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Neuronal Population Codes and the Perception of Object Distance

in Weakly Electric Fish
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Weakly electric fish use an electric sense to navigate and
capture prey in the dark. Objects in the surroundings of the fish
produce distortions in their self-generated electric field; these
distortions form a two-dimensional Gaussian-like electric im-
age on the skin surface. To determine the distance of an object,
the peak amplitude and width of its electric image must be
estimated. These sensory features are encoded by a neuronal
population in the early stages of the electrosensory pathway,
but are not represented with classic bell-shaped neuronal tun-
ing curves. In contrast, bell-shaped tuning curves do charac-
terize the neuronal responses to the location of the electric
image on the body surface, such that parallel two-dimensional
maps of this feature are formed. In the case of such two-
dimensional maps, theoretical results suggest that the width of
neural tuning should have no effect on the accuracy of a

population code. Here we show that although the spatial scale
of the electrosensory maps does not affect the accuracy of
encoding the body surface location of the electric image, maps
with narrower tuning are better for estimating image width and
those with wider tuning are better for estimating image ampli-
tude. We quantitatively evaluate a two-step algorithm for dis-
tance perception involving the sequential estimation of peak
amplitude and width of the electric image. This algorithm is best
implemented by two neural maps with different tuning widths.
These results suggest that multiple maps of sensory features
may be specialized with different tuning widths, for encoding
additional sensory features that are not explicitly mapped.

Key words: depth perception; electrolocation; electrosensory
system; neuronal tuning; population coding; sensory coding

In many sensory systems, neurons in the early processing stages
are tuned to a specific two-dimensional (2D) location of a stim-
ulus. In the visual system, this corresponds to the 2D projection of
the visual world onto the retina; in the somatosensory system, this
is the location of a touch on the skin. The neurons in these
systems respond maximally for one location, with their activity
decreasing for locations away from this preferred location; hence
the neural responses are described by 2D bell-shaped tuning
curves. Typically, these neurons have preferred locations distrib-
uted over a wide space such that a neural map of stimulus location
is formed (Konishi, 1986; Knudsen et al., 1987). This is often
referred to as a coarse code for stimulus location (Churchland
and Sejnowski, 1992). Populations of neurons can also carry
information about sensory features to which its component neu-
rons are not explicitly tuned in this manner. In somatosensory
processing, the 2D location of a skin probe is coarse-coded by
peripheral mechanosensory neurons; yet humans cannot only
determine the location of the probe, but can also accurately
determine its shape, a feature that is not encoded with bell-
shaped tuning curves (Wheat et al., 1995; Khalsa et al., 1998). We
refer to such population codes, which involve multiple coding
strategies, as combined codes.

Weakly electric fish must use a combined population code
during electrosensory processing. These fish can accurately de-
termine the locations of objects in their surroundings using an
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active electric sense, a behavior called electrolocation (Heiligen-
berg, 1991; von der Emde et al., 1998). Objects with electrical
properties that differ from those of the ambient water produce
distortions in the fish’s self-generated electric field. On the body
surface, these distortions form a 2D electric image (Fig. 1) and
provide the sensory input required to accurately encode object
location in 3D (Rasnow, 1996; von der Emde et al., 1998). The
electric image is initially encoded in the activity of skin electro-
receptors. These receptors contact primary afferents that project
somatotopically to the hindbrain and terminate in parallel on four
maps in the electrosensory lateral line lobe (ELL). Each map is
different in size and comprises pyramidal neurons with distinct
physiological properties, including tuning curve width (Shumway,
1989a,b; Metzner, 1999; Turner and Maler, 1999). The necessary
features of the electric image must be encoded in these 2D arrays
of ELL pyramidal neurons. Object location in the 2D body plane
is coarse-coded. Object distance (i.e., the third dimension) must
be estimated indirectly from population activity related to the
width and peak amplitude of the electric image (Rasnow, 1996;
Assad et al., 1999).

Theoretical results suggest that the accuracy of a 2D coarse
code should be unaffected by the width, and overlap, of the tuning
curves (Snippe and Koenderink, 1992; Abbott and Dayan, 1999;
Zhang and Sejnowski, 1999). Nonetheless, multiple parallel maps,
exhibiting neuronal tuning with different widths and extents of
overlap, are universal in sensory systems, even when they do not
exist at the sensory periphery (Konishi, 1986). Different maps
may provide multiple samples of information that can be averaged
by downstream networks for higher accuracy. Alternatively, the
different maps may be optimized to encode additional stimulus
features using other strategies. The different ELL maps appear to
be specialized; in some situations, information from each map is
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Figure 1. Computation of object distance in the elec-
trosensory system. a, A schematic of the two-dimensional
electric image on the surface of the fish for objects of
two different sizes and lateral distances. Although the
widths of the images are different, the peak amplitudes
are the same (measured in grayscale, with white being
the largest). Thus, detecting object distance based only
on amplitude leads to ambiguities. b, One-dimensional
slices of the electric images caused by conducting
spheres of different sizes (r, = 0.5 cm and r, = 1.0 cm)

used to produce distinct behaviors (Metzner and Juranek, 1997).
Here, we use theoretical analyses and modeling to investigate the
influence of ELL pyramidal neuron tuning width in 2D on the
accuracy of encoding object location in 3D. In doing so, we
suggest that the different ELL maps may be specialized for
encoding the different stimulus features used for computing ob-
ject distance.

