidative stress.
The addition of HP to HT22 cells led to an increase in intracel-
lular peroxides and a time-dependent drop in the intracellular
glutathione levels. HP-induced oxidative cell death was pre-
vented by the pineal hormone melatonin, its precursor N-acetyl
serotonin, and most effectively by vitamin E («a-tocopherol).
These antioxidants inhibited the intracellular peroxide accumu-
lation and stabilized the glutathione content of HT22 cells after

the challenge with HP. At the molecular level, HP specifically
induced the DNA binding activity and the transcriptional activity
of the redox-sensitive transcription factor NF-kB. This en-
hanced NF-«B activity could be blocked by the neuroprotective
antioxidants. The specific suppression of NF-«B by its inhibitor
IkBa partially protected the cells against HP, indicating that the
activation of NF-«kB may be involved in HP-induced oxidative
cell death in vitro.
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Haloperidol (HP) is a widely used neuroleptic drug for the
treatment of acute and chronic psychosis, e.g., schizophrenia. HP
belongs to butyrophenones and is thought to exert its clinical
effect through cerebral dopamine D2-receptors (Creese et al.,
1976) and o-receptors (Walker et al., 1990; Vilner and Bowen,
1993; Vilner et al., 1995). Use of neuroleptics, especially of
butyrophenones, is limited by their tendency to produce a range
of extrapyramidal movement disorders such as parkinsonism,
akathisia, dystonia, and finally, chronic tardive dyskinesia (Mars-
den and Jenner, 1980). The latter syndrome has been causally
related to neuroleptic-induced increase in free radical production
resulting in degeneration of susceptible neurons (Cadet et al.,
1986; Lohr et al., 1988).

Indeed, HP can be cytotoxic in vitro (Vilner and Bowen, 1993;
Behl et al., 1995, 1996) and also in vivo (Bowen et al., 1990).
Furthermore, HP administration resulted in a depletion of the
antioxidant glutathione (GSH) in various regions of the brain in
rodents (Shivakumar and Ravindranath, 1992, 1993) as well as in
the CSF of HP-treated patients where this GSH depletion was
also associated with an enhanced lipid peroxidation (Pai et al.,
1994). GSH plays multiple roles in cells during DNA synthesis
and repair, protein synthesis, and enzyme activation, and as a free
radical scavenger (Meister, 1991). In addition to their direct
damaging effect, reactive oxygen species can induce the activation
and expression of certain transcriptional factors and genes
(Meyer et al., 1993; Schenk et al., 1994; Schieven et al., 1994; Staal
et al., 1994; Brennan and O’Neill, 1995; Pinkus et al., 1996).

The nuclear transcription factor NF-«B was the first eukaryotic
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transcription factor to be shown to respond directly to oxidative
stress (Schreck et al., 1991; Schmidt et al., 1995). NF-«B resem-
bles a heterodimeric protein composed of a 50 and a 65 kDa
subunit (Sen and Baltimore, 1986). Typically, NF-«B is seques-
tered in the cytoplasm by the specific inhibitory protein IkB,
which tightly controls NF-«B’s activation and regulation (Bald-
win, 1996).

Indirect support for a possible involvement of oxidative stress
in HP toxicity is provided by studies that showed that the li-
pophilic free radical scavenger vitamin E prevents HP-induced
cell death in vitro (Behl et al., 1995) and has beneficial effects in
patients with tardive dyskinesia (Lohr et al., 1988; Egan et al.,
1992; Lohr and Caligiuri, 1996).

The goal of this study was to further elucidate the molecular
pathways that lead to the oxidative neurotoxicity of HP using the
clonal mouse hippocampal cell line HT22. Here, an HP-induced
drop in the GSH level and a subsequent rise in intracellular
peroxides was found. Moreover, for the first time it is shown that
the activation of the nuclear transcription factor NF-«B is in-
volved in the neurotoxicity of HP.

MATERIALS AND METHODS

Material. All media, sera, and media supplements were from Life Tech-
nologies (Eggenstein, Germany). Haloperidol and sulpiride were ob-
tained from RBI Biochemicals (Biotrend, Ko6ln, Germany), the 2',7'-
dichlorofluorescein diacetate (DCF-dA) was obtained from Molecular
Probes (Eugene, OR), and the polyethylenimine (PEI) was obtained
from Aldrich (Deisenhofen, Germany). Melatonin, N-acetyl-serotonin,
and all other chemicals were purchased from Sigma (Deisenhofen, Ger-
many) unless stated otherwise.

Cell culture and cytotoxicity assays. The HT22 cells were a kind gift
from Dr. P. Maher (The Scripps Research Institute, La Jolla, CA) and
were cultured in DM EM supplemented with 10% fetal calf serum (FCS)
under standard culture conditions as described (Maher and Davis, 1996).

