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Although the orientation of an arm in space or the static view of
an object may be represented by a population of neurons in
complex ways, how these variables change with movement
often follows simple linear rules, reflecting the underlying geo-
metric constraints in the physical world. A theoretical analysis is
presented for how such constraints affect the average firing
rates of sensory and motor neurons during natural movements
with low degrees of freedom, such as a limb movement and
rigid object motion. When applied to nonrigid reaching arm
movements, the linear theory accounts for cosine directional
tuning with linear speed modulation, predicts a curl-free spatial
distribution of preferred directions, and also explains why the
instantaneous motion of the hand can be recovered from the
neural population activity. For three-dimensional motion of a

rigid object, the theory predicts that, to a first approximation,
the response of a sensory neuron should have a preferred
translational direction and a preferred rotation axis in space,
both with cosine tuning functions modulated multiplicatively by
speed and angular speed, respectively. Some known tuning
properties of motion-sensitive neurons follow as special cases.
Acceleration tuning and nonlinear speed modulation are con-
sidered in an extension of the linear theory. This general ap-
proach provides a principled method to derive mechanism-
insensitive neuronal properties by exploiting the inherently low
dimensionality of natural movements.
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For natural movements, such as the motion of a rigid object or an
active limb movement, many sensory receptors or muscles are
involved, but the actual degrees of freedom are low because of
geometric constraints in the physical world. For example, as
illustrated in Figure 1, the rotation of an object alters many visual
cues. How these cues vary in time is not arbitrary but is fully
determined by the rigid motion, which has only 6 degrees of
freedom. As a consequence, neuronal activity reflecting such
natural movements also is likely to be highly constrained and to
have only a few degrees of freedom.

This paper presents a theoretical analysis of how neuronal
activity correlated with natural movements might be constrained
by geometry. The basic theory, although essentially linear, can
account for several key features of diverse neurophysiological
results and generates strong predictions that are testable with
current experimental techniques.

An emerging principle from this analysis is that neuronal
activity tuned to movement often obeys simple generic rules as a
first approximation, insensitive to the exact sensory or motor
variables that are encoded and the exact computational interpre-
tation. Such generic tuning properties are mechanism insensitive
because they are better described as reflecting the underlying
geometric constraints on movements rather than the actual com-
putational mechanisms. This simplicity arises when sensory or
motor variables represent changes in time rather than static

values. In the example shown in Figure 1, the viewpoint was fixed
and the object was rotated systematically around different axes.
The focus is on how neuronal responses depend on the rotation
axis in three-dimensional space, given approximately the same
view of the object. It is possible to derive a simple cosine tuning
rule for the rotation axis, although various visual cues may
depend on the static geometrical orientation of the object in
complex ways. Three-dimensional object motion is a specific
example; the same principles also apply to several other biological
systems, including nonrigid arm movement.

DIRECTIONAL TUNING FOR ARM MOVEMENT
Although the visual and the motor examples share similar
mechanism-insensitive properties, the reaching arm movement
has a simpler mathematical description and more supporting
experimental results and will be considered first.

Ubiquity of cosine tuning
A directional tuning curve describes how the mean firing rate of
a neuron depends on the reaching direction of the hand. As
illustrated in Figure 2, broad cosine-like tuning curves are very
typical in many areas of the motor system of monkeys, including
the primary motor cortex (Georgopoulos et al., 1986), premotor
cortex (Caminiti et al., 1991), parietal cortex (Kalaska et al.,
1990), cerebellum (Fortier et al., 1989), basal ganglia (Turner and
Anderson, 1997), and somatosensory cortex (Cohen et al., 1994;
Prud’homme and Kalaska, 1994). Although the examples shown
in Figure 2 are two-dimensional, cosine tuning holds as well for
three-dimensional reaching movement (Georgopoulos et al.,
1986; Schwartz et al., 1988).
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The ubiquity of cosine tuning is a hint that this property is
generic and insensitive to the exact computational function of
these neurons. For example, coding of muscle shortening rate is
one theoretical mechanism that can generate cosine tuning
(Mussa-Ivaldi, 1988). As another example, many somatosensory
cortical cells related to reaching had cosine directional tuning,
probably because of the geometry of mechanical deformation of

the skin during arm movement (Cohen et al., 1994; Prud’homme
and Kalaska, 1994). Because a cosine tuning function implies a
dot product between a fixed preferred direction and the actual
reaching direction (Georgopoulos et al., 1986), cosine tuning by
itself suggests a linear relation with reaching direction (Sanger,
1994), which could arise as an approximation to the activity in a
nonlinear recurrent network (Moody and Zipser, 1998). There-

Figure 1. Axis of rotation determines how the view of an object changes instantaneously, along with various visual cues, such as shading, shadow, mirror
reflection, glare, and occlusion. Rigid geometry predicts that the response of a motion-sensitive neuron, to a first approximation, should have a preferred
rotation axis in three-dimensional space with cosine tuning function and linear angular speed modulation, regardless of the exact cues used and the exact
computational mechanisms involved.
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Figure 2. Cosine tuning to hand movement direction is very common in monkey motor system, here showing examples of average tuning curves in
two-dimensional reaching tasks, with preferred direction taken as 0°. Left column, Circular normal functions (solid curves) fit the data (●) slightly better
and are slightly narrower than cosine functions (dashed curves). Horizontal lines indicate background firing rates without movement. Right column, Data
and the circular normal functions after subtracting the cosine functions. Data from motor cortex (M1) and cerebellum (Purkinje cells plus deep nuclei)
are from Figure 2 in Fortier et al. (1993), basal ganglia data (GPe) are from Figure 8B (decrease type) in Turner and Anderson (1997), and
somatosensory cortex data (S1) are from Figure 11A (no load case) in Prud’homme and Kalaska (1994), with permission.
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fore, cosine tuning curves should be common in a theoretical
model that is approximately linear.

Basic theory
In this section we derive a general tuning rule for motor neurons
and then discuss its basic properties. This example illustrates what
is meant by mechanism-insensitive properties and the general
theoretical argument based on geometric constraints.

Consider stereotyped reaching movement in which the config-
uration of the whole arm is determined completely by the hand
position (x, y, z) in space. In other words, such movements have
only 3 degrees of freedom. Assume that the mean firing rate of a
neuron relative to baseline is proportional to the time derivative of an
unknown smooth function of hand position in space. In other
words:

f 5 f0 1
d
dt

F~ x, y, z!, (1)

where f is the firing rate, f0 is the baseline rate, and F is an
arbitrary function of the hand position (x, y, z). A possible small
time difference between the neural activity and the arm move-
ment may also be included, as appropriate.

The function F(x, y, z) could have any form and could include
any function of arm configuration, such as muscle length, joint
angles, or any combination of those. Mussa-Ivaldi (1988) first
used muscle length to demonstrate the appearance of cosine
tuning in a two-dimensional situation and pointed out that the
argument could be generalized to include other muscle variables.
This interesting example illustrates how cosine tuning property
might emerge from some simple assumptions. The assumption in
Equation 1 is more general and the formalism is simpler than that
of Mussa-Ivaldi (1988) because joint angles are no longer used as
intermediate variables in the derivation. This makes interpreta-
tion easier and more flexible and the curl-free condition more
apparent (see below). The precise interpretation of F is not the
focus of this paper; the only requirement is that it be a function
fully determined by the hand position in the three-dimensional
space.

We emphasize that although Equation 1 uses hand position as
the only free variables, this does not require that the neuron must
directly encode the hand position or end-point in particular or
kinematic variables in general. Stereotypical reaching movements
have only 3 degrees of freedom and can be conveniently param-
eterized by the hand position (x, y, z), although other parameters
can also be used without affecting the final conclusion (see below
and Appendix A). A neuron related to reaching arm movement
should be sensitive to changes of arm posture, which can always
be expressed equivalently as changes in some functions of the
hand position (x, y, z). The simplest estimate of such changes is
the first temporal derivative given in Equation 1. In other words,
the above assumption only postulates a general dependence of the
firing rate of a neuron on changing arm posture as a first approx-
imation, regardless of which parameters are encoded and how
they are encoded.

The assumption in Equation 1 implies that the mean firing rate
of a neuron should follow the tuning rule:

f 5 f0 1 p z v, (2)

where v 5 (ẋ, ẏ, ż) is the instantaneous reaching velocity of the
hand, and the vector p is the preferred reaching direction, given by:

p 5 ~ px , py , pz! 5 ¹F 5 S­F

­ x
,

­F

­ y
,

­F

­ z D . (3)

The derivation of this result follows immediately from the chain
rule:

dF

dt
5

­F

­ x
ẋ 1

­F

­ y
ẏ 1

­F

­ z
ż 5 p z v. (4)

For hand movements starting from the same position (x, y, z) in
space, the tuning rule in Equation 2 implies cosine directional
tuning and linear speed modulation (see Eq. 12). The preferred
direction vector p 5 p(x, y, z) of the neuron may depend on the
starting hand position. It can be regarded as a constant vector
when the hand is close to its starting position.

For hand movements starting from different positions, the
preferred direction vector may vary with the starting hand posi-
tion (x, y, z) and thus can be visualized as a vector field (Caminiti
et al., 1990; Moody and Zipser, 1998). It follows from the gradient
formula in Equation 3 that this vector field of preferred direction
must have zero curl:

curl p 5 S­pz

­ y
2

­py

­ z
,

­px

­ z
2

­pz

­ x
,

­py

­ x
2

­px

­ y D
5 curl ¹F 5 0, (5)

because of the equality of mixed second partial derivatives of F.
This means that the components of the preferred direction can-
not vary arbitrarily with the starting hand position. An equivalent
integral formulation of the curl-free condition is that the path
integral of p vanishes along any closed curve in three-dimensional
space:

Rp z dl 5 0, (6)

with dl 5 (dx, dy, dz), assuming that there are no singularities in
the vector field. This constrains how the preferred direction of a

Figure 3. The preferred direction field of a hypothetical neuron that
violates the curl-free condition in a planar reaching task. For each hand
position, the preferred direction of this neuron is always perpendicular to
the straight line from the hand (H ) to the shoulder (S), and the length of
the vector is proportional to the distance of HS. This vector field has
constant non-zero curl everywhere in the work space. The gradient theory
does not allow the existence of such a neuron.
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neuron should vary with the starting hand position. Any distribu-
tion with non-zero curl can be ruled out (Fig. 3).

Human eyes are not reliable at judging whether a vector field is
curl-free (see Fig. 10), so numerical computation is needed
(Mussa-Ivaldi et al., 1985; Giszter et al., 1993). See Appendix B
for more discussion. A vector field is curl-free if and only if it can
be generated as the gradient of a potential function. A more
intuitive interpretation of the curl-free condition is that when a
vector field is regarded as the velocity field of a fluid, there is no
net circulation along any closed path in space.

