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In the current paper it is proposed that short-term plasticity and
dynamic changes in the balance of excitatory-inhibitory inter-
actions may underlie the decoding of temporal information, that
is, the generation of temporally selective neurons. Our initial
approach was to simulate excitatory—inhibitory disynaptic cir-
cuits. Such circuits were composed of a single excitatory and
inhibitory neuron and incorporated short-term plasticity of EP-
SPs and IPSPs and slow IPSPs. We first showed that it is
possible to tune cells to respond selectively to different intervals
by changing the synaptic weights of different synapses in par-
allel. In other words, temporal tuning can rely on long-term
changes in synaptic strength and does not require changes in
the time constants of the temporal properties. When the units
studied in disynaptic circuits were incorporated into a larger

single-layer network, the units exhibited a broad range of tem-
poral selectivity ranging from no interval tuning to interval-
selective tuning. The variability in temporal tuning relied on the
variability of synaptic strengths. The network as a whole con-
tained a robust population code for a wide range of intervals.
Importantly, the same network was able to discriminate simple
temporal sequences. These results argue that neural circuits
are intrinsically able to process temporal information on the
time scale of tens to hundreds of milliseconds and that spe-
cialized mechanisms, such as delay lines or oscillators, may not
be necessary.
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Our perception of the world is based on the spatiotemporal
patterns of neuronal activity produced at sensory layers. By
decoding these patterns the brain determines what we see and
hear. It is useful to distinguish between the spatial and temporal
content of stimuli because fundamentally different mechanisms
may underlie each form of processing. Spatial information refers
to stimuli defined by the location of active sensory afferents. For
instance, vertical and horizontal bars of light activate different
retinal ganglion cells arranged in specific spatial patterns. Simi-
larly, 1 and 4 kHz tones activate spatially distinct populations of
cochlear hair cells. In both cases there is a place code at the
earliest sensory stages. In its simplest form, the generation of
neurons that respond selectively to spatial stimuli is a wiring
problem: a neuron that responds to a vertical bar or a 1 kHz tone
must directly or indirectly receive functional inputs from the
appropriate sensory neurons in the retina or cochlea. Temporal
information refers to stimuli defined by the temporal structure of
active sensory neurons. If a bar of light is present for 50 or 100
msec, in both cases the same groups of retinal ganglion cells are
active. Similarly, if two brief 1 kHz tones are separated by 50 or
100 msec the same population of hair cells will be active. Thus,
for neurons to respond selectively to a 50 or 100 msec stimulus, an
additional process must occur: at some stage a temporal to spatial
transformation must transpire.
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The above examples emphasize the need to decode informa-
tion that directly reflects the temporal characteristics of external
stimuli—or what can be considered extrinsic temporal informa-
tion. In addition, a similar problem is posed by the presence of
intrinsically generated temporal codes. Theoretical and experi-
mental data suggest that temporal information is also present in
the responses to both static and steady-state stimuli (Richmond et
al., 1990; McClurkin et al.,, 1991; Middlebrooks et al., 1994;
Mechler et al., 1998; Prut et al., 1998; Buonomano and Mer-
zenich, 1999). For example, Richmond et al. (1990) have shown
that by taking into account the temporal structure of neuronal
responses to static Walsh patterns, there is more information
about the stimuli than there is in the firing rate alone. More
recently Mechler et al. (1998) have shown that there is consider-
able information relating to the contrast of transient stimuli in the
temporal pattern of V1 neuron firing. If the brain uses these
temporal codes, a critical issue is how they are decoded by the
nervous system. Decoding intrinsically generated temporal codes
poses the same problem as that of extrinsic temporal information.

The time scale of information processing by the nervous system
ranges over many orders of magnitude: from a few microseconds,
to milliseconds, to many seconds and above. Here we focus on the
millisecond time scale. It is within this time range that much
sensory processing, including interval discrimination (Wright et
al., 1997) and speech perception (Tallal 1994; Shannon et al.,
1995) occurs, and in which some intrinsic temporal codes are
hypothesized to operate (Mechler et al., 1998). Furthermore,
experimental data has shown that some sensory neurons respond
selectively to temporal features of stimuli on the time scale of tens
to hundreds of milliseconds, including call-sensitive neurons in
monkeys (Rauschecker et al., 1995; Wang et al., 1995), interval
and duration-sensitive neurons (Riquimaroux 1994; He et al,,
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Equations used to simulate the Ex and Inh units. Variable names and units follow the conventions used in NEURON. The simulations

consisted of separate modules for the cell somas (large circles) and synapses. The equations for the synapses are described in Materials and Methods.
Parameters for PPF, PPD, and the slow IPSP were actually computed in the somatic compartment and then passed to the synaptic modules (because
short-term plasticity of all the synapses of a given unit will have the same values). The arrows between both modules represent the passing of these pointer

variables.

1997), song-sensitive neurons in birds (Margoliash 1983; Doupe
and Konishi, 1991; Lewicki and Arthur, 1996), call-sensitive
neurons in frogs (Alder and Rose, 1998), and word-selective
neurons in humans (Creutzfeldt et al., 1989).

To date, little is known about the neural mechanisms underly-
ing temporal selectivity in the millisecond range (see Discussion;
for review, see Ivry, 1996; Gibbon et al., 1997). Various mecha-
nisms have been proposed to account for the sensory side of
temporal processing, including internal clocks (Creelman, 1962;
Treisman, 1963), delay lines (Braitenberg, 1967; Tank and Hop-
field, 1987), and oscillators (Miall, 1989; Ahissar et al., 1997). We
have previously proposed that time-dependent neuronal proper-
ties may underlie temporal processing (Buonomano and Mer-
zenich, 1995). Using a large multilayer network we showed that
the network was able to discriminate among a wide range of
temporal stimuli.