To assess cell viability, a modified 3-(4,5-dimethylthiazol-2-yl)-2,5 di-
phenyl tetrazolium bromide (MTT) assay was performed as described
(Behl et al., 1994). Briefly, 3000-5000 HT22 cells were plated in 96-well
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microtiter dishes with 100 ul per well. After 20 hr of HP challenge, the
MTT assay was performed. To investigate the protective effect of anti-
oxidants, N-acetyl-serotonin and melatonin were added to the cells for 20
hr, whereas vitamin E was added 6 hr before the challenge with HP. To
circumvent the possibility that these antioxidants potentially might inter-
fere with the colorimetric MTT assay, the trypan blue exclusion assay
was performed in combination with cell counting using morphological
criteria for cell death (Behl et al., 1994). In this assay, cells were plated
in 60 mm dishes and preincubated with antioxidants and HP at the same
time points as for the MTT assays. Each survival assay was performed in
triplicate and repeated at least three times. For cell counting, at least five
optical fields with >200 cells were observed, and cellular survival was
determined.

Transfection, luciferase assay, and plasmids. For transient transfection
with 6X NF-kB-tk-luciferase-, tk-luciferase control-, CM V-IkBa super-
repressor-, and CM V-control vectors, HT22 cells were seeded at 50,000
cells per 24-well tissue culture dishes and transfected with PEI, as
described previously (Boussif et al., 1995; Lezoualc’h et al., 1998a). PEI
was used at 10 equivalents (10 amino groups per phosphate group; 0.3 ul
of 100 mm PEI per 1 pg of plasmid). DNA (2 pg/well) and PEI were first
diluted in 150 mm NaCl. PEI/DNA complexes were obtained by gently
mixing the two solutions; then, after 10 min, the transfection solution
mixture was diluted in 500 ul of DM EM without serum and applied to
the cells for 3 hr. The cells were rinsed and cultured with DMEM and
supplemented with 10% fetal calf serum. Then, HP was applied to the
cultures for various time periods at increasing concentrations (up to 100
uM), pretreated or not pretreated with the antioxidants. Luciferase
activity of cell extracts was monitored as reported previously (De Wet et
al., 1987; Lezoualc’h et al., 1998b). Each transfection experiment was
performed in triplicate using identical cell density and was repeated
three times and controlled for equal amounts of protein using the
Bio-Rad protein reagent to determine the concentrations of the protein
samples (Bio-Rad, Miinchen, Germany). Identical transfection efficien-
cies in the various experiments were controlled by transfecting a tk-
luciferase control vector lacking the NF-«B-binding DNA consensus
sites. As described previously, the transfection procedure itself did not
interfere with the end result (Lezoualc’h et al., 1998b).

The NF-kB-Luc construct containing 6X NF-«B-binding DNA con-
sensus sites linked to a luciferase reporter gene and the tk-Luc construct
containing only the thymidine luciferase promoter linked to a luciferase
construct were generously provided by Dr. P. Bauerle (Tularik Inc., San
Francisco, CA). The CM V-IkBa super-repressor and the CM V-control
vector missing the IkBa cDNA were kindly provided by Dr. D. W.
Ballard (Vanderbilt University, Nashville, TN).

Detection of intracellular peroxides. Intracellular accumulation of H,O,
was determined by using DCF-dA (Behl et al., 1994). HT22 cells were
plated and preincubated with antioxidants. Six hours after the addition of
HP, 10 um DCF-dA was added for 1 hr at 37°C. Cells were then washed
with phenol red-free HEPES-buffered DMEM, supplemented with 2%
FCS, and the cultures were viewed with a fluorescence microscope using
fluorescein optics. Fluorescence was determined qualitatively by count-
ing the cells first under phase contrast and then under fluorescence
conditions. For quantification, >200 cells per low-magnification field
were counted in five separate experiments. Results are expressed as the
percentage of fluorescent cells.

Total intracellular GSH and oxidized form of GSH determination. HT22
cells were seeded at 1 X 10° cells per 10 mm dish and treated for various
times with HP and antioxidants. Subsequently, the cells were washed
twice with ice-cold PBS, collected by scraping, and lysed with 3%
sulfosalicylic acid. After incubation for 20 min on ice, supernatants were
collected after centrifugation and neutralized with triethanolamine. To-
tal GSH was determined according to Tietze (1969), modified by Griffith
(1980) and Li et al. (1997). Pure GSH was used to obtain the standard
curve.