Under the curl-free condition, the net spike count (integration
of the firing rate with respect to baseline over time) can be used
to recover the value of the unknown potential function:

F~ x, y, z! 2 F~ x0 , y0 , z0! 5 E
0

T

~ f 2 f0!dt, (7)

where the integral depends only on the initial hand position (x0 ,
y0 , z0) at time 0 and the final position (x, y, z) at time T, not on the
exact trajectory of hand movement. For each hand position, the
firing rate is the largest when the hand moves along the local
gradient of the potential function, which defines p.

Baseline firing rate
The theory in the preceding section does not constrain the base-
line firing rate f0 , which needs to be considered separately. By
definition, the baseline firing rate is independent of the reaching
direction, but it may be modulated by several other factors. For
example, in the motor cortex, Kettner et al. (1988) have reported
that the linear formula:

f0 5 a0 1 a1 x 1 a2 y 1 a3 z, (8)

approximately described the baseline firing rate while the hand
was held fixed at position (x, y, z) in the three-dimensional work
space, where a0 , a1 , a2 , a3 are constant coefficients. For reaching
at speed v, a more general linear formula for the baseline firing
rate is:

f0 5 a0 1 a1 x 1 a2 y 1 a3 z 1 av, (9)

where the coefficients a0 , a1 , a2 , a3 , a are independent of the
hand position (x, y, z) and the speed v, but may vary with task
conditions. For instance, the baseline firing rate when the hand is
held still (Fig. 2, horizontal lines) differs from the baseline rate
defined as the average of the cosine curve during reaching. Moran
and Schwartz (1999) showed that a linear speed term for baseline
rate should be included in the fitting formula, although their
analysis used the square root of firing rate instead of the raw
firing rate. Indirect evidence for a linear speed term in baseline
rate is provided by the linear effect of reaching distance (see
below).

Note that in Equation 9, the baseline firing rate contains
information about both the static hand position (x, y, z) and its
speed v. As shown by Kettner et al. (1988), the spatial gradient of
the spontaneous firing rate for static hand position tends to be
consistent with the preferred direction of the same neuron. In the
current theory, this means that the preferred direction p 5 ¹F
tends to point in the same direction as the vector (a1 , a2 , a3) in
Equation 9. Therefore, if the potential function F 5 F(x, y, z) can

be approximated as a linear function in x, y, z, we can replace
Equation 9 by:

f0 5 a0 1 kF~ x, y, z! 1 av, (10)

where k is a constant coefficient. In this case, the overall firing rate
of a neuron that obeys the basic tuning rule in Equation 2 would
convey two pieces of information: the baseline firing rate f0 would
represent the static value of the potential function F, and the
directionally tuned part p z v would represent the spatial gradient
of the same potential function.

Linear theory without gradient
If we simply postulate that the firing rate of a neuron is linearly
related to the components of reaching velocity v 5 (vx , vy , vz), we
would have the same tuning rule:

f 5 f0 1 px ẋ 1 pyẏ 1 pzż 5 f0 1 p z v, (11)

where the components of the preferred direction, (px , py , pz ) [ p,
are three arbitrary functions of the hand position (x, y, z). For a
single starting hand position, this tuning rule is locally indistin-
guishable from the prediction of the gradient theory. The differ-
ence is that now the preferred direction field is not required to be
the gradient of any potential function so that its global distribu-
tion in hand position space is not constrained at all. In other
words, this vector field need not be curl-free. The nongradient
theory is more general, allowing a circular distribution of the
preferred directions as in Figure 3. The necessary and sufficient
condition for the gradient theory to be true is that the preferred
direction field is curl-free. The existing data cannot distinguish
the two theories (see discussion below and Appendix B).

Comparison with experimental results
Data from a wide range of motor-related brain areas largely
confirm the tuning rule in Equation 2 as a reasonable approxi-
mation, together with its various ramifications as follows. Theo-
retical predictions such as the curl-free distribution remain to be
tested.

Cosine directional tuning and multiplicatively linear
speed modulation
The tuning rule in Equation 2 captures two main effects: cosine
directional tuning and multiplicatively linear speed modulation,
as clearly seen in its equivalent form:

f 5 f0 1 pv cos a, (12)

where v 5 uvu is the reaching speed, the proportional factor p 5 upu
is length of the preferred direction vector p, and a is the angle
between the instantaneous reaching direction and the preferred
direction. Because the hand trajectory is approximately straight
in normal reaching, the instantaneous velocity v is a vector that
points in the same direction as the reaching direction. If a tuning
function is cosine in three-dimensional space, it must also be
cosine in any two-dimensional subspace, as in the examples in
Figure 2.

A cosine function is a good approximation to the directional
tuning data, although a circular normal function (Eq. A17), with
one more free parameter, tends to fit the data slightly better (Fig.
2). The residual can be roughly accounted for by an additional
Fourier term, cos 2a, with an amplitude less than ;10% of that of
the original term, cos a (see further discussion in Appendix A).

The speed modulation effect predicted by Equation 12 is mul-
tiplicative; that is, the firing rate should be higher for faster
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reaching speed without affecting the shape of the cosine tuning
function. This is approximately true as shown by Moran and
Schwartz (1999), who, however, used the square root of firing rate
in analysis so that the linearity of speed modulation on raw firing
rate was not directly quantified. Indirect evidence for linear speed
modulation includes trajectory reconstruction and the curvature
power law (see below).

Neuronal population vector
Suppose the firing rate of each neuron i in a population (i 5 1, 2,
. . . , N) follows the same tuning rule as considered above:

fi 5 fi0 1 p i z v. (13)

The population vector u is defined as the vector sum of the
preferred directions pi weighted by firing rates relative to base-
lines (Georgopoulos et al., 1986):

u 5 O
i51

N

~ fi 2 fi0!p i 5 O
i51

N

p i~p i z v!, (14)

where in the second step, Equation 13 is used. For the population
vector u to be proportional to the true velocity v, namely:

u 5 lv, (15)

the necessary and sufficient condition is that the preferred direc-
tions satisfy:

O
i51

N

p ip i
T 5 lI, (16)

where l is an arbitrary constant, I is 3 3 3 identity matrix, each
pi is a column vector, and pi

T is a row vector (Mussa-Ivaldi, 1988;
Gaál, 1993; Salinas and Abbott, 1994; Sanger, 1994). In particular,
when pi are distributed uniformly, as is roughly true for cells in
motor cortex (Georgopoulos et al., 1988), the condition in Equa-
tion 16 is satisfied so that Equation 15 follows as a consequence.
Then the population vector approximates the reaching direction
and reaching velocity (Moran and Schwartz, 1999).

Trajectory reconstruction
One implication of Equation 15 is that integration over the
population over time can reconstruct the hand trajectory, up to a
scaling constant:

r~t! 5 r~0! 1
1
lE

0

t

u~t!dt, (17)

where r(t) is hand position at time t. This is consistent with the
finding that adding up the population vector head-to-tail approx-
imately reproduced the shape of the hand trajectory (Schwartz,
1993, 1994), because head-to-tail addition is a discrete approxi-
mation to the continuous vector integration.

Curvature power law
While drawing, the hand moves more slowly when the trajectory
is more highly curved, and obeys a power law:

v 5 Bk2/3, (18)

where v is instantaneous angular velocity with respect to an
instantaneous center determined by the local curvature k of the
trajectory, and B is a constant (Lacquaniti et al., 1983). Schwartz
(1994) showed that the changing direction of the population
vector of cells in motor cortex of monkeys followed the same
power law during drawing. This is consistent with Equation 15,
which requires that the population vector u be proportional to the
instantaneous hand velocity v, up to a possible time difference.
This form of the power law involves only the direction of popu-
lation vector u. To test its length u 5 uuu or the linearity of firing
rate modulation by reaching speed, one may use the equivalent
form of the power law:

v 5 Br1/3, (19)

where v 5 rv is the hand speed and r 5 1/k is the local radius for
the curvature of the trajectory. The length of the population
vector u is proportional to the hand speed v if and only if the
population vector follows the same power law in Equation 19.

Reaching distance
Fu et al. (1993) reported a nearly linear correlation between firing
rates of cells in motor cortex and reaching distance. Although this
result was somewhat confounded by faster reaching for longer
distances, it raises the question of the general effect of reaching
distance. A linear distance effect would be consistent with the
basic model in Equation 2, which implies that:

E
0

T

~ f 2 f0! dt 5 E
0

T

p z v dt 5 p z d, (20)

where vector d 5 r(T ) 2 r(0) is the final displacement from the
starting position r(0), assuming the preferred direction p is ap-
proximately constant along movement trajectory. The dot prod-
uct p z d implies a linear relation between the reaching distance
and the total spike count above baseline, together with a cosine
directional tuning, regardless of the exact time course of hand
velocity.

Note that in Equation 20 the baseline rate f0 has been sub-
tracted. Because the baseline rate itself may contain a linear
speed component as in Equation 9 (Moran and Schwartz, 1999),
its contribution to total spike count should be:

E
0

T

f0 dt 5 E
0

T

~a0 1 av! dt 5 a0 T 1 audu, (21)

where, for simplicity, a1 5 a2 5 a3 5 0 has been assumed to
ignore the effect of static hand position. Because the last term is
proportional to the reaching distance udu but independent of the
reaching direction, it might account for the observation that the
modulation of overall firing rates by reaching distance was often
linear but insensitive to the reaching direction (Fu et al., 1993;
Turner and Anderson, 1997).

Curl-f ree distribution of preferred direction
Caminiti et al. (1990, 1991) reported that the preferred direction
of a motor cortical neuron often varied with the starting point of
hand movement. This is allowed by the gradient theory, provided
that this vector field is curl-free, according to Equation 5 or 6. A
constant preferred direction field is always allowed because it has
zero curl. The curl-free condition constrains how the preferred
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direction of a neuron may vary in different parts of space. For
example, it rules out the possibility of any circular arrangement of
the preferred directions, such as that in the two-joint planar arm
example shown in Figure 3. The existing data do not include
enough points to compute the curl (see Appendix B). Further
experiments would be needed to test whether the prediction of
the gradient theory is correct.

Elbow position
Scott and Kalaska (1997) found that the preferred directions of
some motor cortical cells were altered when the monkey had to
reach unnaturally with the elbow raised to shoulder level. In the
current theoretical framework, adding elbow position as a free
parameter is equivalent to adding one rotation variable w, for
example, the angle between the horizontal plane and the plane
determined by the hand, elbow, and shoulder. The same theoret-
ical argument yields the tuning rule:

f 5 f0 1 p z v 1 K
dw

dt
, (22)

where K is a coefficient that may depend on both hand position
and elbow position. This formula implies two new effects. The
first is that now the preferred direction vector, both its direction
and length, may depend on the elbow position w as well as the
hand position (x, y, z):

p 5 p~ x, y, z, w!, (23)

as reported by Scott and Kalaska (1997). The second effect, a new
prediction, is that the firing rate may contain a component pro-
portional to the angular speed dw/dt of elbow rotation.

