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Smoothness is characteristic of coordinated human move-
ments, and stroke patients’ movements seem to grow more
smooth with recovery. We used a robotic therapy device to
analyze five different measures of movement smoothness in the
hemiparetic arm of 31 patients recovering from stroke. Four of
the five metrics showed general increases in smoothness for
the entire patient population. However, according to the fifth

metric, the movements of patients with recent stroke grew less
smooth over the course of therapy. This pattern was repro-
duced in a computer simulation of recovery based on sub-
movement blending, suggesting that progressive blending of
submovements underlies stroke recovery.
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Recent epidemiological data that have suggested increasing prev-
alence of stroke have prompted vigorous novel treatment trials
and the use of unique brain-imaging tools to begin to understand
the pathophysiology of stroke (Chollet et al., 1991; Dam et al.,
1993). Most survivors of stroke will have impaired brain function
and permanent levels of disability. As survival from stroke im-
proves with modern medical care, the increasing number of these
patients has also prompted the drive to understand the functional
motor recovery process. Recently, investigators armed with new
tools (Krebs et al., 1998a, 1999; Lum et al., 1999; Kahn et al.,
2001) have begun the detailed kinematic analysis of motor recov-
ery. Based on observations of changes in movement smoothness
in recovering stroke patients (Krebs et al., 1998b), we measured
the development of movement smoothness as patients with stroke
recovered motor function in formerly paralyzed arms.

Movement smoothness has been used as a measure of motor
performance of both healthy subjects (Platz et al., 1994) and
persons with stroke (Trombly, 1993; Kahn et al., 2001). Smooth-
ness measures have most often been based on minimizing jerk,
the third time derivative of position (Flash and Hogan, 1985),
although many other measures are possible, including snap, the
fourth time derivative of position (Edelman and Flash, 1987), and
counting peaks in speed (Brooks et al., 1973; Fetters and Todd,
1987; Cirstea and Levin, 2000; Kahn et al., 2001). Smoothness in
the minimum-jerk sense has been used to identify presymptom-
atic individuals with Huntington’s disease (Smith et al., 2000) and
has also been shown to account for the two-thirds power law,
widely considered an invariant in human movement (Wann et al.,
1988; Gribble and Ostry, 1996; Todorov and Jordan, 1998; Schaal
and Sternad, 2001).

Although smoothness is a characteristic of unimpaired move-
ments, perhaps the most striking feature of the earliest move-
ments made by patients recovering from stroke is their lack of
smoothness; they appear to be composed of a series of discrete
submovements (Krebs et al., 1999). Evidence of discrete sub-
movements has also been found in the movements of healthy
subjects (Milner, 1992; Vallbo and Wessberg, 1993). Complex
movements have been decomposed into submovements as an
analysis tool (Morasso and Mussa-Ivaldi, 1982; Flash and Henis,
1991; Berthier, 1996; Burdet and Milner, 1998) with apparent
success. Although the existence of submovements has not been
demonstrated unequivocally, they account for many patterns in
human movement (Doeringer and Hogan, 1998; Hogan et al.,
1999).

Krebs et al. (1998b) report that movements made by patients
recovering from stroke become smoother as recovery proceeds.
This was attributed to a progressive overlapping and blending of
submovements, although only isolated examples of submovement
blending were reported. In this study, we present additional
evidence that recovery proceeds by progressive blending of sub-
movements. We quantify the smoothness of movements made by
stroke patients with their affected limb and how it changed over
the course of recovery. We present an analysis of how progressive
blending of submovements would affect measures of smoothness
and show that it is consistent with our experimental observations.