MATERIALS AND METHODS

A model description of the electric image. The electric image caused by a
spherical conductor is well approximated by a Gaussian-shaped surface
with width and peak amplitude given by 26 and A,. Using data and
simulations from a previous study (Rasnow, 1996), we have developed a
parametric model of the electric image that enables our present analysis.
We describe the electric image produced by a sphere of radius, r,, at a
location (x*, y*, z*) by the function S (Egs. 1-3):

x —x* 2 + )2
R . | (1)
The half-width of the image (6) increases linearly with lateral distance
(Eq. 2) in the range of available data (r, = [0.125, 0.7]; z* = [1.0, 2.0]; 6,
1y, x*, y* z* have units in centimeters). The peak amplitude of the image,
A, (units in millivolts), decreases as the third power of lateral distance,
and although it is actually proportional to the volume of the sphere
(Rasnow, 1996), in the range considered, 4, is approximately linear with

r, (Eq. 3):

0=c,+cz* 2)
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With ¢; = (—0.055) and ¢, = (0.79), Equations 2 and 3 provide a good
description of the data (xy? < 10~%). This model is not meant to be a
detailed reproduction of the electric image, but rather a simple descrip-
tion that allows us to gain insight into the nature of the electrosensory
information available for electrolocation. The exact parameter choices do
not affect our general conclusions.

A model of the ELL network. To describe the response of the popula-
tion of ELL pyramidal neurons, we convolve the stimulus, S, with 2D
Gaussian-shaped tuning curves of width, o, and where (x;y;) is the tuning
curve (or receptive field) center of the neuron labeled ij. Because we have
assumed that the electric image is also Gaussian, the convolution and
hence the response of the pyramidal neuron population is given by
Equation 4 (after rescaling to obtain a physiologically appropriate spike
count for a 1 sec time window, and accounting for a baseline activity
level, g, = 100, E, .ine = 20) (Bastian, 1986b). We include additive
noise, £ which has a normal distribution with zero mean and SD, 7.

The resf)ohse of the neuron ij, E;;, is described in Equation 5:
w—ﬁﬁ+m—ﬁﬁ

267 + o)

ij>

Fij = Ebaxeline + gvo exp(_ (4)

Ei/:Fl/+Enoise~ (5)

x (cm)

and different lateral distances (z* = 1.0 cm and z* =
1.26 cm). The schematic (top right, fish not to scale)
illustrates the combinations of r, and z* (by line type,
size, and location) that relate to the graph below.

The network we consider consists of an N X N square grid of pyramidal
neurons (ij = 1,...,N) with their locations on the grid defining the
centers of their evenly spaced tuning curve centers (x, y;). Although we
allow the grid size N and the grid dimensions (x, y) to vary, we specify the
grid spacing (x; + ; —x; =y; + ; —y;= A = 0.15 cm) so that the density of
tuning curve centers (p = 46.7) is in the physiological range of 40-50
neurons/cm? [expressed in relation to body surface area (Shumway,
1989a,b) (J. Lewis and L. Maler, unpublished observations)]. The center
of the grid is the origin, (x,y) = (0, 0). Although receptive field sizes of
ELL pyramidal neurons have been reported previously (Bastian, 1981;
Shumway, 1989a), the methods used (different combinations of object
size and direct electrical stimulation) make it difficult to directly obtain
values of o. However, estimates for the physiological range of o are
between ~0.3 and 0.7 cm depending on the particular ELL map (the
centromedial map has the narrowest, and the lateral map has the widest
tuning curves).

For simulations of this network, we calculate a neuron response profile
using Equation 4 for a given set of object features. Gaussian random
numbers (E,,,;.) With zero mean and SD of 7 are generated (Press et al.,
1993) for each neuron and added to the response profile E;. These
responses are then rounded to the nearest integer value to give the single
trial response of the population in terms of spike count. A typical single
trial response is shown in Figure 2c. For the open symbols plotted in
Figure 3, we estimate the image features from this noisy profile using a
least-squares fit to Equation 4 with the free parameters being eitherr,, x*,
y*, z* (Fig. 3a) or 6, A,, x* y* (Fig. 3b). This is equivalent to a
maximum-likelihood (ML) estimate of the free parameters (Kay, 1993;
Deneve et al., 1999). The estimation error over a number of trials is given
by the mean-squared difference between the estimated and true values of
each parameter (equivalent, in this case, to the variance of the estimated
values). For all of the results shown, we use additive noise (Eq. 5) with
m = 7 in agreement with preliminary data (J. Bastian, J. Lewis, and L.
Maler, unpublished data); however, the exact value of n does not affect
our conclusions.