How does this case relate to our earlier results with hand
position as the only free parameter? In the preceding sections,
reaching was assumed to be “stereotypical” in the sense that the
elbow position can be determined completely by the hand posi-
tion, ignoring forearm rotation. This assumption may not be true
if the final posture sometimes depends also on the initial hand
position (Soechting et al., 1995). However, when comparing
reaching movements starting from the same initial hand position,
it is reasonable to assume that for stereotypical reaching, the
elbow angle w can be completely determined by the hand position
(x, y, z), or w 5 w(x, y, z). Then the time derivative of w, after
expanding by the chain rule, can be absorbed into the term p z v,
yielding the original basic tuning rule in Equation 2. In other
words, the assumption of stereotypical movement reduces the
total degrees of freedom to 3, eliminating the elbow position as an
independent variable. Although the elbow angle can still be used
as a free parameter, it is no longer independent of the hand
position. Only three parameters are independent in this case, and
their exact choice does not affect the general form of the tuning
rule (see Appendix A for more discussion on coordinate-system
independence).

Summary and discussion of more complex cases
As shown above, the basic tuning theory can naturally account for
several important experimental results without making any spe-
cific assumptions about the exact variables encoded or details of
the encoding. These results are generic properties independent of
the exact functional interpretations. This generality makes sense

because during stereotypical movement, redundant variables are
inevitably constrained by the geometry and become highly corre-
lated, so that they are likely to show similar tuning properties of
the same general type. The theory presented here has formalized
this intuition.

The relationship between cosine tuning properties and geomet-
ric constraints is also apparent in the studies of muscle activities
and actions during reaching and isometric tasks. Basic properties
resembling those for motor cortical cells have been reported,
including approximately cosine directional tuning curves (but
often with a small secondary peak opposite the preferred direc-
tion), speed sensitivity, and posture dependence (Flanders and
Soechting, 1990; Flanders and Herrmann, 1992; Buneo et al.,
1997).

The basic theory needs to be generalized in situations where
the hand position is not the only free parameter. For example,
force is one variable that is often correlated with the activity of
motor cortex; recent examples related to directional tuning in-
clude tasks with static load (Kalaska et al., 1989) and varying
isometric forces (Georgopoulos et al., 1992; Sergio and Kalaska,
1997).

As another example, preparatory activity in motor cortex be-
fore onset of movement can reflect the upcoming reaching direc-
tion, as is especially evident during instructed delay (Georgopou-
los et al., 1989a), and can change rapidly in tasks requiring mental
rotation (Georgopoulos et al., 1989b) or target switching
(Pellizzer et al., 1995).

Moreover, when sensory and motor components were de-
coupled, some neurons even from primary motor cortex were
more closely related to the visual movement of a cursor on the
computer screen than to the joystick position or hand movements,
in both one-dimensional (Alexander and Crutcher, 1990) and
two-dimensional tasks (Shen and Alexander, 1997a). By contrast,
in virtual reality experiments with visual distortion, motor corti-
cal activity mainly followed the actual limb trajectory rather than
the animal’s visual perception (Moran et al., 1995).

In addition, some differences exist among the neural activity
from different brain areas, although they all show approximate
cosine directional tuning (compare Fig. 2). For instance, com-
pared with neurons in the motor cortex in a reaching task, the
preferred directions in the cerebellum are more variable in re-
peated trials (Fortier et al., 1989), neurons in the parietal cortex
are less sensitive to static load (Kalaska et al., 1990), and neurons
in the premotor cortex are activated earlier, more transiently
(Caminiti et al., 1991; Crammond and Kalaska, 1996), and af-
fected more frequently by visual cues (Wise et al., 1992; Shen and
Alexander, 1997b). In the motor cortex and elsewhere, there also
exist neurons with complex properties that are either not task-
related or hard to describe but still could have useful functions in
a distributed network (Fetz, 1992; Zipser, 1992; Moody et al.,
1998).

In most of these cases, there are additional free variables
besides hand position. The linear theory may still yield useful
results in these more complex cases after including these addi-
tional variables. For example, the planned movement direction is
an independent variable, which could be used to describe some
preparatory activity before overt hand movement. These new
variables should be included when deriving the tuning rule, as
demonstrated in the preceding section by adding the elbow posi-
tion as a free variable in abducted reaching.
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REPRESENTING RIGID OBJECT MOTION
The same geometric argument for arm movement can be applied
to moving rigid objects, which have additional rotational degrees
of freedom around an axis in space (Fig. 1). In the following, we
derive a general tuning rule for rigid motion, discuss its basic
properties, and then contrast the results with concrete models of
visual receptive fields.

Description of rigid object motion
Arbitrary instantaneous motion of a rigid object can always be
described by a rotation plus a translation (Fig. 4), but given the
same physical motion, this description is ambiguous up to an
arbitrary parallel shift of the rotation axis. For example, transla-
tional velocity can always be aligned instantaneously with the
angular velocity to obtain a screw motion by passing the rotation
axis through the point of zero velocity in a perpendicular plane
(Fig. 4).

This ambiguity disappears when the rotation axis is always
required to pass through the same reference center in the object,
say, the center of mass. We assume that the reference center has
been chosen so that a rigid motion can be described uniquely by
a translational velocity and an angular velocity. We return to this
topic later.

The static position and orientation of a rigid object can be
specified by six independent parameters:

~ x, y, z, u1 , u2 , u3!, (24)

where x, y, z describe the position of the reference center of the
object with respect to a coordinate system fixed to the world, and
u1 , u2 , u3 are three angular variables that represent the object’s
orientation. The translational velocity of the object is:

v 5 ~ ẋ , ẏ , ż !. (25)

The angular velocity v 5 (vx , vy , vz)T in world coordinates is
always linearly related to the time derivatives of the orientation
variables u̇ 5 (u̇1 , u̇2 ,u̇3)T:

v 5 Mu̇, (26)

where M is an invertible 3 3 3 matrix that depends only on the
orientation (u1 , u2 , u3). For example, when Euler angles are used
to describe orientation (Fig. 5), we have:

~u1 , u2 , u3! 5 ~u, f, c!, (27)

and

M 5 S cos f 0 sin u sin f
sin f 0 2sin u cos f

0 1 cos u
D , (28)

which is invertible as long as det M 5 sin u Þ 0 (Goldstein, 1980).
Only the abstract linear relation in Equation 26 is needed in the

next section. The actual choice of (u1 , u2 , u3) is unimportant
here. Because the time derivatives of different sets of variables
are linearly related by a Jacobian matrix, Equation 26 always
holds regardless of the exact choice of the parameterization of
orientation (see also Appendix A on independence of the coor-
dinate system).

Tuning rule for rigid motion
Consider neuronal activity associated with motion of a rigid
three-dimensional object. Assume that the mean firing rate of a
neuron relative to baseline, with a possible time delay, is proportional
to the time derivative of a smooth function of the position and
orientation of the object in three-dimensional space. In other words:

f 5 f0 1
d
dt

F~ x, y, z, u1 , u2 , u3!, (29)

where f is the firing rate, f0 is the baseline rate, and F is an
arbitrary function of object position (x, y, z) and orientation (u1 ,
u2 , u3), as described in the preceding section. This equation is
analogous to Equation 1.

The exact form of function F need not be specified here. It may
depend on both the receptive field properties of the cell and the
visual appearance of the object and its surroundings. This formu-
lation is quite general. For example, all the visual cues of the
object illustrated in Figure 1 are functions of the position and
orientation of the object that completely determine how light is
reflected from various surfaces, whether diffuse (uniform scatter-
ing in all directions) or specular (energy concentrated around the

Figure 4. Arbitrary motion of a rigid object can always be decomposed
instantaneously into a translation and a rotation, allowing arbitrary par-
allel shift of the rotation axis. The two examples shown here describe
identical physical motion. Parallel shift of rotation axis affects the trans-
lation velocity but not the angular velocity v.

Figure 5. Euler angles (u, f, c) describe an arbitrary orientation of a
rigid object with axes (X9, Y9, Z9) with respect to a standard orientation
with axes (X, Y, Z).
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mirror reflection direction), giving rise to various visual effects
such as shading, shadows, specular reflections, and highlights
(Watt and Watt, 1992). Given that all sensory cues are deter-
mined completely by the position and orientation of the object, we
expect a motion-sensitive neuron to respond to changes of these
variables. The simplest way to estimate these changes is to com-
pute the first temporal derivative.

The assumption in Equation 29 allows us to derive a general
tuning rule for neurons sensitive to three-dimensional object
motion. Given a three-dimensional object moving at instanta-
neous translational velocity v and angular velocity v, the mean
firing rate of a generic neuron should depend on these variables
in a highly stereotyped way:

f 5 f0 1 p z v 1 q z v, (30)

where f0 is the background firing rate, p is the preferred transla-
tional direction, given by:

p 5 ~ px , py , pz! 5 S­F

­ x
,

­F

­ y
,

­F

­ z D , (31)

and vector q is the preferred rotation axis, given by:

q 5 ~q1 , q2 , q3! 5 q*M21, (32)

with matrix M as in Equation 26, and:

q* 5 ~q*1 , q*2 , q*3! 5 S­F

­u1
,

­F

­u2
,

­F

­u3
D (33)

is an intermediate vector variable, the transformed preferred
rotation axis in the orientation angle space. Both the preferred
translational direction p and the preferred rotation axis q are
vectors in the physical space. They may depend on the object and
its position and orientation but not on the translational velocity v
and angular velocity v. The derivation of Equation 30 follows
from the chain rule:

dF

dt
5

­F

­ x
ẋ 1

­F

­ y
ẏ 1

­F

­ z
ż 1

­F

­u1
u̇1 1

­F

­u2
u̇2 1

­F

­u3
u̇3

5 p z v 1 q* z u̇ 5 p z v 1 q z v, (34)

where Equations 25 and 26 and the definitions in Equations 31–33
have been used. The derivation of the tuning rule does not
depend on which coordinate system is used (Appendix A).

Before explaining the meaning of the tuning rule in the next
section, first consider the baseline firing rate, which is not con-
strained by the present theory and thus requires separate consid-
eration. The baseline firing rate may itself be modulated by
several factors, and the simplest linear model is:

f0 5 a0 1 a1 x 1 a2 y 1 a3 z 1 b1u1 1 b2u2 1 b3u3 1 av 1 bv,
(35)

where ai , bi , a, b are constants, and the position (x, y, z) and the
orientation (u1 , u2 , u3) of the object are included as possibly
relevant factors related to the static view, together with the
translational speed v and the angular speed v for object motion,
which may also be relevant. This linear equation generalizes
Equation 9 for motor neurons. Similarly, Equation 10 can also be
generalized by including angular position and speed. This as-
sumes that the baseline firing rate in general may contain infor-
mation about both the static configuration of an object and its
instantaneous motion.