MATERIALS AND METHODS
Subjects. Thirty-one subjects (10 women and 21 men) participated in this
study performed at the Spaulding Rehabilitation Hospital (Boston, MA).
Twelve subjects were acute-stage inpatients who had suffered their first
unilateral infarct �1 month before beginning the study, and 19 were
chronic-stage outpatients from 12 to 53 months after stroke. Subjects
were between 19 and 78 years of age (mean age of 55.6 years for
inpatients and 56.2 years for outpatients), hemiparetic, and able to
understand and carry out verbal instructions. See Table 1 for a summary
of clinical evaluation scores and times after stroke for inpatient and
outpatient groups. Only subjects who participated in more than five
therapy sessions and had completed �100 point-to-point movements
were included in this analysis. The protocol was approved by the Human
Studies Committee at Spaulding Rehabilitation Hospital and by the
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Committee on the Use of Human Experimental Subjects of the Massa-
chusetts Institute of Technology. All subjects gave informed consent.

Apparatus. MIT-MANUS, a planar robot, was designed as a therapy
aid in the Newman Laboratory at the Massachusetts Institute of Tech-
nology (Hogan et al., 1995; Krebs et al., 1998b, 1999). A key character-
istic of MIT-MANUS is its “backdrivability” (i.e., its ability to “get out
of the way” when pushed by a subject). Thus, subjects’ movements were
minimally obscured by the dynamics of the robot. During all movements
analyzed and presented in this paper, the robot was unpowered and acted
as a passive measurement device that restricted patients’ hand motion to
a horizontal plane.

Procedure. Over the course of a therapy session, subjects were directed
to make a number of point-to-point movements, ending as near to the
directed point as possible. With a computer display of a center target,
eight targets equally spaced around a circle, and the current position of
the robot endpoint, subjects moved from the center to each target and
back, starting at “North” and proceeding clockwise (Fig. 1). Each target
was 14 cm from the center. Inpatient subjects typically received robot
therapy five times per week for 4 weeks and outpatients three times per
week for 6 weeks. Each session lasted �1 hr. A computer recorded the
position, velocity, and force exerted at the robot handle. In addition, each
subject was clinically assessed by a “blinded” clinician at the beginning,
middle, and end of therapy using a collection of several clinical scales. In
this study, only the results of the Fugl-Meyer Test of Upper Extremity
Function (Fugl-Meyer et al., 1975) are reported.

Analysis. In addition to calculating the mean speed, peak speed, and
duration, five measures of smoothness were applied to the kinematic data
collected during point-to-point movements. All smoothness metrics have
been defined such that higher values of the metric correspond to
smoother movements. A movement was considered to begin when the
speed first became greater than 2% of the peak speed and was considered
to end after the speed dropped and remained below the 2% threshold
again.

Jerk metric. The jerk metric characterizes the average rate of change of
acceleration in a movement. It is calculated by dividing the negative
mean jerk magnitude by the peak speed. Taking the negative of the mean
jerk causes increases in the jerk metric to correspond with increases in
smoothness; that is, it transforms the jerk metric from a measure of
“nonsmoothness” into a measure of smoothness. Dividing the jerk mag-
nitude by peak speed is identical to first normalizing x and y velocities by
the peak speed and then calculating jerk. Normalizing mean jerk in this
way made the metric a measure of smoothness only and did not confound
it with changes in overall movement speed. Although the other four
measures have no units associated with them, the jerk metric has units of
1/s 2. The other four metrics each quantify some shape characteristic of
the speed curve thought to be related to smoothness, and hence can
remain dimensionless. The jerk metric, however, is based directly on a
mathematical definition of smoothness and by definition must carry units.

Speed metric. The speed metric is the normalized mean speed (i.e., the
mean of the speed divided by the peak speed). Early in recovery, subjects’
movements appear to be composed of a series of short, episodic sub-
movements. The resulting speed profile has a series of peaks with deep
valleys in between, representing complete or near-complete stops be-
tween each apparent submovement (Fig. 2). The mean speed of such a
movement is much less than its peak. In this case, the normalized mean
speed is relatively low, particularly when the interval between submove-
ments is significant. However, as subjects recover, submovements tend to
have shorter and less complete breaks between them, resulting in speed
profiles with shallower valleys between peaks. The normalized mean
speed for these movements is significantly higher.

