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The human brain spontaneously generates neural oscillations
with a large variability in frequency, amplitude, duration, and
recurrence. Little, however, is known about the long-term spa-
tiotemporal structure of the complex patterns of ongoing activ-
ity. A central unresolved issue is whether fluctuations in oscil-
latory activity reflect a memory of the dynamics of the system
for more than a few seconds.

We investigated the temporal correlations of network oscillations in
the normal human brain at time scales ranging from a few seconds to
several minutes. Ongoing activity during eyes-open and eyes-closed
conditions was recorded with simultaneous magnetoencephalogra-
phy and electroencephalography. Here we show that amplitude fluc-
tuations of 10 and 20 Hz oscillations are correlated over thousands of
oscillation cycles. Our analyses also indicated that these amplitude

fluctuations obey power-law scaling behavior. The scaling exponents
were highly invariant across subjects. We propose that the large
variability, the long-range correlations, and the power-law scaling
behavior of spontaneous oscillations find a unifying explanation
within the theory of self-organized criticality, which offers a general
mechanism for the emergence of correlations and complex dynamics
in stochastic multiunit systems. The demonstrated scaling laws pose
novel quantitative constraints on computational models of network
oscillations. We argue that critical-state dynamics of spontaneous
oscillations may lend neural networks capable of quick reorganization
during processing demands.
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Oscillations at various frequencies are a prominent feature of the
spontaneous electroencephalogram (EEG) (Berger, 1929; Con-
nors and Amitai, 1997) and are believed to reflect functional
states of the brain (Llinás, 1988; Steriade et al., 1993; Arieli et al.,
1996; Herculano-Houzel et al., 1999; Tsodyks et al., 1999). These
oscillations arise from correlated activity of a large number of
neurons whose interactions are generally nonlinear (Steriade et
al., 1990, 1993; Lopez da Silva, 1991). The intrinsic neural prop-
erties and intricate patterns of connectivity add further complex-
ity to the behavior of neural systems (Llinás, 1988; Connors and
Amitai, 1997; Destexhe et al., 1998). The mechanisms and dy-
namics of network oscillations have been widely studied with
electrophysiological recordings (Destexhe et al., 1998, 1999), as
well as with computational models (Destexhe et al., 1998; Stam et
al., 1999). Neural oscillations in vivo exhibit large variability in
both amplitude and frequency. The dynamic nature of these
fluctuations, however, has remained unclear. Particularly for the
human electroencephalogram, 8–13 Hz oscillations have at-
tracted widespread interest in this context. However, the com-
plexity of the EEG has rendered it impossible to reliably distin-
guish the waxing and waning of oscillations over epochs longer
than 2–15 sec from that of filtered white noise (Paluš, 1996; Cerf
et al., 1997; Stam et al., 1999). This suggests that the underlying

neural populations are unlikely to obey entirely low-dimensional
dynamics.

Recent studies have demonstrated that a large variety of complex
processes, including forest fires (Malamud et al., 1998), earthquakes
(Bak, 1997), financial markets (Mantegna and Stanley, 1995; Lux
and Marchesi, 1999), heartbeats (Peng et al., 1995), and human
coordination (Gilden et al., 1995; Chen et al., 1997), exhibit unex-
pected statistical similarities, most commonly power-law scaling be-
havior of a particular observable. Scaling behavior (or scale-free
behavior) means that no characteristic scales dominate the dynamics
of the underlying process. Scale-free behavior can be revealed with
scaling analysis, which quantifies the fluctuations of a parameter as a
function of the scale at which the parameter is evaluated. Scale-free
behavior reflects a tendency of complex systems to develop correla-
tions that decay more slowly and extend over larger distances in time
and space than the mechanisms of the underlying process would
suggest (Bassingthwaighte et al., 1994; Barabási and Stanley, 1995;
Bak, 1997). The long-range correlations build up through local
interactions until they extend throughout the entire system. After
this stage, the dynamics of the system exhibit power-law scaling
behavior, and the underlying process operates in a critical state, a
phenomenon often termed self-organized criticality (SOC) (Bak et
al., 1987, 1988). Unlike deterministic approaches aimed at finding
low-dimensional chaos, the SOC framework allows for a high-
dimensional character of the dynamics and for the presence of
stochastic effects.

We have investigated whether noninvasively recorded spontane-
ous oscillations in the human brain show scaling behavior. Here we
demonstrate the presence of long-range temporal correlations and
power-law scaling behavior of oscillations at ;10 and 20 Hz.