Western blot analysis. For Western blot analysis, 10 cm dishes of HT22
cells (1 X 10°) were treated with HP or left untreated. Thereafter, the
cells were washed with PBS, and nuclear extracts were prepared as
described (Schreiber et al., 1989). Extracts with equal amounts of protein
were resolved on a 8% SDS-polyacrylamide gel, transferred onto a
polyvinylidene difluoride transfer membrane (Amersham, Braunschweig,
Germany), and then detected with an antibody against the NF-«B sub-
unit p65 (Santa Cruz Biotechnology, Santa Cruz, CA) or against actin
(Boehringer Mannheim, Mannheim, Germany) as a control for equal
protein loading. The specific binding of the first antibody was detected by
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counterstaining with a horseradish peroxidase-linked antibody and visu-
alized by the ECL-detection kit (Amersham).

Electrophoretic mobility shift assay. Nuclear extracts for the electro-
phoretic mobility shift assays (EMSAs) were prepared by a mini-
extraction protocol (Schreiber et al., 1989). Consensus sequences of
NF-«kB (5'-AGT TGA GGG GAC TTT CCC AGG C-3'), AP-1, and
Oct-1 were used for gel shift assays (Promega/Serva, Heidelberg, Ger-
many). Double-stranded oligonucleotides were end-labeled with
v-[**P]ATP (3000 Ci/mmol; Amersham) and T4 polynucleotide kinase
(Promega/Serva) and purified on a G-25 column. Nuclear extracts (612
ng) were incubated for 20 min at room temperature with 20 ul of 2 ug of
poly (dI-dC) (Pharmacia, Freiburg, Germany), 10% glycerol, 100 mm
NaCl, 1 mm EDTA, 1 mm dithiothreitol, 0.5 mm phenylmethylsulfonyl
fluoride, and 15,000-25,000 counts per min of **P-oligonucleotides. For
reaction with specific antibodies, the nuclear extracts were incubated for
12 hr at 4°C with 2 ul of either p50 or p65 antibody stocks (Santa Cruz
Biotechnologies) before addition of the labeled N F-«B. The specificity of
the binding was determined by competition with an excess amount of
unlabeled NF-«B, AP-1, or Oct-1 oligonucleotides. DNA—protein com-
plexes were resolved on a 6% nondenaturing polyacrylamide gel at 20
mA for 3 hr in 0.5 X TBE (45 mm Tris-borate and 1 mm EDTA). Gels
were vacuum-dried and exposed to Fuji x-ray films at —80°C for 10-24 hr.
The binding activities of NF-«B, AP-1, and Oct-1 were quantified by
scanning the autoradiographies using a Beckmann photometer.

Statistical analysis. For statistical comparison, Kruskal-Wallis
ANOVA followed by the Mann—Whitney U test was used as indicated. p
values < 0.05 were considered significant.

RESULTS

Haloperidol is toxic to HT22 cells

As shown in Table 1, the addition of HP to the cell culture
medium reduced HT22 cell survival dose-dependently as re-
ported for other cell lines and for rat primary cells (Vilner and
Bowen, 1993; Behl et al., 1995, 1996). HP addition resulted in
rapid morphological changes starting after ~6 hr and in complete
cell death after treatment with 100 um HP for 20 hr (Fig. 1, Table
1). To quantify the cell viability, MTT assays as a sensitive first
indicator of oxidative damage (Behl et al., 1994; Liu et al., 1997)
and the trypan blue exclusion—cell counting methods were used.
Although after incubation of HT22 cells with 50 um HP ~40% of
cells were still alive, addition of 100 um caused a complete cell
lysis after 20 hr. At a concentration as low as 1 um HP, cell
viability was already reduced by ~20% (Table 1). In contrast, the
D2-receptor antagonist sulpiride is not toxic to HT22 cells up to
concentrations of 100 um as detected by the MTT assay and the
trypan blue exclusion method (Table 2).

Melatonin, its precursor N-acetyl serotonin, and
vitamin E protect HT22 cells against HP toxicity
In addition to vitamin E, the pineal hormone melatonin (N-
acetyl-5-methoxytryptamine) and its precursor N-acetyl-
serotonin are neuroprotective antioxidants (Melchiorri et al.,
1995; Reiter et al., 1996; Lezoualc’h et al., 1996, 1998a).
Preincubation of the HT22 cells with melatonin, N-acetyl-
serotonin, and vitamin E decreased HP-induced cell death (Table
1). N-acetyl-serotonin proved to be more effective in preventing
HP toxicity than melatonin (Table 1). Although 1 mm N-acetyl-
serotonin increased the cell viability by 54 = 3% after a toxic
challenge with 100 um HP, the same concentration of melatonin
enhanced the viability by only 22 + 1% (Table 1). HT22 cells,
preincubated with 200 uM vitamin E, completely protected the
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Table 1. Cell viability and peroxide accumulation after HP or HP-antioxidants incubation