The goal of the current paper was to perform a computational
analysis of simple circuits that incorporate experimentally de-
fined time-dependent properties and to understand the minimal
requirements necessary for temporal processing. Three time-
dependent properties in particular were examined because they
are experimentally well defined and likely to be critical in shaping
the postsynaptic responses to time-varying stimuli: (1) paired-
pulse facilitation (PPF) of monosynaptic EPSPs (Zucker, 1989;
Zalutsky and Nicoll, 1990; Manabe et al., 1993; Stratford et al.,
1996; Reyes and Sakmann, 1998); (2) paired-pulse depression

(PPD) of fast IPSPs (Deisz and Prince, 1989; Davies et al., 1990;
Nathan and Lambert, 1991; Fukuda et al., 1993; Lambert and
Wilson, 1993; Buonomano and Merzenich, 1998); and (3) slow
IPSPs (Newberry and Nicoll, 1984; Hablitz and Thalmann, 1987;
Olpe et al, 1994). First, using simple disynaptic circuits we
showed that interval tuning can arise from changes in synaptic
strength, in the absence of changes in any time constants. This
observation suggests that long-term synaptic plasticity could un-
derlie the formation of not only spatial, but of temporal receptive
fields. The analysis of a larger single-layer network revealed that
in a randomly connected network, that the distribution of tem-
poral responses of the individual units is sufficiently broad to form
a robust population code for a wide range of temporal intervals
and sequences.

MATERIALS AND METHODS

Simulation of disynaptic circuits. All simulations were performed with
NEURON (Hines and Moore, 1997) running on an SGI Octane work-
station. Each unit was simulated as a single-compartment Hodgkin—
Huxley unit. The Hodgkin—-Huxley equations and parameters used are
shown in Figure 1. Parameters were based on those used by Traub et al.
(1992). In addition to the Na™, K*, and leak current, a “noise” current
was also present.

Fast EPSPs and fast IPSPs

Fast EPSPs and fast IPSPs were simulated using “kinetic synapse”
equations (Destexhe et al., 1993; Golomb et al., 1994). Synaptic trans-
mission occurs during a brief pulse of a fixed duration, where ¢, and g
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Figure 2. Simulated PPF of EPSPs (A4), PPD of IPSPs (B), and the slow
IPSP (C). EPSPs and IPSPs in the Ex unit are shown in response to
paired-pulse stimulation at intervals ranging from 25 to 375 msec. Note
that that some of the apparent facilitation observed in response to inter-
vals <75 msec is attributable to temporal summation as well as actual
paired-pulse facilitation.

represent the onset and offset of the pulse (¢, = t,, + 1 msec). During
a pulse, receptor activation R(f), which is proportional to synaptic con-
ductance, follows:

R (t = ton) = Roo + [R(ton) = ReJexp[ — (£ = fon)/Riaul, )
after a pulse R(f) is governed by

R (t — tor) = R(torexpl — Bt — tor)], (2
where
R _ aTmaX 3
STt B @
and
R = ! 4
w= T TR 4)

As shown in Figure 1, «, which contributes to the rising phase of the PSP
was set to 0.5 for both the excitatory and inhibitory synapses. 8, which
contributes to the decay phase of the PSP, was 0.25 and 0.167 for
excitatory and inhibitory synapses, respectively.

Three time-dependent properties were incorporated into the simula-
tions: paired-pulse facilitation of EPSPs, paired-pulse depression of
IPSPs, and slow IPSPs. Each of these is described below and shown in
Figure 2.

Slow IPSPs

The slow IPSP was simulated using previously described equations
(Golomb et al., 1994). The same equations used for fast synaptic trans-
mission were used with the addition of a second component, G(t),
representing G-protein activation:

it = @GR = G - BeG, 5)
where G., is a sigmoid function of R, which was described in Equations

1-4.

1

GAR) = T3 (R = Gu/0.01]" ©
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For the slow IPSP it is G(¢) not R(¢) that is proportional to the synaptic
conductance.

PPD of the fast IPSP

PPD of fast IPSPs was simulated by modulating the amount of transmit-
ter released using the same time course as the GABA conductance. The
degree of paired-pulse depression, PPD(f) was a function of G:

G(1)
PPD(t) = PPDmMG—. (7)

PPD(t) modulates the strength of both the fast and slow IPSPs.

PPF of excitatory synapses

PPF was simulated using of an « function, reinitiated at each spike
occurrence (Buonomano and Merzenich, 1995):

max

. __spike cal
& ppp (7T L g)

PPF|(t) =

where £ represents the occurrence of the last spike in unit i. In the
large network, simulations were also run with facilitation implemented
using a more realistic model described by Markram et al. (1998) with
similar results.

Synaptic delays were on average 1 and 2 msec for EPSPs onto inhibi-
tory (Inh) and excitatory (Ex) units, respectively (Thomson et al., 1988;
Markram et al., 1997). These delays were meant to capture time delays
produced by axon and dendritic conduction times and synaptic delays.

Simulation of large networks. For simulations of a large network, the
same units used above were incorporated into a single-layer network
composed of 400 Ex units and 100 Inh units. A 4:1 ratio was used because
it is the observed ratio of excitatory to inhibitory neurons in neocortical
areas (Beaulieu et al., 1992). It is generally reported that a pyramidal
neuron receives ~4000 synapses, and the probability of a connection
between local pyramidal cells is 2-8% (Thomson et al., 1988; Mason et
al., 1991; Thomson and West, 1993). To simulate the absolute number of
synapses and the correct probability would require 40,000-80,000 Ex
units. We chose to simulate the correct probability (in part because of
computational efficiency). We assumed that the probability of connectiv-
ity between cell types was ~5% (resulting in a small number of synapses
on each unit). The connectivity was also constrained by experimental
data showing that ~20% of the synapses onto a neuron are GABAergic
(Beaulieu et al., 1992). Table 1 shows the synaptic convergence on to
each unit and the average synaptic strength assigned to each synapse.
The network was driven by two input pulses separated by a given
interval. Each input pulse consisted of a burst of three spikes at 300 Hz.

