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Delay-period activity of prefrontal cortical cells, the neural hall-
mark of working memory, is generally assumed to be sustained
by reverberating synaptic excitation in the prefrontal cortical
circuit. Previous model studies of working memory emphasized
the high efficacy of recurrent synapses, but did not investigate
the role of temporal synaptic dynamics. In this theoretical work,
I show that biophysical properties of cortical synaptic transmis-
sion are important to the generation and stabilization of a
network persistent state. This is especially the case when
negative feedback mechanisms (such as spike-frequency ad-
aptation, feedback shunting inhibition, and short-term depres-
sion of recurrent excitatory synapses) are included so that the
neural firing rates are controlled within a physiological range
(10–50 Hz), in spite of the exuberant recurrent excitation. More-
over, it is found that, to achieve a stable persistent state,
recurrent excitatory synapses must be dominated by a slow

component. If neuronal firings are asynchronous, the synaptic
decay time constant needs to be comparable to that of the
negative feedback; whereas in the case of partially synchro-
nous dynamics, it needs to be comparable to a typical inter-
spike interval (or oscillation period). Slow synaptic current ki-
netics also leads to the saturation of synaptic drive at high firing
frequencies that contributes to rate control in a persistent state.
For these reasons the slow NMDA receptor-mediated synaptic
transmission is likely required for sustaining persistent network
activity at low firing rates. This result suggests a critical role of
the NMDA receptor channels in normal working memory func-
tion of the prefrontal cortex.
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Working memory is a fundamental cognitive function, by virtue
of which information can be actively retained for seconds and
used in the brain (Baddeley, 1986; Fuster, 1988; Goldman-Rakic,
1995). Its neuronal correlate, delay-period activity, has been
widely documented by unit recording studies of behaving mon-
keys (Fuster and Alexander, 1971; Kubota and Niki, 1971; Mi-
yashita and Chang, 1988; Gnadt and Andersen, 1988; Funahashi
et al., 1989; Miller et al., 1996; Chafee and Goldman-Rakic, 1998;
Rainer et al., 1998; Romo et al., 1999). For example, in a visuo-
spatial delayed-response experiment (Funahashi et al., 1989), the
animal’s delayed saccadic eye movement is guided by the short-
term memory of a visual cue. Neurons in the dorsolateral pre-
frontal (PFC) cortex were found to display elevated firing activity
during the entire delay period. This persistent activity is tuned to
the spatial location of the cue in some cells, but not in other cells.
Therefore, there are two distinct aspects of the mnemonic coding
by the PFC cells: the persistent nature of the delay-period activity
and the formation of the tuned “memory field”.

It is generally assumed that persistent activity is sustained by
some kind of reverberating discharge within a recurrent neural
network (Hebb, 1949; Amit, 1995). The characteristic horizontal
connections found in the superficial layers II–III of the dorsolat-

eral PFC may provide the anatomical substrate for such a recur-
rent circuit (Levitt et al., 1993; Kritzer and Goldman-Rakic,
1995). However, it remains unknown what are the realistic syn-
aptic properties and circuit dynamics that are required for a
robust network-induced persistent activity. Indeed, most previous
model studies used simple firing-rate models (Wilson and Cowan,
1973; Amari, 1977; Zipser et al., 1993; Amit et al., 1994; Camperi
and Wang, 1998; Moody et al., 1998). Amit and collaborators
(Amit et al., 1990; Amit and Tsodyks 1991; Amit and Brunel,
1997) used leaky integrate-and-fire (LIF) spiking neurons but did
not take into account realistic postsynaptic current time courses.

In this paper I present a network model of spiking neurons in
which synapses are endowed with realistic gating kinetics, based
on experimentally measured dynamical properties of cortical syn-
apses. I will focus on how delay-period activity could be generated
by neuronally plausible mechanisms; the issue of memory field
formation will be addressed in a separate study. A main problem
to be investigated is that of “rate control” for a persistent state: if
a robust persistent activity necessitates strong recurrent excita-
tory connections, how can the network be prevented from run-
away excitation in spite of the powerful positive feedback, so that
neuronal firing rates are low and comparable to those of PFC cells
(10–50 Hz)? Moreover, a persistent state may be destabilized
because of network dynamics. For example, fast recurrent exci-
tation followed by a slower negative feedback may lead to net-
work instability and a collapse of the persistent state. It is shown
that persistent states at low firing rates are usually stable only in
the presence of sufficiently slow excitatory synapses of the NMDA
type. Functional implications of these results for the role of
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NMDA receptors in the PFC working memory function are
discussed.

MATERIALS AND METHODS
The leaky integrate-and-fire model. To simulate a local recurrent cortical
network, I used a network model of leaky integrate-and-fire neurons
(Tuckwell, 1988), with either all-to-all or sparse connectivity. Such a
network can be viewed as a cortical cell assembly that stores a particular
memory item. As a result of Hebbian learning, the internal excitatory
recurrent connections are strong and homogeneous, whereas the inter-
actions between this cell assembly and the rest of the circuit are relatively
weak and are neglected.

The network model consists of two populations of neurons (Ne pyra-
midal cells and Ni inhibitory interneurons). Each pyramidal cell obeys
the following equation:

Cm

dVm

dt
5 2IL 2 IAHP 2 Isyn,ee 2 Isyn,ie 1 Iapp (1)

d@Ca21#

dt
5 aCaO

j

d~t 2 tj! 2 @Ca21#/tCa, (2)

where Cm is the capacitance, Iapp represents the afferent input, and the
leak current IL 5 gL(Vm 2 VL ). IAHP 5 gAHP[Ca 21](Vm 2 VK ) describes
a calcium-activated potassium current for spike-frequency adaptation.
[Ca 21] is incremented by an amount aCa with each spike discharge, and
decays with a time constant tCa afterwards (cf. Treves, 1993; Y. H. Liu
and X.-J. Wang, unpublished observations). Isyn,ee and Isyn,ie are the
recurrent synaptic inputs from pyramidal cells and interneurons,
respectively.

A spike is discharged each time Vm is driven to reach a firing voltage
threshold Vth. Then Vm is reset to Vreset and stays there for an absolute
refractory period tref. The intrinsic parameters were calibrated based on
the intracellular data of cortical pyramidal neurons (McCormick et al.,
1985; Mason and Larkman, 1990; Troyer and Miller, 1997): Cm 5 0.5 nF,
gL 5 0.025 mS (so that the time constant tm 5 Cm /gL 5 20 msec); VL 5
270, Vth 5 252, Vreset 5 259 (in mV); tref 5 2 msec. The frequency–
current curve of an isolated cell has a current threshold Ic 5 gL(Vth 2
VL ) 5 0.45 nA. For the adaptation current VK 5 285 mV, aCa 5 0.2 mM,
tCa 5 80 msec (Helmchen et al., 1996), and gAHP will be specified in the
text whenever it is not zero.

The interneuron model represents fast-spiking GABAergic cells that
do not display spike-frequency adaptation (McCormick et al. 1985). Each
interneuron obeys the equation:

Cm

dVm

dt
5 2IL 2 Isyn,ei 1 Iapp, (3)

which is similar to Equation 1, except that IAHP is absent, and Isyn,ei is the
recurrent synaptic input from pyramidal cells. Mutually inhibitory inter-
actions among interneurons were not included. The parameter values for
the interneurons are (cf. McCormick et al., 1985) Cm 5 0.2 nF, gL 5 0.02
mS (tm 5 Cm /gL 5 10 msec); VL 5 265, Vth 5 252, Vreset 5 260 (in mV);
tref 5 1 msec. The frequency–current curve of an isolated interneuron
has a current threshold Ic 5 0.26 nA.

Synaptic kinetics and short-term depression. The EPSC originating from
a presynaptic pyramidal cell consists of two components, IAMPA
and INMDA. The AMPA receptor (AMPAR)-mediated current IAMPA 5
gAMPAs(Vm 2 VE ), with VE 5 0 mV. The gating variable s (the fraction of
open channels) is described by two first-order kinetics:

dx
dt

5 f~axO
j

d~t 2 tj! 2 x/tx!; (4)

ds
dt

5 f~a s x~1 2 s! 2 s/ts!, (5)

where the sum is over presynaptic spike times. The scaling factor f
controls the speed of synaptic kinetics without affecting the steady state,
f 5 1 unless specified otherwise. For the AMPAR channels, I used tx 5
0.05 msec and ts 5 2 msec (the time-to-peak is ;0.2 msec); ax 5 1
(dimensionless), and as 5 1 (in msec 21). The NMDA receptor
(NMDAR)-mediated current INMDA 5 gNMDAs(Vm 2 VE )/(1 1
[Mg 21]exp(20.062Vm )/3.57) (Jahr and Stevens, 1990), with a voltage

dependence controlled by the extracellular magnesium concentration
[Mg 21] 5 1.0 mM. The gating variable s obeys the same types of
equations (Eqs. 4, 5), but with tx 5 2 msec and ts 5 80 msec (the
time-to-peak is .8 msec).

This model of excitatory synapses was chosen for three reasons. First,
it is based on a plausible kinetic scheme (Wang and Rinzel, 1992;
Destexhe et al., 1994). In response to a presynaptic spike, the time course
of s has a smooth rising phase and an exponential decay with time
constant tE 5 ts /f, that can be matched to the experimental data
(Hestrin et al., 1990a; Lester et al., 1990). Second, there is temporal
summation and, if the presynaptic firing frequency is high compared to
1/tE , s will saturate in the steady state (s # 1) (Fig. 1). The saturation
effect is much more significant for the slow NMDAR-mediated EPSC
than for the fast AMPAR-mediated EPSC and has important implica-
tions for the network dynamical behavior. Finally, the model is suffi-
ciently simple to allow detailed analysis of the network activity.

