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Multisensory Integration during Motor Planning
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When planning goal-directed reaches, subjects must estimate the position of the arm by integrating visual and proprioceptive signals
from the sensory periphery. These integrated position estimates are required at two stages of motor planning: first to determine the
desired movement vector, and second to transform the movement vector into a joint-based motor command. We quantified the contri-
butions of each sensory modality to the position estimate formed at each planning stage. Subjects made reaches in a virtual reality
environment in which vision and proprioception were dissociated by shifting the location of visual feedback. The relative weighting of
vision and proprioception at each stage was then determined using computational models of feedforward motor control. We found that
the position estimate used for movement vector planning relies mostly on visual input, whereas the estimate used to compute the
joint-based motor command relies more on proprioceptive signals. This suggests that when estimating the position of the arm, the brain
selects different combinations of sensory input based on the computation in which the resulting estimate will be used.
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Introduction
Sensory channels often provide redundant information, as is the
case when both visual and proprioceptive feedback encode the
position of the arm. Recent studies suggest that when integrating
redundant signals, the brain forms a statistically optimal (i.e.,
minimum-variance) estimate by weighting each modality ac-
cording to its relative precision. Minimum-variance models have
been shown to account for human performance when subjects
integrate vision and touch (Ernst and Banks, 2002), vision and
audition (Ghahramani, 1995), and other combinations of sen-
sory input (Welch et al., 1979; Jacobs, 1999; van Beers et al.,
1999). These models are appealing because they provide a simple
rule by which the brain could minimize errors attributable to
sensory noise.

Although these models predict a single, optimal estimate,
other lines of research suggest that the brain forms multiple and
sometimes inconsistent estimates of environmental variables.
For example, studies of patients with temporal or parietal lobe
lesions indicate that the brain has independent streams of visual
processing for perceptual as opposed to motor tasks (Goodale
and Milner, 1992; Milner and Goodale, 1995). Studies of reaching
to illusory objects have shown a similar dissociation in normal
subjects (Aglioti et al., 1995; Haffenden et al., 2001). These results

suggest that sensory signals might be processed differently de-
pending on how they will be used.

Here we focus on the integration of visual and proprioceptive
feedback from the arm before the execution of a reach. This study
seeks to quantify how vision and proprioception are combined to
estimate arm position and to determine whether the nervous
system uses a single criterion (e.g., minimum-variance) to com-
bine the two modalities, or if different combinations of sensory
input are selected at each stage of motor planning. Our approach
is to displace the visual feedback from the arm before movement
onset and use the resulting movement errors to infer the relative
weighting given to each sensory modality.

Our analysis relies on the premise that estimates of arm posi-
tion (a term that we use to denote both the position of the finger-
tip and the angles of the joints) are used in two separate stages of
motor planning and on the observation that distinct patterns of
movement errors would result from position misestimation at
each stage. In the first stage, a desired movement vector in visual
(extrinsic) space is computed by subtracting the estimated initial
arm position from the target location. Clearly, if this initial posi-
tion is misestimated, the planned movement vector will be wrong
(Rossetti et al., 1995). We will refer to the resulting error pattern,
illustrated in Figure 1, A and B, as movement vector (MV) error.
A second and perhaps less intuitive source of error is the trans-
formation of the extrinsic movement vector into a joint-based
(intrinsic) motor command (Ghilardi et al., 1995; Goodbody and
Wolpert, 1999). This transformation is equivalent to evaluating
an inverse model of the arm (Jordan, 1996) and requires an esti-
mate of the arm’s initial position. Position misestimation at this
stage of reach planning will also result in movement errors. An
example is illustrated in Figure 1C. A leftward shift in estimated
arm position causes the subject to choose the wrong motor com-
mands (an extension or flexion of the elbow), resulting in clock-

Received Jan. 24, 2003; revised June 11, 2003; accepted June 12, 2003.
This research was supported by an Alfred P. Sloan Research Fellowship, a McKnight Scholar Award, and a Howard

Hughes Medical Institute Biomedical Research Support Program Grant (76200549902) to the University of California
San Francisco School of Medicine. S.J.S. was supported by a National Science Foundation Fellowship. We thank
Megan Carey, Daniel Engber, Stephanie Palmer, and two anonymous reviewers for helpful comments on this
manuscript.