Recognition network. To determine whether the population response of
the large network contained sufficient information to permit discrimina-
tion of different stimuli, a layer of output units was used in conjunction
with a supervised learning rule. The number of output units corre-
sponded to the number of stimuli presented to the network, and each unit
received inputs from all the Ex units. Synaptic strengths were adjusted
using a supervised rule [backpropagation with no hidden units; Rumel-
hart and McClelland (1986)]. The strength of the connection from Ex
unit I to output unit j was governed by:

AI’V]] = aNiSj, (9)

where & is the error value for the output unit j (0 or 1). Note that
supervised learning rules are generally not used for continuous time
models, thus for training the input to the network was the number of
spikes from each unit in response to the whole stimulus or each pulse
(N). By collapsing time we were able to train the recognition network
using conventional algorithms. However, after training the synaptic
weights for the output units could be used to observe the network
behavior in a continuous time manner (see Fig. 9). We emphasize that
this discrimination network is used as a technique to analyze the infor-
mation content of the network and not necessarily meant to be a
physiological representation of a read-out.

RESULTS

Our first goal was to understand how the synaptic strengths of
multiple synapses in a disynaptic circuit composed of one Ex and
one Inh unit shape the responses to simple temporal stimuli. We
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Table 1. Number of synapses each Ex and Inh unit received and average strength of each type of synapse

Ex Units Inh Units

# of synapses nS # of synapses nS

# synapses from Input fibers 10 5 6 1.5
# synapses from Ex units 10 4 6 1.7
# synapses from Inh units (GABAg) 6 20 (1.3) 6 3.3(0.8)

Figure 3. Simulations of order selectivity. 4,
The panel on the left shows the disynaptic
circuit and the synaptic weights. The voltage
of the Ex unit (top traces) and Inh unit (bot-
tom traces) in response to a 100 msec interval.
Depending on the strength of two synapses,
Input — Ex and GABAg — Ex, the Ex
unit responds selectively to the first ( green)
or second pulse (red). B, Parametric analysis
of synapse space. Each plot varies the
strength of the Input — Ex (x-axis), and
GABAjg — Ex (y-axis). The strength of the
GABA, — Ex was also varied as shown
across the two subplots. Simulations were
performed in the presence of noise in both
units. The color scale represents the proba-
bility of firing to the first pulse and second
pulse. Intense green means that given those
synaptic strengths, the probability of firing to
the first pulse and not to the second was 1.0.
Red represents conditions in which the Ex
unit responds selectively to the second pulse.
Yellow represents nonselective responses to
both pulses. Note that in each panel there is a
transition along the diagonal that represents 20
the point in which a unit changes its selectiv-

GABAg —> Ex

First—Pulse Selective Second-Pulse Selective

i :

: b

(4] 100 o] 100 ms
GABAA=100nS

40 ' 50 nS
s

ity from the second to first pulse and that this
transition points shifts to the left across plots.

examined if orchestrated changes in synaptic weights at multiple
loci can be used to generate temporally selective responses.

Analysis of order selectivity

We first examined the simplest form of temporal selectivity: the
response preference of the Ex unit to the first or second of a pair
of pulses presented 100 msec apart. Figure 34 shows a schematic
of the disynaptic circuit with five different synapses (Input — Ex;
Input — Inh; Inhg,, — Ex; Inh,,, — Ex; Inhg,,, — Inh). In these
simulations the Inh; — Inh was set to zero, because the fast
IPSP decays before the occurrence of the second pulse. Simula-
tion traces in red show an example of the response to paired pulse
stimulation at 100 msec, in which the Ex unit responds only to the
second pulse: the first pulse generates a subthreshold EPSP,
whereas the second input is suprathreshold because of PPF of the
EPSP and PPD of the IPSP. By increasing two synaptic strengths
(Input — Ex and Inhg_, — Ex) the suprathreshold response of
the Ex unit changes from the second pulse to the first. As a result
of the increase in the Input — Ex strength the first pulse is now
suprathreshold. The second now generates a subthreshold EPSP

Input —> EXx

despite the PPF and PPD, because of the increased strength of the
slow IPSPs.

These simulations provide a straightforward and intuitive ex-
ample of how a simple disynaptic circuit can exhibit two modes of
order selectivity depending on the synaptic strength of two syn-
apses. To understand the transition between different modes and
to determine the robustness of each mode, a parametric analysis
of “synapse space” was performed. In each of the subplots of
Figure 3B the order sensitivity of the circuit was examined while
varying the strengths of the Input — Ex and GABA; — Ex
connections over a range of 25 different values. Each subplot
reflects a different strength of the GABA, — Ex connection. In
these simulations, noise was present in both units (rms of 1.4 and
1 mV in the Ex and Inh units, respectively). As a result of the
noise, the behavior the units varied from trial to trial allowing the
calculation of the response probability to the first and second
pulse. The intensity of green and red is proportional to the
probability of firing in response to first and second pulses, respec-
tively. Cells that have a high probability of firing to both pulses
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Figure 4. A, Simulation of interval selectivity. The top and bottom traces represent the output of the Ex and Inh unit, respectively, in response to three
intervals of 50, 100, and 200 msec. The responses to each interval are overlaid. Depending on the strength of the connections onto the Ex and Inh units,
the Ex unit can respond selectively to 50 (red), 100 ( green), or 200 (blue) msec intervals. B, Parametric analysis of synapse space and interval selectivity
displayed as an RGB plot. As color-coded in A, red represents regions of synapse space in which the Ex unit fires exclusively to the second pulse of a
50 msec IPI, but not to the 100 or 200 msec IPI, i.e., a 50 msec interval detector. Similarly, green and dark blue areas represent regions of synapse space
in which the Ex units respond only to the 100 or 200 msec interval, respectively. In the same manner that a computer screen makes yellow by mixing
red and green, yellow in this RGB represents conditions in which the Ex unit responded to both 50 and 100 msec intervals, but not the 200 msec interval.
White areas represent regions that respond to all the intervals, but not to the first pulse. The general scheme is represented in the color cube to the right.
Black areas represent regions in which the cell was not interval-selective: not firing at all or in response to the first pulse. The three unfilled white squares
show the areas of synapse space of the traces in 4. The other synaptic weights were GABA, — Ex = 150 nS; GABA — Ex = 4 nS; GABA; — Inh =
6 nS. The color changes in the bottom left corner reflect a more nonlinear region of synapse space corresponding to an area in which the strength of the

Input — Inh synapse is still subthreshold to the first pulse but not to the second pulses.

are thus represented in yellow. The transition between first-pulse-
selective and second-pulse-selective modes occurs at the red-
green transition in each subplot. Transitions occur when the
GABAy; strength (vertical axis) becomes strong enough to pre-
vent the second potentially suprathreshold EPSP from reaching
threshold and when the Ex strength (horizontal axis) for the first
pulse becomes suprathreshold. The transition point is not fixed,
but a function of the strength of the fast IPSP. As the strength of
the fast IPSP increases the transition point shifts to the right. This
occurs true because even though the fast IPSP must flow through
two synapses, it still can “cutoff” the fast EPSP before it produces
a suprathreshold response (see below). Thus, as GABA, in-
creases in strength, there is also an increase in the EPSP strength
necessary to generate a suprathreshold response to the first pulse.