The IPSC originating from an interneuron is assumed to be mediated
by GABAA receptors (GABAARs), IGABA 5 gGABAs(Vm 2 VI ), with VI 5
VL 5 270 mV (“shunting inhibition”). The gating variable s obeys a
simple first-order kinetics with saturation (Wang and Rinzel, 1992):

ds
dt

5 aIO
j

d~t 2 tj
2!~1 2 s! 2 s/tI, (6)

with aI 5 0.9 and tI 5 10 msec. The superscript in tj
2 indicates that the

increment of s by a spike should be calculated using the value of s
immediately before the spike on the right hand side of the equation, Ds 5
s(tj

1) 2 s(tj
2) 5 aI(1 2 s(tj

2)).
Most simulations were done with all-to-all connectivity. In that case a

neuron receives synaptic inputs from all neurons in the network, and the
summation of synaptic currents is normalized by the number of neurons
N. Sparse connectivity was also considered (see Fig. 11). There, the
coupling between neurons is randomly assigned, with an average number
of synapses per neuron Msyn (which is much smaller than N ), and the
summation of synaptic currents is normalized by Msyn. The probability
that a pair of neurons are connected in either direction is p 5 Msyn /N.

In some of the model simulations, short-term depression was incorpo-
rated for the pyramid-to-pyramid recurrent excitatory synapses
(Markram and Tsodyks, 1996; Abbott et al., 1997; C. M. Hempel, K. H.
Hartman, X.-J. Wang, G. G. Turrigiano, and S. B. Nelson, unpublished
observations). Short-term depression is assumed to be caused by trans-
mitter vesicle depletion at the presynaptic terminals (Stevens and Wang,
1995). It is introduced into the synapse model as follows. The parameter
ax , which mimicks the amount of transmitter release per spike, is mul-
tiplied by a quantity D (the fraction of available vesicles). D obeys the
dynamical equation (Abbott et al., 1997):

dD
dt

5 2py DO
j

d~t 2 tj
2! 1 ~1 2 D!/tD. (7)

That is, D is reduced by a factor (1 2 py) for each spike, DD 5 D(tj
1) 2

D(tj
2) 5 2pyD(tj

2), or D(tj
1) 5 (1 2 py)D(tj

2). It recovers toward 1 with
time constant tD in the absence of stimuli. In a simple biophysical model
of vesicle depletion in which the release probability is proportional to the
number of available vesicles, py is identified with the release probability
per vesicle (Wang, 1999). I used tD 5 500 msec and py 5 0–0.35.

Asynchronous States. In this work, persistent activity is assumed to be
achieved by a bistability between a rest state and an active state of the
network. We shall see that the persistent activity often occurs as an
asynchronous network state, in which the discharges of neurons are
spread out in time uniformly so that at any time there is a same fraction
of neurons firing (Amit and Tsodyks, 1991; Abbott and van Vreeswijk,
1993; Gerstner, 1999). In the presence of the voltage dependence of the
NMDAR channels, the nonlinear LIF model cannot be solved explicitly,
and the analysis of the asynchronous states is intractable. However, as we
shall see, none of our conclusions in this work depends on the voltage
sensitivity of the NMDAR-activated conductance. Therefore, the calcu-
lations of the asynchronous state were done with [Mg 21] 5 0.

The firing rates RE and RI of pyramidal cells and interneurons in an
asynchronous state were calculated as follows. Let us denote the average
synaptic drives by sE and sI. Each of the two is an average over neural
population, and is constant in time for an asynchronous state. It is the
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same as the time average of each individual s(t) over a period 1/R. For sE
(Eqs. 4, 5), an approximation is obtained by substituting (j d(t 2 tj ) with
R. The steady state is:

xE 5 axtx RE; sE 5
asts xE

asts xE 1 1 5
nRE

nRE 1 1 . (8)

where n 5 axastxts msec 21. This approximation is accurate when the
synaptic current kinetics are sufficiently slow (Ermentrout, 1994), hence
reasonable for the NMDAR channels (Fig. 1 D). On the other hand, it is
also correct as long as saturation is negligible, which is the case for the
fast AMPAR channels. The average sE only depends on the product n
and is independent of the scaling factor f. It becomes nonlinear in RE at
RE $ 1/n and saturates at RE .. 1/n. For AMPAR channels n 5 0.1
msec 21, 1/n 5 10 kHz; so sAMPA does not saturate at realistic firing rates,
sAMPA . nRE. For NMDAR channels n 5 160 msec 21, 1/n 5 6.25 Hz, and
sNMDA is a highly nonlinear function of RE.

With short-term depression (pn Þ 0), the parameter ax is multiplied by
the steady-state value of D. It is worth noting that the amount of synaptic
transmission is given by the value of D immediately preceding a spike
(denoted by D_), and not the time average over a period. The steady state
value of D_ is (Abbott et al., 1997; Wang, 1999):

D_ 5
1 2 e21/REtD

1 2 ~1 2 py!e21/REtD
.

1
pytDRE 1 1 , (9)

where the approximation is obtained by (j d(t 2 tj
2) 5 RE in Equation 7.

For the GABAAR-activated synaptic drive, the average was calculated
over a periodic firing pattern of rate RI (compare Eq. 6):

sI 5
RItIaI~1 2 e21/RItI!

1 2 ~1 2 aI!e21/RItI
. (10)

At realistic firing rates, the steady-state approximation obtained by (j(t 2
tj
2) 5 RI in Equation 6, sI 5 aItIRI /(aItIRI 1 1), is not accurate for the

moderately slow IPSCs.
Given sE(RE ), the equation for an interneuron is the same as that of a

single LIF neuron,

Cm

dVm

dt
5 2gL~Vm 2 VL! 2 gsyn,eisEVm 1 Iapp 5 2g̃L~Vm 2 Vreset! 1 Ĩ,

(11)

with g̃L 5 gL 1 gsyn,ei sE , and Ĩ 5 Iapp 2 gL(Vreset 2 VL ) 2 gsyn,ei sEVreset.

For a constant input current Iapp , the firing rate is given by:

RI 5 5
1

tref 2
Cm

g̃L
ln@1 2 ~ g̃Lu !/Ĩ#

if Ĩ . g̃Lu,

0 otherwise

(12)

which is itself a function of sE(RE ) (i.e. the interneurons are driven by
recurrent excitation). Similarly, the voltage equation for a pyramidal cell
can be solved for a constant input current. The adaptation current has a
steady-state average IAHP 5 gAHP[Ca 12]ay(Vm 2 VK ), where [Ca 12]ay 5
aCatCaRE according to Equation 2 with (j d(t 2 tj ) 5 RE. The same
formula in Equation 12 applies to RE , except that g̃L 5 gL 1
gAHP[Ca 12]ay 1 gsyn,ee sE 1 gsyn,ie sI , and Ĩ 5 I 2 gL(Vreset 2 VL ) 2
gAHP[Ca 12]ay(Vreset 2 VK ) 2 gsyn,ee sEVreset 2 gsyn,ie sI(Vreset 2 VI ).

In simulations, noise was added by including a random component Il 5
ilsl in the external current, Iapp 5 I0 1 Il; I0 is a constant current, and Il

is a stochastic synaptic current of the AMPA type. With a Poisson input
train of rate l, sl is incremented by 1 with each input and decays with a
time constant tl 5 2 msec. At a high rate l, this Poisson current is
approximated by a Gaussian white noise with a mean m 5 illtl and a
variance s2 5 il

2tll. Unless noted otherwise, il 5 0.06 nA and l 5 2500
Hz for pyramidal cells; and il 5 0.04 nA and l 5 2000 Hz for interneu-
rons. Given a fixed m 5 0.06 3 2.5 3 2 5 0.3 nA, the mean input current
to pyramidal cells I 5 I0 1 m can be varied by changing I0 , whereas the
noise amplitude remains the same.

In the presence of noise, the neural discharges are described by the
first-passage times across the firing threshold (Ricciardi, 1977), instead of
Equation 12. The expression for the firing rate is:

1/R 5 tref 1 Îpt̃mE
Cm~Vreset2Vss!/~Ît̃ms!

Cm~Vth2Vss!/~Ît̃ms!

dxex2
~1 1 erf~ x!!, (13)

where er f(x) 5 (2/=p) *0
x exp(2x92)dx9 is the error function, Vss 5 Ieff /g̃L

and t̃m 5 Cm /g̃L (g̃L as given above). The effective current Ieff 5 I0 1 m 1
gLVL for interneurons, and Ieff 5 I0 1 m 1 gLVL 1 gAHP[Ca 12]ayVK 1
gsyn,ie sIVI for pyramidal cells.

The neural firing rates of the asynchronous state were approximately
computed in two steps. First, Equation 13 applied to RI is a function of
RE , RI 5 g(RE ). Then, Equation 13 for RE becomes self-consistent,

RE 5 f~RE, RI! 5 f~RE, g~RE!!; RI 5 g~RE!, (14)

Figure 1. Temporal summation of the NMDAR-mediated
EPSCs. A, NMDAR-mediated EPSCs elicited by four stim-
uli, when the membrane potential is clamped at 240 mV. Top
panel, Data from a pyramidal neuron in CA1 of the rat
hippocampus (redrawn from Hestrin et al., 1990b, with per-
mission). The stimulus is at 25 Hz. Note the significant
summation and saturation. These properties are mediated
postsynaptically by the NMDARs, because they are absent in
the non-NMDR-mediated EPSCs recorded in the same cell
at 2100 mV. Bottom panel, NMDAR-mediated EPSCs pro-
duced by the model synapse (Eqs. 4, 5); the stimulus is at 20
Hz. gNMDA 5 0.07; ax 5 1, tx 5 2 msec; as 5 0.3, ts 5 120
msec. B, NMDAR-mediated EPSCs of the model synapse at
various stimulus frequencies R. The EPSC amplitude de-
creases in time in each train, and its steady state is smaller at
higher R. The average current saturates at high R. C, The
ratio of the NMDAR-mediated EPSC in the steady state
(DI

NMDA, ss
) over its initial value (DINMDA,0 ), as function of the

stimulus frequency. Solid curve, A(R) 5 1/(1 1 0.025 p R)2,
which fits well the simulation data; therefore DINMDA,ss ;
1/R 2 at high R. D, The average sNMDA as function of stimulus
frequency. Solid curve, sNMDA 5 nR/(nR 1 1), n 5 axastxts.
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which is solved to yield RE. Note that f is the input–output function of a
LIF neuron, another way of writing Equation 14 is:

RE 5 f~Itot!, where Itot 5 Iapp 2 IAHP 2 Isyn,ee 2 Isyn,ie, (15)

where Itot depends on Iapp , RE and RI.
In numerical simulations, the initial condition can be prescribed to be

near the asynchronous state, by assuming that the neural output patterns
are periodic with the phases uniformly distributed in a time period [0,
T 5 1/R] (Abbott and van Vreeswijk, 1993). Note that in the presence of
noise, the time course of the neural membrane potential is not exactly
periodic. However, this initial condition should be close to the actual
asynchronous state. If the latter is a stable attractor, with this initial
condition the network should quickly converge to it.