Parts of this work have been published previously in abstract form
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MATERIALS AND METHODS
Recordings and experimental conditions. Spontaneous brain activity from
10 normal subjects (aged 20–30 years, one female) was recorded simul-
taneously with magnetoencephalography (MEG) and EEG using a
whole-scalp magnetometer array containing 122 planar gradiometers
(Knuutila et al., 1993) and a 64-channel EEG cap (Virtanen et al., 1996).
The study was approved by the Ethics Committee of the Department of
Radiology of the Helsinki University Central Hospital. The subjects were
seated in a magnetically shielded room and instructed to relax with eyes
open or closed in two 20 min recording sessions. The MEG and EEG
data were sampled at 300 Hz and the pass band of 0.3–90 Hz.

Data analysis. The amplitude of neural oscillations was estimated with
wavelet filtering and subsequently evaluated for the presence of temporal
correlations using the autocorrelation function (ACF) and detrended fluc-
tuation analysis (DFA). As control for the neural origin of temporal corre-
lations, we used an MEG reference recording and surrogate data.

Wavelet filtering. The signals were filtered with a Morlet wavelet; the
modulus of the complex-valued outcome, W(t,f) , represents the amplitude of
the signal at a time range centered at t and in a frequency band centered at
f (Torrence and Compo, 1998). For each frequency band, we centered the
wavelet at the peak frequency determined individually with amplitude spec-
tra. The widths of the wavelet in the time and frequency domains are
expressed as the attenuation by a factor of e2 and denoted te and fe,
respectively:

te 5
mÎ2

pf

and

fe 5
2
m

f,

where m is the Morlet parameter determining the compromise between
time and frequency resolution (here, m 5 6). For a typical alpha oscil-
lation at f 5 10 Hz, the signal is thus integrated by the wavelet for ;262
msec in the time domain and 3.4 Hz in the frequency domain (i.e., the
effective pass band is 8.3–11.7 Hz).

Temporal correlations. Temporal correlations of oscillations were quanti-
fied with the ACF and the DFA applied to the modulus of the wavelet filtered
signals, i.e., to the amplitude envelope of the oscillations at a given frequency.

The autocorrelation function gives a measure of how a signal is correlated
with itself at different time delays. When normalized, the autocorrelation
attains its maximum value of one at zero time lag, decays toward zero with
increasing time lag for (finite) correlated signals, and fluctuates around and
close to zero at time lags free of correlations.

The detrended fluctuation analysis has been developed for quantifying
correlation properties in nonstationary signals, e.g., in physiological time
series, because long-range correlations—revealed by an ACF analysis—can
arise also as an artifact of the “patchiness” of nonstationary data (Peng et al.,
1994, 1995). In DFA, the modulus of the wavelet-transformed signal at center
frequency f is first integrated to produce a vector y of the cumulative sum of
the signal amplitude around its average value:

uW~ f !uave 5
1
N O

t951

N

uW~t9, f !u,

where N is the number of samples in the signal:

y~t! 5 O
t951

t

@uW~t9, f !u 2 uW~ f !uave#. (1)

The integrated signal is then divided into time windows of size t. For
each window, the least-squares fitted line (the local trend) is computed;
the y coordinate of this line is denoted yt(t). The integrated signal, y(t),
is detrended by subtracting the local trend, yt(t), in each window. The
average root-mean-square fluctuation, ^F(t)&, of this integrated and de-
trended time series is computed as:

^F~t!& 5 Î1
N O

t51

N

@ y~t! 2 yt~t!#2. (2)

This procedure is repeated for all time window sizes and with 50%
overlap between windows to estimate how the average fluctuation ^F(t)&
scales with window size. The scaling is often of a power-law form:

^F~t!& } ta. (3)

The scaling exponent a, also termed the “self-similarity parameter” (Lux
and Marchesi, 1999), is extracted with linear regression in double-
logarithmic coordinates using a least-squares algorithm. A self-similarity
parameter of a 5 0.5 characterizes the ideal case of an uncorrelated
signal, whereas 0.5 , a , 1.0 indicates power-law scaling behavior and
the presence of temporal correlations over the range of t, where Equa-
tion 3 is valid. Periodic signals have a 5 0.0 for time scales larger than the
period of repetition. The above procedure is illustrated in Figure 1.

Reference data. Broadband environmental noise is often temporally corre-
lated. To verify that intrinsic sensor noise or environmental disturbances did
not cause any of the effects reported here, a 20 min MEG recording without
a subject in the instrument was performed and subjected to identical analyses
as the real data.