Cosine tuning and multiplicative speed modulation
The basic tuning rule in Equation 30 can be rewritten in its
equivalent form:

f 5 f0 1 pv cos a 1 qv cos b, (36)

where v 5 uvu is the speed of translation, v 5 uvu is the angular
speed of rotation, p 5 upu is the length of the preferred direction
vector, q 5 uqu is the length of the preferred rotation vector, a is
the angle between vectors p and v, and b is the angle between
vectors q and v.

In other words, given the particular view of a particular object,
the response above baseline should be the sum of two compo-
nents, one translational and one rotational. The translational
component is proportional to the cosine of the angle between a
fixed preferred translational direction and the actual translational
direction. In addition, it is also modulated linearly by the speed of
translation, which does not alter the shape of the tuning curve.
Similarly, the rotational component is proportional to the cosine
of the angle between a fixed preferred rotation axis and the actual
rotation axis. In addition, the rotational component is also mod-
ulated linearly by the angular speed of rotation.

Distribution of preferred direction and preferred axis
Thus far, the view of the given object is assumed to be fixed. That
is, the cosine tunings for both translation and rotation are defined
with respect to a particular view of the object. When the view of
the object changes, the preferred translational direction p and
preferred rotation axis q of a motion-sensitive neuron may also
change.

The theory constrains this change because the preferred trans-
lational direction p and the transformed preferred rotation axis
q* are derived as gradient fields in Equations 31 and 33. Here the
intermediate vector q* is related to the preferred rotation axis q
in physical space by:

q* 5 qM, (37)

according to Equation 32. In three-dimensional space, where curl
is defined, the gradient field implies that any three variables taken
from the six variables (x, y, z, u1 , u2 , u3) must be curl-free. For
example, when the position (x, y, z) of the object is fixed, the
distribution of the transformed preferred rotation axis in the
orientation space (u1 , u2 , u3) must be curl-free:

curl q* 5 S­q*3
­u2

2
­q*2
­u3

,
­q*1
­u3

2
­q*3
­u1

,
­q*2
­u1

2
­q*1
­u2

D 5 0.

(38)

Any hypothetical neurons with non-zero curl can be ruled out by
this condition (see below). For a gradient field, the zero curl is
simply attributable to the equality of mixed second partial deriv-
atives of the potential function, which holds also in higher dimen-
sions. The equivalent path integral formulation is valid also in all
dimensions:

R ~p z dl 1 q* z du! 5 0, (39)

along any closed curve in the six-dimensional space, where dl 5
(dx, dy, dz), and du 5 (du1 , du2 , du3). Another equivalent formu-
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lation is that the potential function F can be constructed by the
path integral:

F~j! 5 F~j0! 1 E
j0

j

~p z dl 1 q* z du!, (40)

which depends only on the end points, not on the exact path. Here
j 5 (x, y, z, u1 , u2 , u3) is an arbitrary point in the parameter space,
and j0 is the value at a given initial point. Therefore, in the
gradient theory, how the preferred translational direction and the
preferred rotation axis of a neuron change with the view of a
given object cannot be arbitrary but is highly constrained. This
can provide testable predictions (see below).

Linear nongradient theory
A more general theory can be obtained by directly assuming a
linear relationship between the firing rate and the components of
the translational velocity v 5 (ẋ, ẏ, ż) and the time derivatives of
the angular variables u 5 (u̇1 , u̇2 , u̇3). This yields the same tuning
rule:

f 5 f0 1 px ẋ 1 py ẏ 1 pz ż 1 q*1u̇1 1 q*2u̇2 1 q*3u̇3

5 p z v 1 q z v, (41)

where p 5 ( px , py , pz) and q* 5 (q*1 , q*2 , q*3) are arbitrary vector
fields, not necessarily gradient fields, and Equations 26 and 32 are
used in the last step. This tuning rule gives the same response
properties predicted by the gradient theory for a single view of the
object. The difference shows up when the view changes. The
nongradient theory imposes no constraint on how preferred
translational direction and preferred rotation axis should vary
with the view of the object. The gradient theory is more restric-
tive, and therefore makes stronger predictions.

Change of reference center
Because the description of the same physical motion of a rigid
object is ambiguous up to a parallel shift of the rotation axis (Fig.
4), we have assumed in the above that the rotation axis always
passes through the same reference point c 5 (x, y, z) in the object
to ensure uniqueness of description. When a different reference
center c* is chosen, the form of the basic tuning rule in Equation
30 remains valid, but the preferred rotation axis is affected in a
predictable way:

f 5 f0 1 p z v 1 q z v 5 f0 1 p* z v* 1 q* z v*, (42)

where v* and v* are the translational velocity and angular velocity
for the new reference center c*, and:

p* 5 p, (43)

q* 5 q 1 p 3 ~c* 2 c! (44)

are the new preferred translational direction and rotation axis.
One can readily verify that Equation 42 is valid under Equations
43 and 44, using the relations:

v* 5 v 1 v 3 ~c* 2 c!, (45)

v* 5 v. (46)

Therefore, changing the reference center of an object has no
effect on the preferred translational direction of a neuron (Eq.
43), whereas the preferred rotation axis is altered systematically

in a completely predictable manner (Eq. 44). These relations
arise purely from the ambiguity of the description of rigid motion,
and thus apply to both the gradient and the nongradient theories.

Summary
Simple assumptions have led to a general tuning rule for how the
mean firing rate of a neuron should depend on the instantaneous
motion of an arbitrary rigid object. For each given view of the
object, the firing rate is predicted to be the sum of two terms, one
for the translational motion component and one for the rotational
motion component, both with cosine directional tuning and linear
speed or angular speed modulation. In general, the preferred
translational direction and the preferred rotation axis may de-
pend on the identity of the object as well as its view. This tuning
rule is a linear approximation to the geometry of rigid motion and
therefore should obtain regardless of the exact computational
mechanisms involved. In other words, this rule is expected to be
a robust property for motion-sensitive neurons responding to
realistic moving objects. When the view of the object changes,
both the preferred translational direction and the preferred rota-
tion axis of a neuron may change as well. The gradient theory
provides additional constraints on such changes, whereas the
nongradient theory imposes no further constraints. As a conse-
quence, these two theories can be distinguished by further ex-
periments. Finally, although the description of rigid motion is
ambiguous up to a parallel shift of the rotation axis, the effects on
the tuning rule are completely predictable and therefore convey
no additional information about the response properties of a
neuron.

Examples of motion-sensitive receptive field models
Many neurons in visual cortex, particularly in the dorsal stream
leading to parietal cortex, respond selectively to visual motion.
Here we consider three-dimensional rigid motion and examine
several simple computational mechanisms that yield explicit an-
alytical formulas for the preferred translational direction and the
preferred rotation axis. For each fixed view of the object, the
results are consistent with the basic tuning rule in Equation 30.
For different views, however, the global gradient-field condition
for the preferred axes can be violated by the idealized velocity
component detectors. This shows that the neuronal behavior
predicted by the gradient theory is not always identical to that of
an optic-flow detector.

Velocity component detectors
As illustrated in Figure 6 A, suppose the firing rate of an idealized
neuron detects local motion on the image plane according to:

f 5 f0 1 p z u, (47)

where f0 is the baseline firing rate, p is the preferred direction of
visual motion, and u is the local velocity on the image plane inside
a small receptive field of the detector. This local velocity detector
resembles some neurons in the middle temporal area (MT) of
monkey, as discussed in the section after Equation 72.

This idealized neuron obeys the basic tuning rule in Equation
30, namely:

f 5 f0 1 p z v 1 q z v, (48)

in response to a textured rigid object moving at translational
velocity v and angular velocity v. Here the preferred direction p
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is the same constant vector as in Equation 47, and the preferred
rotation axis is given explicitly by:

q 5 ~r 2 c! 3 p, (49)

where c is a fixed reference center in the object (center of the
sphere in Fig. 6B), and r is the coordinate of the point in the
object that happens to fall into the vanishingly small receptive
field of the detector. As shown in Figure 6A, the geometry of the
situation is quite simple, with the two orthogonal vectors q and
r 2 c both lying on the horizontal plane. For fixed angular speed,
using q as the rotation axis maximizes the response of the velocity
detector.

To derive these formulas, note that a point in the object with
coordinate r has the velocity:

u 5 v 1 v 3 ~r 2 c! (50)

on the image plane (Fig. 6A). The desired equations can be
obtained by inserting this into Equation 47 and using the vector
identity:

p z @v 3 ~r 2 c!# 5 @~r 2 c! 3 p# z v. (51)

Next, consider a higher-order neuron whose response is the
sum of the outputs of several local velocity component detectors:

f 5 f0 1 O
i51

N

p i z u i , (52)

where pi is the preferred direction of detector i, and ui is the
image velocity in its receptive field. This neuron also obeys the
same basic tuning rule in Equation 48, with the preferred trans-
lational direction and preferred rotation axis given by:

p 5 O
i51

N

p i , (53)

q 5 O
i51

N

~r i 2 c! 3 p i . (54)

For example, when two detectors are arranged as shown in Figure
6B, the preferred rotation axis q is perpendicular to the image
plane, whereas the preferred translational axis vanishes (p 5 0)
because the image size is constant under orthographic projection.

Finally, the basic tuning rule in Equation 48 still holds for
image motion of a rigid object under a perspective projection,
which projects each point (x, y, z) in the real world toward the
observer at the origin (0, 0, 0), leaving an image at (X, Y) in the
image plane at z 5 h:

X 5 h x/z, Y 5 h y/z (55)

(Longuet-Higgins and Prazdny, 1980; Heeger and Jepson, 1990).
On the image plane, suppose the velocity component detector i is
located at (Xi , Yi) with preferred direction pi 5 (pi1 , pi2), then the
preferred direction and preferred rotation axis become:

p 5 O
i51

N 1
zi
S pi1h

pi2h
2pi1Xi 2 pi2Yi

D , (56)

q 5 O
i51

N 1 2pi1 Xi Ŷi 2 pi2~Yi Ŷi 1 h Ẑi!

pi1~Xi X̂i 1 h Ẑi! 1 pi2Yi X̂i

~2pi1 Ŷi 1 pi2 X̂i!h
2 , (57)

where ( X̂ i , Ŷ i , Ẑ i) 5 (xi 2 x, yi 2 y, zi 2 z)/zi with (x, y, z) the
reference center of the object, and zi is the z-coordinate in real
world for the physical point that happens to activate detector i.
Unlike the orthographic projection in Figure 6, this mechanism
allows a neuron to respond to looming or shrinking images,
because it does not confine the preferred translational direction p
to the image plane.