Numerical integrations. The model was numerically integrated using a
second order Runge–Kutta method, with an interpolation procedure to
determine the spike times (Hansel et al., 1998). The time step dt 5
0.02 2 0.05 msec. Typically I used Ne 5 1000 and Ni 5 200, some
conclusions were checked with Ne 5 5000 and Ni 5 1000 (Ni /Ne 5 20%).

In simulations, the network activity was measured by the instantaneous
firing rate RE(t) of the pyramidal cell population as follows. The time was
divided into small bins (Dt 5 1–10 msec were used). Then,

RE~t! 5
total number of spikes from all pyramidal cells in ~t, t 1 Dt!

NeDt
.

For example, in an asynchronous state RE would be constant in time
and equals the firing rate of each individual cell. A coherent network
oscillation would be reflected by a rhythmic time course of RE(t).

RESULTS
NMDA receptor channels and persistent activity at
low rates
Persistent activity is produced by an excitatory neural network,
when the recurrent synapses are sufficiently strong. In Figure 2A,
the network is initially in a rest state. In response to a transient
input pulse, neurons start to discharge spikes that activate recur-
rent synapses, which in turn elicit more spikes. This positive
feedback loop between the spike firing and the recurrent synaptic
drive leads to a self-sustained network activity, outlasting the
input. In the persistent state, neurons fire spikes asynchronously
in time: at any given moment there is always a fixed fraction of
cells firing. Therefore, the synaptic drive to each cell is tonic
(constant in time). Moreover, the average firing rate of neurons is
;40 Hz, within the physiological range of the persistent activity
of PFC cells during the delay period (Funahashi et al., 1989;
Rainer et al., 1998). The network is turned off by a brief hyper-
polarizing input, from the persistent state back to the rest state.
In this simulation, the leak conductance gL differs from cell to cell
according to a Gaussian distribution. Cells with the smallest gL

values are the most excitable and display spontaneous firing in the
rest state; whereas cells with the largest gL values are the least
excitable and only show transient responses to the input pulse but
no persistent activity (Fig. 2A).

The bistability between the rest state and active state is a
network phenomenon. As illustrated in Figure 2B, during persis-
tent activity, a neuron can be temporally hyperpolarized by an
applied current pulse, but its activity resumes itself immediately
after the perturbation, because the firing of any single neuron is
sustained by synaptic inputs from the circuit. Such a manipulation
would be feasible experimentally only with intracellular recording
from a behaving animal during a working memory task. The
prediction is that if bistability is not a single cell property but is
instead induced by the network circuit, a hyperpolarizing current
pulse should be incapable of switching a neuron off from its
persistent activity.

In model simulations, the NMDAR-mediated synaptic trans-

mission was necessary to generate network persistent activity, at
low firing rates such as in Figure 2. For the purpose of illustration,
consider first the simplified situation of a perfectly synchronous
network state in which all neurons behave exactly the same in
time. Therefore, the population of identical excitatory neurons
can be reduced to a single neuron endowed with an autapse (Fig.
3A). Suppose that the synaptic transmission is of the NMDA type
(decay time tE 5 80 msec). The cell is switched onto a firing state
by a transient input. At the end of input pulse, the NMDAR-
mediated current decays slowly, and after the time span of an
interspike interval (ISI), it remains large enough to trigger an-
other spike, which in turn generates more EPSC. This process
between the spiking and synaptic activation can continue indefi-
nitely, provided that the decay of the NMDAR-mediated current
is not too fast compared to a typical ISI, i.e. the tE /ISI ratio is
sufficiently large. Otherwise, if the synaptic current generated by

Figure 2. Persistent active state in an excitatory neural network. A,
Panels from top to bottom, membrane potentials of three cells, external
input current, rastergram, and population firing rate. The network model
is initially at rest. In response to a transient current pulse, the network is
activated. After the termination of the input, neurons continue to dis-
charge spikes asynchronously with an average firing rate of 40 Hz [R(t) is
constant in time; see also the rastergram]. In this simulation, there is a
Gaussian distribution of the leak conductance gL across the cell popula-
tion, with a mean of 0.025 mS and SD of 0.003 mS. Cells with the least gL
display spontaneous firing in the rest state (Cells 1, 2), whereas cells with
the largest gL do not show sustained firing in the network persistent state
(Cell 3) (gAMPA 5 0.2; gNMDA 5 0.04; I 5 0.3 nA). B, Bistability is a
network phenomenon. During persistent activity, a neuron is hyperpo-
larized by a current pulse (with two different intensities) to a negative
membrane potential, but at the end of the perturbation the firing activity
resumes itself because of the massive synaptic drive from the network.

9590 J. Neurosci., November 1, 1999, 19(21):9587–9603 Wang • Synaptic Mechanism for Persistent Activity in Prefrontal Cortex



one spike decays back to zero before the next spike is triggered,
the cell will return to the rest state instead. This is shown in
Figure 3B, where the synapse is now assumed to be of the AMPA
type (tE 5 2 msec). The peak AMPAR-mediated EPSC here is
;103 that of the NMDAR-mediated EPSC in Figure 3A, but it
decays rapidly between spikes during the input pulse and does not
give rise to persistent activity. Using a considerably stronger
synaptic conductance, the AMPAR-mediated current can be
large enough to generate a persistent activity, but at a very high
firing rate, so that the tE /ISI ratio is again large (see below).

The above argument applies to the network, if the neural firing
patterns are partially synchronous. For example, this can happen
because of the interplay between rapid synaptic excitation and
slower inhibition in a two-population network of pyramidal cells
and interneurons (Fig. 4). Powerful AMPAR-activated synapses
between pyramidal cells amplify the network activity, which is
damped afterwards by recurrent inhibition, leading to synchro-
nous network oscillations at ;8 Hz (the oscillation frequency
ranges from 8 to 65 Hz, when the pyramid-to-interneuron cou-
pling strength is varied gradually). Note that the AMPAR-
activated synaptic drive sAMPA fluctuates between zero and a peak
level during the oscillation. Without NMDAR channels, clearly

this synchronous network state would not be self-sustained, be-
cause when sAMPA is almost zero the network would have to
collapse back to the rest state. The slow NMDAR-mediated
current does not decay back to zero during the waning phases of
the network oscillation. As a result, the tonic component of the
NMDAR-activated synaptic drive sNMDA can sustain a synchro-
nous persistent state. Here, the requirement is that the oscillation
period T must not be too long compared to the NMDAR channel
decay time constant (tE /T must be large).

Therefore, by virtue of its temporal summation, NMDAR
channels (but not AMPAR channels) can provide sufficient tonic
drive to maintain a synchronous persistent state at low rates. On
the other hand, if the persistent state is asynchronous, a tonic
synaptic drive can be realized by a spatial summation over neu-
rons. In the latter case, because the synaptic drive is constant in
time regardless of the tE /ISI ratio, it would seem that the fast
AMPAR channels alone might be sufficient to maintain a persis-
tent network state at any firing rate. As we will see below, this is
not the case because of the problem of rate control with the
AMPAR channels.

Frequency–current relation of a bistable network
Persistent activity in our network model is realized as a bistability
between a rest state and an active state, where the network can be
switched on from the rest state by a transient stimulus and
remains in the persistently active state afterwards. Consider for
example the case where synaptic connections are mediated by the
fast AMPARs. For a fixed synaptic coupling (gAMPA 5 1.05) and
a given external drive (I 5 0.3 nA), the neuronal firing rate of an
asynchronous network is given by the nonlinear equation R 5
f(Itot(R)) (Eq. 15 in Materials and Methods). The function f is the

Figure 3. Tonic synaptic drive is required to sustain a persistent active
state. A, A single neuron with an autapse of the NMDA type is excited
from the rest to an active state that outlasts the transient input. The
persistent firing is at 36 Hz. Note the tonic NMDAR-mediated current
(gNMDA 5 0.1). B, If the synaptic current is mediated by the AMPARs
(gAMPA 5 1.5), the synaptic current fluctuates rapidly between a maximum
and zero. When it is zero, the cell does not receive synaptic drive any
more; therefore the cell decays back to the rest state as soon as the input
is withdrawn. Note the different scale for the synaptic current in A and B.