Surrogate data. For the EEG data, we used so-called surrogate data as
control, which are commonly used as a control when probing a signal for a
nonrandom temporal structure (Ivanov et al., 1996). Surrogate signals have
identical power spectra with the original signals but do not have temporal
correlations; they were generated by first computing the Fourier transforms
of the original signals, randomizing the Fourier phases while preserving the
moduli, and then performing inverse Fourier transforms.

RESULTS
Oscillatory activity in occipital and rolandic regions
Amplitude spectra were computed for the 122 MEG and the 64
EEG channels. For all 10 subjects and both conditions, we de-
tected prominent peaks in the alpha frequency band (8–13 Hz) in
MEG and EEG channels over the occipital and parietal regions
(Fig. 2A,B). For both MEG and EEG data, we selected the four
channels with the largest alpha rhythm amplitude for further
analysis for each subject and condition (the same channels were
used for the “eyes-open” and the “eyes-closed” conditions). The
peak alpha frequency was 10.4 6 0.6 Hz (mean 6 SD).

Mu rhythm (8–13 Hz) was detected in MEG channels over the
right somatosensory cortex in nine subjects (Fig. 2C). Additionally,
in these subjects, one (;21 Hz in six subjects) or two (;16 and ;21
Hz in three subjects) peaks in the beta frequency band (15–25 Hz)
were observed over the somatosensory region (Fig. 2C). The four
channels with the largest amplitude of mu rhythm were selected for
further analysis for each subject; for the three subjects having two
peaks in the beta range, we analyzed the component having the
higher frequency. The peak frequencies were 10.7 6 0.5 Hz (mu
rhythm) and 21.3 6 1.2 Hz (beta rhythm).

In terms of scaling analysis, the pronounced peaks in the ampli-
tude spectra at 10 Hz show that the dynamics of broadband spon-
taneous activity is not scale-free; rather, it is dominated by a char-
acteristic time scale of ;100 msec. In the following sections, we
address whether also the amplitude fluctuations of spontaneous
oscillations have characteristic scales, which would imply a typical
duration of oscillatory bursts.

Fractal appearance of spontaneous alpha oscillations
Wavelet analysis was used to estimate the amplitude of the signals
in narrow frequency bands (Fig. 3) (see Materials and Methods).
The wavelet was centered at the peak frequency of a given
frequency band determined from the amplitude spectra of indi-
vidual subjects. Highly irregular amplitude fluctuations were ob-
served in both conditions for the occipital MEG alpha rhythm
(Fig. 3A,B). To visualize the trend of the amplitude fluctuations
at different scales of temporal resolution, the wavelet-filtered
original and surrogate signals were first down-sampled from 300
to 15 Hz. Both the original and the surrogate signals were highly
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irregular at time scales ,12 sec (Fig. 3C, top). Down-sampling the
signals to 1.5 Hz and enlarging the displayed interval to 120 sec
reveals larger variability in the alpha activity than for the surro-
gate data (Fig. 3C, middle). Finally, the display of the entire 1200
sec at a resolution of ;10 sec still shows large amplitude changes
for the alpha but only minor ripples for the surrogate data (Fig.
3C, bottom).

The appearance of large variability at many scales (as in Fig. 3C)
is epitomical of fractal objects and is increasingly being acknowl-
edged to hint about the presence of spatial and temporal correlations
at many scales (Bassingthwaighte et al., 1994; Barabási and Stanley,
1995; Bak, 1997). This is in contrast to the variability of signals from
uncorrelated or strongly noise-dominated processes that appear
even when measured at coarse scales.

Temporal correlations of spontaneous
alpha oscillations
To quantify the temporal structure of the alpha rhythm amplitude
fluctuations, we used power spectrum and autocorrelation analy-
ses. Power spectrum analysis measures the contribution of differ-
ent frequencies to the total power of a signal. In the amplitude
envelope of alpha oscillations, the presence of preferred modu-
lation frequencies of oscillations would thus produce peaks in the
power spectrum P( f). We, however, observed a linear decay of
power with increasing frequency in double-logarithmic coordi-
nates in the range of 0.005–0.5 Hz; i.e., a 1/fb type of a power
spectrum: P( f) ' f2b (Fig. 4). For the MEG data, power-law
exponents were bclosed 5 0.44 6 0.09 (mean 6 SD; r 2 5 0.94) and
bopen 5 0.52 6 0.12 (r2 5 0.89). The reference recording gave rise
to a white-noise spectrum with bref 5 0.03 (r2 5 0.02), thus ruling
out 1/fb type of modulation of background 10 Hz noise. The EEG
data yielded exponents bclosed 5 0.36 6 0.17 and bopen 5 0.51 6
0.12. The differences in exponents between the two conditions
(eyes-closed vs eyes-open) or between recording modalities were
not significant (two-tailed t-tests; all nonsignificant differences in
this paper have a p . 0.1). As a further control, we used surrogate
data (see Materials and Methods); this also resulted in a white-
noise spectrum: bsur 5 0.05 (r2 5 0.05). The 1/fb power spectra
indicate a lack of a characteristic time scale for the duration and
recurrence of oscillations and are characteristic for fractal signals.