Mean arrest period ratio. Early in recovery, it is common for subjects to
move in an episodic manner, stopping multiple times before reaching
their objective. A speed profile resulting from this type of movement will
have many intervals of zero velocity. However, as subjects reach their

Table 1. Clinical evaluation results for all subjects

Subject Age
Initial
Fugl-Meyer

Final
Fugl-Meyer

Months
after stroke

Inpatients (n � 12)
102 55 6 37 1
104 41 3 24 1
105 53 5 20 1
107 64 5 14 1
201 62 23 33 1
203 72 11 17 1
204 78 11 22 1
205 67 10 16 1
206 40 10 23 1
207 46 12 43 1
302 33 35 56 1
303 56 25 48 1

Outpatients (n � 19)
701 40 42 47 43
702 59 18 22 46
704 19 31 40 37
705 53 50 54 32
706 27 45 57 30
707 66 25 24 27
708 73 15 20 28
709 64 24 30 19
710 56 20 25 47
711 75 22 25 53
712 46 34 35 20
713 77 27 23 12
714 77 15 15 19
715 47 26 19 46
716 72 17 20 19
717 76 23 30 50
718 43 25 28 19
719 41 19 25* 12
720 58 48 53* 20

Fugl-Meyer scores are for the upper-extremity portion of the evaluations only; a
score of 66 represents no impairment. Scores marked with * are interim evaluations.

Figure 1. Top view, Reaching task. The task required each subject to
attempt to move from the center position to a target and then return to the
center, beginning at the North target, and repeating for each target in a
clockwise pattern around the circle. Subjects were presented with a visual
display of the task similar to that in the figure, which also included a
display of the subject’s hand position. The robot remained unpowered for
the duration of all of the trials incorporated into this analysis. Each target
is 14 cm from the center.
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goal more directly, without unnecessary stops, the speed profiles will
tend to spend less time near zero speed. “Movement Arrest Period
Ratio” (MAPR), as described by Beppu et al. (1984), quantifies this
change; it is the proportion of time that movement speed exceeds a given
percentage of peak speed. By nature, the MAPR with a low threshold is
less likely to be informative when studying movements that are close to
normal. However, outpatients’ movements in this study, although better
than those of inpatients, are still far from normal. They move at approx-
imately one-half the speed of healthy subjects and show significantly
nonstraight paths. The MAPR threshold selected in this analysis was
10%.

Peaks metric. The number of peaks in a speed profile has been used to
quantify smoothness in healthy subjects (Brooks et al., 1973; Fetters and
Todd, 1987) and in stroke patients (Kahn et al., 2001). Fewer peaks in
speed represent fewer periods of acceleration and deceleration, making
a smoother movement. In this study, the peaks metric is taken to be the
negative of the number of peaks to relate increases in the peaks metric
to increases in smoothness.

“Tent” metric. The tent metric is the ratio of the area under the speed
curve to the area under a curve “stretched” over the top of it. It is based
on a graphical analysis of the difference between a speed profile and
a similarly scaled, single-peaked speed profile (i.e., a speed profile with a
single acceleration and a single deceleration phase). An example of a
tent curve is shown in Figure 3.

Statistical tests. Using linear regression, a line was fit to each of the
smoothness metrics over the course of therapy for each subject, and the
confidence interval for the slope was determined. See Press et al. (1992)

for a detailed mathematical description. Student’s t tests were also
performed to compare changes in each of the smoothness metrics in
acute and chronic populations.

Simulation. To test whether changes in the smoothness of movements
made by recovering stroke patients were attributable to progressive
blending of submovements, a simulation of submovement blending was
performed. A simulated movement was composed of two minimum-jerk
speed profiles of the same amplitude and width, initiated an interval T
apart, as shown in Figure 2a–d. Blending was simulated by performing
scalar summation of the overlapping portion of the speed profiles (Mo-
rasso and Mussa-Ivaldi, 1982) as opposed to vector summation (Flash
and Henis, 1991). Note that in the case of straight line movement, the two
summing modalities are equivalent.