Figure 4. Slow NMDAR channels can sustain a persistent active state in
which the network dynamics is partially synchronous. The network model
consists of two (pyramid and interneuron) populations. The network is
initially at rest and is switched to the active state by a transient input.
Synchronous oscillations at 8 Hz are generated by the interplay between
the fast recurrent AMPAR-activated excitation and slower feedback
inhibition. Note that the pyramidal cell and interneuron populations show
very small relative phase shift (inset). The AMPAR-activated synaptic
drive sAMPA phasically oscillates between zero and a maximum, whereas
the NMDAR-activated synaptic drive sNMDA remains at a significantly
high level, which is sufficient to maintain the network activity
(gAMPA,ee 5 0.7; gNMDA,ee 5 0.07; gAMPA,ei 5 0.2; gNMDA,ei 5 0.02;
gGABA 5 0.1; I 5 0.3 nA).
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neuronal input–output relation, and the total input Itot is a func-
tion of R caused by the recurrent synaptic interactions. When the
left and right hand sides of the equation are plotted on a same
graph, the solutions for R correspond to the intersection points of
the two curves. As shown in Figure 5A (top panel, solid curve),
there are three states of different firing rates: a rest state (in which
synapses are not activated), an active (persistent) state, and a
middle state (which is always unstable, thus not observable in
network simulations). The instability of a steady state can be
intuitively understood as follows. When f(Itot) , R, the total
current acts to decrease firing, whereas when f(Itot) . R the total
current acts to increase firing. Therefore, if the rate R happens to
be slightly higher than the middle steady state, f(Itot) . R and R
will increase further; whereas if R is lower than the middle state,
f(Itot ) , R and R will decrease further. In either case the system
will drift away, and the middle steady state is not stable against
small perturbations.

The bistability occurs within a certain range of the I values
(Fig. 5A, top panel). If the external drive is too small (I 5 0.1), the
combined external and recurrent drive is not sufficient to main-
tain a persistent state. On the other hand, if it is too large (I 5
0.5), the rest state no longer exists. By plotting the steady states as
function of I, an S-shaped frequency–current curve is obtained
for a bistable asynchronous network (Fig. 5A, bottom panel). Let

us denote by Ia and Ib the two I values delimiting the bistable
range. Ia is the smallest I value for an active state, and Ib is the
largest I value for the rest state. Ib . 0.4 nA is close to the
threshold current for an isolated neuron, because recurrent syn-
apses are not activated in the rest state. The firing rate of the
active state increases with I; the lowest possible rate corresponds
to Ia , at the left-knee of the curve. In our example neuronal firing
rates of persistent activity are above 110 Hz, much higher than
those observed in the PFC neurons (10–50 Hz).

Can the firing rate of persistent activity be reduced by weaker
recurrent synaptic connections? In Figure 5B are shown the
frequency–current curves of the network at various coupling
strengths (gAMPA ). We see that bistability becomes possible only
with sufficiently strong gAMPA. With larger gAMPA , persistent state
can be realized at smaller I (Ia shifts to the left), so the bistability
range (Ib 2 Ia ) is wider (the persistent state is more robust). On
the other hand, the lowest firing rate of a persistent state (at Ia)
dramatically increases with gAMPA (Fig. 5B, filled square). There-
fore, there is a tradeoff between the lowest firing rate possible and
the robustness of the phenomenon: if we require that the bistable
range be reasonably large (at least 0.1–0.3 nA, for example), the
firing rate of a persistent state is always 100–200 Hz or higher.
Furthermore, the stability of the active state is not guaranteed.
Indeed, the persistent state close to Ia is usually not observed in

Figure 5. Frequency–current relation for
a bistable network of pyramidal neurons.
A, Bistability with AMPAR-activated
synaptic drive (gAMPA 5 1.05). Top panel,
For a fixed external input drive, the pop-
ulation firing rate of the asynchronous
state is given by R 5 f(R). Such states are
obtained graphically by the intersections
of the function f(R) with the diagonal line.
There are three states for I 5 0.3 (solid
curve); two (rest and active) states are
stable ( filled circles), and one is unstable
(open circle). If I is too small (I 5 0.1;
dotted line) or too large (I 5 0.5; dash-
dotted line), there is only one steady state
that is resting or active, respectively. Bot-
tom panel, Bistability is manifested by the
presence of three branches of the
frequency–current curve; the bottom
branch is the rest state, the top branch is
the active state, and the middle branch is
unstable. Within a range of external input
current, denoted by Ia and Ib , the network
can be either at rest or in the active state.
B, Different frequency–current curves
correspond to gAMPA 5 0.6 to 1.5, by in-
crement of 0.15. With larger gAMPA the
bistable range (Ib 2 Ia ) is wider, but the
lowest firing rate of the active state lo-
cated at Ia ( filled square) is dramatically
increased. C, Bistability with NMDAR-
activated synaptic drive (gNMDA 5 0.006).
Top panel, For a fixed I 5 0.3 nA, with
NMDAR channels the function f(R) shows a
plateau at relatively low R values, because of
the saturation of the NMDAR-activated
conductance (compare Fig. 1), yielding a rel-
atively low firing rate of the persistent state.
Bottom panel, Frequency–current curve. D,
Different frequency–current curves corre-
spond to gNMDA 5 0.0 to 0.014 by increment
of 0.002 (the asynchronous state was calcu-
lated with [Mg 21] 5 0). With larger gNMDA the bistable range is wider (Ia is shifted to the left), whereas the minimal firing rate of the persistent state
( filled square) remains ,40 Hz.
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direct simulations of the network model, presumably because it is
not stable in the presence of noise. The stability issue will be
discussed in more detail below, when negative feedback processes
are included.

In contrast to the case with AMPAR-activated synaptic trans-
mission, with only NMDAR-activated synaptic transmission, ro-
bust persistent states at low firing rates are possible (Fig. 5C,D).
The bistable range increases nearly linearly with the NMDAR-
activated conductance gNMDA , whereas the lowest firing rate of
the persistent state remains ,40 Hz (Fig. 5D, filled square). The
dramatically different input–output relations obtained with the
AMPA- or NMDA-type synapses can be explained in terms of
their respective gating kinetics. As shown in Figure 5C (top
panel), for a given synaptic coupling (gNMDA 5 0.006) and exter-
nal drive (I 5 0.3 nA), the input–output relation f(R) saturates at
low firing rates with NMDAR channels, in contrast to the case
with AMPAR channels (Fig. 5A, top panel). This is because the
dependence of f on R is via the synaptic drive sE(R) (Eq. 8). The
fast-decaying AMPAR channels do not accumulate over time,
hence do not saturate except at very high firing rates (;500 Hz).
By contrast, the slowly decaying NMDAR-mediated current sat-
urates at firing rates within the physiological range (Fig. 1D). At
.50 Hz or so sNMDA becomes independent of the input rate, so it
can no longer be increased further to sustain higher firing rates.
(The actual firing rate, which also depends on gNMDA and the
input I, can of course be .50 Hz.) For this reason, NMDAR (not
AMPAR) channels are well suited to realize persistent states at
low firing rates in a robust manner.

Negative feedback mechanisms for rate control
Can some negative feedback mechanisms be used to resolve the
problem of rate control with the AMPAR channels alone? This
question is addressed next, by considering consecutively spike-
frequency adaptation, recurrent shunting inhibition, and short-
term synaptic depression.

Spike-frequency adaptation
Spike-frequency adaptation, a common property of (“regular
spiking”) cortical pyramidal neurons (McCormick et al., 1985;
Mason and Larkman, 1990; Wang, 1998), is added to the model
neuron by including an IAHP. To assess the effects of IAHP on a
persistent state sustained by the AMPAR channels, the frequency–
current curve is calculated for different gAHP values (Fig. 6A). For
a fixed I the firing rate of the active state is reduced by gAHP, (Fig.
6A, vertical dotted line). At the same time, however, the bistable
range shrinks dramatically and eventually disappears with large
gAHP values (for gAHP $ 0.005).

This effect of IAHP is readily explained in term of a negative
current that counterbalances the excitatory synaptic current. Sup-
pose that the firing rate is given by the input–output relation R 5
f(Itot ) (Eq. 15), where Itot 5 Iapp 2 Isyn 2 IAHP. The average
membrane potential of a firing neuron is approximately half-way
between Vreset and Vth , Vay . (Vreset 1 Vth)/2 5 255.5 mV. Then,
one has Isyn . gAMPAsEVay . gAMPAyVayR 5 2g̃AMPAR, with sE .
yR and g̃AMPA 5 2gAMPAyVay. On the other hand, IAHP ' gAHP

[Ca21]ay (Vay 2 VK) 5 g̃AHPR, with [Ca21]ay 5 aCatCaR and
g̃AHP 5 gAHPaCatCa(Vay 2 VK). Taken together, we have

Itot 5 Iapp 1 ~ g̃AMPA 2 g̃AHP! R. (16)

Therefore, the addition of IAHP amounts to a subtractive re-
duction of the effective recurrent synaptic excitation. For exam-
ple, if gAMPA 5 1.2 and gAHP 5 0.0025, g̃AMPA 5 2gAMPAnVay 5

6.66 and g̃AHP 5 gAHPaCatCa(Vay 2 VK) 5 1.18. Thus, g̃AMPA 2
g̃AHP 5 6.66 2 1.18 5 5.48. This is equivalent to a reduced gAMPA

value (g̃AMPA 2 g̃AHP)/(2nVay) 5 0.99 in the absence of IAHP.
Indeed, the frequency–current curve with gAMPA 5 1.2 and
gAHP 5 0.0025 and that with gAMPA 5 0.99 and gAHP 5 0 are
essentially superimposable (Fig. 6A).

Note that the specific form of this subtraction depends on the
model details. For example, if IAHP has the following functional
form IAHP 5 gAHP [Ca 21]n/([Ca21]n 1 DK

n)(Vm 2 VK), n . 1,
then the subtractive term in Equation 16 will be nonlinear.