Percent toxicity in HT22 cells

Concentration Percent increase
Reagent (M) Viability MTT reduction of peroxides
Control 100 100 3.0 0.8
Haloperidol 1 82.5 + 1.6°
Haloperidol 10 84 = 4.7¢ 82.5*6.8
Haloperidol 50 399 44 33714
Haloperidol 100 1.0 £ 0.9 0 36.7 = 0.5
Haloperidol 100 uM plus N-acetyl serotonin 10 26.6 = 3.5 51x08
100 33.8 47 6.6 = 0.6
1000 544 +29¢ 44.5 = 7.57 113 = 1.2¢
Haloperidol 100 uM plus melatonin 10 203 +5.0 58 %15
100 257*+6.1 9.6 = 1.4"
1000 225*+1.1 3505 25.6 = 0.5
Haloperidol 100 uM plus a-tocopherol 2 227+ 6.1
20 67.2 2.0
200 99.3 3.7 1.3 =047

Cell viability after exposure to HP and antioxidants—HP at various concentrations for 20 hr as assessed by the cell counting method and the MTT test. After 6 hr incubation
with 100 um haloperidol, the intracellular formation of H,O, was determined using DCF fluorescence. All data were normalized to control values (untreated or only
preincubated cells) of 100. MTT data are presented as the means *= SEM for triplicate determination. Trypan blue exclusion data were the means * SEM of five
determinations. Peroxide formation is expressed as percent fluorescent cells. For statistical analysis, Kruskal-Wallis ANOVA followed by Mann-Whitney U test was applied.

“p < 0.025 versus HP, NAS, and melatonin.

bp < 0.025 versus all treatment conditions.

‘p < 0.025 versus all treatment conditions.

4p < 0.025 versus all other treatment conditions and control.
°p < 0.05 versus all other N-acetyl-serotonin (NAS) dosages.
/p < 0.025 versus all other NAS and versus 100 um melatonin.
8p < 0.025 versus melatonin.

p > 0.05 versus all other melatonin dosages.

’p < 0.01 versus all other vitamin E dosages and versus 100 um NAS and 1000 wm melatonin.

Jp < 0.05 versus all others.

cells (99 = 4%) against HP. In vitamin E-pretreated cultures, the
morphology of the HT22 cells was completely unaffected by the
HP challenge, reflecting the full protection afforded by this an-
tioxidant (Fig. 1).

HP causes intracellular peroxide accumulation in

HT22 cells

To investigate the role of oxidative stress as one possible mech-
anism of HP cytotoxicity, the intracellular peroxide levels of
HT22 cells after HP treatment were determined by using DCF-
dA. The addition of HP led to an increase in DCF-fluorescence
after 6 hr, which was indicative of the accumulation of H,O, and
related peroxides. This increased fluorescence could be blocked
by antioxidants. Consistent with the cell survival data, vitamin E
most effectively blocked the intracellular accumulation of perox-
ides, as shown in Figure 1 and Table 1.

HP affects the intracellular GSH level

Intracellular GSH levels increased after HP addition to the HT22
cells in the first few hours, followed by a dramatic decrease after
16-20 hr (Fig. 24). As shown in Figure 2B, antioxidant addition
increased the GSH level after challenge with 100 um HP. The
preincubation with 1 mm N-acetyl-serotonin increased the GSH

level by ~50%, whereas melatonin did not lead to a significant
rise. Vitamin E was again most effective in maintaining the GSH
level at 90% of control cells, despite HP treatment.

HP increases the transcriptional activity and DNA
binding activity of NF-«kB in HT22 cells

After transient transfection with a NF-«B reporter plasmid (NF-
kB-Luc), we found that HP treatment led to an activation of the
kB-dependent reporter transcription construct in HT22 cells (Fig.
3A4). Although lower concentrations of HP (1 and 10 um) led to a
3.4- to 3.6-fold increase in the transcriptional activity of NF-«B
after 2 hr, a higher concentration of HP (50 um) also increased
the luciferase activity approximately fourfold as early as after 30
min. In Figure 3C, the transcriptional activities of NF-kB after
exposure to HP (50 uMm) for various time points are shown. In
these experiments a lower HP concentration of 50 um was used
because of the toxic effect of 100 um HP after 2 hr. The trans-
fection procedure is an additional stressor and renders the HT22
cells more vulnerable to HP. Post hoc microscopic investigations
revealed a high level of damaged cells after incubation with 100
um HP, which can explain the decrease in the luciferase activity.
The transcription of the tk-Luc control plasmid was not altered
after addition of HP (Fig. 3B,D) at any concentration or time
point. Consistent with these data, the DNA binding activity of
NF-«B was also increased after HP incubation for 2 hr. The DNA
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Vitamin E (VIT E), melatonin (MELA) and N-acetyl-serotonin (NAS) prevent HP-induced intracellular accumulation of H,O, and,