As T is varied, the extent of overlap of the two submovement speed
curves varies as well, although the net displacement of the simulated
movement remains constant, consistent with the fixed-distance, point-to-
point movements required by the experimental task. Sample speed pro-
files from subjects shown in Figure 2e–h lend support to this description
of movement. The sample movement taken from the inpatient’s first day
of therapy is clearly divided into two stages, with the subject coming to
a complete stop in between them. The movement taken from the inpa-
tient’s last day of therapy shows a speed profile with shallower valleys
between the peaks. As interpreted by the simulation, the submovements
are more completely blended together than those of the earlier move-
ment. In comparison, on the outpatient’s final day of therapy, the speed
profile is nearly unimodal. This effect occurs in the simulation as well
when there is such a high degree of blending that individual peaks are no
longer distinguishable.

In the simulation, the five smoothness metrics are calculated for many
values of T. To remain consistent with the data-processing methods used
on actual subject data, a movement was considered to begin when the
speed first became greater than 2% of the peak speed and to end after the
speed dropped and remained below the 2% threshold again.

RESULTS
Movement speed and duration
The differences between first-day and last-day values of the fits for
mean speed, peak speed, and movement duration are plotted in
Figure 4. Filled circles represent statistical significance ( p �
0.05). Subjects’ peak speeds changed significantly in many cases
but with no clear trend in the direction of the change. Significant

Figure 2. Simulated versus actual speed profiles. a–d, Progressive blend-
ing of two minimum-jerk curves at various states of blending (T). See
Materials and Methods for a detailed description of the simulation. e–h,
Actual patient speed profiles. e and f are taken from the first and last
therapy sessions of an inpatient; g and h are taken from the first and last
therapy sessions of an outpatient. Simulated speed profiles qualitatively
resemble the actual patient data. a contains two distinct speed peaks, just
as the patient speed profile e. Continuing down the columns, b and f are
qualitatively similar, c somewhat resembles g, and d is similar to h.
Progression from the first to the last therapy sessions qualitatively suggests
an increase in submovement blending. In addition, the movements of the
subject that is longer poststroke (Outpatient) have characteristics of more
highly blended submovements compared with those of the inpatient.

Figure 3. A constructed tent profile. A subject’s speed profile is super-
imposed with the corresponding tent profile constructed during the cal-
culation of the tent metric. It should be noted that, unlike the other
metrics, the tent metric is sensitive to “permutations.” Consider two
movements, each of which have four peaks, two large and one small. In
one movement, the peaks are ordered (Large 1, Small 1, Small 2, and
Large 2) with periods of no movement in between, and in the second
movement, peaks are ordered (Small 1, Large 1, Large 2, and Small 2).
The tent metric will show higher smoothness in the second movement.
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decreases in peak speed outnumber increases from 11 to 9.
Subjects’ mean speeds (total distance traveled over total move-
ment duration) tended to increase for both inpatients and outpa-
tients, with the changes being significantly larger in inpatients
( p � 0.001). Similarly, subjects’ movement duration tended to
decrease for both inpatients and outpatients, with the changes
being significantly larger in inpatients. This similarity between
mean speed and movement duration follows from the fact that the
nominal distance for the movement task remained constant.

The trends observed in movement speed and duration are
predicted by the simulation of submovement blending in two of
the three cases. As the simulation progresses, movement duration
decreases, which, as mentioned previously, also yields an increase
in mean speed. This correctly predicts observed trends in mean
speed and movement duration. However, the simulation also
predicts an increase in peak speed with increases in blending at
high levels of blending. This pattern is not generally seen in
Figure 4, revealing a limitation of the simplified model of blend-
ing used. However, this property will not affect the results or
interpretation of the smoothness metrics, because all metrics were
chosen in such a way as to be insensitive to scaling of the speed
profile.