We then computed autocorrelation functions for the wavelet-
filtered MEG and EEG data. The autocorrelation analysis indicated
the presence of statistically significant correlations up to time lags of
.100 sec (Fig. 5). The decay of the autocorrelation function was
slow over two decades and well fitted by a power law: ACF(t) ' t2g

(Fig. 5). The MEG data yielded gclosed 5 0.58 6 0.23 (r2 5 0.99) and
gopen 5 0.73 6 0.31 (r2 5 0.97), whereas the EEG data yielded
exponents gclosed 5 0.52 6 0.35 (r2 5 0.97) and gopen 5 0.81 6 0.32
(r2 5 0.98). The behavior of the autocorrelation functions is in
congruence with 1/fb type of power spectra. The differences between
the two conditions and between the exponents derived from MEG
versus EEG data were not significant.

These results indicate that the irregular patterns of amplitude
fluctuations of alpha oscillations evident from Figure 3 are embed-
ded with correlations at many time scales. The decrease in correla-
tion with temporal distance appears to be governed by a power-law.

Spontaneous alpha oscillations exhibit robust power-
law scaling behavior
The power spectrum analysis and autocorrelation analyses used
in the previous section are not optimal for the quantification of
correlations in potentially nonstationary data, because long-range
correlations (revealed by an autocorrelation analysis) can arise
also as an artifact of the “patchiness” of nonstationary data. Thus,
to further consolidate the presence of long-range correlations, we
implemented the detrended fluctuation analysis (see Materials
and Methods).

DFA was applied to the same amplitude time series of alpha
oscillations as analyzed in the previous section. The self-similarity

Figure 1. DFA quantifies correlations in nonstationary patchy signals. A,
The amplitude at 10 Hz is shown for a typical occipital MEG channel
during eyes-closed for the entire 1200 sec. The first step of the DFA is to
subtract the mean value of the signal ( A) and then compute the cumula-
tive sum of the signal (B). C, The integrated signal is detrended at all time
scales by selecting a time interval (window), here shown for a 120 sec
window, fitting a least-squares line to the interval and subtracting the
linear trend (D). E, The average of the root-mean-square fluctuation of
the entire integrated and detrended signal is computed for the window
size 120 sec and plotted in double-logarithmic coordinates (see arrow).
The procedure starting in C is repeated for several window sizes to give
the data points in E, and the power-law exponent is the slope of the line
fitted to the data points in the interval marked by the two arrowheads. The
lower bound of the fitting range was chosen as the shortest time window
that did not show temporal correlations induced by the wavelet filtering.
The upper bound was empirically determined as the maximum window
size that would not include large outliers resulting from the poor statistics
at large window sizes.
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parameter a of the DFA is the power-law exponent characterizing
the temporal correlations; uncorrelated signals yield a self-similarity
parameter a 5 0.5. This was confirmed using identically wavelet-
filtered reference recordings and surrogate data, which yielded
aref 5 0.508 and asur 5 0.496, respectively (Fig. 6A,B). For the a
oscillations, on the other hand, we discovered robust power-law
scaling behavior across conditions and recording modalities in 10 of
10 subjects (Fig. 6A,B). The onset of the log-log linear increase of
the DFA-fluctuation parameter, F, was at a window size of ;5 sec
(this is the lower limit in the DFA method because of the integration
by the wavelet in the time domain), and the power-law scaling
persisted until at least 300 sec. To obtain reliable scaling statistics for
time scales larger than ;300 sec, longer data series would be needed
because of the generally large variability of the root-mean-square
fluctuation from one window to the other. The MEG data yielded
aclosed 5 0.71 6 0.06 and aopen 5 0.71 6 0.05 for conditions
eyes-closed and eyes-open, respectively (Fig. 6A). The EEG data
yielded aclosed 5 0.68 6 0.07 and aopen 5 0.70 6 0.04 (Fig. 6B). The
difference in self-similarity parameters between the two conditions
was not statistically significant, and very similar self-similarity pa-
rameters were obtained also for the two recording modalities, de-
spite the different sensitivity of MEG and EEG to the underlying
currents (Hari and Ilmoniemi, 1986).