We consider two different network implementations of a two-step
algorithm for determining 6 and A4,; one in which the same network is
used to estimate both stimulus features (model 1) and the other consist-
ing of two networks (model 2), with each used to estimate a single
feature (see Results) (see Fig. 5). Our initial comparison involves spe-
cific, previously proposed (Assad et al., 1999), mechanisms to implement
the algorithm, but to also compare these models in a general decoding
framework we used a variation of the ML method described earlier (see
Results). In this case, two networks of the same size (41 X 41 grid) were
used. The first network was used to estimate 4, by using a least-squares
fit to the noisy neuronal profile with 4, and 6 as free parameters. A
similar procedure was then performed on the second network but with
only 6 as a free parameter, with 4, fixed to the value estimated by the first
network. This can be viewed as an optimal implementation of the
two-step algorithm.

The Cramer-Rao lower bound and Fisher information. Estimation of
object size and location in the present context is formulated as the
estimation of a vector parameter, ¢ = (¢;,¢,,¢3,¢4). In Figure 3a,
(@1,95,93,¢4) corresponds to (r,, x* y* z*), whereas in Figure 3b
(01,92, ¢3,¢4) equals (60, A,, x*, y*). The accuracy of an estimator can be
assessed by its bias and variance. An estimator is considered unbiased if
its average value is equal to the true value of the estimated parameter.
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Figure 2. A model of the ELL network response. a, The
electric image for an object of radius (r, = 0.5 cm) at a
location (x*, y*, z¥) = (0, 0, 1) is shown on a spatial grid.
Image amplitude is in grayscale (white = 0.3 mV; black = 0
mV). b, The 41 X 41 neuronal grid with the tuning curve
size of one neuron denoted by the gray shaded circle (o =
0.6). The position of each neuron on the grid is given by its
tuning curve center (x;, ;) in register with the image in a.
The neuronal density is p = 46.7 neurons/cm? ¢, A typical
realization of the neural response produced by the image in
a is shown in grayscale (white = 65 Hz; black = 0 Hz).
Other parameter values are: £, = 2058, = 100; n=7.4,
The broadening of the average neuronal response (plotted
vs the tuning curve centers x;, open circles) compared with
the electric image (solid line) illustrated in one-dimension
for the above parameters. The half-widths of the image and
response profile are 6 and \/(6* + 0?), respectively.

The variance of an unbiased estimator is equivalent to the mean-squared
estimation error; the lower the variance the more accurate the estimator.
The theoretical lower limit on the variance of any unbiased estimator is
given by the Cramer-Rao lower bound (Kay, 1993). The Cramer-Rao
bound is the reciprocal of the Fisher information, /. (Egs. 6, 7). The
more accurate an estimator is, the more information it provides about the
parameter that is estimated; this information is quantified by

var(¢") = [Ir () Ju (6)
N N
1 aF; oF;
1 m = 2 £ £ 7
()i = E Z T (7

In Equations 6 and 7, ¢ is the estimate and ¢ is the true value of the
vector parameter, 1 is the SD of E, ., N2 is the number of neurons in
the population, k = (1,... ,4), and m = (1,... ,4) for each of the four
parameters. Thus, when four parameters are estimated simultaneously, /;
is a 4 X 4 matrix. The Fisher information has previously been used to
measure the accuracy of neuronal population codes (Abbott and Dayan,
1999; Deneve et al., 1999; Zhang and Sejnowski, 1999). Assuming (x* =
0, y* = 0) the Fisher information for the parameter 6 alone can be
rewritten in terms of the grid spacing, A (Eq. 8):
))

In situations in which multiple but similar neuronal populations are
involved in estimation (e.g., multiple maps), the Cramer-Rao bound can
be calculated from the Cramer-Rao bound for the individual networks. If
0, and 6, are estimates from the two different networks, and the com-
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bined estimate is 0,_,, then the variance of 0, , can be described by
Equation 9 (Rosner, 1995):

U 0
27 ke + ks ©

var(,_,) = k3 var(6;) + k3 var(6,).

In the case of two identical networks (i.e., same size and same tuning
widths, etc), taking the average of the two independent estimates is
optimal; in this case k; = k, = 0.5, and because var(6,) = var(6.), the net
Cramer-Rao bound is exactly half that for the individual networks. To
similarly evaluate the combinations of networks with different properties
(as in Fig. 7), a weighted average is best, so we choose the constants k;
and k, to be the reciprocals of the single network variances [k;
1/var(6,) and k, = 1/var(6,)]. A similar procedure was used for A4,
estimates as well.