The existence of strong trends in mean speed and duration
indicates that they might potentially make useful measures of
recovery; however, not every subject follows them. Six subjects
showed no significant change in movement duration. With regard

to mean speed, 10 subjects showed no significant change, and 4
actually showed significant decreases.

Movement smoothness
The differences between first-day and last-day values of the fits for
each smoothness measure are plotted in Figure 5. An increase in
any metric indicates an increase in smoothness, as defined by that
metric. Filled circles represent statistical significance ( p � 0.05).

All subjects but one showed a significant increase in one or
more of the smoothness metrics, with 22 subjects showing an
improvement in four or more metrics. The movements of both
inpatients and outpatients tended to get smoother over the course
of therapy. The amount of change in smoothness metrics varied
between inpatient and outpatient populations. For all smoothness
metrics except the tent metric, the amount of change between the
two groups differed significantly ( p � 0.0001). In the speed
metric, MAPR, and the peaks metric, inpatients showed greater
increases in smoothness than outpatients. However, inpatients
tended to show decreases in smoothness as measured by the jerk
metric, whereas outpatients tended to show increases.

As shown in Table 1, inpatients and outpatients had a wide

Figure 4. Changes in mean and peak speed and movement duration over
the course of therapy for each subject. Filled circles denote changes that
are statistically significant ( p � 0.05). Statistical significance ( p value) of
the difference between the changes in smoothness of inpatient (acute) and
outpatient (chronic) populations is shown for each metric. Although
mean speed and duration show general trends, peak speed does not and,
in fact, shows more instances of a decrease than an increase. Open circles
denote changes that did not reach statistical significance. Figure 5. Changes in each smoothness metric over the course of therapy

for each subject. Increases in smoothness are represented by positive
changes in a smoothness metric in every case. Filled circles denote changes
that are statistically significant ( p � 0.05). Statistical significance ( p
value) of the difference between the changes in smoothness of inpatient
(acute) and outpatient (chronic) populations is shown for each metric.
Note that, with one exception, every incidence of a significant decrease in
smoothness occurred in the jerk metric with the inpatient group. Open
circles denote changes that did not reach statistical significance.
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range of Fugl-Meyer scores both at the beginning and at the end
of therapy. On average, however, inpatients began therapy lower
on the Fugl-Meyer scale.

Although the patients’ age range was quite large, there was no
statistically significant difference in age between inpatients and
outpatients as groups. Therefore, the observed differences in
inpatient and outpatient performance in four of the five smooth-
ness metrics cannot be attributed to variations in patients’ ages.
Correlation analysis shows that patients’ age correlates weakly
with their performance; the highest level of correlation is 0.33,
which occurs with changes in the peaks metric (Table 2).

To test how accurately changes in smoothness were predicted
by changes in clinical scores, correlations were performed be-
tween changes in each of the five smoothness metrics changes in
the Fugl-Meyer score and time after stroke (Table 2). The cor-
relation is appreciable in several cases (as large as �0.48 for
changes in the Fugl-Meyer score and �0.61 for time after stroke),
indicating that changes in smoothness are related to these clinical
scores but only indirectly reflected in them.

In the interest of a clear presentation, the clinical data included
here have intentionally been limited to that which was directly
relevant to the specific topic of the paper. Other aspects of the
data will be discussed in future work.

Simulation results
Figure 6 displays all five smoothness metrics as a function of
simulated submovement blending. Note that increasing blending
corresponds to decreasing T (i.e., moving from right to left in the
figure, rather than left to right). See Materials and Methods for a
detailed description of the simulation.

As T decreases, the metrics generally tend to show an increase
in smoothness. There are a few exceptions to this pattern. The
speed metric, MAPR, the peaks metric, and the tent metric
increase all saturate or peak at low T (high blending). Neverthe-
less, the general trend is that these four metrics increase as
blending becomes more complete.