The self-similarity parameter a may be viewed as an index of the
dynamics of the neural oscillations, whereas the mean amplitude
relates to the strength of oscillatory activity. That these two mea-
sures convey complementary information about neural activity was
indicated by the analysis of their correlation (Fig. 6C). The mean
amplitude and aopen were not correlated in either MEG or EEG
data, whereas aclose was weakly, albeit significantly, negatively cor-
related with the mean amplitude for both MEG and EEG ( p , 0.04;
r2 , 0.51; Spearman correlation). These correlations are surprising
because a decrease in signal-to-noise ratio biases the estimated
self-similarity parameter toward that of the reference recording
(aref > 0.5). This thus indicates that noise (either environmental or
from the sensors) has negligible contribution to the self-similarity
parameters estimated for alpha oscillations.

To quantify the apparent stability of the self-similarity parameters
across subjects, conditions, and recording techniques relative to the
variability of the mean amplitudes, we compared for each subject the
ratio aclosed/aopen with the corresponding ratio of the mean oscilla-
tion amplitude. This normalization eliminates amplitude effects
caused by intersubject variability in head size, position in the instru-

ment, etc. The amplitude ratio varied considerably across subjects
but was always larger than unity (MEG, 1.98 6 0.87; EEG, 1.81 6
0.98) (Fig. 6D), reflecting the well known high level of alpha rhythm
activity when eyes are closed (Fig. 2A). The ratios of scaling expo-
nents, on the other hand, were near unity (MEG, 1.04 6 0.12; EEG,
1.00 6 0.13) (Fig. 6D). Linear correlations between amplitude and
scaling exponent ratios were nonsignificant in both MEG and EEG
data, and the SD of the amplitude ratios was significantly larger than
for the exponent ratios ( p , 0.0001; Fisher’s test).

The DFA results indicate that, for the 10 Hz oscillations from the
occipital region, spontaneous activity is robustly characterized by
long-range temporal correlations that decay as power-law functions
and with remarkably invariant scaling exponents. It has been pointed
out recently that the scaling parameters of genuine long-range cor-
related processes obey the following relation: a 5 (2 2 g)/2 5 (1 1
b)/2 (Rangarajan and Ding 2000). Using g and b from the previous
section, good agreement is found for the predicted and the measured
a. Thus, together, DFA, autocorrelation, and power spectrum anal-
yses provide robust evidence in support for power-law scaling be-
havior, as well as for the lack of characteristic time scales for the
modulation of the alpha rhythm amplitude.

Generality of long-range temporal correlations and
power-law scaling behavior of
spontaneous oscillations
To test whether scaling behavior was unique to alpha rhythmicity
or a more general property of large-scale network oscillations, we
applied the DFA and autocorrelation analyses to oscillations
detected with MEG at the mu and beta frequency bands over the
right somatosensory region in the eyes-closed condition (Fig. 2C).

Robust power-law scaling was indeed evident for both mu and
beta oscillations over a range of approximately two decades. The
self-similarity parameters obtained for mu and beta oscillations were
significantly different: amu 5 0.73 6 0.09 and abeta 5 0.68 6 0.07
( p , 0.005) (Fig. 7A); however, comparing amu with aclosed (the
occipital alpha) indicated that 10 Hz oscillations from the rolandic
and occipital regions had similar scaling properties (significance level
of the difference, p . 0.3). The power-law decays of the autocorre-
lation functions were characterized by exponents gmu 5 0.46 6 0.35
and gbeta 5 0.70 6 0.36 (Fig. 7B); the difference in these exponents,
as well as the differences in mean amplitudes of the mu and beta
oscillations, were significant ( p , 0.04). Nevertheless, correlations
were not found between the magnitude of the self-similarity param-