Spatiotemporal receptive field
Now consider motion-sensitive linear spatiotemporal receptive
fields that obey the basic tuning rule in Equation 30 with a known
potential function. Let I(X, Y, t) describe the intensity of an image
at location (X, Y) on the image plane at time t, ignoring color and
stereo. Suppose the firing rate of a neuron with linear receptive

Figure 6. Examples of preferred rotation axis for velocity component
detectors. Visual motion of a finely textured rotating object, here a
sphere, is projected orthogonally onto the image plane. A, For a single
local velocity detector with preferred direction p, the largest response is
elicited by rotation around the preferred rotation axis q, which is on the
horizontal plane and perpendicular to the vector r 2 c, with c represent-
ing the center of the sphere. B, When the response is the sum of two local
velocity detectors with preferred directions p1 and p2 , the preferred
rotation axis q is perpendicular to the image plane.
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field F(X, Y) is linearly related to how fast the overlap between
the image and receptive field is changing:

f 5 f0 1
d
dt

^F, I&, (58)

where the inner product is defined by:

^F, I& 5 EEF~X, Y!I~X, Y, t! dX dY. (59)

This inner product can serve as the potential function postulated
in Equation 29:

F 5 ^F, I&. (60)

Therefore, the basic tuning rule in Equation 30 must hold true,
and the preferred translational direction and rotation axis are:

p 5 ~^F, ­x I&, ^F, ­y I&, ^F, ­z I&!, (61)

q 5 ~^F, ­1I&, ^F, ­2 I&, ^F, ­3 I&!M, (62)

following Equations 31–33. Here the partial derivatives are with
respect to the implicit variables (x, y, z, u1 , u2 , u3) for the position
and orientation of a moving object that generates the image.

More generally, consider a neuron with an arbitrary linear
spatiotemporal receptive field G so that its firing rate is:

f 5 f0 1 EEEG~X, Y, t!I~X, Y, t 2 t! dX dY dt. (63)

This becomes identical to Equation 58 for the kernel function:

G~X, Y, t! 5 F~X, Y!
dd~t!

dt
, (64)

where d is Dirac delta function, which can be approximated by
any narrow and normalized smooth function peaked at the origin.
If Equation 64 is a reasonable approximation to the spatiotem-
poral receptive field, then the basic tuning rule in Equation 30 as
well as p and q given by Equations 61 and 62 becomes valid. For
nonlinear mechanisms, such as squaring (Adelson and Bergen,
1985) and normalization (Heeger, 1993), the above consideration
may apply only after local linearization.

Existence of a global potential function
In all the concrete examples considered above, the basic tuning
rule in Equation 30 holds true for each given view of an object.
However, for a single view, the gradient and nongradient theories
are indistinguishable. By assumption, the nongradient theory
allows arbitrary preferred translational direction p and preferred
rotation axis q. For a given view, the gradient theory can also
generate any desired constant vectors p and q from the gradients
of the following potential function:

F~ x, y, z, u1 , u2 , u3! 5 p z c 1 q* z u, (65)

where q* 5 qM is taken as a constant vector, c 5 (x, y, z) is the
reference center of the object, and u 5 (u1 , u2 , u3) describes the
orientation of the object.

The gradient theory is globally correct only when a potential
function exists for all views of the object. This is the case for the
linear spatiotemporal model, where the potential function can be

given explicitly (Equation 60). By contrast, for the idealized
velocity component detector, a global potential function in gen-
eral does not exist, as shown in Example 1 below.

Because the existence of a potential function does not depend
on the choice of the coordinate system (see Appendix A), we only
need to show that a potential function does not exist in the Euler
angle space: (u1 , u2 , u3 ) 5 (u, f, c), assuming that the center of
the object is fixed. In this three-dimensional space, a potential
function exists if and only if the distribution of the transformed
preferred rotation axis q* is curl free. Now consider two special
examples that do not admit a global potential function:

Example 1: Constant preferred rotation axis fixed to the world.
An explicit example is the model in Figure 6B, where the pre-
ferred rotation rotation axis q is the same regardless of the
orientation of the spherical object. Here it is assumed that the
velocity component detector has two vanishingly small receptive
fields that can nevertheless detect the true local velocity compo-
nents regardless of the orientation of the object. Without loss of
generality, take the preferred rotation axis as a unit vector in the
negative Y-axis:

q 5 ~0, 21, 0!, (66)

and then compute its counterpart vector in the Euler angle space:

q* 5 qM 5 ~2sin f, 0, sin u cos f!. (67)

It is verified that curl q* as defined in Equation 38 does not
vanish. This proves that the desired potential function cannot
exist for this hypothetical neuron (Fig. 7).

Figure 7. The gradient theory prohibits a neuron from having a constant
preferred rotation axis in the physical space regardless of the view of the
object, because this would allow the transformed preferred rotation axis
(q*1 , q*2 , q*3 ) to have non-zero curl in the Euler angle space (u, f, c). Here
the constant preferred rotation axis q 5 (0, 21, 0) is taken as the negative
Y-axis. Only two-dimensional visualization is needed here because q*2 [
0, and the vector field is independent of c.
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Example 2: Constant preferred rotation axis fixed to the object. A
possible example is a vestibular neuron receiving input from only
a single semicircular canal without other influences such as that
from the otolith. Then the firing rate has a cosine tuning with
respect to a preferred rotation axis fixed on the head of the
animal, regardless of the orientation of the head in the world
(Baker et al., 1984; Graf et al., 1993). Without loss of generality,
let the preferred rotation axis be a unit vector in the positive Z9
axis of the object (head), then in world coordinates this axis is:

q 5 ~sin u sin f, 2sin u cos f, cos u !, (68)

so that its counterpart vector in the Euler angle space is:

q* 5 qM 5 ~0, cos u, 1!. (69)

Here curl q* is not zero, proving the nonexistence of the desired
potential function.

Therefore, there are simple computational mechanisms that
can violate the gradient theory. As shown above, the gradient
theory prohibits a neuron from having a truly invariant preferred
rotation axis fixed either to the world or to the object. These
neurons, however, are allowed by the nongradient theory. In
particular, the prediction of the gradient theory can differ from
that of an optic-flow sensor. As another example, the preferred
translational direction field for a small moving dot may also have
non-zero curl when measured at different regions inside a large
MST-like receptive field that has circular arrangement of local
preferred directions (Saito et al., 1986). These idealized examples
demonstrate that the global property of the gradient theory is
quite restrictive, which, however, makes its prediction strong and
refutable. Experiments could be performed to test whether the
gradient theory accounts for the neuronal responses to three-
dimensional object motion.

COMPARISON WITH EXPERIMENTAL RESULTS OF
SINGLE NEURONS
The tuning rule for reaching arm movement in Equation 2 is a
special case of the general tuning rule in Equation 30 without the
rotational terms. Biological evidence from the motor system in
support of the tuning rule has already been considered in the
preceding sections. In this section we examine several additional
biological examples that are consistent with some special cases of
the general tuning rule and then discuss more comprehensive
tests for moving rigid objects.

One-dimensional example: hippocampal place fields
on a linear track
For one-dimensional movement, the linear tuning theory predicts
only linear speed modulation, without further constraint on the
tuning function. The firing rate is given by:

f 5 f0 1
dF~ x!

dx
ẋ 5 f0 1 f~ x!v, (70)

where x is the variable of interest, v 5 dx/dt is the speed, and f(x)
is the gradient of function F. This is a special case of the general
tuning rule in Equation 36, keeping only the translational term,
with cos a 5 1 and p 5 f(x). Function f(x) is allowed to be
completely arbitrary because a potential function:

F~ x! 5 F~0! 1 E
0

x

f~z! dz (71)

can always be constructed. For example, the firing rates of hip-
pocampal place cells are modulated by running speed when a rat
moves on a narrow track (McNaughton et al., 1983). In this
one-dimensional problem, Equation 70 does not constrain the
tuning function f(x), here interpreted as a place field, describing
the mean firing rate at spatial position x. When averaged over a
population of simultaneously recorded place cells to get enough
spikes, the average firing rate was indeed remarkably linearly
related to the running speed, with a correlation coefficient .0.95
over the full range of speeds (Zhang et al., 1998), in agreement
with Equation 70. A similar linear relationship was also reported
recently for rats on a running wheel (Hirase et al., 1998). The
theory gives a correct tuning rule without reference to the un-
derlying biological mechanisms.

Two-dimensional example: local translational
visual motion
Neurons in middle temporal area (MT or V5) of monkeys re-
spond selectively to the direction of local visual motion (Zeki,
1974; Maunsell and Van Essen, 1983; Albright, 1984), although
they are also affected by other factors, such as surround motion
(Allman et al., 1985; Tanaka et al., 1986; Raiguel et al., 1995),
pattern motion (Movshon et al., 1985), transparency (Stoner and
Albright, 1992; Qian and Andersen, 1994), and form cues (Al-
bright, 1992). Consider the following formula obtained by keep-
ing only the translational term in Equation 30:

f 5 f0 1 p z v, (72)

which has been used for reaching arm movement (Eq. 2). This
tuning rule also resembles the directional sensitivity of MT neu-
rons (Zhang et al., 1993; Buračas and Albright, 1996), where p is
the preferred direction of the neuron, and v is the velocity of the
stimulus inside the receptive field.

This simple formula can capture two primary features of many
MT neurons: a broad directional tuning curve, and speed modu-
lation without changing the shape of the tuning curves (Rodman
and Albright, 1987), while setting aside various other properties
accounted for by more detailed models (Sereno, 1993; Nowlan
and Sejnowski, 1995; Buračas and Albright, 1996; Simoncelli and
Heeger, 1998). For many MT neurons, the tuning curves are often
sharper than cosine, in which case a circular normal curve in
Equation A17 might provide better fit because of its closeness to
a Gaussian (Albright, 1984). Linear speed modulation is probably
a reasonable approximation for some neurons when the velocity is
slow, but typically firing rates often decrease after reaching a
peak at an optimal speed (Maunsell and Van Essen, 1983). It
would be interesting to test whether speed modulation is linear
when averaged over raw firing rates for a large population of
neurons, especially under ecologically plausible stimulus condi-
tions. The above consideration may also apply to many V4 neu-
rons, which responded to visual motion response in an MT-like
manner (Cheng et al., 1994). Cosine tuning curves for transla-
tional motion have also been described in the cerebellum (Krauz-
lis and Lisberger, 1996) and the parietal area 7a (Siegel and Read,
1997).

Three-dimensional object motion
Spiral motion
No direct experimental data are available on how a neuron
responds systematically to a realistic moving three-dimensional
object with arbitrary translation and rotation. One closely related
example is the broad tuning of some neurons to spiral visual
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motion, which may be generated plausibly by a large moving
planar object facing the observer.