In contrast to the other four metrics, the jerk metric does not
generally increase with blending. Although the jerk metric in-
creases with increasing blending over the interval 0.12 sec � T �
0.26 sec, it decreases with increasing blending for T � 0.26 sec.
For most of the range considered, the jerk metric shows that the
simulated movements become less smooth as submovements
blend. This behavior is not an artifact of the minimum-jerk curves
used in the simulation; similar behavior was observed using
support-bounded lognormal (Plamondon, 1995) and Gaussian
curves.

It should be noted that the nonmonotonic behavior described
here depends on the form of the jerk metric chosen. As defined in
Materials and Methods, the jerk metric is calculated by taking the
negative of the mean jerk magnitude for the movement and
normalizing it by the peak speed. This is just one of several
reasonable ways to define a jerk metric; for example, the mean
jerk magnitude could be normalized by a variety of quantities

(e.g., by mean speed, the cube of mean speed, the cube of peak
speed, duration, and the square of duration) or not at all. Through
serendipity, the particular jerk metric, selected based on previous
use of jerk to describe movement smoothness, was found to
exhibit a nonmonotonicity, a clearly identifiable feature that al-
lowed for more meaningful comparison between the data and the
simulation. Some variations of jerk metric produce the nonmono-
tonic behavior (no normalization, normalization by peak speed,
the cube of peak speed, duration, and the square of duration), but
at least one does not (normalization by the cube of mean speed),
whereas normalizing by mean speed produces a flat region of no
change in the jerk metric with blending.

Low jerk is not the only way to quantify smoothness; there are
many other possible smoothness measures. For example, mini-
mum snap (the fourth time derivative of position) described the
kinematics of point-to-point drawing movements more accurately
than minimum jerk (Plamondon et al., 1993). However, the mea-
sure of the rate of change of movement acceleration provides a
compelling real-world description of smoothness and offers sev-
eral advantages: analytical tractability, computational manage-
ability, and theoretical simplicity.

Table 2. Correlation between changes in each smoothness metric and changes in the Fugl-Meyer score, time after stroke, and subject’s
age (Pearson’s r)

Smoothness metric Jerk Speed MAPR Tent Peaks

Correlation with subject’s age 0.11 0.08 0.18 0.10 �0.33
Correlation with change in Fugl-Meyer �0.48 0.40 0.33 0.03 �0.12
Correlation with time after stroke 0.54 �0.58 �0.61 �0.27 0.58

Figure 6. Comparison of smoothness metrics during the simulated
blending of two minimum-jerk curves. The values of the five smoothness
metrics are shown for a range of values of T. Translation to the lef t along
the x-axis represents an increase in submovement blending. Translation
up the y-axis represents an increase in smoothness. Speed profiles for
selected values of T are shown along the horizontal axis, depicting the
state of the simulation at various degrees of blending.
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As an aside, it is interesting to note that near T � 0.19 sec, the
peaks metric drops briefly. This occurs because there is a small
range of T for which the composite curve, a blend of two sub-
movements, has three peaks. See Figure 2c for an illustration of
this phenomenon. This counter-intuitive result, that the sum of
two single-peaked curves produces a triple-peaked composite,
emphasizes the difficulty of reliably identifying submovements
underlying continuous motions. Although this phenomenon is
dependent on the nature of the submovement shape (it does not
occur when using Gaussian-shaped submovements, for instance),
it is worthy of consideration. It raises questions about the validity
of common methods for submovement identification that rely on
counting speed peaks or on using speed peak locations to initial-
ize local minimization algorithms. Reliable methods for identi-
fying submovements are a topic of ongoing research and will be
more thoroughly addressed in future work.