ultimately, cell death in clonal hippocampal HT22 cells. HT22 cells (0.5 X 10°) were plated in 60 mm dishes and either pretreated with 1 mm melatonin,
1 mMm N-acetyl serotonin, and 200 uMm vitamin E or left untreated (CT'). Then, cells were incubated with 100 um HP for 20 hr (survival assays) or 6 hr
(peroxide staining). Cells are challenged with 100 um haloperidol for 20 hr. Cultures were first photographed under phase contrast (PC), and then trypan
blue exclusion method was performed in a parallel experiment. HP (100 um) was added for 6 hr, and intracellular peroxide formation was determined
using DCF staining, as described in Materials and Methods. PC magnification, 100X; PC/DCF magnification, 200X.

Table 2. Effect of sulpiride on cell viability

Concentration (um) Viability MTT
1 103.7 £ 5.0 101.7 = 4.5
5 101.8 = 3.2 1162 = 3.4
10 1082 = 1.6 128559
20 1073 = 1.3 107.4 = 10.4
50 101.6 = 9.3 108.2 * 6.4
100 99.7 = 4.8 110.4 £ 3.9
200 80.0 = 144 773 =42

The indicated concentrations of sulpiride were added to HT22 cells. After 24 hr, cell
viability was determined by trypan blue exclusion method and cell counting. In a
parallel experiment, MTT reduction was measured. All data were normalized to
control values of 100. Trypan blue exclusion data were the means = SEM of five
determinations. MTT data are presented as the means = SEM for quadruplicate
determination. A p < 0.025 versus all other treatment conditions could be found only
at a concentration of 200 puMm sulpiride.

binding activity of NF-«kB was increased approximately sixfold
after treatment with 100 um HP (see Fig. 64) compared with
control cells. Although the DNA binding activity of NF-«B was
increased by HP, the DNA binding activity of AP-1, another

redox-sensitive transcription factor, and Oct-1, an octameric
transcription factor as control, was not significantly changed after
HP addition (see Fig. 64), indicating that there is not a general
upregulation of transcription factors in HT22 cells induced
by HP.

To identify the proteins involved in binding the labeled oligo-
nucleotides in our EMSASs, nuclear extracts were incubated with
antibodies against the p50 or the p65 subunit of NF-«kB. The p50
antibody induced a supershift and the p65 antibody decreased the
intensity of the specific band in the EMSA, indicating the involve-
ment of both proteins in the DNA binding activity of NF-«B in
HT22 cells (see Fig. 6B).

The nuclear expression of the NF-«B subunit p65 is
increased in HT22 cells after HP addition

To show whether the increased DNA binding and transcriptional
activity of NF-«B is attributable to an increase of NF-«B protein
levels, Western blot analysis of nuclear extracts was performed
(Fig. 4). With an increased DNA binding and transcriptional
activity of NF-«B on HP treatment, HP consistently also caused
an increased expression of the p65 subunit in the nuclear HT22
extracts (Fig. 4).
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Figure 2. A, HP affects the level of intracellular GSH
level in HT22 cells. HT22 cells (1 X 10°) were incubated
with 100 uM HP, and the cells were harvested at the end
of the indicated time. The level of total GSH (nmol/mg
protein) was determined as described in Materials and
Methods and expressed as 100% GSH (nmol/mg pro-
tein) relative to the corresponding control level (n.d.,
nondetectable) (*p < 0.05 vs all others). B, Preincuba-
tion with antioxidants 1 mm N-acetyl-serotonin (NAS)
and 200 uM vitamin E and challenge with 100 um HP for
16 hr (I, control; 2, 100 um HP; 3, 1 mM melatonin +
100 uM HP; 4, 1 mm NAS + 100 um HP; 5200 um
vitamin E + 100 uM HP). *p < 0.05 versus control; #p <

60 +

40

GSH content (% of control)

20 ~

—

Hoo%

0.05 versus HP. All data are representative for one 0
typical set of experiments. The SEM between the inde-
pendent measurements is *20.