As shown in Figure 8, neurons in monkey visual medial supe-
rior temporal area (MST), which receive a major input from area
MT, typically respond well to wide-field random-dot spiral mo-
tion patterns (Graziano et al., 1994). Most neurons in the ventral
intraparietal area (VIP) are also sensitive to visual motion
(Colby et al., 1993), and some have tuning properties to spiral
motion similar to those in area MST (Schaafsma and Duysens,
1996), probably due to input directly from MST and/or integra-
tion of inputs from area MT. Area 7a is at a higher level than
MST and might have more complex response properties for optic
flows (Siegel and Read, 1997). In theory, it is possible to build an
MST-like neuron from MT-like local motion inputs, even with
position-invariance properties (Saito et al., 1986; Poggio et al.,
1991; Sereno and Sereno, 1991; Zhang et al., 1993). Tuning to
spiral motion was predicted based on Hebbian learning of optic
flow patterns (Zhang et al., 1993) and by other unsupervised
learning algorithms (Wang, 1995; Zemel and Sejnowski, 1998).

To explain spiral tuning in terms of rigid motion, regard the
environment itself as a large rigid object, moving relative to the
observer. For the experiments mentioned above, the environment
may be considered as a finely textured screen, oriented vertically,
facing the observer. Translating this screen toward or away from
the observer induces expansion or contraction, whereas rotating
the screen around a perpendicular axis induces circular motion.
According to the basic tuning rule in Equation 36, a neuron
should respond to arbitrary motion of this screen with the firing
rate:

f 5 f0 1 P v 1 Qv, (73)

where v is the translational speed, v is the angular speed, and:

P 5 p cos a, Q 5 q cos b (74)

are constants, where a is the angle between the preferred trans-
lational direction and the actual translational direction, and b is

Figure 8. Visual cortical neurons sensitive to spiral optic flow may provide evidence for the existence of preferred translation direction and preferred
rotation axis for three-dimensional object motion. Here the average response of a neuron depended on the combination of radial and circular motion
components, which varied systematically by changing local velocity directions in the moving random dot stimulus. The solid curves are circular normal
fit, and the dashed curves are cosine fit. Data of the MST neuron are from Figures 8C in Graziano et al. (1994), and the VIP neuron data are from Figure
10 in Schaafsma and Duysens (1996), with permission.
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the angle between the preferred rotation axis and the actual
rotation axis.

To see why this accounts for spiral tuning, write Equation 73 in
the equivalent form:

f 5 f0 1 w z s 5 f0 1 uwisucos g, (75)

where s 5 (v, rv) is the spiral composition vector describing the
stimulus, w 5 (P, Q/r) is the preferred spiral composition vector
describing response properties of the neuron, r is a constant
length, introduced to make v and rv of the same units, and g is the
angle between s and w. In the polar diagrams in Figure 8, the
horizontal and vertical axes correspond to the two components of
the stimulus spiral composition s, whose length:

usu 5 Îv2 1 ~rv!2 (76)

was fixed during the experiments. It follows from Equation 75
that the response should fall off smoothly when the stimulus spiral
composition becomes different from the preferred composition, in
proportion to the cosine of the angle g between them. This broad
tuning to spiral motion is generally consistent with the data
(Graziano et al., 1994; Schaafsma and Duysens, 1996), although a
circular normal function in Equation A17, with one more free
parameter, may provide better fits than a cosine function (Fig. 8).

The above interpretation implies that firing rate should scale
linearly with translational speed and angular speed independently
of the spiral tuning curve. The responses of most MST neurons do
indeed depend on speed (Tanaka and Saito, 1989; Orban et al.,
1995), and many are monotonically increasing (Duffy and Wurtz,
1997a). It would be interesting to test quantitatively how well the
linearity holds when averaged over a population of cells, espe-
cially for an ecologically relevant range of motion.

The tuning rule in Equation 73 also implies that the response
should depend on the focus of expansion or the translational
component in the optic flow, which also occurs for many MST
cells (Duffy and Wurtz, 1995, 1997b). Adding a translational
velocity vector to the stimulus corresponds to translating the
stimulus screen sideways, which affects the angle a in Equation 74
and thus the response in Equation 73. Changing the translational
direction and the rotation axis of the stimulus screen can alter
both angles a and b in Equation 74 and thus the predicted
response in Equation 73.

Motion-sensitive neurons in area MST may be used for pur-
poses such as estimating heading or self-motion (Perrone and
Stone, 1994; Lappe et al., 1996) or segmenting multiple moving
objects (Zemel and Sejnowski, 1998). MST responses can be
affected by various factors, including, for example, surround mo-
tion (Tanaka et al., 1986; Eifuku and Wurtz, 1998), disparity
(Roy et al., 1992), eye position and movement (Newsome et al.,
1988; Bradley et al., 1996; Squatrito and Maioli, 1997), vestibular
input (Thier and Erickson, 1992), form cues (Geesaman and
Andersen, 1996), the presence of multiple objects (Recanzone et
al., 1997), and attention (Treue and Maunsell, 1996). Most exper-
iments used simplified stimuli, although more realistic stimuli
were tested recently (Sakata et al., 1994; Pekel et al., 1996).
Because most of these examples contain parameters other than
the object’s position and orientation, additional variables are
needed to account for all of these effects in a model.

Further experimental test
Given all the contributing factors mentioned above, it is natural
to ask how a neuron would respond to a more natural-moving

three-dimensional object. A simple geometric stimulus is easier to
specify and present but may lack important sensory cues needed
to predict the response of a neuron to a natural stimulus. Our
analysis relies on varying the translational direction and rotation
axis and might provide a convenient basic description for re-
sponse properties in terms of a preferred translational direction
and a preferred rotation axis.

To test directly the basic tuning rule in Equation 30 or 36, one
should present realistic images of a moving three-dimensional
object to motion-sensitive neurons. The simplest way to test the
theory is to oscillate slightly an object around a fixed axis. The
oscillation should be sufficiently small so that salient visual cues
are not occluded. For sinusoidal oscillations with frequency V and
amplitude r:

w~t! 5 r sin~Vt!, (77)

and the angular speed is v 5 dw/dt in Equation 36. Thus the
theory predicts that the firing rate as a function of time should be:

f~t 1 t! 5 f0 1 qrV cos~Vt! cos b, (78)

where b is the angle between the actual rotation axis and the
preferred rotation axis, q is a constant coefficient, and t is the
latency for visual response. The translational term in Equation 36
vanishes because there is no translational motion (v 5 0). Sys-
tematically changing the orientation of the rotation axis (angle b)
while keeping the view fixed allows the tuning function and the
preferred rotation axis to be measured for the neuron.

Similarly, the response to translation in three-dimensional
space could be tested by oscillating the whole object along a
straight line:

x~t! 5 r sin~Vt!. (79)

The translational speed is v 5 dx/dt in Equation 36, and the firing
rate is:

f~t 1 t! 5 f0 1 prV cos~Vt! cos a, (80)

where a is the angle between the actual translational direction
and the preferred translational direction, and p is a constant
coefficient. The preferred translational direction can be measured
by systematically changing the translational direction (angle a)
while keeping the view fixed.

For more efficient tests, the object could be rotated continu-
ously with varying angular speed, covering all relevant views, first
with respect to a fixed axis, and then systematically changing the
axis. If the basic tuning rule is correct and the system is essentially
linear, the tuning function and the preferred rotation axis could
be computed for each view of the object. An even more efficient
test is possible with a continuously time-varying rotation axis that
generates tumbling movements of the object (Stone, 1998).

Eye position is one implicit factor that may affect the preferred
translational direction and preferred rotation axis. The present
theory allows an eye position effect but provides no additional
constraints.

The linear response properties of a neuron for a given object
are specified completely by its preferred translational direction,
preferred rotation axis, and baseline firing rate for each given
view of the object, as well as how these parameters depend on the
view. All of these properties are experimentally testable and can
be compared with the theoretical predictions in the preceding
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sections. For example, with the center of the object fixed, the
curl-free condition for a given neuron should be tested by mea-
suring its preferred rotation axis for four or more different
orientations of the object. For a full test in six-dimensional space,
both the preferred translational direction and the preferred rota-
tion axis of the neuron should be measured for seven or more
different positions and orientations of the object. See Appendix B
for further discussion.

If motion-sensitive neurons with similar tuning properties are
clustered in the brain, then it might be possible to use functional
magnetic resonance imaging techniques to test the predicted
properties of the tuning rule in animal and human subjects using
realistic images of moving 3-D objects as visual stimuli.

DISCUSSION

An explanation for cosine tuning
The remarkable ubiquity of approximately cosine tuning curves
for a wide range of neural responses in the visual and motor
systems suggests that there may be a common explanation that
transcends the specific mechanisms that generate these response
properties. We have shown that the low dimensionality of the
geometric variables that underlie object motion and body move-
ments could account for these observations. The gradient formu-
lation of this general principle provides a rigorous framework for
unifying the dependence of tuning curves on the axes and speeds
of rotation and translation.

This theoretical framework makes a number of specific predic-
tions. The primary prediction is the existence of preferred axes of
rotation and translation for moving objects, which can be deter-
mined by systematically rotating and translating objects in the
receptive field of cortical neurons. The firing rate of a neuron
should fall off in proportion to the cosine of the angle between the
preferred rotation axis and translational direction and the true
rotation axis and translational direction. In addition, the speed
and angular speed should modulate the firing rate multiplicatively
without changing the shape of the directional tuning functions,
somewhat related to the multiplicative gain fields in the parietal
cortex for eye position (Andersen et al., 1997; Salinas and Abbott,
1997) and recent evidence for distance modulation of responses
in visual cortex (Trotter et al., 1992; Dobbins et al., 1998). A
secondary prediction is that the fields of preferred directions of
rotation and translation for each individual neuron are curl free;
these are global conditions on the overall pattern of vectors. The
curl-free condition is relaxed in nongradient theory, which pro-
vides a theoretical alternative that can be experimentally tested.

Cosine tuning for the direction of arm movement characterizes
many neurons in the motor cortex as well as in other parts of the
motor system. If this cosine tuning with direction mainly reflects
the geometrical constraint of moving in a three-dimensional
space, as we propose, then the specific functions of these neurons
in guiding and planning limb movements must be sought in other
properties. One way to obtain this information is to measure how
the preferred direction varies in space for different hand posi-
tions, because this vector field completely specifies the properties
of a neuron in a linear theory. When the preferred direction field
is curl free, the underlying potential function that generates the
gradient field can be constructed empirically.

Cosine tuning function is an approximation to biological data.
For example, the averaged directional tuning curves in Figure 2
are all slightly sharper than a cosine function. Such systematic

deviation can be accounted for only by nonlinear theories (see
Appendix A). Ultimately, the underlying neural mechanisms that
generate the tuning properties need to be considered in more
detailed theories. These tuning properties might be the outcome
of learning processes based on correlated neuronal activities
induced by movement and motion. In this paper, we have focused
on several analytically tractable situations to emphasize the exis-
tence of general neuronal tuning properties that are insensitive to
the actual mechanisms.