Simulation of interval selectivity

We were next interested in determining whether the Ex unit in
the same disynaptic circuit can exhibit interval selectivity depend-
ing on the synaptic weights of different synapses. Figure 44 shows
traces from the excitatory and inhibitory units for three different
sets of synaptic strengths. Surprisingly, parallel changes in the
strength of the Input — Ex and Input — Inh connections produce
Ex units that respond selectively to either 50, 100, or 200 msec
intervals. Even though the time constants of all properties are

unchanging, interval selectivity can occur as a result of the inter-
play between Ex and Inh unit activity. With relatively weak inputs
to both the excitatory and inhibitory units (Fig. 44, red traces), the
first pulse generates a suprathreshold and subthreshold response
in the Inh and Ex units, respectively. At 50 msec the second pulse
is suprathreshold in the Ex unit (although it is riding a slow IPSP
elicited by the first spike in the Inh unit), because of PPF which
peaks at 50 msec. The second pulse, at any interval, did not
generate a fast IPSP because the Inh unit did not fire because of
the GABAg-mediated slow IPSP. If the strength of both inputs is
increased (green traces), the Ex unit fires exclusively to the 100
msec pulse. It no longer fires to the 50 msec pulse because as a
result of the increased input the Inh unit fires in response to the
second pulse at 50 msec. Because of the faster flow of activity
through the inhibitory part of the circuit, the fast IPSP can cut off
the EPSP in the Ex unit, preventing it from firing. If we continue
to increase the strength of both inputs (blue traces) through a
similar mechanism, the Ex unit fires exclusively to the 200 msec
interpulse interval (IPI). Note that the faster flow of activity
through the inhibitory branch is observed experimentally and is
likely attributable to: (1) the faster membrane time constant of
inhibitory neurons (Brown et al., 1981; McCormick et al., 1985;
Lacaille et al., 1987); (2) the threshold of inhibitory neurons
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seems to be lower than that of excitatory neurons; and (3) inhib-
itory synapses tend to connect closer to the cell soma than
excitatory synapses (Beaulieu et al., 1992).

Figure 4B represents a parametric analysis of the interval
selectivity described above in synapse space. The strength of the
Input — Ex and Input — Inh were varied over a range of weights.
The results are represented as a red-green-blue (RGB) plot,
which permits visualization of the selectivity to the three intervals
while varying two dimensions. Red, green, and dark blue repre-
sent regions in which the Ex unit fires exclusively to 50, 100, and
200 msec IPI, respectively (note that interval selectivity implies
that the Ex unit responds only to the second pulse of a given
interval). Responses to combinations of intervals are represented
by the appropriate secondary colors; for example, yellow repre-
sents regions in which the Ex unit responds to both 50 and 100
msec intervals (see Fig. 4, legend). The plot illustrates that by
varying two synaptic strengths, it is possible to generate selective
responses to either the 50, 100, or 200 msec intervals or combi-
nations of these intervals and shows that these regions are fairly
robust, operating over a significant range of synaptic strength.
Furthermore, cells can respond to specific combinations of inter-
vals (light blue, yellow, and white). We have also examined the
difference between increases in the Input — Inh weights and the
Inh — Ex weights. Both will tend to increase the degree of
inhibition in the Ex unit. Is one more or less effective in control-
ling interval selectivity? As shown in Figure 4B, within a limited
range interval tuning was approximately linearly related to Input
— Ex and Input — Inh strength. In contrast, whereas parallel
changes in the Inh — Ex and Input — Ex strengths also resulted
in selective responses to each interval, selectivity occurred in a
much smaller region of synapse space and was a more complex
function of synaptic strength (data not shown).

Interval discrimination in large networks

The above results show that simple disynaptic circuits can exhibit
interval selectivity. However, this selectivity required fine tuning
of multiple synaptic weights. It seems unlikely that there are
learning rules that would allow the appropriate combinations of
weights to emerge in a self-organizing manner. We next exam-
ined whether a large network with randomly assigned synaptic
weights is able to discriminate a range of intervals. A network
with 400 Ex and 100 Inh units was simulated, connectivity be-
tween units was randomly assigned with a uniform distribution
(synapses between any two units are equiprobable). The weights
of each synapse type were assigned from a normal distribution
(see Materials and Methods). Figure 5 shows the raster plot of a
sample of Ex and Inh units in response to five intervals. Although
some units exhibited selective responses to a particular interval,
the majority were either interval-sensitive (responded maximally
to two or more intervals) or nonselective. Does the population of
Ex units as a whole contain sufficient information to discriminate
among a range of intervals? Note that if a population code is
present, the network may discriminate among intervals even
though no single unit is exclusively selective to each interval. To
determine both the ability of the network to discriminate inter-
vals as well as how it generalizes we used an independent recog-
nition network. The recognition network was composed of five
output units and 400 input units (each representing the number of
spikes in an Ex unit in response to the presentation of a given
interval). The network was trained on 12 presentations of the five
target intervals (50, 100, 150, 200, and 250 msec) and tested on
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Figure 5. Raster plot of a sample of Ex and Inh units in response to five
different intervals. The plots in response to the five different intervals are
overlaid on top of each other. Overall the number of spikes in response to
each pulse was between 0 and 3. Some of the units shown were interval-
selective (e.g., topmost traces), whereas most either exhibited some pref-
erence for short intervals or were nonselective.

another series of 12 simulations, covering 12 different intervals
(25-300 msec at 25 msec increments) to analyze generalization.