DISCUSSION
Movement smoothness increases during recovery
Subjects’ increased movement smoothness raises the following
question: is the tendency to make movements with smooth, sym-
metric, and bell-shaped speed profiles an epiphenomenon of
musculoskeletal dynamics, or is it the result of learned motor
behavior? To a limited extent, movement smoothness is a natural
consequence of the low-pass filtering properties of the neural,
muscular, and skeletal systems. Krylow and Rymer (1997) dem-
onstrated this phenomenon, showing that a simple train of elec-
trical pulses produced a movement with a smooth acceleration
phase. However, it is notable that the complete movement had a
highly asymmetric speed profile, quite unlike normal human
movement, indicating that some form of neural coordination (e.g.,
appropriately timed recruitment of agonist and antagonist muscle
groups) would be necessary to produce the approximately sym-
metric speed profiles typically observed.

Studies of development and recovery from neural injury
strongly suggest that smoothness is a result of learned coordina-
tion. Infants’ movements have been shown to become more
smooth (in the sense of having fewer speed peaks) as motor
control improves (von Hofsten, 1991). This indicates that move-
ment smoothness is a result of a learned, coordinative process
rather than a natural consequence of the structure of the neuro-
muscular system. Additionally, there is evidence that the seg-
mented nature of stroke patients’ arm movements can be attrib-
uted to a deficit in interjoint coordination (Levin, 1996). Taken
with our observation that smoothness increases with recovery, the
conclusion that smooth movement is a result of well developed
coordination seems inescapable.

Evidence for discrete submovements
The “V”-shape of the jerk metric curve in Figure 6 predicts that
subjects with poorer blending (on the right half of the V) will
show decreases in jerk-based smoothness as they recover, whereas
subjects with more complete blending (on the left half of the V)
will show increases in jerk-based smoothness as they continue to
recover. This is reflected clearly in the fact that exclusively inpa-
tient subjects showed significant decreases in the jerk metric,
whereas outpatients, who are presumably closer to their asymp-
tote of recovery, showed only increases.

A second prediction of the curves in Figure 6 is that subjects
with poorer blending will show marked increases in the other four
smoothness metrics as they recover, whereas subjects with more
complete blending will show only modest increases as the metrics

saturate or peak. This is shown by the fact that increases in
smoothness are significantly lower for outpatients than inpatients
as measured by MAPR, the peaks metric, and the speed metric.
The fact that submovement blending can explain the observed
behaviors of the several smoothness metrics we considered lends
support to the theory that movement is composed of discrete
submovements.

Could the improvement in motion smoothness reflect periph-
eral factors, such as restoring the capability of the system to
recruit a sufficiently large number of motor units? If impaired
patients were only limited by the magnitude of their neural
activation signals, and this quantity increased over the course of
recovery, then this theory would predict an increase in peak speed
of the movements as well. The data do not support this hypoth-
esis, however. More subjects show peak speed decreases than
show increases.

Jerk as a smoothness metric
The fact that many subjects showed an increase in the jerk metric
during recovery highlights a distinction between jerk-based no-
tions of smoothness and submovement blending. Care should be
taken when assuming that less smooth movements (as measured
with jerk) are more impaired or less skilled. The counterintuitive
behavior of the jerk metric in the data and in simulation suggests
that, at least during poststroke recovery, jerk minimization may
not be the primary criterion governing refinements in movement
patterns.

The fact that the jerk metric reports a higher degree of smooth-
ness with very low blending than with a moderate amount of
blending follows from the definition of the metric. High smooth-
ness corresponds to low average jerk; when a simulated move-
ment consists of two submovements separated by a large period of
rest, average jerk will be relatively low, and smoothness therefore
is high. And as the two submovements become more blended,
they begin to approach each other, and the period of rest is
shortened. This increases average jerk, decreasing smoothness.