RESULTS

Estimating object distance

From a 2D electric image on their body surface, electric fish are
able to determine the 3D location (x*, y* z*) of the object
producing the image (von der Emde et al., 1998). The object
location in the body plane (x—y plane) can be estimated from the
location at which the image has its peak amplitude. However, the
peak amplitude of the electric image provides ambiguous infor-
mation about the third dimension, lateral distance away from the
fish (z*). In Figure 1a, two spherical objects of different sizes (and
otherwise identical) are located at the same (x*, y*) location, but
the larger object is farther away. For this, and many other com-
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Figure 3. Accuracy of estimating electric image fea-
tures. a, The error in estimating the size (r,) and (x*,
y*, z*) location of a conducting sphere as a function
of pyramidal neuron tuning width, o. b, The error in
estimating the corresponding image features 4, and
6 as a function of tuning width, o. In both panels, the
continuous lines indicate the analytically computed
error given by the minimum variance of the estimate
(Cramer-Rao lower bound, see Results). The open
squares and open circles [for r, (a) and z* (b) A, and
0, respectively] show the errors from network simu-
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feature. The true values are r, = 0.5, 4, = 0.289, 6 = 1.00, and (x*, y*, z*) = (0, 0, 1.2).

binations of object size and lateral distance, the peak amplitude
of the image is the same and thus cannot be used to unambigu-
ously determine the lateral distance of each object (see Materials
and Methods; Eq. 3) (Rasnow, 1996). The image produced by the
larger object is wider than the other (Fig. 1a). This is shown more
clearly by a one-dimensional slice through the image (Fig. 1b).
When the image is normalized to its peak amplitude, its width can
then be used to estimate lateral distance, z* (Rasnow, 1996;
Assad et al., 1999).

To enable our analyses, we used a simplified description of the
electric image. We assume the electric image has a 2D Gaussian
shape, with its peak amplitude and half-width given by the pa-
rameters A, and 6 (see Materials and Methods) (Egs. 1-3).
Because 6 provides a measure of normalized width and varies
linearly with lateral distance, z* (Rasnow, 1996), it then can be
used to estimate lateral distance (we use 6 and image width
interchangeably, although 6 is actually the half-width).

Another image feature proposed as an indicator of object
distance is the maximum slope of the image normalized to its
peak amplitude (von der Emde et al., 1998; von der Emde, 1999).
For a Gaussian image, this quantity varies as 1/6 and also fits the
published maximum slope data (von der Emde et al., 1998) very
well (Lewis and Maler, unpublished observations). Because of
the direct relationship between 6, maximum slope, and previously
reported data, we have discussed our results in terms of 6 alone.

Estimation accuracy and tuning curve width

In the present context, downstream electrosensory networks must
extract information about object location given a noisy profile of
activity in the ELL pyramidal neuron population. We have for-
mulated a simple model of the ELL population response to a
stereotyped electric image (see Materials and Methods). Figure
2a shows the electric image produced by a small sphere (Eq. 1),
which provides the input to the 2D grid of model neurons that
constitute the ELL network (Fig. 2b). Each neuron on the grid
integrates input from the electric image over a restricted range or
receptive field (shown schematically by the shaded region in Fig.
2b; Eq. 4), such that for a point stimulus each neuron has a 2D
Gaussian-shaped tuning curve (in the x-y plane). The tuning
width is given by 20 (measured at a height corresponding to e~ */2
of the tuning curve peak). We ignore any contributions that
dynamics may provide, with the response of each neuron given by
a spike count over an integration time of 1 sec. After the addition
of noise the ELL population response profile resembles a noisy
replication of the electric image (Fig. 2¢). Because the electric
image is not a point stimulus, the actual response profile of the
ELL population is wider than the image, to an extent that

depends on the relative values of 6 and o (Fig. 2d) (see next
section).

Given the noisy response profile of the ELL population, the
typical population decoding problem is to determine the features
of the object (x*, y*, z*, r,) that produced the response (Abbott,
1994; Salinas and Abbott, 1994; Deneve et al., 1999; Zhang and
Sejnowski, 1999). As discussed before in a functional context, to
unambiguously determine z* and r,, two features of the electric
image produced by the object must be estimated: the image width
and the amplitude of the image peak (0 and A4, respectively). The
accuracy of estimation is limited by the accuracy with which the
ELL neurons jointly encode these different features. Using a
common approach from statistical estimation theory (Kay, 1993),
we can determine an upper limit on this accuracy by computing
the Cramer-Rao lower bound for estimating each object feature
x*, y* z* and r,, as well as the image features 6 and A, (Eq. 6)
(see Materials and Methods). Accuracy in this context is given by
the mean-squared estimation error, or equivalently, the variance
of the estimate. We investigated the influence of two parameters
on estimation accuracy: the lateral distance of the object z* and
the tuning curve width o. The error bound for estimating all
features increases with z* (data not shown). This is not surprising
because the image amplitude (and thus the effective signal-to-
noise ratio) decreases fairly quickly with distance (Eq. 3). More
interestingly, the effects of changing o differ between the features
(Fig. 3). There is no effect on estimating the x*—* location (Fig.
3a); the same result has been found previously for point stimuli
(Snippe and Koenderink, 1992; Abbott and Dayan, 1999; Zhang
and Sejnowski, 1999). On the other hand, increasing tuning width
o results in worse estimation of 7, and z* (Fig. 3a). For estimating
electric image features (Fig. 3b), increasing o results in worse
estimation of 0 (larger error), but better estimation of 4, (smaller
error). Intuitively, this makes sense, wider tuning curves allow
more neurons to accurately contribute to the estimation of A,
and by averaging across neurons, a better estimate results. Esti-
mating image width is different although, because the ELL neu-
rons distort the image through a convolution with their tuning
curves (Eq. 4, Fig. 2d). This distortion increases with tuning
width, resulting in more neurons that do not accurately represent
image width, nonetheless influencing the 6 estimate.