How preferred rotation axes may be used to update a
static representation
If the cosine tuning of motion-sensitive neurons is determined
essentially by geometric constraints regardless of the actual com-
putational functions, then what is the value of these simple
response properties? For three-dimensional object motion, a pop-
ulation of neurons tuned to translational direction and rotation
axis should carry sufficient information to determine the instan-
taneous motion of any given object and therefore could be used to
update the static view represented elsewhere. This allows future
sensory and motor states to be predicted from the current static
state.

Information about the static view of an object is represented in
the ventral visual stream in the monkey cortex, leading to the
inferotemporal (IT) area (Ungerleider and Mishkin, 1982). The
response of a view-sensitive neuron in IT area typically drops off
smoothly as the object is rotated away from its preferred view,
around either the vertical axis (Perrett et al., 1991) or other axes
(Logothetis and Pauls, 1995). View-dependent representations
for three-dimensional objects have been studied theoretically
(Poggio and Edelman, 1990; Ullman and Basri, 1991) and have
motivated several recent psychophysical experiments (Edelman
and Bülthoff, 1992; Bülthoff et al., 1995; Liu et al., 1995; Sinha and
Poggio, 1996). The general idea of a view-dependent representa-
tion in the IT area is consistent with recent neurophysiological
results, including single-unit recordings (Perrett et al., 1991;
Logothetis and Pauls, 1995; Logothetis et al., 1995) and optical
imaging data (Wang et al., 1996).

Information about the instantaneous motion of an object is
represented in the dorsal visual stream, including areas MT,
MST, superior temporal polysensory area, and the parietal cortex,
such as area 7a. Given a population of motion-sensitive neurons
tuned to translation and rotation, it should be possible to extract
complete information about the instantaneous motion of any
object. For example, a six-dimensional population vector can be
used to reconstruct rigid motion. More efficient reconstruction
methods may also be used and implemented by a biologically
plausible feedforward network (Zhang et al., 1998). The same set
of neurons can extract the motion of different objects by combin-
ing the activities of input neurons differently. Instantaneous trans-
lation and rotation determine how the current view of this object
is changing at the moment and could be used to update the static
view representation in the IT area.

Broad tuning to static views logically implies that each static
view of an object elicits a certain activity pattern in the temporal
cortex, and that as the view changes, the pattern of activity also
changes smoothly, depending on the axis of rotation and direc-
tion of translation. A complete representation of the dynamic
state of an object would require representing information about
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both the current view and how the view is changing, so that the
system can effectively update its internal state in accordance with
the movement of the object. Such motion information might help
improve the speed and reliability of the responses of view-specific
neurons to a three-dimensional object during natural movements.

Conclusion
We have shown that simple generic tuning properties arise when
an encoded sensory or motor variable reflects changes rather than
static configurations. By linearizing the system locally for
movement-sensitive neurons, the analysis reveals mechanism-
insensitive tuning properties that mainly reflect the geometry of
the problem rather than the exact encoding mechanisms, which
could be much more complicated. Although a nonlinear analysis
is also considered (Appendix A), the basic linear theory already
captures some essential features of the biological data, such as
sensory responses to visual pattern motions and directional tun-
ing for reaching movements. The analysis predicts the existence
of a preferred translational direction and a preferred rotation axis
in space with cosine tuning functions for representing arbitrary
three-dimensional object motion. For natural movements that
have an intrinsically low dimensionality, combinations of vari-
ables become highly constrained and cannot be changed arbi-
trarily. It is precisely for these constrained movements that the
mechanism-insensitive properties studied here may become use-
ful. By contrast, the analysis may not apply for artificial move-
ments such as computer-generated visual motion stimuli that do
not satisfy any simplifying geometry constraints that occur in the
real world. The brain should have more efficient representations
for those stimulus features that are consistent with commonly
encountered configurations in the real world. The analysis pre-
sented here may help to predict tuning properties of motion-
sensitive neurons in unknown situations by providing a basic
description of expected properties with which more detailed char-
acterizations as well as potential deviations can be contrasted.

APPENDIX A: EXTENDED THEORIES
We first reformulate the linear tuning theory for motion-sensitive
neurons in general terms and then make nonlinear extensions.
Here it is assumed that the natural movements of interest can be
parameterized by a low-dimensional vector variable:

x 5 ~ x1 , x2 , . . . , xD!, (A1)

with D degrees of freedom. For example, D 5 3 for reaching with
a stereotypical arm posture, and D 5 6 for rigid object motion. D
can be larger when more independent variables are included.

Linear gradient theory
Assume that the mean firing rate of a motion-sensitive neuron is
linearly related to the time derivative of a potential function F(x)
of the state variable x. This leads to the tuning rule:

f 5 f0 1
d
dt

F~x! 5 f0 1 g~x! z v, (A2)

where f0 is the baseline rate, the gradient:

g~x! 5 ~ g1~x!, g2~x!, . . . , gD~x!!

5 ¹F 5 S ­F

­ x1
,

­F

­ x2
, . . . ,

­F

­ xD
D

(A3)

is the generalized preferred direction, and:

v 5 ~v1 , v2 , . . . , vD! 5 ẋ 5 ~ ẋ1 , ẋ2 , . . . , ẋD! (A4)

is the generalized velocity. A gradient is often treated as a vector,
although mathematically it is more properly called a one-form
(Flanders, 1989), a distinction, however, that has no practical
consequence for this paper. The necessary and sufficient condi-
tion for the preferred direction field g 5 (g1 , g2 , . . . , gD ) to be a
gradient field is that:

­gi

­ xj
5

­gj

­ xi
. (A5)

This is equivalent to the condition that:

Rg~x! z dx 5 0 (A6)

for any closed path, or that the potential function can be recon-
structed from the preferred direction by:

F~x! 5 F~x0! 1 E
x0

x

g~x! z dx, (A7)

where the integral depends only on the end points x and x0 , not
on the path. In three-dimensional space, these conditions are
equivalent to zero curl.

Linear nongradient theory
Assume directly a linear relationship between the firing rate and
the components of the generalized speed velocity v. This leads to
the tuning rule:

f 5 f0 1 g~x! z v (A8)

without further constraint on the distribution of the preferred
direction g(x). In particular, it may not be the gradient of a
potential function. Thus, in general:

­gi

­ xj
Þ

­gj

­ xi
, (A9)

and the path integral may depend on the path. For a fixed x, the
local tuning property of this neuron is the same as that predicted
by the gradient theory. The difference is that the nongradient
theory allows an arbitrary global distribution of the preferred
direction field, whereas the gradient theory admits only a gradient
field.

Coordinate-system independence
Both the gradient and the nongradient theories are independent of
which variables are chosen to parameterize the movements. Sup-
pose the old vector variable x and a new variable x̃ are related by:

x 5 h~x̃!, (A10)

then the velocities v 5 dx/dt and ṽ 5 dx̃/dt in the two coordinates
are related linearly by:

v 5 J~x̃! ṽ , (A11)

where J(x̃) 5 dh(x̃)/dx̃ is the Jacobian matrix.
The tuning rule has the same form in both coordinate systems:

f 5 f0 1 g~x! z v 5 f0 1 g̃~x̃! z ṽ , (A12)
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where the new preferred direction is:

g̃~x̃! 5 g~h~x̃!!J~x̃!. (A13)

If a potential function exists such that the old preferred direction
is a gradient field:

g~x! 5 ¹F~x!, (A14)

then the preferred direction field is still a gradient field with
respect to the new variable x̃:

g̃~x̃! 5 =̃F̃(x̃), (A15)

where the new potential function is:

F̃~x̃! 5 F~h~x̃!!. (A16)

The choice of variable is arbitrary, but convenience favors coor-
dinates that make the results easiest to interpret.

Nonlinear theory: circular normal tuning
The circular normal tuning function for firing rate has the general
form:

f 5 A 1 B exp~K cos a!, (A17)

which has one more free parameter and tends to fit data better
(compare Figs. 2 and 8) than a cosine tuning function of the
general form:

f 5 A9 1 B9 cos a, (A18)

where a is the angular variable of interest, and A, B, K, A9, B9 are
parameters.

The circular normal function can mimic either a cosine or a
Gaussian. When K is very small, exp(K cos a) ; 1 1 K cos a so
that the circular normal function in Equation A17 approaches the
cosine function in Equation A18 with A9 5 A 1 B and B9 5 BK.
When K is large, cos a ; 1 2 a2/2 so that the circular normal
function approaches a narrow Gaussian function with the vari-
ance 1/K.

How can we generate a circular normal tuning function? Be-
cause the time-derivative equation for firing rate:

f 2 f0 5
dF

dt
(A19)

can yield a cosine tuning function, as shown before, the modified
equation of the form:

log~af 1 b! 5
dF

dt
(A20)

should yield a circular normal tuning function, where a and b are
parameters. The result is a tuning rule of the form:

f 5 A 1 B exp~ pv cos a!, (A21)

where angle a specifies movement direction and v is movement
speed. This modification introduces the following testable effects
on speed modulation. If parameter p is very small, the tuning
function is close to a cosine, and the firing rate increases approx-
imately linearly with speed, as before. When the parameter p is
larger, the tuning function is closer to a Gaussian, and the firing
rate should increase faster than linearly with speed. The direc-
tional tuning also becomes narrower with higher speed. These

effects are similar to those shown in Figure 9A for quadratic
terms. See related discussion in the next section.

Although Equation A20 can lead to a circular normal function,
it does not specify how this occurs. One plausible biological
mechanism is a recurrent network with appropriate lateral con-
nections, which can generate a tuning curve closer to a circular
normal function than to a cosine function (Pouget et al., 1998).

Nonlinear theory: acceleration tuning and quadratic
speed modulation
In this section the basic tuning theory is generalized by including
the second temporal derivative. This leads to acceleration tuning,
nonlinear speed modulation, and departure from perfect cosine
directional tuning.

Assume that the firing rate of a neuron contains not only the
first temporal derivative of a potential function, but also the
second temporal derivative of another potential function:

f 5 f0 1
dF

dt
1

d2C

dt2 , (A22)

where f0 is the baseline rate, F 5 F(x) and C 5 C(x) are two
unknown potential functions of a vector variable x 5 (x1 , x2 , . . . ,
xD). The special case C 5 0 reduces to what has been considered
before.

This assumption leads to the new tuning rule:

f 5 f0 1 p1 z v 1 p2 z a 1 O
i, j51

D

hijvivj , (A23)

where v 5 (v1 , v2 , . . . , vD) 5 dx/dt is generalized velocity, a 5
dv/dt is generalized acceleration, p1 5 ¹F is the preferred
direction for velocity, p2 5 ¹C is the preferred direction for
acceleration, and hij 5 ­2C/­xi­xj is the Hessian matrix of second
derivatives.