It is important to emphasize that the stability of an active state
is not guaranteed. In the Appendix it is shown that the stability of
an asynchronous state depends critically on the synaptic time

Figure 6. Effect of spike-frequency adaptation in an excitatory network
(gAMPA 5 1.2). A, Frequency–current curves with different gAHP values.
For a given input current (e.g., I 5 0.35 nA; vertical dotted line), the firing
rate is decreased by increasing gAHP. At the same time, the bistable range
shrinks, and the bistability disappears when gAHP is .0.005. Dotted line,
gAMPA 5 0.99 and gAHP 5 0, which is superimposable with that of gAMPA 5
1.2 and gAHP 5 0.0025. The persistent state at reduced firing rate (e.g.
open circle at I 5 0.35 and gAHP 5 0.004) is unstable if the excitatory
synapses are mediated by the fast AMPARs (see Appendix). B, Adapta-
tion induced network rhythmic bursting. When the asynchronous state is
unstable and does not coexist with the rest state, the network displays
synchronous burst firing patterns (with I 5 0.45 and gAHP 5 0.01, indi-
cated by a cross in A). Strong and fast recurrent excitation recruits neurons
and accelerates neural discharges, until IAHP grows sufficiently to termi-
nate the burst. IAHP then decays back to zero, and the cycle starts over
again. Note that the neural firing is coherent at the onset of the burst, but
desynchronizes within the burst (inset).
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constant. In fact, with the fast AMPAR-mediated synapses, any
active state in the presence of an IAHP is expected to be unstable
if its firing rate is below the lowest possible firing rate of an active
state with IAHP 5 0. This is true regardless whether the active
state belongs to a bistable range or not. For example, at I 5 0.45
nA and gAHP 5 0.01 there is a single state with R 5 30 Hz (Fig.
6A, cross). As shown in Figure 6B, this asynchronous state is not
stable. Instead, neurons fire synchronously repetitive bursts of
spikes that alternate with quiescent phases in time, the network
oscillation has a frequency of 3 Hz. Such rhythmic bursting has
also been reported in other studies that are not related to persis-
tent activity (van Vreeswijk and Hansel, 1997; G. B. Ermentrout,
personal communication). Synchronous burst oscillation is a com-
mon phenomenon in neurons and networks, usually when a
strong and rapid autocatalytic process is combined with a slower
negative feedback (here, the recurrent AMPAR-activated synap-
tic excitation and the IAHP ). Clearly, because the fast AMPAR-
activated synaptic drive goes to zero between the bursts, the
network would have to collapse onto the rest state, if the latter
existed. In other words, when the active state in a bistable range
is unstable (Fig. 6A, open circle), it is not observable, and the
only stable behavior is the rest state. From these results it is
concluded that IAHP cannot subserve as a rate control mechanism
unless additional slow synaptic transmission is present, such as
that mediated by the NMDARs.

Recurrent shunting inhibition
Synaptic shunting inhibition has been suggested as a rate control
mechanism in the neocortex (Douglas et al., 1995). When a
neuron is at rest, shunting inhibition does not produce a net
hyperpolarizing current because its reversal potential VI is close
to the resting potential. Instead, it causes an increase in mem-
brane conductance, which divides the excitatory synaptic current
(Carandini and Heeger, 1994). However, as it was recently
pointed out by Holt and Koch (1997), the situation is different
when the cell is in a repetitively firing state. In that case, the
spiking mechanism essentially clamps the average membrane
potential roughly half way between Vreset and Vth , well above VI

(for example, VI 5 270 mV, whereas Vay 5 (Vreset 1 Vth)/2 5
255.5 mV), and the effect of inhibitory synapses is hyperpolar-
izing. For example, suppose that the model network is in a
persistently active state, and each neuron receives a feedforward
synaptic inhibition with a given input rate RI. Then, this input is
equivalent to a negative current IGABA 5 gGABAsI(Vay 2 VI),
where the synaptic drive sI as a function of RI is given by
Equation 10. Therefore, the addition of feedforward inhibition
simply shifts a frequency–current curve to the right by the fixed
amount IGABA , without changing the range of network bistability
or the lowest firing rate of a persistent state. This conclusion was
confirmed by simulations (data not shown).

In the case of feedback synaptic inhibition, the firing of inhib-
itory interneurons is driven by pyramidal cells, and RI is a
function of RE , RI 5 g(RE) (Fig. 7C). In this case Ib remains the
same, because gGABA has no effect on the rest state. On the other
hand, a larger I is needed to counterbalance IGABA for the
persistent activity (IGABA shifts Ia to the right). Therefore the
range of network bistability (Ib 2 Ia) is reduced. Note that, with
increasing gGABA , although the firing rate at a given I is reduced,
the lowest possible rate of a persistent state (Fig. 7A, filled square)
remains almost the same. Therefore, recurrent inhibition acts in
a subtractive manner, in the sense that is produces a negative

current that counterbalances the recurrent excitatory synaptic
current. In terms of the firing rate equation RE 5 f(Itot ), we have:

Itot 5 Iapp 2 Isyn,ee 2 Isyn,ie 5 Iapp 1 g̃AMPARE 2 g̃GABAsI~RI!,
(17)

with g̃GABA 5 gGABA(Vay 2 VI) and RI 5 g(RE ) (Eq. 14). The
subtractive term is nonlinear in RE.

If inhibitory neurons are not near the firing threshold, they will
fire spikes only when their excitatory drive is sufficiently strong,
e.g. RI 5 0 unless RE is above a critical value ;25 Hz (Fig. 7C).
As a result, the portion of the frequency–current curve of the
pyramidal cell with RE , 25 Hz (on the middle branch) cannot be
altered by feedback inhibition. With sufficiently strong gGABA ,
network bistability is always preserved, and the lowest firing rate
of a persistent state remains 25 Hz (Fig. 7B). In this way, persis-
tent activity with reasonably low firing rates becomes possible.

I also considered an additional effect that may be caused by
shunting inhibition. Suppose that shunting inhibition produces an

Figure 7. Effect of feedback shunting inhibition. A, B, Frequency–current
curves with different gGABA values when isolated interneurons are near or
well below the firing threshold, respectively ( C). A, Stronger gGABA
reduces the bistable range and abolishes the persistent state. Note that the
lowest firing rate of persistent activity ( filled square) is hardly changed by
inhibition. B, In this case, the portion of the frequency–current curve with
RE , 25 Hz is unaffected by recurrent inhibition. With sufficiently large
gGABA , bistability is preserved, and the active states have reasonably low
firing rates (25–50 Hz). C, The firing rate RI of interneurons as function
of RE for A and B (gAMPA,ee 5 1.2, gAMPA,ei 5 0.4; the Poisson input rate
to interneurons is l 5 2500 Hz in A and 2000 Hz in B).
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increase in membrane conductance along a dendritic cable of
length L, between the excitatory synapses and the spike triggering
zone. The effective characteristic cable length l is then expected
to decrease like l ; (gL 1 gGABAsI)21/2. To take into account the
exponential attenuation of excitatory synaptic inputs along a
passive cable, the excitatory conductance gE should be multiplied
by a factor ; exp(2L/l) ; exp(2b(gGABAsI )1/2), where b is given
in terms of the cable properties (Abbott, 1991). This highly
nonlinear effect was suggested to provide a solution to the high
firing rate problem in neural networks (Abbott, 1991). When this
effect is included in the model, persistent states with low firing
rates can be obtained, the frequency–current curve of the pyra-
midal cell is similar to Figure 7B (data not shown).

In any case, when a persistent state with low firing rate is
realized with synaptic inhibition, its stability still remains to be
determined. In fact, such a state was never observed in the
network simulations, if the recurrent excitation was mediated
exclusively by the fast AMPARs. Again, intuitively, such an active
state is expected to be unstable because of the interplay between
a fast recurrent excitation and a slower negative feedback. This is
shown mathematically in the Appendix. To illustrate this point by
computer simulations, I used the scaling parameter f for the
synaptic kinetics (Eqs. 4, 5) to change systematically the EPSC
gating rates, whereas the average synaptic drive sE and the firing
rate RE remained the same. f was varied so that tE 5 ts /f was
between 2 and 80 msec. Let us choose gGABA 5 0.03 and I 5 0.34
nA, the persistent state has a firing rate of 33 Hz (Fig. 7B). As
shown in Figure 8, when the excitatory synapses are slow (tE 5 80
msec; comparable to that of the NMDAR channels), a persistent
state can be sustained in the network (Fig. 8A). Because of the
slow synaptic build-up, the network firing activity gradually
ramps up during the input pulse. Moreover, in contrast to par-
tially synchronous activity of Figure 4, with slow synaptic excita-
tion (in the absence of a fast component) the persistent state is
asynchronous. When tE is sufficiently reduced, the network ac-
tivity in the persistent state displays increasingly large temporal
fluctuations (Fig. 8B). If tE is decreased below a critical value
(tE . 18 msec), the persistent state becomes unstable, because
synchronous fluctuations eventually bring the network too close
to the rest state, and the activity terminates (Fig. 8C).

To conclude, the effect of GABAA synaptic inhibition is largely
subtractive rather than divisive in repetitively firing neurons.
Therefore, the phenomenon of persistent activity becomes less
robust and can be abolished completely by strong recurrent inhi-
bition. Moreover, when a persistent state with low rate does exist,
it cannot be stably maintained unless the excitatory synapses are
sufficiently slow (the ratio tE /tI must not be too small).

Short-term synaptic depression
I now turn to short-term depression of the excitatory synapses as
a rate control mechanism. A typical simulation result is shown in
Figure 9. In the absence of short-term depression (the parameter
py 5 0; see Materials and Methods), a persistent activity state has
a firing rate close to 200 Hz (Fig. 9A). The addition of short-term
depression (py 5 0.35) reduces the firing rate to ;40 Hz, back to
the physiological range of PFC neurons (Fig. 9B). Note that,
because of short-term depression, the neuronal firing shows an
exponential decrease during the depolarizing input pulse (Fig.
9B, top and middle panels); and immediately after the pulse there
is a trough in the neural activity during which time the synapses
recover from depression (Fig. 9B, bottom panel). In this simula-

tion both fast AMPAR and slow NMDAR channels are included,
and the dynamics is asynchronous in the persistent state.