Figure 2. Amplitude spectra of MEG and EEG signals. Grand average (n 5 10) amplitude spectra of conditions eyes-closed (thick solid line) and
eyes-open (thick dashed line) display large peaks in the alpha frequency band (8–13 Hz) for selected channels in the occipitoparietal region of MEG (A)
and EEG (B). C, Pronounced mu (8–13 Hz) and beta (15–25 Hz) activity was present in 9 of 10 subjects over the right somatosensory region
(eyes-closed). Amplitude spectra of an MEG recording with no subject present are shown (“reference recording;” thin lines) to give an impression of the
average signal-to-noise ratio of the MEG signals.
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eters and of the mean amplitudes for either the mu or beta rhythms,
nor did the ratios of the exponents and of the amplitudes correlate
linearly (Fig. 7C). The lack of correlation between the self-similarity
parameters and amplitudes makes it unlikely that the difference in
scaling exponents results from the lower signal-to-noise ratio of beta
oscillations. Differential scaling parameters of mu and beta oscilla-
tions suggest that the neural mechanisms and/or networks underly-
ing these two rhythms are distinct. This interpretation is in agree-
ment with reports on differential reactivity and anatomical origin of
somatosensory mu and beta oscillations (Hari and Salmelin, 1997).
In line with the results on alpha oscillations, we also found for the
somatosensory oscillations that the ratios of mu and beta rhythm
scaling exponents were more stable than the corresponding mean
amplitude measures (exponent ratio, 1.09 6 0.08; amplitude ratio,
1.41 6 0.18; the difference in SD of the ratios, p , 0.002; Fisher’s
test).

The presence of power-law scaling behavior in amplitude fluctu-
ations of mu and beta frequency bands in the somatosensory region
indicates that these statistical characteristics are not unique to the
occipitoparietal alpha rhythm.

DISCUSSION
We have investigated the large-scale dynamics of network oscil-
lations in the normal human brain. To the best of our knowledge,
this is the first characterization of the temporal correlations in
spontaneous oscillations at time scales ranging from a few seconds
to several minutes. Our results indicate that spontaneous alpha,
mu, and beta oscillations have significant temporal correlations

for at least a couple of hundred seconds during resting conditions
(eyes-open and eyes-closed). The decay of correlation was char-
acterized by power-law scaling. The self-similarity parameters
obtained with the detrended fluctuation analysis were highly
invariant across subjects. The simultaneously recorded MEG and
EEG agreed quantitatively in their estimates of the scaling expo-
nents characterizing the occipital alpha rhythm dynamics. Oscil-
lations at 8–13 and 15–25 Hz had different scaling properties,
which suggests that distinct neural networks and/or mechanisms
underlie these oscillations.

The correlated nature of spontaneous oscillations
It has often been noted that spontaneously occurring synchrony in
cell populations appears in an irregular manner both temporally
and spatiotemporally (Traub et al., 1989; Destexhe et al., 1999;
Tsodyks et al., 1999). Previous studies have reported that 10 Hz
oscillations are generated with great variability every 5–20 sec and
last for ;0.5–10 sec (Lopez da Silva, 1991; Destexhe et al., 1998).
It has remained unknown, however, to what extent oscillatory
activity beyond these time scales is statistically dependent. The
present scaling analyses indicate that successive oscillations in-
deed are correlated, even over thousands of oscillation cycles
(Figs. 4–7).

Scaling analysis is used increasingly in many fields of science to
characterize complex phenomena. It can be used to test a model for
its ability to generate scale-free behavior (Ivanov et al., 1998). Al-
ternatively, transitions in scaling behavior from one parameter range
to another can reveal scales at which different mechanisms influence

Figure 3. Alpha oscillations, dominating the spontaneous activity, fluctuate in amplitude on a wide range of time scales. A, MEG signal from the
occipital region and the eyes-open condition. The 4 sec epoch of broadband MEG (0.3–90 Hz; top curve) displays a typical transition from low alpha
activity to large-amplitude 10 Hz oscillations (bottom curve). The thick line of the bottom curve indicates the amplitude envelope of the bandpass-filtered
signal (8.7–11.3 Hz) obtained with the wavelet filter. B, Continuous and pronounced fluctuations in the alpha oscillation amplitude are seen in 150 sec
epochs from conditions eyes-open (top curve) and eyes-closed (bottom curve). C, Signals, wavelet-filtered at 10 Hz, are displayed for original eyes-open
data (Orig), surrogate data (Sur), and the reference recording (Ref ). To visualize fluctuations at different magnifications (see time scales), the signals were
down-sampled to 15 Hz (top three curves), 1.5 Hz (middle curves), and 0.15 Hz (bottom curves). The amplitude scale is the same for all curves and is given
in SDs of the reference recording. The amplitude fluctuations at time scales of a couple of seconds are clearly above the noise level of the sensors but
fluctuate similarly to the surrogate data. At time scales of tens or hundreds of seconds, the variations of alpha oscillations at all scales is revealed in the
tendency of the original signal to preserve larger amplitudes and amplitude variability than the surrogate signal.
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the system dynamics (Barabási and Stanley, 1995; Peng et al., 1995;
Ivanov et al., 1996). The stability of scaling exponents obtained here
(Figs. 6C,D, 7C) suggests that scaling exponents may indeed be
useful quantitative hallmarks of also the dynamic processes under-
lying spontaneous brain oscillations. The good quantitative agree-
ment of the scaling exponents derived from MEG and EEG data
reflects that scaling exponents are quantitative indices of relative
fluctuations and do not depend on the unit of choice or the method
used to measure the underlying dynamic process.