Shown also in Figure 3 are the results of network simulations.
Using a network grid consisting of a physiological number and
density of neurons (41 X 41 neuronal grid, density p = 46.7
neurons/cm?), we estimated the image features from the noisy
neural responses using an ML approach (see Materials and Meth-
ods). The estimation error for this method is very close to the
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Figure 4. Two-step algorithm for estimating elec-
tric image width. @ and b show representative re-
sponse profiles E; of a one-dimensional slice through E
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0.6). Over this range of z*, E,,, varies linearly with
A, (inset). d, The fraction of total neurons activated
above a threshold level of ¢, = e 2 (ie., the
number of neurons with a preferred location within
aradius 6 of the object location) plotted versus 6. For
different values of o, this measure increases in an
almost linear manner with 6. The solid lines are the
theoretical curves derived for a continuous distribu-
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tion of neurons (see Results), and the open symbols
show the measure for an actual model network (41 X
41 neuronal grid; p = 46.7).

corresponding lower bound (Fig. 3, compare open symbols with
solid lines). Note that for larger o however, there is a slight
deviation from the theoretical bound attributable mainly to edge
effects (i.e., the neuronal image has above baseline values beyond
the limits of the grid edges).

The relationship between the accuracy of image width estima-
tion and tuning width can be made explicit by expressing the
Fisher information for 6, I,(0), in terms of the grid spacing, A, the
distance between tuning curve centers (Eq. 8). Differentiating
1:(0) with respect to o reveals that I,(6) decreases with o (i.e., the
derivative is negative and thus the estimation error increases) as
long as 6% + o2 > (A/2)2 This condition will hold as long as the
tuning curve width is greater than the grid spacing (i.e., if 20 >
A). A similar calculation shows that the Fisher information for 4,
1,(A,), increases with ¢ for all o > 0.

A simple neural algorithm for determining

object distance

Estimating 6, in the present context, is equivalent to estimating
the half-width of the image at a level of A ¢~ "2 To provide an
unambiguous estimate of z*, a measure of image width must be
calculated from an image normalized by A,,. So in such a practical
situation, peak amplitude 4, must be estimated first, before image
width.

One simple algorithm to calculate image width is to first nor-
malize the neural responses to the maximal response and then
count the number of neurons that are active above a certain
threshold (Assad et al., 1999). One way to formalize this two-step
algorithm is to first compute the average activity E,,. of all the
neurons firing above a threshold, ¢, (Fig. 4a). This step (step 1)
provides an estimate of the peak response in the population,
which can be used to normalize all neural activity. Then in step 2,
the fraction of neurons (N,,) firing above a different threshold
(¢y,) can be determined (Fig. 4b). These two thresholds are
distinct in that ¢, is fixed and not relative to any neural response,
whereas ¢, comes after the normalization step and is relative to
the maximum response in the network. Figure 4, ¢ and d shows
how these measures vary with the features they are supposed to

0

estimate. The actual peak neural activity (g,4,) differs from A,
by a constant factor and thus varies with z* in parallel with A4,
(Fig. 4c). However, E, . underestimates g,4, but still varies
linearly with A4, (Fig. 4c, inset). Similarly, N,, varies in a near
linear manner with 60 (Fig. 4d).

We consider two specific neural implementations of this algo-
rithm (Fig. 5). Model 1 uses the same map (i.e., network), with
tuning width o, for estimating both 6 and A, Model 2 uses two
maps, one with a relatively large tuning width (o, = 1) for
estimating A, and another with narrower tuning widths (o, = 1)
for estimating 6. Model 1 is analogous to a single sensory map for
all computations, and Model 2 is analogous to having two spe-
cialized sensory maps, one for estimating peak amplitude A4, with
larger tuning widths, and the other for estimating width 6, with
smaller tuning widths. It is critical to note that both models use
the same number of neurons in each processing step (each map is
a 41 X 41 neuronal grid). The critical difference is that model 2
has two different tuning widths for each processing step.