Example 1: Reaching movement
Here the vector variable x 5 (x1 , x2 , x3) 5 (x, y, z) describes the
hand position. The dot product terms in Equation A23 mean that
both the velocity and the acceleration have preferred directions
and cosine directional tuning functions, together with multiplica-
tive linear modulation by the speed or the magnitude of acceler-
ation. Ashe and Georgopoulos (1994) included acceleration
terms in a different regression formula and found a small number
of cells related to hand acceleration. Systematic tests are needed
to determine whether the acceleration tuning predicted by Equa-
tion A23 really exists.

Example 2: Rigid object motion
Here the vector variable x 5 (x1 , x2 , . . . , x6) 5 (x, y, z, u1 , u2 , u3)
describes the object’s position and orientation in space. By trans-
forming (u̇1 , u̇2 , u̇3) into the angular velocity in physical space, the
tuning rule becomes:

f 5 f0 1 p1 z v 1 p2 z a 1 q1 z v 1 q2 z a

1 O
i, j51

3

~Hijvivj 1 Iijviv j 1 Jijviv j!, (A24)

where v 5 (ẋ, ẏ, ż) is the translational velocity, a 5 dv/dt is the
translational acceleration, v 5 (v1 , v2 , v3) is the angular veloc-
ity, a 5 dv/dt is the angular acceleration, and Hij , Iij , Jij are
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determined by the Hessian matrix and matrix M as in Equation
26. Therefore, angular acceleration should also have a cosine
tuning with a preferred direction q2. Although there is some
evidence that some MT cells can provide information about
acceleration of a visual target (Movshon et al., 1990; Lisberger et
al., 1995), systematic tests for acceleration tuning with realistic
objects have not been performed.

Effects of quadratic terms
The quadratic speed terms imply both nonlinear speed modula-
tion and higher-order Fourier components for directional tuning

that are speed dependent. To see this, consider a two-dimensional
reaching example with the hand velocity:

v 5 ~v1 , v2! 5 ~v cos f, v sin f!, (A25)

where v is the speed and f is the angle of movement direction.
The quadratic terms can always be written as:

O
i, j51

2

hijvivj 5 ~h11 cos2f 1 2h12 cos f sin f 1 h22 sin2 f!v2

5 @a 1 b cos~2f 1 w0!#v2, (A26)

Figure 9. Effects of quadratic terms on directional tuning curve and speed modulation, here showing the tuning functions f 5 2 1 10(v 1 v cos u 6
v 2 cos 2u), which have a single peak when the speed v # 0.25, with the critical cases indicated by ƒ. A, Positive sign: As the speed increases, the tuning
curve becomes progressively narrower, and its peak response grows more slowly than a linear function (dashed line). B, Negative sign: As the speed
increases, the tuning curve becomes progressively wider, and its peak response grows more slowly than a linear function (dashed line).
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where h12 5 h21 , and the coefficients a, b and the phase shift w0

depend only on hij. For comparison, the linear speed term can be
written as p1 z v 5 pv cos(f 1 w1), with a phase shift w1.

The second Fourier component can either sharpen or broaden
the original cosine function, depending on its sign. As illustrated
in Figure 9, if the tuning curve is sharpened by the second
component, it becomes even sharper as the speed increases; if the
tuning curve is broadened, then it becomes even broader as the
speed increases. However, the amplitude of the second compo-
nent (cos 2u) should be no more than one-fourth of that of the
first one (cos u) to ensure that the tuning curve has only a single
peak. This limits the effects from the second Fourier term. For
speed modulation, the quadratic speed factor produces only a
slight bend (Fig. 9) and is too weak by itself to produce ø-shaped
or ù-shaped curves for some neurons in area MT (Maunsell and
Van Essen, 1983; Rodman and Albright, 1987) and MST (Orban
et al., 1995; Duffy and Wurtz, 1997a). Rodman and Albright
(1987) also showed that the average tuning widths of MT neurons
were insensitive to speed, although the typical experimental er-
rors for individual neurons might mask the small effects shown

here. Thus, the second Fourier component with squared speed
may help improve data fitting (compare Fig. 2), but probably only
within a narrow range of speeds.

APPENDIX B: LINEAR VECTOR FIELD FOR
DATA ANALYSIS
Linear vector field from experimental data
As shown in the main text, the preferred direction and the
preferred rotation axis may be generated by gradient fields of a
potential function. Here we consider how to test the gradient
condition experimentally. In two and three dimensions, where the
curl can be defined, a vector field generated as the gradient of any
potential function is always curl free (Fig. 10). In particular, a
two-dimensional vector field (u(x, y), v(x, y)) has both zero curl
and zero divergence if and only if

f~ z! 5 v~ x, y! 1 iu~ x, y! (B1)

is analytic or differentiable with respect to the complex variable
z 5 x 1 iy, because of the Cauchy-Riemann differentiability
conditions. One can use templates of curl-free vector fields gen-
erated by gradient of potential functions to interpolate arbitrary
vector fields (Mussa-Ivaldi, 1992). Therefore, the curl-free condi-
tion alone is too flexible because it can locally distort fields to
accommodate any sparsely sampled vector field data.

For testing the gradient-field condition or the curl-free condi-
tion with sparsely sampled data points, an additional smoothness
constraint is needed. Linearity is a reasonable smoothness re-
quirement, at least for a local region, such as in measurement of
local force fields (Mussa-Ivaldi et al., 1985; Giszter et al., 1993),
and in local optic flow analysis (Koenderink and van Doorn,
1976). A linear vector field has the general form:

p 5 Ax 1 b, (B2)

where the column vector x 5 (x1 , x2 , . . . , xD)T contains the
variables of interest, A is a constant matrix:

A 5 1
a11 a12 · · · a1D

a21 a22 · · · a2D
···

···
· · ·

···aD1 aD2 · · · aDD

2 , (B3)

and b is a constant vector. If the linear vector field is the gradient
of an unknown potential function, then this function should have
the general quadratic form:

F~x! 5
1
2

xTBx 1 bTr 1 C, (B4)

which has the gradient:

p 5 ¹F~x! 5
1
2

~B 1 BT !x 1 b, (B5)

with b a constant column vector, and T for transpose. To be
consistent with Equation B2, matrix A must be symmetric:

AT 5 A, (B6)

in which case we can set B 5 A. This symmetry condition in
Equation B6 is the necessary and sufficient condition for a linear
vector field to be a gradient field. It includes the curl-free condi-
tion for D 5 3 as the special case, because the curl:

curl p 5 ~a32 2 a23 , a13 2 a31 , a21 2 a12! (B7)

Figure 10. Curl-free vector fields may have various visual appearances.
These examples, obtained as the gradients of the potential functions as
indicated, have zero curl everywhere, except at a singular point in the two
cases at the bottom. Plot range: always from 21 to 1 for both axes.
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vanishes if and only if the matrix A is symmetric.
To determine A and b from data vectors p1 , p2 , . . . , pN

sampled at positions r1 , r2 , . . . , rN, respectively, we require the
total number of data points:

N $ D 1 1 (B8)

in D-dimensional space, because matrix A and vector c contain D 2

1 D scalar unknowns, whereas N data points provide DN scalar
values. For example, the two-dimensional case requires a mini-
mum of three data points, and the three-dimensional case re-
quires a minimum of four data points.

The least-square solution is:

A 5 PX†, (B9)

where

X† 5 XT~XXT!21 (B10)

is the Moore-Penrose pseudoinverse, and the matrices are de-
fined as:

P 5 @~p1 2 p0!, ~p2 2 p0!, . . . , ~pN 2 p0!#, (B11)

X 5 @~x1 2 x0!, ~x2 2 x0!, . . . , ~xN 2 x0!#, (B12)

which are made of column vectors as shown, and:

p0 5
1
N O

k51

N

pk , (B13)

x0 5
1
N O

k51

N

xk , (B14)

b 5 p0 2 Ax0 . (B15)

The above solution minimizes:

O
k51

N

u~pk 2 p0! 2 A~xk 2 x0!u2, (B16)

which vanishes only when all the data points can be fit exactly by
the linear model.

Examples of the simplex method
In this section, we illustrate an alternative formulation of the
curl-free condition with minimal data points in three-dimensional
space, which can be extended readily to other dimensions. For
local interpolation in three-dimensional space, a vector field
should at a minimum be sampled at four locations 1, 2, 3, 4, not
all lying in the same plane (Fig. 11). Suppose the coordinates of
the four points are x1 , x2 , x4 , x4 , and the corresponding data
vectors are p1 , p2 , p3 , p4. The simplex method is based on the fact
that any point x in three-dimensional space can be expressed as:

x 5 l1x1 1 l2x2 1 l3x3 1 l4x4 , (B17)

where the coefficients are unique, satisfying the constraint:

l1 1 l2 1 l3 1 l4 5 1. (B18)

The linearly interpolated vector at this position is:

p 5 l1p1 1 l2p2 1 l3p3 1 l4p4 . (B19)

Similar equations with fewer variables hold for the one- and
two-dimensional cases.

To derive an integral formula for the curl-free condition, first
integrate along the straight line segment from x1 to x2 with a
linearly interpolated vector, yielding:

E
x1

x2

p z dl 5
1
2

~p1 1 p2! z ~x2 2 x1!. (B20)

To evaluate the closed path integral along the triangle 123 in
Figure 11, use this formula and the equality a1 1 a2 1 a3 5 0, with
a1 [ x3 2 x2 , and so on, to obtain:

R
123

p z dl 5 2
1
2

~p1 z a1 1 p2 z a2 1 p3 z a3!, (B21)

Figure 11. Interpolating a vector field linearly in three-dimensional
space requires at least four data vectors to be measured at locations not
all in the same plane. In two-dimensional space, at least three data vectors
are required at locations not all from the same line. The case shown at the
bottom is degenerate.
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which must vanish if the field is curl free. This formula is valid in
both two- and three-dimensional cases. For the tetrahedron in
Figure 11, a similar closed path integral along the edges should
vanish. Because there are only three independent loops, we can
choose, for instance:

R
123

p z dl 5 R
124

p z dl 5 R
234

p z dl 5 0. (B22)

Although equivalent to the matrix symmetry in Equation B6, the
path integral formulas are more intuitive and express the curl-free
condition in terms of directly measurable quantities, as in Equa-
tion B21.

In the experiment by Caminiti et al. (1990), the preferred
direction of a motor cortical neuron was sampled at three points
at equal distance, similar to the case in the bottom diagram in
Figure 11. Here the linearity of the vector field only entails that:

p2 5
1
2

~p1 1 p3!, (B23)

which is a special case of Equation B19. The curl-free condition
cannot be tested here. With linear interpolation, at least four
starting hand positions should be sampled (Fig. 11).
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