Figure 64 shows the response of the output units to the test
stimuli. The results show that the population of Ex units as a
whole codes well for a wide range of intervals. This population
code can be easily read-out by the set of five output neurons
trained with a supervised learning rule. The output units re-
sponded well to their target intervals and not to the remaining
trained intervals. Importantly, each output unit generalized in
Gaussian fashion to the untrained intervals. That is, the output
unit trained at 150 msec, responded maximally to the 150 msec
interval of the test set, and responded submaximally to 125 and
175 msec intervals, and not at all to 75 and 225 msec intervals.

The results shown in Figure 64 were obtained in the absence
of noise. Figure 6, B and C, shows the results of simulations in the
presence of noise in all the Ex and Inh units. The rms of the
resting membrane potential of Ex units was 1.4 and 4 mV in
Figure 6, B and C, respectively. A rms of 1.4 mV had little overall
effect on interval discrimination, whereas a rms of 4 mV pro-
duced a significant decrease in performance, particularly for the
intermediate intervals. Other sources of noise such as probability
of release were not examined. The effects of “synaptic noise” will
be dependent on assumptions about p,, the number of “release
sites”, and the number of synapses. However, within a range,
different sources of noise are likely to have similar effects because
they are all ultimately expressed in the variability of the mem-
brane potential from trial to trial.

Structure of the population code

The results shown above establish that the Ex units form a
population code, which can be used by output units to discrimi-
nate intervals. The fine interval tuning of the output units could
be attributable to either broad or fine tuning of the Ex units
driving the output units. Figure 7 shows the synaptic weights of
the Ex units onto the output units (Fig. 74) and the correspond-
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Figure 6. Interval discrimination with different levels of noise. Each plot
shows the response of five outputs units, after training each output unit to
one of five target intervals: 50, 100, 150, 200, and 250 msec (dashed lines).
Novel stimuli representing intervals from 25 to 300 msec were used to test
interval discrimination and generalization. Simulations were performed
with three different levels of noise injected continuously into all the Ex
and Inh units of the network. The rms of the voltage of the Ex unit was
A, 0mV; B, 1.4 mV; and C, 4 mV.

ing interval tuning of the Ex units (Fig. 7B). As shown by
comparing panels A and B, the output units use input from a large
population of Ex cells with different tuning characteristics. At
short intervals there is a significant number of interval-selective
Ex units that drive the appropriate output unit. Fewer Ex units
are selective for longer intervals, thus the 250 msec output unit is
driven by excitatory input from a range of broadly tuned Ex units
and inhibited by Ex units tuned for shorter intervals. Interest-
ingly, despite the inputs to the output units consisting of a
mixture of selective to nonselective cells, the tuning curves ex-
hibit smooth generalization.

What accounts for the diversity of the temporal selectivity of
the Ex units given that the time constants of the short-term
plasticity and slow IPSPs are the same for all synapses? For the
small disynaptic circuits it was shown that temporal selectivity
was a function of the synaptic weights (Fig. 4B). In the large
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Figure 7. A, Synaptic weights of all the Ex units onto the five output units
from the simulations shown in Figure 6. Ex units are ordered according to
which Output unit their strongest synapse is on, and then subordered by
ascending synaptic strength. B, Interval tuning curves of the same Ex units
shown in A4. Interval tuning curves are made by counting the number of
spikes in response to the second pulse at each interval and normalizing to
the maximal response. All the units with preferred responses that were
not to the first pulse are shown. Note a significant number of Ex units
tuned to short intervals and broader tuning to longer intervals. The
strategy of the output units was to receive strong excitatory input from the
Ex units that respond selectively to the target interval and to receive
strong inhibition from the units that responded to intervals shorter than
the target interval.

network it is was the variability in the synaptic strengths that
allowed for variations in the temporal tuning of the Ex units. If all
the synaptic weights are assigned using a variance of zero, no
interval discrimination occurs, because there is no symmetry
breaking (data not shown). In other words, all Ex units will
essentially exhibit the same temporal selectivity and behave much
like the disynaptic circuit. Thus, the model is in many ways
stochastic: it relies not on a specific set of synaptic strengths but
on a distribution of different synaptic strengths that will result in
a distribution of different types of temporal tuning.

It should be noted that because of the complexity of the large
network, additional factors not present in the simple disynaptic
circuit further enrich the temporal selectivity of the Ex units.
First, in the simplified circuit with only one synapse of each type,
the synaptic strength defined the “functional synaptic strength.”



1136 J. Neurosci., February 1, 2000, 20(3):1129-1141

A. PPF and GABADb

1.00 ¢ o
0.80 4
5 060+
Fol .
O 040 .
020 4 ‘
'l
0.00 4=+ - pm
50 100 150 200 250 300 350 400
Inter-Pulse Interval (ms)
C. GABADb Only (flat PPF)
1.00 Jo—
o e
0.80 bk /
- bt
3. 0.60 \ s
3 AW
O 40 | %
AR
0.20 : !
1] f" » k! P~
0.00 42 Ny Yy ot
50 100 150 200 250 300 350 400

Inter-Pulse Interval (ms)

Buonomano ¢ Decoding Temporal Information

B. PPF Only (flat GABAD)
1.00
0.80
5_0.60 /\
> !‘
O 0.40 § X4
] -
0.20
{
0.00 Semtponfomt e
50 100 150 200 250 300 350 400
Inter-Pulse Interval (ms})
D. No PPF - No GABAb
1.00
0.80
5_0.60
>0
O o.40
~
0.20 . - Lo \\{
..i A s P X R
0.00 4= e
50 100 150 200 250 300 350 400 450

inter-Pulse Interval (ms)

Figure 8. Simulation of interval discrimination with altered time-dependent properties. In these simulations the target intervals were 50, 100, 200, 300,
and 400 msec (dashed lines). A, Control results with the same parameters used in Figure 6. B, Flattened slow IPSPs and PPD. In these simulations
GABAg-dependent properties were flat 20 msec after activation, whereas PPF of EPSPs remained normal. C, Flattened PPF. D, No PPF and no

GABAg-dependent properties.