N-acetyl serotonin and vitamin E suppress the HP-
induced transcriptional activity and DNA binding
activity of NF-xB

In HT22 cells preincubated with the neuroprotective antioxidants
N-acetyl serotonin (1 mm) and vitamin E (200 um), the HP-
induced increase in the transcriptional activity of NF-«B was
prevented (Fig. 5). The transcription of the tk-Luc vector was not
altered by preincubation with N-acetyl-serotonin or with vitamin
E (data not shown). We then investigated the effect of N-acetyl

serotonin and vitamin E on the HP-induced increase of NF-kB’s
binding activity. Although after preincubation with N-acetyl se-
rotonin the HP-induced increase in the DNA binding activity of
NF-«B was partially blocked, the pretreatment with vitamin E
completely inhibited this increase (Fig. 6C). Consistent with the
cell survival data, showing relatively poor neuroprotective action
of melatonin against HP toxicity, this hormone only marginally
decreased the HP-induced activation of NF-«B binding and tran-
scriptional activity in these present assays (data not shown).
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Figure 3. Transcriptional activity of NF-«B in HT22 cells. 4, Cells were transfected with 2 ug of NF-«kB Luc plasmid or Tk-Luc control plasmid (B)
and then exposed to indicated concentrations of HP for 2 hr or left untreated (CT). C, Cells were transfected with 2 ug of the NF-«B plasmid or Tk-Luc
control vector (D) and then exposed to 50 um HP for the indicated times. Results are shown in arbitrary units of luciferase activity (relative luciferase
activity) and are representative of three independent experiments. Hatched bars indicate that post hoc microscopic investigations revealed cell death. *p <

0.025 versus all other HP concentrations or control.
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Figure 4. Western blot analysis with protein extracts from nuclear ex-
tract of HT22 cells without (CT") or with 100 um HP treatment for 2 hr.
The protein extracts were analyzed for the presence of p65 using an
antibody against p65 (1:100 dilution). Actin was detected (1:1000 dilution
of an anti-actin antibody) as control to verify identical protein loading.

The overexpression of IkBa suppresses the NF-«B-
dependent transcriptional activity and protects HT22
cells against HP

The transfection of cells with a super-repressor form of IkBa that
is resistant to both phosphorylation and proteolytic degradation
of IkBa prevents the nuclear translocation of NF-«B (Brockman
et al.,, 1995; Lezoualc’h et al., 1998b). After transfection of HT22
cells with the IkBa super-repressor, the transcriptional baseline
activity of NF-kB was reduced by ~56% compared with cells
transfected with a CM V-control vector (Fig. 74). In a parallel
experiment, transfected HT22 cells were challenged with 10 um
HP for 2 hr. The suppression of NF-«kB activity by IkBa led to a
partial protection of the HT22 cells against HP because the cell
survival rate was significantly higher in the IkBa-overexpressing
cells compared with the control-transfected cells (Fig. 7B).

DISCUSSION

In the present study, we found that HP concentrations between 1
and 100 uMm had effect on the morphology and ultimately the
viability of mouse monoclonal hippocampal HT22 cells, a neuro-
nal cell system that is frequently used to study oxidative cell death
(Lezoualc’h et al., 1996; Maher and Davis, 1996; Li et al., 1997).
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HP toxicity is associated with an increase in intracellular perox-
ides and a subsequent drop in GSH levels, which directly dem-
onstrates the involvement of oxidative stress. HP caused the
induction of the DNA binding and transcriptional activity of
NF-«B, which could be blocked by N-acetyl-serotonin and vita-
min E, two antioxidants that effectively prevent HP toxicity in
HT22 cells at concentrations that have been demonstrated to
prevent cell death by other oxidative challenges such as H,O,,
amyloid B protein, and glutamate (Behl et al., 1994; Moosmann et
al., 1997). Moreover, suppression of NF-«B activity by overex-
pression of its inhibitor IkBa partially protected HT22 cells
against HP toxicity. This effect of HP is probably not related to its
dopamine D2-receptor antagonism, because sulpiride, another
structurally different D2-receptor antagonist, was not toxic to
HT22 cells at concentrations up to 100 um.

Treatment of HT22 cells with HP generates elevated intracel-
lular levels of H,O, and related peroxides, suggesting that HP
generates oxidative stress in this cellular system. Oxidative stress
as induced by reactive oxygen species, such as H,O,, can damage
cells by lipid peroxidation and can cause alterations of the struc-
ture of proteins and nucleic acids.