To compare the performance of these models, we compute N,
for many simulated presentations of an object over a range of
values of o, and z* (¢, = 2n; ¢, = e~ /?). In this situation, the
true value of N, is given by the number of neurons with preferred
locations within a circle of radius 6 (w6%p). The estimate of N,
from the present neural algorithm, however, is biased. This is in
part because of its dependence on E,, and also because it is
determined from a neural profile that has an effective width of
V/(0?+0?) caused by the tuning curve convolution (Eq. 4, Fig.
2d). Because in the context of these models, downstream net-
works would have to use N,, to estimate object distance, and N,,
is directly related to 6 and object distance (Fig. 4d), we evaluate
model performance from the bias and variance in N,,. In all cases
tested (o, = 0.15-1.0; z* = 1.0-1.4), model 2 outperforms model
1. For z* = 1.2, the estimation variance for both models is shown
in Figure 6a. The biases in N,, estimation are nearly identical for
both models (data not shown), but the variance for model 2 is
substantially less than that for model 1. Because model 2 is better
at estimating peak amplitude (by virtue of its wide tuning curves
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Figure 5. Schematic representation of two models for

estimate 4,
(step 1)

estimate 4,
(step 1)

implementing the two-step algorithm for estimating
electric image width. In model 1 (left), both A, and 6 are
estimated using the same map, map 1 with tuning widths

y

normalize
map 1

normalize
map 1

Y

estimate ©
(step 2)

Y

estimate 0
(step 2)

for this step, o, = 1), the variance is dominated by the width
estimator, and thus increases with o, in the same manner as the
Cramer-Rao bound for 6 (Fig. 3b). Model 1 must use a network
with the same o, for all steps, so there is a trade-off between
accuracy of peak amplitude estimation and accuracy of width
estimation. Peak amplitude estimation is better for larger o, when
more neurons are activated close to peak levels, but width esti-
mation is better for smaller ;. In the case shown (Fig. 6a), the
amplitude estimate dominates even for small o, and thus the
overall variance decreases with o, similar to the Cramer-Rao
bound for A, (Fig. 3b). When o, = 1, both models have similar
overall accuracy. Although it would seem that model 2 effectively
has twice as many neurons as model 1, as stated earlier, it really
uses the same number of neurons as model 1 for each processing
step. The slightly better performance of model 2 for o, = 1 is
caused by the independence of the responses between the differ-
ent maps. In other words, if the noise in the neuronal responses
was exactly correlated between the two maps of model 2, the
accuracy would be identical to that of model 1.

The general trends shown in Figure 6a are similar for neuronal
densities within ~50-150% of that used in the simulations shown.
We also tested several combinations of values for ¢, (range,
2n-4m) and ¢,, (range, 0.25-0.75) for z* = 1.2 and o, = 0.3.

o,. In model 2 (right), separate maps are used for each
estimation step: map 2, with wide tuning curves (o, =
1), is used to obtain an estimate of A,, which is then
used to normalize the activity in map 1, with narrow
tuning curves (o, < 0,), from which an estimate of 6 is
obtained. Because A4, and 6 are estimated separately in
this two-step algorithm, both models use the same num-
ber of neurons to estimate each feature, although model
2 has two maps, and model 1 has only one.

Similar trends resulted, so the increased accuracy of model 2 over
model 1 does not depend critically on these threshold values. In
addition, we also considered conditions in which the noise term
E isc Was such that the SD of the ELL neuron responses was
equal to their mean response F; (Eq. 4), rather than constant
(n = 7) and independent of F;. This type of noise resulted in
similar results (data not shown) and does not change our
conclusions.

Although the previous analysis demonstrates a clear difference
between the two models, it is important to prove that this differ-
ence is fundamental and is not simply attributable to the details
of the algorithm implementation or the fact that model 2 uses two
independent networks. We now consider two independent maps
composed of 41 X 41 neuronal grids with tuning widths of o and
0,, respectively. Map 2 provides an estimate of A4, using ML
estimation; this estimate is used to normalize the activity in map
1. Then map 1 is used to find the ML estimate of 6. For model 1,
both maps have the same tuning width o, = o0,. Model 2 is
identical to model 1 except that map 2 has a fixed tuning width
0, = 1. This constitutes a test of the two models in a general
decoding framework in which the only difference is in the tuning
width of map 2. The results are similar to those previous, with
model 2 providing a better estimate of 6 (Fig. 6b). In this case

Figure 6. Performance of the two models in

a b

Neural implementation
(two-step algorithm)

Optimal decoding
(two-step algorithm)

implementing the two-step algorithm for esti-
mating electric image width. a, This panel
shows the variance in the estimate of N,, for

-

-

0 estimate
variance (x10-3)

—o— Model 1

Ny, estimate
variance (x10-4)

—e— Model 2
0.2 0.2

each model. Model 1 (open symbols) results in
higher variance than model 2 (o, = 1; closed
symbols) for all tuning widths o,. N,, is the
fraction of neurons above threshold (i.e., the
actual number normalized by the total number
of neurons N?; parameter values are N = 41,
by =€ V2 p, =2n,r, =05, (x* y* z¥) = (0,
0,1.2), p =46.7, E, 0tine = 20,8, = 100, n = 7.
The true value of Ny, = w6°p/N* ~0.09. b, The

—0— Model 1

—o— Model 2

T 1 T T

1.0 0.2

T
0.2 0.6

tuning width, G, (cm)

T
0.6

tuning width, G, (cm)

1.0 variance of the 6 estimate for a generalized
decoding scheme in both models (see Results).