Correspondence should be addressed to Philip Sabes, Department of Physiology, 513 Parnassus Avenue, Univer-
sity of California San Francisco, San Francisco, CA 94147-0444. E-mail: sabes@phy.ucsf.edu.
Copyright © 2003 Society for Neuroscience 0270-6474/03/236982-11$15.00/0

6982 • The Journal of Neuroscience, August 6, 2003 • 23(18):6982– 6992



wise (CW) errors in initial reach direction (see Fig. 1D). We will
refer to this type of error as inverse model (INV) error. Although
both MV and INV error result from misestimation of the arm’s
initial position, the two stages of motor planning may rely on two
different position estimates.

The integration of vision and proprioception at these two
planning stages has never been characterized independently and
simultaneously. Here we show that shifts of visual feedback be-
fore movement onset result in a combination of the MV and INV
error patterns. Fitting the observed errors with simple mathemat-
ical models of motor planning allows us to quantify the relative
contributions of vision and proprioception to the position esti-
mate used at each planning stage.

Materials and Methods
Experimental setup and data collection
Seven right-handed subjects (two female, five male) participated in the
experiment. Subjects were 26 –33 years of age and were healthy with
normal or corrected-to-normal vision. All subjects were naive to the
purpose of the experiment and were paid for their participation.

The task was performed with the right arm, which rested on a
shoulder-height table (see Fig. 2 A). To minimize friction, the arm was
supported by air sleds (0.73 kg upper arm, 1.18 kg forearm). The wrist
was pronate and fixed in the neutral position with a brace, and the index
finger was extended in a custom splint that permitted only vertical move-
ment of the digit. Both shoulders were lightly restrained to minimize
movement of the torso. This configuration restricted movement of the
arm to 2 df and to a horizontal plane just above the table (Fig. 1). Arm
position could therefore be expressed interchangeably as x, a two-
dimensional vector representing the Cartesian position of the fingertip,
or as �, a two-dimensional vector composed of the shoulder and elbow
angles.

Three dowels, which served as tactile start points, were fixed a few
centimeters above the plane of movement and could only be reached
when the subject raised his or her fingertip from the splint. The visual
feedback spot and target circles were presented via a mirror and rear-
projection screen such that the images appeared to lie in the plane of the
arm. A liquid crystal display projector (1024 � 768 pixels) with a 75 Hz
refresh rate was used. A drape prevented vision of the arm, the table, and
the dowels. Five infrared-emitting diodes were attached to each subject’s
arm and torso (Fig. 2 B). Arm position data were sampled at 120 Hz using
an infrared tracking system (OPTOTRAK, Northern Digital, Waterloo,
Ontario). Elbow and shoulder angles were computed using the five
marker positions and the lengths of the upper arm and forearm, which
were measured using standard anatomical landmarks.

Task design
The workspace contained the three start points and eight targets (Fig.
2C). The dowels marking the start points were spaced 6 cm apart, and the
center dowel was positioned �40 cm from the subject’s chest and slightly
to the right of midline. The targets were evenly arrayed on a circle of
radius 18 cm centered at the middle start point.