The frequency–current curve is calculated for different degrees
of short-term depression (Fig. 10A). In this case the undepressed
AMPAR-mediated currents are so strong that with py 5 0 the
firing rates of the persistent states are ;500 Hz, near the neuro-
nal saturation (data not shown). As we see in Figure 10A, short-
term depression dramatically decreases the lowest firing rate of
the active states (Fig. 10A, filled square). The range of bistability
also shrinks (Ia shifts to the right) with increasingly strong short-
term depression; but for some py values this range remains rea-
sonably large while the physiological firing rates are achieved.
Short-term depression gives rise to synaptic saturation, which
occurs at lower firing rates with larger py (Fig. 10B). Indeed, for
AMPAR channels sE . nRE. With short-term depression sE 5
nRE /(1 1 pytDRE) (Eq. 9). In terms of the firing rate equation
R 5 f(Itot), we have:

Itot 5 Iapp 2 Isyn 5 Iapp 1
g̃AMPARE

1 1 pytDRE
. (18)

Therefore, the effect of short-term depression divides the ampli-
tude of the excitatory synaptic drive. Unlike a subtractive mech-

Figure 8. The low rate asynchronous state is not stable if excitatory
synapses are too fast. The network model is simulated in the presence of
strong recurrent inhibition. The speed of the excitatory synaptic kinetics
is varied, whereas the steady–state synaptic drive and the mean firing rate
are preserved. A, With tE 5 80 msec, the network can be turned on to the
persistent state with RE . 33 Hz. Note the slow ramping-up of RE(t)
during the transient stimulus, caused by the temporal summation of the
slow synaptic current. B, With tE 5 18 msec, the persistent state is still
stable, but RE(t) displays large fluctuations in time. C, With tE 5 17 msec,
the fluctuations eventually bring RE(t) too close to zero, and the network
returns to the rest state (same parameters as in Fig. 7B, with gGABA 5 0.03
and I 5 0.34 nA).
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anism (spike-frequency adaptation or recurrent inhibition), which
is equally strong at all rates, a divisive mechanism affects high
rates disproportionally. This leads to the flattening of the
f(Itot(R)) curve (Fig. 10B). At high frequencies [RE .. 1/(pytD)],
the synaptic current becomes independent of the firing rate
(Abbott et al., 1997). As a result, the positive feedback between
firing and synaptic excitation has to stop at some firing rate, well
below the neuronal saturation level (;500 Hz).

The dynamical stability of these asynchronous persistent states
with short-term depression was checked in direct network simu-
lations. Simulations were performed with both all-to-all and
sparse couplings. In a sparse network, unlike an all-to-all network,
the number of synaptic connections varies widely from cell to cell,
with an average Msyn. One might expect that such heterogeneity
would favor an asynchronous persistent state against instability
and synchrony. In fact, I found that as long as Msyn is not too small
($100), the network behaves similarly with sparse or all-to-all
coupling. This is true independent of the network size Ne. In
other words, what matters is the absolute number of connections
per neuron Msyn , not the connection probability p 5 Msyn /Ne.
Similar to the case of spike-frequency adaptation or recurrent
inhibition, it was found that fast AMPAR channels could not
sustain such a low rate state, and that slower synapses were
required (See Appendix for stability analysis). To be quantitative,

for a given persistent state I varied the synaptic time constants
systematically in network simulations by changing the scaling
parameter f (Eqs. 4, 5). This way, the smallest value of tE 5 ts /f
that was needed for the persistent state to be observable was
determined. For example, consider the persistent states at I 5 0.3
nA of Figure 10A, which have the firing rate ranged from 100 to
35 Hz as py is varied from 0.15 to 0.35. The minimal tE required
for the stability of each of these states is plotted as function of the
firing rate R in Figure 11A. The critical tE is larger with lower R,
it also depends on the time constant of the depression process tD

(see Appendix).
Figure 11A was obtained with Msyn 5 100 for a sparse network.

The dependence on Msyn is shown in Figure 11B, for R 5 35 Hz.
One observes that the minimal tE is not sensitive to Msyn , as long
as Msyn $ 100. At very small Msyn , there is an abrupt increase of
the required minimal tE , i.e. even slower synapses are needed to
stabilize the active state. This is because, if a neuron receives a
very small number of synaptic inputs, each at a low rate, the
synaptic current must be long-lasting in order to produce a
sustained tonic drive to the postsynaptic cell. Figure 11, C and D,
illustrates the network dynamical behavior for tE around the
critical minimum for R 5 35 Hz (Msyn 5 100). In these simula-
tions, the network was initially set to be very close to the asyn-

Figure 9. Rate control by short-term synaptic depression (STD). A,
Without STD the firing rate of the persistent state is typically high, as long
as there is a substantial AMPAR-mediated component of the recurrent
synaptic transmission. B, The addition of STD (py 5 0.3) significantly
reduced the firing rate to ;40 Hz, within the physiological range of PFC
cells. Note that during the transient depolarizing pulse R(t) has a rapid
peak, then decreases to a low steady state caused by STD (see D(t)). There
is a trough in R(t) immediately after the input pulse, when D(t) recovers
and reaches a steady state (gAMPA 5 0.7; gNMDA 5 0.07; I 5 0.3 nA).

Figure 10. Effect of short-term synaptic depression in an excitatory
neural network. A, Frequency–current curves with py 5 0.15 to 0.35, by
increment of 0.05. Short-term depression reduces the lowest firing rates of
the active states ( filled square), whereas the bistable range remains
reasonably large. B, For a fixed input current (I 5 0.3 nA) in A, the firing
rate of the asynchronous state is given by R 5 f(R); or the intersections of
f(R) with the diagonal line. Stronger short-term depression leads to
saturation of the function f(R) at progressively lower firing rates, so that
rate control is achieved for the persistent state. (gAMPA 5 8).
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chronous state (see Materials and Methods for the asynchronous
initial condition). Below the critical value (Fig. 11C; tE 5 49
msec), the synchronous state is unstable. The network activity
fluctuates in time, and R oscillates with growing amplitude. When
R gets close to zero, the synaptic excitation becomes too weak to
bring the network back up again, and the network activity dies
out (Fig. 11C). On the other hand, above the critical value (Fig.
11D; tE 5 50 msec), fluctuations of the network activity decay
with time, and the asynchronous persistent state is stable. In this
random and sparse network, the firing rate of a neuron is a linear
function of its number of synaptic connections (Fig. 11D, bottom
panel), and is widely distributed across the neural population
(20–60 Hz).

To conclude, unlike spike-frequency adaptation or synaptic
inhibition, short-term depression acts as a divisive mechanism for
rate control. The resulting persistent states at low firing rates are
not stable, unless tE is larger than a critical value, which depends
on both the short-term depression time constant and the firing
rate. For the firing rates in the physiological range of PFC cells,
the required synaptic kinetics is much slower than that of the
AMPAR channels.

DISCUSSION
The general finding of this work is that memory processes per-
formed in strongly recurrent cortical circuits, such as delay-period
activity, depend on the temporal dynamics as much as on the
efficacy of recurrent synapses. Three main conclusions are: (1) the
asynchronous dynamics is generally not stable in a fast recurrent
excitation/slow negative feedback system; (2) slow NMDAR-
activated synapses are powerful for maintaining a stable persis-

tent activity at low firing rates; (3) short-term depression of
excitatory synapses provides an efficient mechanism for rate
control.

NMDA receptors and persistent activity
NMDAR channels were found to be crucial to persistent activity
in the network model for two reasons. First, their slow gating
kinetics naturally leads to synaptic saturation at low firing rates,
as observed experimentally (Fig. 1A), thereby contributing to the
rate control of network activity. This saturation of the steady-
state response to repetitive stimulation should be distinguished
from receptor saturation by a single vesicle of transmitter; the
latter is not supported by recent data (Mainen et al., 1999) and is
not assumed in the present model. Second, slow synapses usually
suppress network instability and oscillations, but are also able to
sustain a partially synchronized network dynamics realized by
other (fast) mechanisms. The voltage dependence of gating ki-
netics represents another interesting feature of INMDA to be
explored in the context of working memory processes (Lisman et
al., 1998).

Is there experimental evidence for a critical role of NMDARs
in delay-period activity of the prefrontal cortex? Scherzer et al.
(1998) reported a much higher expression of the NMDAR sub-
unit mRNAs in the prefrontal cortex than in other cortical areas
(such as primary visual cortex) of the human brain; which raises
the interesting question of whether this regional difference could
be correlated with the conspicuous occurrence of persistent ac-
tivity in the association cortices in contrast to sensory cortices.
NMDARs have been demonstrated to contribute to synaptic
transmission at intracortical connections of sensory cortices

Figure 11. Stability of the persistent state in a sparse network with short-term depression (average number of synapses per neuron Msyn 5 100 except
for B). A, For each of the five active states in Figure 10B, the network model is simulated, whereas the synaptic time constant tE is varied systematically.
The minimal value of tE for which the persistent state was observed is plotted against the firing rate. Thus, the lower is the firing rate, the slower the
synapses must be to sustain the network persistent activity. B, The required minimal tE is not sensitive to Msyn , as long as the latter is .100. C, D, An
example with py 5 0.35 and R 5 35 Hz. The initial condition for the network simulation was prescribed to be as close to the asynchronous state as possible.
C, For tE 5 49 msec, the fluctuations of the network activity as measured by R(t) grow in time, and eventually die out. Bottom panel, Histogram of the
number of connections per neuron, centered at Msyn 5 100. C, For tE 5 50 msec, network fluctuations are damped out, and the persistent state is
stabilized. Bottom panel, The neural firing rate is a linear function of the number of synaptic inputs and varies in a wide range (20–60 Hz) across the
population.
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(Thomson et al., 1985; Larson-Prior et al., 1991; Armstrong-
James et al., 1993; Thomson and Deuchars, 1995; Markram et al.,
1997) and frontal cortex (Sutor and Hablitz, 1989; Hirsch and
Crépel, 1990; Kang, 1995). In certain cortical area, this contribu-
tion may overwhelm that of AMPARs and dominate recurrent
horizontal excitations (Fleidervish et al., 1998). More quantita-
tive analysis of the NMDAR- and AMPAR-mediated synaptic
currents in the PFC has been lacking, for both the monkey and
the rodent. On the other hand, in behavioral experiments with
rats performing a spatial delayed alternation task, systematical
administration (Verma and Moghaddam, 1996) or microinjection
into the prefrontal cortex (Romanides et al., 1999) of NMDAR
antagonists impaired working memory. These observations are
consistent with our hypothesized importance of NMDARs to
working memory. A direct experimental test, however, will need
to be done on behaving animals, by combining pharmacological
manipulation of NMDARs with neuronal recordings from the
prefrontal cortex.