Moreover, the results of the power spectrum analysis indicated
that bursts of oscillations are not modulated at any characteristic or
dominant time scale (Fig. 4). The correlated nature of these oscil-
lations suggests that “a burst” is only a part of a series of connected
events and that the fractal structure of the signal reflects a hierarchy
of bursts within bursts rather than a succession of individual or
independent bursts. This we shall address further in the next section.

Local interactions as a mechanism underlying long-
range temporal correlations and scaling behavior
One of the defining aspects of population oscillations is the ability
of neural networks to establish spatiotemporal correlations with
millisecond range precision and over large distances mainly
through local synaptic connections (Traub et al., 1989). Here we
describe a general framework of how local interactions create
large-scale dynamics, which could account for the long-range
temporal correlations and the power-law scaling behavior ob-
served for spontaneous oscillations.

Since the first reports on self-organized criticality (Bak et al.,
1987, 1988), ample evidence has indicated that several complex
systems self-organize through local interactions to a critical state

with long-range spatiotemporal correlations (Bak et al., 1989; Man-
tegna and Stanley, 1995; Boettcher and Paczuski, 1996; Paczuski et
al., 1996; Bak, 1997; Malamud et al., 1998; Lux and Marchesi, 1999).
This state is termed “critical” because similar scaling behavior can be
observed in equilibrium systems when fine-tuning a parameter to the
point at which the system undergoes a phase transition. In nonequi-
librium systems, however, this complex state can be “self-organized”
and emerge purely under the dynamics of the system. In this case,
the local rules of interaction sculpt the dynamics across many scales,
and no characteristic scale can be identified.

Neural networks host the common features of SOC systems, such
as a large number of units (neurons), local and nonlinear interactions
between neurons, externally imposed perturbations, a certain
amount of stochastic variation of internal parameters, and ability to
store information in spatial patterns. In analogy with the scale-free
behavior of SOC systems, we propose that the power-law form of the
amplitude dynamics of spontaneous oscillations may not be highly
dependent on the specific mechanisms underlying the generation of
the population oscillations. A fundamental prerequisite for the
emergence of a critical state, however, is that the network oscilla-
tions are associated with synaptic plasticity. Structural memory af-
fecting the recruitment of neurons into future population oscillations
is critical to ensure a degree of correlation. The exact values of the
power-law exponents, on the other hand, may be related to both
the biophysical mechanisms and the neural architecture underlying
the oscillations. In line with this, our results showed that mu and
alpha oscillations scaled similarly, but beta oscillations had a signif-
icantly smaller scaling exponent than mu and alpha.

A self-organized critical process, as the source of the temporal

Figure 4. Alpha oscillations show 1/f-like power spectra for their ampli-
tude modulation. The grand averaged (n 5 10) power spectral density of
alpha rhythm amplitude fluctuations is plotted in double-logarithmic
coordinates for MEG (A) and EEG (B) data. Circles, Eyes-closed con-
dition. Crosses, Eyes-open condition. The dots represent the reference
recording and the surrogate data for the MEG and EEG power spectra,
respectively. Arrowheads mark the interval used for estimation of slopes
(see Materials and Methods).

Figure 5. Alpha oscillations have statistically significant correlations at
time lags .100 sec. The grand averaged (n 5 10) autocorrelation func-
tions of alpha rhythm amplitude fluctuations exhibit a power-law decrease
in correlation with increasing time lag for both MEG (A) and EEG (B)
data. The abscissas are logarithmic, and the solid lines are power-law fits
to the data. Circles, Eyes-closed condition. Crosses, Eyes-open condition.
The autocorrelations of the reference recording and surrogate data are
effectively zero at all time lags (dots). The significance of the correlations
compared with zero is indicated for the time lag of nearly 200 sec.
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power laws, would further suggest that similar power laws exist also
for parameters in the spatial domain. Based on the analogy with
other SOC systems, one prediction is power-law statistics for the
probability that a number of neurons, n, is recruited into an oscilla-
tory event. Quantification of spatial correlations may, however, re-
quire invasive studies with greater spatial resolution than the present
MEG and EEG measurements.