All parameter values are the same in a and b,

except that in b two independent maps are used for both models (see Results). Note that when o, = 1 in this case, both models are identical so
the variances are necessarily the same. Each point in a and b represents the variance calculated from 3000 simulated trials.
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Q

Figure 7. Performance of two maps in the context of
the Cramer-Rao bound. For two different combina-
tions of two maps (similar to those in Fig. 6b), the
analytically calculated Cramer-Rao bounds for esti-
mating 4, (a), and 6 (b) (see Materials and Methods),
are shown by the thick solid and dotted lines, respec-
tively. In one configuration (o, = o ), both maps have
the same tuning width, and in the other configuration
(0, = 1), one map has a tuning width of o, and the

5:

variance (x10-4)

G,=0.

2
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b

one map
] ,/,/twomaps

1al

1

variance (x10-3)

two maps

other is fixed at o, = 1. Also shown (thin solid lines)
are the analytically calculated Cramer-Rao bounds for
a single map (same as those in Fig. 3b).

however, the error increases with o, for both model 1 and 2, in the
same manner as the Cramer-Rao bound for 6 (Fig. 3b), suggesting
that 6 estimation dominates the overall estimation error. This
provides a theoretical validation of our conclusions, but it is
certainly not an option for the fish. The ELL does not have
multiple maps with the same tuning widths, and thus the fish does
not have access to identical information from two identical maps.
Our initial analysis (Fig. 6a) shows how the specialized use of an
additional map can improve the computation performed by a
single map.

The two-step algorithm we have considered is based on
previous ideas (Assad et al., 1999) and practical constraints
(i.e., peak amplitude must be estimated before normalization
can occur). But it is also interesting to ask how maps can be
combined in the context of optimal estimation as defined by
the Cramer-Rao bound. We again consider the two-map con-
figuration analyzed in Figure 6b. We calculated the Cramer-
Rao bounds for 6 and A4, for two maps (see Materials and
Methods) and compared them to that for a single map (Fig.
7a,b). Two maps with identical tuning widths are twice as good
as one map with that tuning width (i.e., the error decreases by
half for two maps). The neuronal density is a critical factor in
determining population coding accuracy (Zhang and Se-
jnowski, 1999). Having two identical maps is the same, in terms
of accuracy, as having a single map with twice the density, not
necessarily twice the number of neurons. Also shown in Figure
7 is that having one of the maps with a fixed tuning width
(0, = 1) is better than two identical maps for estimating A4,
but worse for estimating 6. Thus, the relative importance of
these parameters will influence the optimal configuration of
the two maps; if a premium is placed on estimating 6 indepen-
dently of A, then narrow tuning in both maps is better. In the
two-step algorithm considered in this paper, accurately esti-
mating A4, is critical for the overall accuracy of estimating 6, so
a combination of tuning widths is best.

DISCUSSION

Multiple maps and population coding

Weakly electric fish can accurately electrolocate objects in
their surroundings using sensory information contained in a 2D
electric image (Bastian, 1987; Heiligenberg, 1991; Nelson and
Maclver, 1999; von der Emde, 1999). To unambiguously extract
3D object location, the fish must compute the width and location
of the peak of the electric image that is normalized to its peak
amplitude (Rasnow, 1996). The electric image is initially encoded
in four populations of pyramidal neurons that comprise the four
parallel maps in ELL. One map (ampullary system) is specialized
for low-frequency signals. The neurons within the three remain-

tuning width, G, (cm)

tuning width, G, (cm)

ing maps (tuberous system) can be distinguished, among other
characteristics, by their distinct spatial response properties: the
lateral map with large receptive fields, centromedial map with
small receptive fields, and the centrolateral map with intermedi-
ate-sized receptive fields (Shumway, 1989a,b; Metzner, 1999;
Turner and Maler, 1999). Our results suggest a novel function for
the parallel sensory maps in ELL, as well as the occurrence of
parallel maps in other sensory systems. Namely, in addition to
coarse coding stimulus features on different scales, parallel sen-
sory maps may also be optimized to encode features of a sensory
stimulus to which the component neurons are not tuned in the
same manner. Specifically, in addition to encoding the 2D electric
image at different spatial scales, different ELL maps can also be
specialized to accurately represent the sensory features required
to compute the third dimension, i.e., object distance.