Applications of submovements
Just as measurements of jerk have allowed identification of pr-
esymptomatic individuals with Huntington’s disease when clinical
measurements have not (Smith et al., 2000), the high resolution
and specificity of other kinematic measures may allow observa-
tion of other previously unobservable phenomena. Such measures
would serve to complement time-tested clinical scales, such as the
Fugl-Meyer. Several research groups have used kinematic and
force measures to quantify movement deficits in stroke patients
(Wing et al., 1990; Ada et al., 1993; Trombly, 1993; Levin, 1996;
Lum et al., 1999; Kahn et al., 2001). Our results extend their work
by showing clear increases in smoothness in both acute and
chronic populations, even in subjects who did not show an in-
crease on the Fugl-Meyer scale. Measurement of smoothness may
provide a meaningful, objective quantification of motor perfor-
mance that could be used to augment clinical evaluations. Alter-
natively, to the extent that smoothness is a result of submovement
blending, direct estimation of submovement blending character-
istics may provide an even more intuitive and robust measure of
recovery.

The existence of submovements might indicate a discrete in-
ternal representation of motor commands. Strong direct evidence
for discrete movement primitives in frog wiping reflexes has been
shown (Giszter and Kargo, 2000; Kargo and Giszter, 2000) in
both force profiles and EMG measurements. Physiological evi-
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dence for discrete submovements has been reported in healthy
human subjects as well; in slow finger movements, Vallbo and
Wessberg (1993) showed both discrete kinematic jumps in finger
position as well as synchronized pulses of EMG activity in the
finger flexors and extensors. If it is shown to be feasible, locating
and measuring this internal coding of motor commands could
lead to insight into the nature of human motor behavior and
motor system pathologies. A similar coding of movement may be
used in neural–machine interfaces (Wiener, 1961). A control
system based on discrete submovements requires much less in-
formation to be transferred (i.e., lower average communication
bandwidth) between the controller and the system being con-
trolled. Initial experiments into brain–computer interfaces are
promising but have shown very limited bandwidth capabilities
(Lauer et al., 2000). Using discrete feedforward control com-
mands may make practical applications of neural interfaces
realizable.

It should be noted that other, nondiscrete models may be
capable of describing decreasingly segmented behavior. However,
to be fully successful, a model of recovery must produce move-
ments that have significant periods of rest, as is often observed in
stroke patients. For example, a continuous forward and inverse
adaptive model pair described by Bhusan and Shadmehr (1999)
incorporates time delays representative of those in the visual and
spinal feedback loops and predicts segmented behavior when
learning to move in a novel force field. It predicts that the
segmentation will decrease as the models become trained but is
unlikely to predict periods of rest.

As an aside, the behavior of the Bhusan and Shadmehr (1999)
model is attributable to its structure and to the existence of time
delays rather than to its continuous nature. A similar model could
be implemented in discrete terms equally plausibly. A discrete
submovement model of this structure is much more likely to
reproduce the salient characteristics of movement during stroke
recovery, including both segmentation and periods of rest.

There are control system applications for submovements as
well. Transmission delays tend to have a destabilizing effect on
closed-loop control systems and often exist in teleoperated sys-
tems. The discrete nature of motor commands may be a mecha-
nism by which control of movement is stabilized despite �100
msec delays in neural pathways and in the visual feedback loop;
the CNS may be stably “teleoperating” the periphery using sub-
movements. Telerobotic systems in space, medicine, and hazard-
ous material handling that adopt control architectures based on
discrete feedforward commands may become more stable, in-
creasing performance. In addition, where the delay in these
systems is caused by bandwidth limitations, the concise nature of
discrete command representation would decrease average band-
width requirements and further improve system performance. As
an added benefit, control system resources dedicated previously
to continuously monitoring input and output commands would be
freed to execute other tasks.

These benefits would not be without cost. By their nature,
discrete controllers have periods of time in which they gather
information but do not act on it. This results in a delay, a
scaled-up version of the discrete-time effect encountered in digital
systems, which is likely to degrade performance. (Both optimal
and robust control theory use near-continuous time controllers
and predict a degradation of performance when time discretiza-
tion becomes large.) However, the fact that discrete controllers
exhibit less than optimal performance may not necessarily be a
flaw but rather a feature. Optimality denotes, by definition, fra-

gility; any slight change in the system degrades performance. This
is in contrast to the human motor control system, which appears
to be, above all else, robust.
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