The experiment consisted of 160 trials. At the beginning of every trial,
text reading “Left,” “Center,” or “Right” appeared briefly at a random
location on the screen, instructing the subject to locate the appropriate
dowel with his or her raised index finger. The trial continued when (1)
the fingertip was within 1 cm of a point directly below the appropriate
dowel and (2) the fingertip was lowered back to the splint, where it
remained for the rest of the trial. At this point, the visual feedback spot (a
white circle of radius 3 mm) appeared at the location of the subject’s
fingertip or displaced to the left or right by 6 cm. Simultaneously, a red
target of radius 5 mm appeared at one of the eight target locations. After
a variable delay of 500 –1500 msec, the target turned green, cueing the
subject to begin the reach. Subjects were instructed to reach directly and
accurately to the target. When the fingertip had moved 5 mm from its

Figure 1. Misestimation of arm position results in two types of reach errors. A, Errors resulting from a leftward shift in the position estimate used to plan the movement vector. The planned
movement directions (gray arrows) differ from the actual hand-to-target directions (dashed lines). The pattern of directional errors (colored arrows) is plotted as a function of target direction in B.
A rightward shift would produce the opposite pattern (see Fig. 4 B). CW, Clockwise; CCW, counterclockwise. C, Errors resulting from a leftward shift in the position estimate used to transform the
desired movement vector into a joint-based motor command. The directions of the achieved movements (black arrows) differ from the planned movement directions (gray arrows). The pattern of
errors (colored arrows) is plotted as a function of planned movement direction in D. The leftward shift shown here produces CW errors for all planned reach directions. A rightward shift would produce
CCW errors.
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starting point, the feedback spot was extinguished, and the remainder of
the reach was performed without visual feedback. The trial ended when
the tangential fingertip velocity fell below 1.2 mm/sec. The target re-
mained illuminated for the entire reach.

The experiment was composed of five trial types (Fig. 2 D). In Left-
Zero, Right-Zero, and Center-Zero trials, reaches were made from each
of the three start points with no visual shift. In Center-Left and Center-
Right trials, reaches from the center start point were made with 6 cm
leftward and rightward visual shifts, respectively. Note that with these
shifts, the feedback spot appeared at the locations of the left and right
tactile start points. The experiment consisted of four reaches to each of
the eight targets under these five conditions in a pseudorandom order,
totaling 4 � 8 � 5 � 160 reaches. To prevent subjects from adapting to
the visual shifts, trials with left shifts, right shifts, and veridical feedback
were pseudorandomly interleaved, and no two consecutive trials in-
cluded the same shift. Adaptation was also unlikely because only two-
fifths of the trials included shifts and because the visual feedback (shifted
or veridical) was available only at the start point.

A set of 32 familiarization trials preceded the actual experiment. First,
a block of 24 Left-Zero, Center-Zero, and Right-Zero trials was per-
formed with continuous visual feedback to acclimate subjects to the task
and experimental apparatus. Next, a block of eight trials was performed
with initial feedback only to familiarize subjects with reaching in the
absence of visual feedback. After the experiment was completed, subjects
were asked whether they felt that the location of the visual feedback spot
ever deviated from the location of their fingertip. All but one subject
reported being unaware of any visual shift. The remaining subject (HA)
reported that the location of the feedback spot seemed to have been
displaced on a small number of trials (fewer than five).

Data analysis and model fitting
Trajectory analysis. Arm position data were smoothed with a low-pass
Butterworth filter with a cutoff frequency of 6 Hz, and the fingertip

velocity and acceleration were successively computed using numerical
differentiation (first differences). We quantified initial reach directions
by determining the angle of the instantaneous velocity or acceleration
vector at the point along the trajectory at which the tangential velocity
first exceeded 40% of its peak value.

Modeling the initial movement direction. In building an explicit model
of reach planning, we had to specify which extrinsic and intrinsic vari-
ables are used. Behavioral studies have variously suggested that reach
planning uses either kinematic (Flash and Hogan, 1985; Atkeson and
Hollerbach, 1985) or dynamic (Uno et al., 1989; Gordon et al., 1994b)
variables, and neurophysiological findings have been cited to support
both hypotheses (Cheney and Fetz, 1980; Georgopoulos et al., 1982;
Todorov, 2000). We therefore fit our data twice, using the two models
shown in Figure 3. In the velocity command model, the motor command
is specified kinematically (as joint angle velocities), whereas in the torque
command model the motor command is specified dynamically (as joint
torques).