Possible functional significance of self-organized
scale-free dynamics
The functional significance of the scale-free behavior of oscilla-
tions may be diverse. Temporal correlations of spontaneous net-
work oscillations, as we have described here, may be the physio-
logical correlate of behavioral results such as the 1/f b noise in the
human judgement of temporal intervals (Gilden et al., 1995) and
the long-range correlations observed for synchronization errors
in human coordination (Chen et al., 1997). Thus, in terms of
mechanisms, it may be the dynamic structural memory of the
neural networks (see previous section) that constrain perception
and behavior to power-law statistical patterns, even in situations
in which humans attempt to avoid such correlations.

From a theoretical point of view and based on simulations, it has
been argued that a state of criticality would be optimal for a network
to swiftly adapt to new situations (Alstrøm and Stassinopoulos 1995;

Figure 6. Alpha oscillations exhibit robust power-law scaling behavior
and long-range temporal correlations. Double-logarithmic plots of the
DFA fluctuation measure, F(t), show power-law scaling in the time
window range of 5–300 sec for both MEG (A) and EEG (B) data. Circles,
Eyes-closed condition. Crosses, Eyes-open condition. The dots represent
reference recording and surrogate data for the MEG and EEG, respec-
tively. C, Scatter plots of mean oscillation amplitude and DFA scaling
exponents show no (eyes-open condition, crosses) or slight negative cor-
relation (eyes-closed condition, circles). D, Scatter plots of scaling versus
amplitude ratios (NS). Note the large variability across subjects for the
amplitude ratios relative to the scaling ratios. All lines are least-squares
fits to the data.

Figure 7. Somatosensory mu and beta oscillations exhibit robust power-
law scaling behavior and long-range temporal correlations. A, Double-
logarithmic plots of the DFA fluctuation measure, F(t), as a function of
window size, t, display power-law scaling in the time window range of
5–300 sec of mu (circles) and beta (asterisks) oscillations during the
eyes-closed condition. The fitting interval is indicated with arrowheads.
The dots represent a reference recording wavelet-filtered at 20 Hz. B, The
autocorrelation function of the mu (circles) and beta (asterisks) rhythms.
C, Scatter plots of mean oscillation amplitude versus DFA scaling expo-
nents (lef t) and amplitude ratios versus scaling ratios (right).
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Stassinopoulos and Bak, 1995; Bonabeau, 1997; Chialvo and Bak,
1999). In the critical state, the spatiotemporal correlations are highly
susceptible to perturbations; the dynamics may be viewed as balanc-
ing between a predictable stable pattern of activity and uncorrelated
random behavior. Thus, if the “fractal” structure of neural oscilla-
tions indeed arises from self-organized neural network dynamics
poised at criticality, one would expect the ongoing activity to be
effectively disrupted by externally imposed perturbations. This, in
fact, has been observed. During event-related desynchronization
(ERD), spontaneous 8–13 Hz oscillations are suppressed rapidly
(approximately within one cycle) by sensory stimulation (Hari and
Salmelin, 1997; Nikouline et al., 2000), memory search (Kaufman et
al., 1991), or motor activity (Pfurtscheller, 1989; Crone et al., 1998).
Furthermore, the mapping of ERD on the cortical surface has
revealed transitions from spatially diffuse to focused and somato-
topically specific patterns of alpha suppression (Crone et al., 1998),
consistent with the picture of spontaneous cortical states being
driven into stimulus specific configurations of correlated neural
activity (Tsodyks et al., 1999). We suggest that the widespread and
rapid onset of ERD reflects long-range spatial correlations in the
neural networks. Because all oscillations studied here showed sur-
prisingly robust scaling behavior, we tentatively propose that, under
normal physiological conditions, neural networks in general may
operate in a critical state, thereby lending them capable of quick
reorganization during processing demands.

Further studies are needed to determine how the power-law
scaling exponents are affected by various experimental, pharmaco-
logical, or pathological conditions and whether current computa-
tional models of spontaneous network oscillations agree qualitatively
and quantitatively with the present findings.
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