Note that in a model of persistent activity in the gaze control
system, Seung (1996) also suggested that slow synaptic transmis-
sion is of crucial importance, but for quite different reasons. That
network model is only weakly nonlinear, and slow synapses are
useful to prolong the lifetime of transient memory storage.

Rate control and robustness of network bistability
I have tested three candidate rate control mechanisms: spike-
frequency adaptation, feedback inhibition, and synaptic short-
term depression. I argue that a rate control mechanism should be
assessed based on its effect on the entire frequency–current curve
of the network. A rate control mechanism is judged effective if it
reduces the lowest firing rate of persistent activity down to a
physiologically plausible range; and at the same time the network
bistability should remain robust within a reasonable parameter
range. By these criteria, it was found that both spike-frequency
adaptation and feedback inhibition are not adequate. Both act in
a subtractive way, in the sense that each produces a negative
current that counterbalances the recurrent excitatory synaptic
current (Eqs. 16,17), and they readily abolish the persistent ac-
tivity phenomenon. A note of caution is warranted there, because
this study used the simple LIF neuron model that does not take
into account more complex features of cortical neurons, such as
dendritic morphology or other ionic currents that may contribute
to single neuron dynamics. In particular, it would be worth re-
examining the issue of feedback inhibition in a more realistic
situation where, for example, shunting inhibition is located near
the soma of a neuron, spatially separated from the excitatory
inputs at dendritic sites. Moreover, our conclusion on shunting
inhibition follows from the required preservation of network
bistability, hence it does not deny the importance of recurrent
inhibition as a rate control mechanism in situations without
persistent activity, such as sensory processes in the primary visual
cortex (Douglas et al., 1995; Borg-Graham et al., 1998). Finally,
synaptic inhibition is likely indispensible for the formation of
memory fields of the PFC neurons (Goldman-Rakic, 1995; Cam-
peri and Wang, 1998; Rao et al., 1999).

In contrast to spike-frequency adaptation or synaptic inhibi-
tion, short-term synaptic depression acts as a divisive mechanism,
in the sense that it divides the recurrent synaptic conductance
(Eq. 18). Short-term depression reduces the firing rate not by
preventing the neuronal saturation, but by saturating the synaptic
drive at low firing rates (Fig. 10B). In the divisive but not
subtractive case, firing rate of persistent activity is reduced effec-

tively, whereas bistability is preserved in a robust way. Recent in
vitro experiments have indicated that short-term depression is a
general property of the rat PFC synapses (Hempel, Hartman,
Wang, Turrigiano, and Nelson, unpublished observations). It
would be interesting to see whether there is evidence for short-
term depression in firing patterns of PFC cells of the behaving
animal. Similar to our model simulation (Fig. 9B), in a delayed-
response task, PFC neurons often display an exponential decrease
of the firing rate during the cue presentation, followed by a trough
of activity (Chafee and Goldman-Rakic, 1998; Romo et al., 1999;
G. Rainer and E. K. Miller, personal communication). Such an
effect needs to be measured quantitatively, and its underlying
cellular mechanism remains to be elucidated.

Stability and synchronization
To sustain persistent activity, a tonic synaptic drive is required to
remain significantly above zero at any moment. This can be
achieved by the fast AMPA-type synapses alone, if neuronal
firings are asynchronous. However, previous work has shown that
the asynchronous state is dynamically unstable if the excitatory
synapses are too fast (Abbott and van Vreeswijk, 1993). I found
that this problem is much more serious in the presence of a strong
negative feedback mechanism for rate control. A pertinent ques-
tion is to what extent this conclusion holds true in the presence of
additional factors that increase the disorder of the network.
Previous work has shown that noise has a stabilizing effect on the
asynchronous dynamics of a network of excitatory neurons (Ab-
bott and van Vreeswijk, 1993; Gerstner, 1999). In another study,
a random network of excitatory and inhibitory neurons, coupled
with instantaneous synapses, was found to be less synchronous
with sparser connectivity (Brunel, 1999). None of these models
contains a slow negative feedback mechanism. Here, in a network
where recurrent excitation interacts with slow short-term depres-
sion, I found that asynchronous dynamics is not stable if the
excitatory synapses are fast, even in the presence of synaptic noise
and when the network connectivity is very sparse and the neuro-
nal firing properties are widely heterogeneous (Fig. 11). Further
analysis is needed to see if asynchronous dynamics are generally
unstable in such fast recurrent excitation/slow negative feedback
systems, even in the presence of heterogeneity and noise. The
problem of stability of the asynchronous dynamics is of interest in
the larger context of balanced excitatory–inhibitory neural net-
works (Shadlen and Newsome, 1994; van Vreeswijk and Sompo-
linski, 1996).

Therefore, a general finding here is that when an asynchronous
persistent state has a low firing rate, its stability requires that the
excitatory synaptic time constant be comparable to the effective
time constant of the negative feedback mechanism. For a recur-
rent network of pyramidal cells and interneurons, the stability of
a persistent state critically depends on whether the GABAAR-
mediated inhibition is as fast as the AMPAR-activated excitation.
For both AMPARs (Geiger et al., 1995) and GABAARs (Mac-
donald and Olsen, 1994), the deactivation kinetics is regulated by
the subunit composition and thus may be specific for each cell
type. In hippocampal pyramidal neurons of the rat, the decay time
constant of the AMPAR-mediated EPSCs is .2 msec (at 35°C)
(Hestrin et al., 1990a), whereas that of the fast component of the
GABAAR-mediated IPSCs is .6–10 msec (Banks et al., 1998).
Hence IPSCs are approximately three to five times slower than
EPSCs. The present study showed that such a mismatch of
synaptic time constants does not favor the stability of an asyn-
chronous dynamics at low firing rates, and for this reason the slow

9598 J. Neurosci., November 1, 1999, 19(21):9587–9603 Wang • Synaptic Mechanism for Persistent Activity in Prefrontal Cortex



NMDAR channels could be required for the maintenance of a
persistent state.

It is an open question whether completely asynchronous dy-
namics is indeed the modus operandi of delay-period activity in
the PFC circuit. Funahashi (1998) recently reported that simul-
taneously recorded PFC cells displayed significant temporal cor-
relations in a spatial working memory task. In my model simula-
tions, when both the fast AMPA and slow NMDAR-mediated
synaptic components are present, the fast AMPAR-activated
recurrent excitation in interplay with slower negative feedback
processes often leads to synchronous neural firings and network
oscillations. In such a synchronous persistent state, the decay time
constant of the slow synaptic component must not be too small
compared to the average interspike interval (or oscillation pe-
riod) of neurons. For typical firing rates of PFC cells of 10–50 Hz,
ISI .20–100 msec, the NMDAR channels are needed.

From cellular physiology to behavior
The present study raised and highlighted a number of experimen-
tal questions, their answers will contribute to bridge the gap
between behavior-related neural activity and its underlying bio-
logical mechanisms.

Synaptic physiology of the prefrontal cortex
(1) What are the precise time courses of the AMPAR-mediated
EPSCs and GABAAR-mediated IPSCs? Is there a mismatch
between the two? (2) In response to a repetitive train of stimuli,
is the NMDAR-mediated EPSC a linear function of the stimulus
frequency in the steady state? If not, what is the frequency above
which the current saturates? (3) What are the relative amplitudes
of the AMPAR- and NMDAR-mediated EPSCs? Can they be
differentially modulated by neuromodulators such as dopamine
(Cepeda et al., 1992)? (4) Across the somatodendritic membrane
of a pyramidal neuron, is there a spatial segregation of excitatory
and inhibitory synapses? (5) What are the short-term plasticity
properties of PFC synapses?

Neural delay-period activity of the behaving animal
(6) Is there evidence for adaptation/depression of neuronal dis-
charges? (7) How variable/random is the neuronal persistent
activity? Do spike trains display some regular temporal structure?
(8) Do neurons fire asynchronously, or is there synchronization
within neural assemblies? (9) Can persistent activity of a neuron
be switched off by an intracellularly injected current pulse? (no, if
delay-period activity is network-induced; yes, if there is bistability
at the single cell level) (10) Would local blockade of NMDA
receptors in the PFC impair an animal’s working memory per-
formance? What are the correlated changes in the delay-period
activity of PFC neurons?

Implications for schizophrenia
In recent years, there is growing evidence that working memory
impairments are prominent symptoms in schizophrenia
(Goldman-Rakic, 1994; Weinberger and Berman, 1996), and that
dysfunction of the NMDAR-mediated neurotransmission in the
cortex may be at the origin of these cognitive deficits (Javitt and
Zukin, 1991; Coyle, 1996). For example, a noncompetitive
NMDA antagonist such as phencyclidine or ketamine produces
working memory deficits in healthy human subjects that closely
resemble schizophrenia (Javitt and Zukin, 1991; Krystal et al.,
1994). Moreover, significant alternations in gene expression of the
NMDA receptor subunits were found in PFC of schizophrenics
(Akbarian et al., 1996). However, the cellular mechanisms

through which working memory relies on the NMDAR channels
are largely unknown. The present theoretical work suggests a
candidate scenario for the working memory malfunction in PFC,
namely, an imbalance between the fast AMPAR- and the slow
NMDAR-mediated components of the recurrent synaptic trans-
mission within the PFC circuit can give rise to network dynamical
instability and disruption of delay-period persistent activity.

APPENDIX
Stability of an asynchronous state
In this Appendix, I show that, in general, an asynchronous per-
sistent state is not stable in a fast recurrent excitation/slow neg-
ative feedback system. Using a heuristic approach, I will write a
dynamical equation for the population activity, in each of the
three cases: spike-frequency adaptation, synaptic shunting inhibi-
tion, and short-term synaptic depression. Then I will discuss in
detail the stability analysis of such a dynamical system.