The goal of these models is to understand how visual and propriocep-
tive signals from the sensory periphery combine to guide the initial,
feedforward component of the reach. In these models, only the initial
velocities or accelerations of movements are computed, and feedback
control is not modeled. We assume that the CNS weights the visual ( x̂vis)
and proprioceptive ( x̂prop) position estimates and adds them to create
two estimates of the position of the arm, x̂MV (“movement vector”) and
x̂INV (“inverse model”):

x̂MV � �MVx̂vis � �1 � �MV� x̂prop, (1)

x̂INV � �INVx̂vis � �1 � �INV� x̂prop. (2)

The estimate x̂MV is used to determine the desired movement vector in
both models. This vector specifies desired initial fingertip velocity in the
velocity command model and the desired initial fingertip acceleration in
the torque command model. The second estimate, x̂INV, is used to con-
vert the desired movement into an intrinsic motor command. This com-
mand is expressed as joint velocities in the velocity command model and
as joint torques in the torque command model. In both models, there-
fore, the weighting parameters �MV and �INV characterize sensory inte-
gration at the two stages of reach planning.

Velocity command model. In the velocity command model, the planned
movement vector is defined as the desired initial velocity of the fingertip
( ẋ*). The direction of this velocity is specified by:

�ẋ* � �� x*d � x̂MV� � �d, (3)

where �x represents the angle of vector x, x*
d represents the location of

target d � [1, . . . , 8], x̂MV is the estimated hand position defined in
Equation 1, and �d is an angular offset from the straight line connecting
the estimated initial position and target x*

d. We included the �d terms to
account for the fact that natural, unperturbed reaching movements are
slightly curved (Soechting and Lacquaniti, 1981; Atkeson and Holler-
bach, 1985; Uno et al., 1989), resulting in initial reach directions that
differ from the target direction. This baseline bias was fit from the
Center-Zero trials: each �d was set to the average angular difference
between the initial velocity direction and the target direction for target
x*

d. Equation 3 does not specify the magnitude of ẋ*, because ultimately
only the predicted direction of movement will be compared with the
data. Note that the pattern of errors in �ẋ* resulting from misestimation
of x̂MV is the MV error shown in Figure 1, A and B.

Given a desired Cartesian fingertip velocity ẋ*, the ideal joint angle
velocity command would be:

�̇ ideal � J �1��� ẋ*,

where the Jacobian matrix J(� ) is the gradient of the fingertip location
with respect to the joint angles:

J�� � � ��K�� � �
dx

d�
.

Figure 2. Data collection and experimental design. A, Side view of the behavioral apparatus.
For clarity, the tactile start points (dowels) and drape are not shown. B, Top view of a subject
showing the placement of the infrared markers (gray dots). Joint angles (�1 and �2 ) were
computed from these five positions and from the measured lengths of the upper and lower arm
(L1 and L2 ). C, Workspace configuration. The dowels marking the three tactile start points (gray
dots) were arranged in a line parallel to the subject’s left–right axis and were spaced 6 cm apart.
L, Left start point; C, center start point; R, right start point. D, Trial types. Grid entries indicate the
tactile start point (left column) and the presence of a leftward or rightward shift (right column)
in each trial type.
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The kinematics equation x � K(� ) describes
the mapping from joint angles to fingertip loca-
tions. Note that because the arm is restricted to
planar, two-joint movements, both the kine-
matics and the Jacobian are invertible. Because
the internal inverse model must rely on an esti-
mate of the position of the arm ( x̂INV), the im-
plemented motor command will be:

�̇ � J�1��̂INV� ẋ*, (4)

where:

�̂ INV � K �1� x̂INV�.