Cellular defenses against free radicals and reactive oxygen
species include enzymatic and nonenzymatic mechanisms. The
enzymatic defense consists mainly of catalase, GSH peroxidase,
and superoxide dismutase; the nonenzymatic antioxidant mech-
anisms include ascorbic acid, vitamin E, and GSH (Halliwell and
Gutteridge, 1989). The ability of GSH, a tripeptide composed of
L-glutamate, L-cysteine, and glycine, to nonenzymatically scav-
enge both single oxygen and hydroxyl radicals provides the first
line of antioxidant defense (Coyle and Puttfarcken, 1993; Bains
and Shaw, 1997). Because there is increased peroxide generation
after the HP challenge, intracellular GSH levels may be affected.
The above data do indeed show a decrease in total intracellular

CT 1uM 10uM 100uM

CT 1uM 10uM 100uM
haloperidol plus
1 mM NAS

CT 1uM 10uM 100pM
haloperidol plus
200 pM vitamin E

GSH levels after HP treatment. Under normal conditions, a
sufficient amount of GSH is present maintaining a redox state that
allows prevention of cell death through oxidative stress. Ulti-
mately, HP addition led to a GSH depletion in HT22 cells after
16 hr. It is known that acute depletion of intracellular glutathione
can cause cellular damage (Martensson et al., 1989; Meister,
1991), and moreover, alterations in glutathione status may be
involved in neurodegenerative disorders such as Parkinson’s dis-
ease and Alzheimer’s disease (Olanow, 1992, 1993; Bains and
Shaw, 1997). Our in vitro data are also consistent with reports of
reduced GSH levels in HP-treated patients (Pai et al., 1994). The
transient increase in total GSH caused by HP shown here com-
prises the reduced and the oxidized forms of GSH (GSSG); the
latter is likely to be transiently increased in response to HP-
elicited peroxide formation. This transient increase of GSSG may
probably trigger the activation of NF-kB activity after HP addi-
tion. Recent studies have consistently shown that an intact GSH
system is required for an optimal induction of NF-kB by H,O,
because any depletion suppresses the NF-«B response in Jurkat T
cells (Ginn-Pease and Whisler, 1996). Furthermore, the activa-
tion of NF-kB by oxidative stress is dependent on the GSH/
GSSG ratio and also on certain GSSG levels in lymphocytes
(Droge et al., 1995; Mihm et al., 1995). The current data support
the hypothesis that similar mechanisms are also involved in neu-
ronal cell systems.

NF-«B is a redox-sensitive transcription factor that can influ-
ence the neuronal sensitivity, suggesting that this factor has a
potential role in neuroprotection (Lipton, 1997; Lezoualc’h and
Behl, 1998). HP induces the transcriptional activity of NF-«B and
also its DNA binding activity in HT22 cells. Numerous stimuli,
including neurotoxins such as amyloid B protein and glutamate,
activate this transcription factor (Grilli et al., 1993; Béuerle and
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Henkel, 1994; Behl et al., 1994; Kaltschmidt et al., 1997
Lezoualc’h et al., 1998a).

It has been shown recently that melatonin and its precursor
N-acetyl-serotonin protect neurons against oxidative stress in-
duced by H,O, and glutamate (Lezoualc’h et al., 1996, 1998a;
Reiter et al., 1996; Papolla et al., 1997). The neuroprotective
effect of these hormones during HP treatment is consistent with
their ability to decrease the induction of NF-«kB activity. Inter-
estingly, it has been proposed that aspirin and sodium salicylate
mediate neuroprotection also by a specific inhibition of
glutamate-mediated induction of NF-«B activity (Grilli et al.,
1996). Although in the present experiments it appears that a
block of NF-«B activity is associated with neuroprotection, a
different role of NF-«B activity was found recently in another
experimental paradigm. There it was shown that constitutively

Figure 6. A, DNA binding activities of NF-«B, AP-1, and Oct-1 in
HT22 cells are analyzed after HP addition with different concentra-
tions. Nuclear extracts were prepared and EMSAs were performed.
Autoradiograph of native gel is shown (lane 1, 1 um HP; lane 2, 10 um
HP; lane 3, 100 uM HP). B, Nuclear extracts were analyzed after
reaction with an antibody against p65 or p50. C, DNA binding activity
of NF-«B in HT22 cells. The effect of HP-antioxidants on NF-«xB
binding activity is depicted. Nuclear extracts were analyzed after
challenges with 150 um hydrogen peroxide (lane 1) or 100 um HP (lane
2) and after preincubation with 1 mM N-acetyl-serotonin/200 um
vitamin E (lane 3) and the following HP challenge with 100 pum
haloperidol for 2 hr. NS means nonspecific and represents the reaction
mixture containing 100-fold excess unlabeled N F-«B oligonucleotides
as competitor. N4 means the control extract without an antibody.
Filled arrowheads indicate the position of specific NF-kB/DNA com-
plexes, half-filled arrowheads show the position of nonspecific com-
plexes, and circles depict the position of the free DNA probe.

increased NF-«B levels mediate the resistance of clonal neuronal
cells against oxidative stress (Lezoualc’h et al., 1998b) and may
therefore drive the transcription of neuroprotective genes, a view
that has been suggested previously (Barger and Mattson, 1996).
We conclude that depending on the experimental and cellular
paradigm and on the mode and kinetics of activation (consistently
increased vs immediately increased by oxidative neurotoxins),
NF-«B may exert multiple functions with respect to neuronal cell
survival.