In a large network, the effective strength of each synapse class is
not determined only by the weight of a synapse, but buy a complex
interaction dependent on which and when a set of synapses is
active. (2) Lateral connectivity in the form of Ex — Ex and Ex —
Inh synapses, absent in the disynaptic circuits, were present in the
large network, further enhancing the complexity and variability in
the temporal selectivity of the Ex units.

Dependency of interval discrimination on different
temporal properties

The simulations above indicate that neural networks that incor-
porate short-term forms of plasticity and slow IPSPs can generate
a population code for a spectrum of intervals. What the simula-
tions have not addressed is the relative contribution of the dif-
ferent properties. Analyzing the performance of the network by
simply removing these properties can generate confounding re-
sults, because the overall level of activation can change dramati-
cally. We thus chose to “flatten” the profile of short-term plastic-
ity and the slow IPSPs. Under these conditions, PPF, PPD, and
the slow IPSP are still present and thus, there are not dramatic
changes in the overall activity of the network. However, rather
than changing through time, and thus continuously altering the
state of the network, these properties did not change 20 msec
after their initial onset. Thus, PPF was present, but the degree of
facilitation was the same whether the interval was 50 or 400 msec.
These manipulations allowed us to directly determine the relative
contribution of different time-dependent properties and confirm

that it is the continuous change in short-term plasticity and slow
IPSPs that underlies the ability of the network to discriminate
temporal intervals.

These simulations also examined a broader range of intervals:
the target intervals were 50, 100, 200, 300, and 400 msec. The test
intervals ranged from 25 to 450 msec at 25 msec steps. Figure 8
shows the response of the output units under four different
conditions: control (A4); flat GABAg-dependent properties (PPD
of IPSPs and slow I PSPs) (B); flat PPF of EPSPs (C); and no PPF
and no GABAg-dependent properties (D). As expected, each
form of short-term plasticity contributed differentially to interval
discrimination. In the absence of changing PPD and slow IPSPs,
the network discriminated intervals up to 200 msec almost as well
as the control condition. However, discrimination of longer in-
tervals was not possible. Thus the time-dependent changes in
network state produced by PPF alone were sufficient to effect the
population response for short but not long intervals. Interestingly,
flattening PPF still allowed a reasonable degree of interval-
selective responses but tended to result in the emergence of
bimodal responses centered around 150 msec. Note that the
output unit trained at 100 msec could easily discriminate between
100 and 200 msec, but not as well between 100 and 250 msec (Fig.
8C). This behavior occurs because the magnitude of the GABA-
dependent properties are similar at 100 and 250 msec during their
rising and decaying phases, respectively. In other words, there is
some symmetry around the peak: the state of the network is
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similar during the rising and decaying phases of the GABAg-
dependent events. Figure 8D shows that in the absence of time-
dependent properties, interval discrimination is essentially abol-
ished. The membrane and synaptic time constants influence the
state of the network at intervals up to 50 msec, allowing some
discrimination between a 50 msec interval and longer intervals.
However, note that the response to 25 msec was stronger that that
to 50 msec, even though the latter was the target interval.

We also examined interval discrimination after removing PPF
of the Input — Ex synapses or PPD of the inhibitory synapses or
the slow IPSPs. Under each of these conditions the network still
performed well (data not shown), but was not as robust in the
presence of noise, nor were the peaks of the output responses
as high.

Discrimination of simple sequences

We next examined the ability of the network to discriminate
simple sequences. Sequence discrimination is an important test if
a model is to be a general mechanism for temporal processing,
because it requires sensitivity to higher-order temporal features.
The network was presented with four stimuli defined by their
interpulse intervals: 50-150, 100-100, and 150-50. Note that the
first and third sequences contain the same intervals, but in a
different order. Each stimulus was presented to the same network
used above (with all the same parameters) 24 times. Activity
patterns from 12 presentations were used for training the Output
units, whereas 12 were used for testing. The recognition network
was trained on the number of spikes of each Ex unit generated by
the last pulse. Note, that in some sense a priori knowledge was
used by telling the network which pulse was the last (however,
training the total activity across all pulses generated similar
results). Figure 94 shows the average response of the three output
units. The output units were able to discriminate among the three
different sequences. No Ex units were strongly selective to any of
the three stimuli (data not shown). Thus, the output units relied
on the stimulus sensitivity of a large population of Ex units. To
understand what population of Ex units are active in response to
each pulse, we can plot the activity of each output unit during
each sequence (Fig. 9B). The activity plotted is simply the activity
of all Ex units multiplied by the weight of the Ex — Output
connection. Thus, the magnitude of the response to the different
pulses reflects the overlap between the Ex units driving the
maximal response (last pulse of the target sequence). Note that
some of the responses have an early excitatory peak followed by
inhibition. In general the early responses (short-latency spikes)
carry less information about the sequence. This is in part because
the early responses (generally driven by functionally stronger
connections) are less sensitive to the time-dependent changes in
the excitatory—inhibitory balances. This may suggest that early
responses carry spatial information, whereas late responses tend
to carry more temporal information.

Unlike most models based on delay lines or specific time
constants, in this model sequence discrimination is a natural
extension of interval discrimination. Interval discrimination is
ultimately possible because of differences in the state of the
network at the arrival of the first and second pulse. Because at no
point is the network “reset”, changes are cumulative. Consider
stimulus 2 of Figure 94 (100-100). The intervals between the first
and second and second and third pulses are the same, neverthe-
less, the second and third pulses still arrive in different network
states. For example, the slow IPSP (onto both Ex and Inh units)
produced by the second pulse will still sum with the slow IPSP
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Figure 9. Discrimination of simple sequences. 4, Average responses of
the Output units trained on each stimulus to novel presentations of the
three stimuli shown above. B, To understand how the output units per-
form sequence discrimination, we have plotted the activity of each output
unit in response to each sequence. The activity plotted is simply the
activity of all Ex units multiplied by the weight of the Ex — Ouput
connection (and an RC time constant of 20 msec). Thus, the degree of the
response to the different pulses reflects the overlap between the maximal
response (last pulse of the target sequence). Distribution of the informa-
tion content of all Ex units around the stimulus set.

from the first pulse. As the number of pulses increases a steady-
state should be reached, and the differences in the population
response will eventually be too small to allow discrimination. We
have not yet examined at what point this occurs, in part because
relatively little psychophysical data are available on the interac-
tion between sequence size and discrimination. Furthermore, it is
clear that performance is highly dependent on the size and
number of layers of the network.