Finally, this joint velocity command is exe-
cuted, and the arm moves with an initial finger-
tip velocity determined by the Jacobian (evalu-
ated at the true arm position):

ẋ � J�� ��̇ � J�� �J �1��̂INV� ẋ*. (5)

This model predicts that the initial velocity ẋ
will be distorted from the desired velocity ẋ* if
the arm position is misestimated. The matrix
Dvel(�, �̂INV) � J(� )J �1(�̂INV), which we will
call the velocity distortion matrix, determines
the INV error (Fig. 1C,D) in the velocity com-
mand model.

Torque command model. In addition to the velocity command model,
which assumes that reaches are planned in kinematic coordinates, we
also considered a model in which the dynamics of the movement are
controlled via the joint torques �. In the torque command model, the
movement vector specifies a desired initial acceleration, ẍ*, which is
offset by some angle �d from the target direction:

�ẍ* � �� x*d � x̂MV� � �d. (6)

The �d in this model is determined by measuring the average initial
accelerations for reaches to each target in the baseline (Center-Zero)
trials.

The ideal joint torque command can be computed from the desired
acceleration as follows. The relationship between joint and endpoint
acceleration is found by differentiating Equation 5 with respect to time:

ẍ � J�� ��̈ �
d

dt
� J�� �	�̇

ẍ � J�� ��̈. (7)

The approximation in Equation 7 follows from the fact that we are only
considering the initial component of the movement, when the magni-
tude of the angular velocity is small. The relationship between the joint
torques and the kinematic variables of the movement is given by the
dynamics equations for the planar, two-joint arm:

� � I�� ��̈ � H��,�̇��̇

� � I�� ��̈, (8)

where I (�) is the position-dependent, nonisotropic inertia of the arm,
and the H term represents velocity-dependent centripetal forces, joint
interaction torques, and damping forces at the joints. Because this latter
term varies linearly with respect to joint velocity, it is small at the onset of
movement, yielding the approximation of Equation 8. Inverting Equa-
tion 7 and combining it with Equation 8, we obtain the ideal joint torque
command:

� ideal � I���J�1��� ẍ*. (9)

However, the true value of the arm position is not available to the ner-

vous system, which must make use of the estimated joint angles, �̂INV

when computing the inverse model:

� � I��̂INV�J �1��̂INV� ẍ*.

Finally, we can invert Equation 9 to determine the fingertip acceleration
that results from a given joint torque command:

ẍ � J�� �I�1�� ��.

Combining the two previous equations, we arrive at an expression for the
distortion of the planned fingertip acceleration:

ẍ � J�� �I�1�� �I��̂INV�J �1��̂INV� ẍ*. (10)

The resulting acceleration distortion matrix is given by Dacc(�, �̂INV) �
J(� )I �1(� )I(

�̂INV)J �1(�̂INV), where I(� ) is the inertia matrix of the arm. The
desired acceleration ( ẍ*) will be achieved only if the arm position esti-
mate �̂INV is correct. Note that Equations 8 –10 represent only the instan-
taneous, initial dynamics of a rigid body model of the arm. Our intention
in using this simplified model is only to show that our results are robust
to a consideration of the arm’s inertia and are therefore not dependent on
the purely kinematic analysis performed with the velocity command
model. To fit the torque command model to the data, we used previously
published estimations of the inertia matrix I(� ) (Sabes and Jordan,
1997).

Generating quantitative model predictions. To generate quantitative
model predictions for comparison with our data, the model target loca-
tions ( x*

d) were set to the locations of the visual targets, and the arm
position variables ( x and �) were set to the measured premovement
values. Because it is not possible to measure x̂prop and x̂vis directly, we
assumed that vision and proprioception were unbiased, i.e., that x̂prop �
x and that x̂vis corresponded to the location of the visual feedback spot.
We will consider the possible consequences of sensory biases in Results
and Appendix.