Vitamin E is a lipophilic free radical scavenger that protects
neuronal cells against HP toxicity (Behl et al., 1996) because it
interacts with cell membranes, traps free radicals, and interrupts
the oxidative redox chain reaction that damages cells (Halliwell
and Gutteridge, 1989; Halliwell, 1992). Tissue damage and cell
death caused by lipid peroxidation can be prevented by vitamin E
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Figure 7. Overexpression of IkBa super-repressor suppresses the base-
line activity of NF-«B in HT22 cells compared with control-transfected
cells (A4). Cells were cotransfected with CM V-IkBa super-repressor and
6X NF-kB-tk-Luc vector or with the CM V-control-vector missing the
IkBa cDNA (CT-vector) and 6X NF-kB-tk-Luc vector. Baseline tran-
scriptional activity of NF-«B is shown in A. In B, cells were transfected
with CM V-IkBa super-repressor or the CM V-control vector. The cell
viability as assessed by the MTT reduction is shown after 10 um HP
challenge for 2 hr. *p < 0.01 versus the control-transfected conditions.

such as in cultured hypoxic neurons (Yoshida et al., 1985; Lohr et
al., 1988), but possible molecular mechanisms underlying vitamin
E-mediated resistance of neurons to oxidative stress are not fully
understood. In our study, melatonin, N-acetyl-serotonin, and vi-
tamin E protected HT22 cells with varying efficiency against HP
toxicity. Overall, vitamin E proved to be most efficient in protect-
ing HT22 cells. Vitamin E and N-acetyl-serotonin have structural
similarities: both molecules have a phenolic group that could
provide a proton to detoxify hydroxyl radicals or lipid radicals
(Halliwell and Gutteridge, 1989). Recently, we reported that a
phenolic hydroxyl group in the aromatic ring A is the prerequisite
of a neuroprotective effect of estrogens against oxidative chal-
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lenges (Behl et al., 1997). In the present study, the aromatic
alcohol N-acetyl-serotonin showed a higher protective potential
compared with melatonin against HP toxicity, consistent with our
recent observations (Moosmann et al., 1997).

The generation of peroxides was blocked by vitamin E and
N-acetyl-serotonin. In contrast, melatonin was not able to reduce
peroxide accumulation significantly. Furthermore, vitamin E con-
sistently stabilized the intracellular GSH content most effectively.
Analogous to the conclusions drawn by Grilli et al. (1996), we
assume that the decrease in NF-«B’s transcriptional activity and
in its DNA binding activity by N-acetyl-serotonin and vitamin E
is causally related to their neuroprotective effect. These neuro-
protective antioxidants might therefore be able to suppress the
NF-«kB-driven gene transcription as a part of HP-induced neuro-
nal cell death. This was further confirmed by the fact that the
transient suppression of NF-«B’s activity by overexpression of a
IkBa super-repressor partially prevented HP toxicity in HT22
cells. Further studies will focus on possible target genes of HP-
induced increased NF-«B activity.

In conclusion, we here present evidence that the neuroleptic
drug HP causes oxidative stress via the induction of intracellular
peroxide accumulation followed by the depletion of intracellular
GSH in clonal hippocampal HT22 cells. At the molecular level,
HP induces the activity of NF-«B and ultimately causes neuronal
cell death that can be prevented by vitamin E and N-acetyl-
serotonin and to a lesser degree by melatonin. With respect to the
involved mechanism, we propose that these antioxidants may
have a dual mode of action. (1) They block the immediate rise in
peroxides and the subsequent lipid peroxidation, and (2) they
suppress the HP-induced activation of NF-«kB. Regarding the
possible clinical implications of the present findings, it is of note
that therapeutic plasma HP concentrations are ~0.05 um (Baldes-
sarini et al., 1988; Van Putten, 1991) and therefore lower than the
HP concentrations used in the present in vitro study. However,
plasma concentrations do not necessarily reflect local cerebral
concentrations. Thus high HP levels at specific target sites are
possible. They may trigger oxidative stress in neuronal cells,
resulting in long-lasting potentially irreversible damage, which
among other clinical symptoms may lead to tardive dyskinesia in
vulnerable patients. Such untoward clinical conditions could po-
tentially be prevented by coadministration of antioxidants such as
vitamin E.
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