DISCUSSION

The results described here show that a large network of intercon-
nected Ex and Inh units can perform both interval and sequence
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discrimination. This ability relies on the presence of time-
dependent properties (short-term plasticity and slow IPSPs) and
variability in the assigned synaptic weights. The model is stochas-
tic in that a random distribution of synaptic strengths is sufficient
to generate a range of temporal response characteristics for each
unit. Together these units can establish a population code that
allows discrimination over a wide range of intervals. By studying
small disynaptic circuits, we were able to show how temporal
tuning can be determined by synaptic strength. Specifically, the
interaction between synaptic strength and time-dependent prop-
erties will shape the response characteristics of both the Ex and
Inh units. The temporal tuning of the Ex unit is further controlled
by the fast inhibition generated by the Inh unit tuning. Together
these mechanisms can generate a range of different temporal filters
in the Ex unit, ranging from selective to nonselective (Fig. 4B).

Interval versus sequence discrimination

Various models have been proposed to account for interval-
selective neuronal responses. One of the first models of interval
detection was the delay line model based on axonal conduction
delays. This model accounts for the detection of interaural delays
in the range of tens to hundreds of microseconds used for sound
localization (Jeffress, 1948; Carr, 1993). However, despite early
proposals that parallel fibers in the cerebellum may function as
delay lines (Braitenberg, 1967), there is no experimental data
supporting axonal delays in the millisecond range. However,
many of the more recent models follow similar principles, in that
they are labeled line models. Selectivity generally relies on estab-
lishing a range of different time constants for some time-
dependent mechanisms. These could include neurons oscillating
at different frequencies (Miall, 1989), a range of biochemical time
constants (Fiala et al., 1996), or IPSPs of different durations
(Sullivan, 1982; Olsen and Suga, 1991). There is experimental
data supporting the latter mechanism in subcortical areas used for
pulse-echo detection intervals in the bat (Sullivan, 1982; Olsen
and Suga, 1991; Saitoh and Suga, 1995). This mechanism is well
suited to solve the temporal requirements for echolocation, which
is a relatively specialized problem, in that the timing is always
determined by two events (pulse and echo), separated by a few
milliseconds.

It is fundamental to determine whether labeled line models
generalize to more complex temporal patterns that are common
in auditory stimuli such a speech and animal vocalizations. Gen-
erally speaking, most models based on a range of different time
constants do not inherently account for discrimination of simple
sequences. Consider interval or duration detection based on the
duration of IPSPs (Sullivan, 1982; Olsen and Suga, 1991; Casse-
day et al., 1994; Saitoh and Suga, 1995). In such models the first
event triggers a rapid excitatory potential and a slower inhibitory
potential followed by an excitatory rebound (Fig. 10A4). The
excitatory potential by itself is not capable of eliciting a supra-
threshold response, but when a second event generates an exci-
tatory potential that adds with the offset of inhibition (excitatory
rebound), a suprathreshold response occurs. Thus, the duration of
the IPSP determines the preferred interval of the neuron, and by
having a range of PSP durations it is possible to cover a spectrum
of different intervals. Such a system is not well suited to discrim-
inate simple sequences such as those shown in Figure 9. Consider
two sequences: 100-200 and 200-100, both will activate the 100
and 200 msec detectors, although in a different order (Fig. 10B).
Thus, sequence discrimination would require a second step in-
volving order discrimination, itself a type of temporal discrimi-
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Figure 10. Illustration of a labeled-line model. 4, Each event produces

short-lasting excitation and long-lasting inhibition followed by rebound
excitation. Neither the excitation nor rebound from inhibition is capable
of eliciting a suprathreshold response. If excitation from a second event
coincides with rebound from the first event, threshold is reached. By
adjusting the duration of inhibition (or equivalently the strength) it is
possible to have labeled lines for a range of intervals. B, In the case of two
stimuli composed of sequence of three pulses (each composed of a 100
and 200 msec interval), both stimuli will activate the same interval
detectors, albeit in a different order. Thus, sequence discrimination will
require subsequent order discrimination. One problem this type of model
has with sequence discrimination is that for the appropriate labeled-line
to detect the second interval, each pulse would have to “reset” the interval
detector (dashed lines).

nation (the addition of a 300 msec detector can solve this prob-
lem). More important is the issue of biological implementation.
The activation of both the 100 and 200 msec detectors assumes a
“reset” mechanism. If the 200 msec interval detector receives a
pulse after 100 msec, it must reset so that it can respond to the
subsequent 200 msec interval. Such a reset mechanism is not
physiologically plausible if it relies on IPSPs, thus in reality it is
unlikely that the second interval will activate the appropriate
detector. Although modifications can be made to this model to
overcome these problems, it seems likely that such a system may
have evolved specifically for the detection of intervals and dura-
tions under specific conditions, rather than the discrimination of
arbitrary temporal patterns.

For sequence discrimination the model described here relied
on a population code. More so than for interval discrimination,
population codes for sequences are desirable given the large
number of potential sequences. In the large network the Ex units
implemented a temporal to spatial transformation and repre-
sented a given temporal pattern in a population code, which in
principle can be used downstream (in our case by the output
units) like any other population code. To implement the temporal
to spatial transformation, the network relies on state-dependent
changes in the network as a result of time-dependent properties
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extending well from intervals to simple sequences. This is be-
cause each pulse induces cumulative changes in the state of the
network, and thus in the population response, each pulse estab-
lishes a “context.” The disadvantage of this model is that it will
have difficulty identifying specific intervals embedded in se-
quences. If the network is trained to identify a 100 msec interval,
and then the 100 msec pulse is inserted within a larger sequence
(or simply preceded by another pulse), the network may not
identify it. In contrast, some labeled line models will detect a 100
msec interval placed anywhere in a circuit but will not capture the
overall pattern. Thus, a psychophysical prediction from the cur-
rent model is that interval discrimination should be more im-
paired by the presence of a distractor (a stimulus that precedes
the target stimulus) than a nontemporal task such as frequency or
intensity discrimination.