To illustrate the errors predicted by the velocity command model, we
used the model to simulate the effects of the shifts used in the actual
experiment (see Fig. 4). In these simulations, x̂prop and x were set to the
location of the center start point, x̂vis was placed 6 cm to the left or right
of x, and the �d terms were set to zero. The mean arm length across
subjects was used, and various values of �MV and �INV were chosen to
demonstrate the influence of these mixing parameters on the predicted
errors.

Figure 3. Two models of feedforward motor planning. Arm position estimates x̂MV and x̂INV are computed by combining visual
and proprioceptive signals. A movement vector describing the desired direction of the initial velocity (ẋ*) or acceleration (ẍ*) of the
hand is computed by subtracting x̂MV from the target location x*. An inverse model transforms this desired extrinsic vector into an
intrinsic motor command specifying joint angle velocities (�̇) or torques (�), depending on the model being implemented. This
transformation makes use of a second position estimate, x̂INV. Finally, the motor command is executed, determining the initial
hand trajectory. Note that the loop through the “Vision” and “Proprioception” boxes does not imply feedback control; in these
models, the position estimates are only used to plan the plan the initial, feedforward component of a movement.
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Fitting model predictions to the data. For each subject and model, the
values of �MV and �INV were simultaneously fit to a single dataset con-
sisting of all of the Center-Zero, Center-Right, and Center-Left trials for
each subject (96 trials total). The weighting parameters �MV and �INV

were fit to minimize the squared error between the model predictions
and the measured initial movement directions using a general purpose,
nonlinear regression algorithm (nlinfit in MATLAB, The Mathworks
Inc., Natick, MA). Note that only the directions and not the magnitudes
of the initial velocities (velocity command model) or accelerations
(torque command model) were compared with the model predictions.
Because the parameter space was only two-dimensional, we were able to
plot the error surface over a reasonable range of parameter values. These
plots were smooth, and no local minima were observed (data not shown),
confirming our observation that the fit values did not depend on the
initial conditions used in the optimization.

Hypothesis testing and confidence limits. To test the hypothesis that a
given position estimate relies on signals from a certain modality, we used
permutation tests (Good, 2000) against the null hypothesis that the esti-
mate relies exclusively on the other modality. First consider a test for
whether x̂MV makes use of visual information. The null hypothesis is
H0:�MV � 0, i.e., that only proprioception is used. Rearrangement of
Equation 1 yields:

x̂MV � x̂prop � �MV� x̂vis � x̂prop�. (1
)

The null hypothesis states that x̂MV is independent of ( x̂vis � x̂prop) in
Equation 1
. By substituting Equation 1
 for Equation 1 in the models
and permuting the trials from which this difference is taken, we broke
any existing dependence of x̂MV on x̂vis, thereby constructing synthetic
datasets that obeyed H0. By creating 1000 such datasets and fitting �MV

to each of them, we created a distribution of synthetic �MV under H0 ,
which was typically centered around �MV � 0. We rejected H0 if the �MV

fit to the true (unpermuted) dataset was greater than the 95th percentile
of the synthetic distribution. We tested the null hypothesis H0:�INV � 0
in the same fashion.

Next, we tested whether x̂MV makes use of proprioceptive informa-
tion. In this case the null hypothesis is H0:�MV � 1, i.e., that only vision
is used. A different rearrangement of Equation 1 yields:

x̂MV � x̂vis � �1 � �MV�� x̂prop � x̂vis�. (1�)

If we define �MV � (1 � �MV ), then the null hypothesis can be written
H0:�MV � 0. By substituting Equation 1� for Equation 1 in the models
and permuting the trials from which the difference ( x̂prop � x̂vis) is
taken, we broke any existing dependence of x̂MV on x̂prop, thereby con-
structing synthetic datasets that obeyed H0. Using the permutation
methods described in the previous paragraph, we then tested whether
�MV from the unpermuted dataset was greater than the 95th percentile of
the synthetic distribution of �MV. We tested the null hypothesis H0:
�INV � 1 in the same fashion.