Previous theoretical studies have found that neuronal tuning
width (or spatial resolution) should not affect encoding accuracy
in 2D (Snippe and Koenderink, 1992; Abbott and Dayan, 1999;
Zhang and Sejnowski, 1999). This is also the case for the coarse-
coded features of a spatially extended stimulus (i.e., the electric
image) (Fig. 3a). This result does not apply when multiple 2D
stimuli are given simultaneously, as in two-point discrimination,
where narrower tuning curves are better (Snippe and Koen-
derink, 1992). We show that depending on the encoding strategy
for a particular stimulus feature, either wider or narrower tuning
curves improve encoding accuracy. We illustrate the impact of
tuning width on the accuracy of determining object distance from
the electric image using two simple models. To encode the peak
amplitude of the electric image, wider tuning curves in the two
coarse-coded dimensions (x and y) result in higher accuracy;
whereas, to encode image width, narrower tuning curves are more
accurate. This suggests that the lateral map in ELL (in addition
to its other functions, such as processing high-frequency signals
like chirps) (Shumway, 1989a; Metzner and Juranek, 1997), may
provide information about image amplitude that can be used to
normalize the activity in the centromedial map, which is then
used to compute image width and object distance. Normalization
could be mediated by the extensive cerebellar-like feedback that
projects to ELL, through shunting inhibition or synaptic depres-
sion (Maler and Mugnaini, 1994; Bastian, 1996; Berman and
Maler, 1999). This simple hypothesis can be readily tested with
established experimental techniques (Bastian, 1987; Metzner and
Juranek, 1997; Nelson and Maclver, 1999). For example, ablating
the lateral map of ELL (wide tuning) should disrupt the accurate
estimation of image amplitude and the subsequent normalization
step, resulting in an ambiguous estimation of object distance. So,
predictable behavioral errors should occur when animals attempt
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to distinguish objects with certain combinations of size and
distance.

The locus of computation of object distance is not known, and
it need not be the centromedial map itself, because information
from all ELL maps could be combined in higher brain regions
(i.e., torus semicircularis or optic tectum) (Heiligenberg, 1991).
Indeed, it is not necessary that there be a locus of computation, or
explicit neural map, of object distance in electric fish. Such
information could remain in a combined population code
throughout its processing stream. However, there is some evi-
dence of neurons in both the tectum and cerebellum that are
tuned to object distance (Bastian, 1986a). Similar “distance-
tuned” neurons exist in the optic tectum of frogs and toads
(House, 1989). There is also evidence that information from the
different maps is treated very differently in the torus (Metzner
and Juranek, 1997). So apparently the same information from
different maps is not simply being averaged. Other constraints
could lead to the formation of differently sized maps, such as
specialized roles in temporal processing and communication
(Metzner, 1999), as well as those proposed in the present paper.

The present analyses have primarily considered the location of
an object. However, with an estimate of object distance (z*), the
approximate size of the object (r,) can then be decoded from the
amplitude estimate (Eq. 3). The accuracy of this estimate will be
constrained by the Cramer-Rao bound shown in Figure 3a. Thus,
extensive cross-talk between ELL maps (either within ELL or in
their projections to higher centers) may be required to identify
the complete array of necessary object properties (Assad et al.,
1999).

Combined strategies in population coding

The population coding literature has primarily dealt with how
neuronal populations encode features to which its component
neurons exhibit bell-shaped tuning curves. These studies often
focus on how a single value of the feature in question can be
extracted from the neuronal population response. There can be
more information in the population response than that one value;
for example, the entire probability distribution of a stimulus
feature can be decoded from the population response (Zemel et
al., 1998). There is recent evidence, in the case of visual motion
perception, that such information is actually used to form a
specific percept (Treue et al. 2000). This information is still
related to the coarse-coded stimulus features. To our knowledge,
extracting information from a combined population code in a
functional context, has not been previously considered.

Cues for electrosensory depth perception

Our study of electrosensory depth perception has considered only
static cues of object distance. In the context of visual processing,
the problem is analogous to judging the depth of a stationary
object using only monocular information. Electric images result-
ing from near objects are narrower and of greater peak amplitude
than those of far objects, and thus can be considered as having less
blur and higher contrast. Blur and contrast can have a significant
influence on visual depth perception and are commonly used by
artists in the pictorial depiction of depth (O’Shea et al., 1994;
Mather, 1997). In normal visual processing, such cues are usually
effective only in the absence of others such as those resulting from
stereopsis and motion. Although there is no binocular analog in
electrosensory processing, electric fish certainly have many mo-
tion cues available. Indeed, some species of electric fish exhibit a
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back-and-forth hovering motion that could be used to generate
specific cues. Also, looming cues, such as those resulting from
a changing electric image as an object approaches, could also
be used for computing a parameter such as the time-to-
collision, often discussed in the context of visual looming (Sun
and Frost, 1998; Gabbiani et al., 1999; Rind and Simmons,
1999). As yet, there is little known about electrosensory mo-
tion processing and how electric fish might use such informa-
tion for electrolocation.
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