General remark
Because the excitatory network has a large number of dynamical
variables (at least as many as the number of pyramidal cells), a
rigorous stability analysis of the network involves as many degrees
of freedom (Abbott and van Vreeswijk, 1993; Treves, 1993; Ger-
stner, 1999). However, our approach is to focus on the fastest and
most stable of all dynamical modes for the system (when de-
coupled from the negative feedback). This would yield a single
dynamical equation for the population firing rate which, com-
bined with another equation describing the negative feedback,
forms a two-variable system. The idea is that if a steady state is
not stable for the two-variable system, it must be unstable for the
original network. On the other hand, if it is stable by this descrip-
tion, it still is not necessarily stable for the full network system.

Spike-frequency adaptation
The starting point is the firing rate equation R 5 f(R,[Ca21]ay). f
is the neuronal input–output relation, and the input current
includes contributions from the recurrent excitatory synaptic cur-
rent, which itself depends on R, the adaptation current that is
proportional to [Ca 21], as well as the external current I (not
explicitly shown). Suppose that one can write a dynamical equa-
tion for R, like:

dR
dt

5 F~R, @Ca21#ay! 5 ~ f~R,@Ca21#ay! 2 R/tE, (19)

where tE is a characteristic time constant for the most stable
dynamical mode of the network (when gAHP 5 0). It is assumed to
be dominated by the time constant of the excitatory synapses
rather than the membrane time constant (Abbott and van
Vreeswijk, 1993; Treves, 1993; Gerstner, 1999). The steady state
is given by dR/dt 5 0, from which R 5 f(R,[Ca21]ay) is recovered.

The equation for the calcium concentration averaged over a
typical interspike interval 1/R is:

d@Ca21#ay

dt
5 G~R, @Ca21#ay! 5 aCaR 2 @Ca21#ay/tCa.

(20)

Equations 19 and 20 constitute a dynamical system of two
variables; it can be analyzed by the phase-plane technique (Stro-
gatz, 1994; Rinzel and Ermentrout, 1998). It is convenient to
choose R and gAHP [Ca21] as independent variables, so that the
function f(R, gAHP [Ca 21]ay) is the same for different adaptation
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strengths gAHP. The nullcline dR/dt 5 F(R,[Ca21]ay) 5 0 plotted
on the phase plane has three branches (Fig. 12). The first one is
R 5 0. The second one is a decreasing function of [Ca21]ay,
signifying a reduction of R by adaptation. The third one is the
middle branch connecting the other two branches. On the other
hand, the nullcline d[Ca21]ay/dt 5 G(R,[Ca21]ay) 5 0 is a straight
line (Eq. 20). A steady state is given by an intersection of the two
nullclines. For small gAHP , there are three intersection points, one
on each of the three branches. The third intersection point with the
highest firing rate corresponds to the persistent state. With increas-
ingly larger gAHP , the R-nullcline remains the same (because it only
depends on the product gAHP[Ca21]ay), whereas the [Ca21]ay

nullcline has a decreasing slope. With sufficiently large gAHP , the
persistent steady state is moved from the top branch to the middle
branch of the R-nullcline (Fig. 12).

Recurrent shunting inhibition
In the case of shunting inhibition, we can heuristically write two
coupled equations for the firing rates RE and RI of the excitatory
and inhibitory neurons,

dRE

dt
5 F~RE, RI! 5 ~ f~RE, RI!2RE!/tE; (21)

dRI

dt
5 G~RE, RI! 5 ~ g~RE! 2 RI!/tI. (22)

where tE and tI are the excitatory and inhibitory synaptic time
constants, respectively. The steady states are given by dRE /dt 5 0
and dRI /dt 5 0, from which the neuronal input–output relations
(Eq. 14) are recovered. Two examples with different inhibition
strengths (gGABA ) are shown in Fig. 13, using the same parame-
ters as in Figure 7B. As we see in Figure 13A, the RE-nullcline has
three branches, and the asynchronous active state (RE

* ,RI
*) with a

high rate is located on the top one. When the firing rate RE is
reduced sufficiently by strong recurrent inhibition, (RE

* ,RI
*) is

moved to the middle branch of the RE-nullcline (Fig. 13B).

Short-term synaptic depression
In this case, the equations are:

dR
dt

5 F~R, D! 5 ~ f~R, D! 2 R!/tE; (23)

dD
dt

5 G~R, D! 5 2pyRD 1 ~1 2 D!/tD, (24)

the steady states are given by dR/dt 5 0 and dD/dt 5 0, which yield
R 5 f(R, D) and D 5 1/(1 1 pyRtD ). These nullclines are plotted
in Fig. 14, for two different py values. Again, the R-nullcline has
three branches. The asynchronous persistent state with a high
firing rate is on the top branch, and is moved to the middle branch
when its rate is reduced by strong synaptic depression.

Stability analysis
We have seen that in each of the three cases, the RE-nullcline has
three branches (the usual situation when there is a bistability
between the rest state and an active state). The asynchronous
active state, whose rate is reduced into the physiological range by
a negative feedback mechanism, is typically located on the middle
branch of the R-nullcline. I would like to show that this persistent
state is not stable if the excitatory synapses are much faster than
the effective time constant of the negative feedback. I will con-
sider only the case of recurrent synaptic inhibition. The other two
cases can be treated in a similar manner.

To study the local stability of a persistent state (RE
* , RI

*), in the

Figure 12. Phase-plane analysis for spike-frequency adaptation. The
R-nullcline plotted as function of gAHP [Ca 21] is independent of gAHP. The
[Ca 21]-nullcline is given by Equation 20. It is a straight line, with a
decreasing slope for larger gAHP. The steady states are given by the
intersections of the two nullclines. The persistent state is located at the
top branch of the R-nullcline with small gAHP , and is moved to the middle
branch with large gAHP. This active state on the middle branch is not
stable if the excitatory synaptic decay is much faster than the adaptation
time constant. Same parameters as in Figure 6A (I 5 0.35 nA).

Figure 13. Phase-plane analysis for recurrent shunting inhibition. A, For
small gGABA , the active state is located on the top branch of the RE-
nullcline. B, For large gGABA , it is shifted to the middle branch of the
RE-nullcline with a low firing rate. This active state on the middle branch
is not stable if the excitatory synapse is fast compared to the inhibitory
synapse. Same parameters as in Figure 7B (I 5 0.34 nA).
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presence of shunting inhibition, we shall linearize Equations 21
and 22. The local stability is determined by the matrix:

M 5 1
­F

­RE

­F
­RI

­G
­RE

­G
­RI

2 5 1S
­f

­RE
2 1D /tE

­f
­RI

/tE

­g
­RE

/tI 21/tI
2 , (25)

evaluated at (RE
* , RI

*). This steady state is locally stable, if the two
eigenvalues l1 and l2 of M have a negative real part. A qualitative
analysis can be performed as follows. Let us define Tr 5
­F/­RE 1 ­G/­RI , and Det 5 (­F/­RE)(­G/­RI ) 2 (­F/­RI)
(­G/­RE), then l1 and l2 are solutions of the algebraic equation
l2 2 Trl 1 Det 5 0; and l1 1 l2 5 Tr, l1l2 5 Det.

Because F decreases with RI and G increases with RE , we have:

­F
­RI

, 0;
­G
­RE

. 0,
­G
­RI

5 21/tI , 0, (26)

and the sign of ­F/­RE depends on which branch of the RE-
nullcline is the steady state located. Moreover, we shall make use
of the information about the slope of each nullcline at (RE

* , RI
*)

(Fig. 13). For the RE-nullcline,

­F
­RE

dRE 1
­F
­RI

dRI 5 0; or SdRE

dRI
DRE52S ­F

­RI
D /S ­F

­RE
D ,

(27)

and for the RI-nullcline,

­G
­RE

dRE 1
­G
­RI

dRI 5 0; or SdRE

dRI
DRI52S ­G

­RI
D /S ­G

­RE
D .

(28)

Suppose first that (RE
* , RI

*) is on the top branch (Fig. 13A),

where the slope of the RE-nullcline is negative, S­RE

­RI
DRE , 0.

Combining Equation 27 with Equation 26, we have:

­F/­RE , 0. (29)

From Equations 26 and 29, we deduce that l1 1 l2 5 Tr , 0
and l1l2 5 Det . 0. If l1 and l2 are real, clearly they must both

be negative, because their sum is negative, and their product is
positive. If l1 and l2 are complex, their real part is Tr/2 , 0. In
both cases, we conclude that the steady state is stable.

Let us now assume that the steady state (RE
* , RI

*) is on the
middle branch (Fig. 13B), where the slope of the RE-nullcline is

positive, SdRE

dRI
DRE . 0. Thus,

­F/­RE . 0. (30)

Because the slope of the RE-nullcline is larger than that of the
RI-nullcline at (RE

* , RI
*), we have:

2S ­G
­RI

D /S ­G
­RE

D , 2S ­F
­RI

D /S ­F
­RE

D . (31)

This, combined with Equations 26 and 30, leads to Det 5 l1l2 . 0.
Note that ­F/­RE(. 0) and ­G/­RI(, 0) are proportional to

1/tE and 1/tI ; respectively. Therefore, the sign of Tr 5 ­F/­RE 1
­G/­RI depends on the relative speeds of recurrent excitation and
feedback inhibition. Suppose that tE is much smaller than tI , the
positive term dominates and Tr 5 l1 1 l2 . 0. Because l1l2 .
0, if l1 and l2 are real, then they must be positive; if they are
complex, then their real part is positive. In both cases, the asyn-
chronous active state is unstable. If tE is much larger than tI , the
negative term dominates, thus Tr 5 l1 1 l2 , 0. Together with
l1l2 . 0, we conclude that the asynchronous active state is stable
within this framework of the population-activity description.
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