Short-term synaptic plasticity

In the current model two forms of short-term synaptic plasticity
were simulated: PPF of EPSPs (on to both excitatory and inhib-
itory units) and PPD of IPSPs. PPF of excitatory synapses is not
seen in all synapses, but is dependent on various factors including
the presynaptic and postsynaptic cell types and developmental
stage. Short-term facilitation is generally observed in Ex — Inh
connections (Thomson et al., 1993; Markram et al., 1998; Reyes et
al., 1998). Both PPF and PPD are observed in Ex — Ex connec-
tions. In the hippocampus, short-term facilitation is seen both in
the mossy fiber to CA3 synapses (Zalutzky and Nicoll, 1990; Salin
et al., 1996) and the Schaffer collateral to CA1 synapses (Creager
et al., 1980; Manabe et al., 1993; Buonomano and Merzenich,
1996). In neocortical synapses, both PPF (Ramoa and Sur, 1996;
Stratford et al., 1996; Reyes and Sakmann, 1998) and PPD
(Thomson and Deuchars, 1994; Markram et al., 1996; Stratford et
al., 1996) are observed, although depression is more common.
Stratford et al. (1996) have shown that different Ex — Ex syn-
apses vary as to the type of short-term plasticity observed. Spe-
cifically, in the visual cortex, thalamocortical to L-IV synapses
exhibit PPD; the L-VI — L-IV projection exhibits PPF, and
L-IV — L-IV synapses exhibit little paired-pulse plasticity. Gil
et al. (1997) also report paired-pulse plasticity differences be-
tween different synapses in the rat somatosensory cortex. Reyes
and Sakmann (1998) have reported that synapses between L—II/
III pyramidal neurons exhibit PPD early in development and PPF
later in development. Additionally, the dependency of short-term
plasticity on the synapse type suggests that it has multiple func-
tional roles. Indeed, in addition to the role of short-term forms of
plasticity in temporal processing suggested here and previously
(Buonomano and Merzenich, 1995; Buonomano et al., 1997), it
has also been suggested that short-term plasticity may provide a
mechanism for “on-line” modulation in certain types of behaviors
(Fisher et al., 1997). Others have suggested that short-term de-
pression between excitatory cortical neurons may play a role in
gain control, by amplifying transient changes in firing rates (Ab-
bott et al., 1997) and maintaining the stability of cortical circuits
by keeping positive feedback in check (Galarreta and Hestrin,
1998).

The presence of facilitating excitatory synapses is an important
component of the model described here. However, in the large
network in the absence of facilitation onto Ex units, interval
discrimination was still observed. Even in the presence of de-
pressing EPSPs it is ultimately the net balance between short-
term plasticity of EPSPs on Ex and Inh units and of IPSPs that
will determine the ability of the network to process temporal
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information. Furthermore, in cortical areas where depression
predominates, there seems to be a significant amount of facilitat-
ing (low probability of release) synapses, because activity-
dependent antagonists reveal that a subpopulation of synapses
exhibit PPF (Gil et al., 1999).

Centralized versus distributed temporal processing

A fundamental question regarding the mechanisms underlying
temporal processing on the millisecond time scale is whether
timing is performed by some specialized central time-keeping
system or distributed throughout different brain regions. The
most common view of a centralized mechanism is the internal
clock hypothesis (Creelman, 1962; Treisman, 1963). In such mod-
els a temporal problem in the visual or auditory modality, or even
a timed motor behavior, would access the same “internal clock.”
Studies of patients with cerebellar (Ivry and Keele, 1989), parietal
cortex (Harrington et al., 1998a), and basal ganglia lesions (Har-
rington et al., 1998b) have all reported deficits in temporal pro-
cessing, often in both sensory and motor tasks. These studies are
generally interpreted to favor centralized timing mechanisms.
Additionally, very specific effects on the timing of conditioned
motor responses in rabbits have been reported to result from
lesions to the cerebellar cortex (Perrett et al., 1993). Psychophys-
ical studies of interval discrimination have provided some support
for centralized mechanisms by showing cross-channel or cross-
modality generalization of interval learning (Wright et al., 1997,
Nagarajan et al., 1998). However, these studies were not designed
to selectively engage channel-specific learning.

In contrast to centralized models, distributed models argue
that temporal information is processed on an “as needed” basis,
occurring in auditory, visual, association, or motor areas depend-
ing on the task. The mechanisms underlying temporal processing
in either distributed or centralized systems could include delay
lines (Braitenberg, 1967; Tank and Hopfield, 1987), oscillators
(Miall, 1989; Ahissar et al., 1997), network dynamics (Buono-
mano and Mauk, 1994; Mauk and Donegan, 1997), or short-term
synaptic plasticity (Buonomano and Merzenich, 1995). Given the
pervasiveness of temporal information in external stimuli and the
generality of the time-dependent mechanisms studied in the cur-
rent paper, we favor distributed models of temporal processing on
the scale of tens to hundreds of milliseconds.

Conclusions

In the current paper, it is suggested that networks of neurons are
intrinsically capable of decoding temporal information as a result
of time-dependent changes in network state produced by short-
term forms of plasticity. Specifically, short-term plasticity and
other time-dependent properties change the dynamic balance
between excitation and inhibition in local circuits producing neu-
ronal response characteristics that are dependent on previous
activity and thus, temporal stimulus history. The hypothesis pre-
sented predicts that manipulations that eliminate short-term
forms of plasticity will produce deficits in temporal processing.
The deficits should be specific to the time scale of the neuronal
and synaptic mechanisms being manipulated.
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