Finally, we tested whether there was a difference in the relative weight-
ing of vision and proprioception between the two position estimates. To
accomplish this, we performed a permutation test comparing each model
with a simplified version of itself in which only a single weighting of
vision and proprioception is used: H0:�MV � �INV and x̂MV � x̂INV.
This test was implemented by replacing �MV and �INV with a common
part �comm and a difference �diff:

�comm � �MV

�diff � �INV � �MV.

Applying these definitions to Equations 1 and 2, we obtain the following:

x̂MV � x̂prop � �comm� x̂vis � x̂prop�, (1�)

x̂INV � x̂prop � �comm� x̂vis � x̂prop� � �diff� x̂vis � x̂prop�. (2�)

Under H0 , there is no difference between the two original weighting
parameters, so �diff � 0. This means that in Equation 2� there would be
no dependence on ( x̂vis � x̂prop) beyond that accounted for in the �comm

term. Because of normal statistical variation, however, inclusion of �diff

in the model would still improve the fit. We therefore compared the
best-fit value of �diff from the real dataset with values obtained from 1000
synthetic datasets in which we permuted the trials from which ( x̂vis �
x̂prop) was taken for the �diff term in Equation 2�. For the �comm terms,
the true values of ( x̂vis � x̂prop) were used. If the absolute value of the
�diff fit to the true data was greater than the 95th percentile obtained from
the synthetic datasets, we inferred that the �diff term reflects a real differ-
ence between �MV and �INV , and we rejected H0. Additionally, we per-
formed a more standard F test of the “extra sums of squares” obtained by
including the second mixing parameter (�diff ) in the model (Draper and
Smith, 1998).

To put confidence limits on the fit values of �MV and �INV , we used a
bootstrapping technique (Efron and Tibshirani, 1993). For each subject,
we created 1000 datasets in which the data from every trial were re-
sampled (with replacement) from one of the four trials of the same type
and with the same target. The parameters �MV and �INV were then fit to
each resampled dataset. The resulting distribution was used to find the
confidence ellipses for the fit parameter vectors [�MV , �INV] for that
subject.

Results
Errors in initial reach direction
The velocity and torque command models predict the errors in
initial movement direction for given values of the weighting pa-
rameters �MV and �INV. Figure 4 shows the predictions made by
the velocity command model for four sets of parameter values.
Similar error patterns are predicted by the torque command
model.

Figure 5 shows a typical subject’s reach trajectories for trials
beginning at the center start point with a leftward visual shift (A),
no shift (B), and a rightward shift (C). The shift-induced changes
in movement direction were opposite in sign for the two visual
shifts. Initial velocity directions for each of these movements are
shown in Figure 5D. As was typical, this subject displayed direc-
tional biases in the unshifted condition. The �d (Eq. 3, Materials
and Methods) was set to the mean of these biases for each direc-
tion (Fig. 5D, dotted line). Figure 5E shows the velocity com-

Figure 4. Shift-induced errors in initial reach direction predicted by the velocity command
model with various values of �MV and �INV. Each plot shows the predicted errors in initial
velocity direction as a function of target direction. Left column, �MV � 0; right column, �MV �
0.7; top row, �INV � 0; bottom row, �INV � 0.7. Black lines, Leftward shift; gray lines, right-
ward shift. Positive values on the ordinate correspond to CCW errors. Note that B shows the
effects of MV error alone, C shows the effects of INV error alone, and D shows their combined
effects when both x̂MV and x̂INV are shifted.
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mand model fit to this subject’s shift-induced reach errors, which
were computed by subtracting the appropriate �d from the
Center-Left and Center-Right initial reach directions. The model
captures the main features of the observed error pattern (R 2 �
0.73). The fit values of the weighting parameters were �MV �
0.97 and �INV � 0.34. This suggests that when planning a move-
ment vector this subject relied almost entirely on vision to esti-
mate the position of the hand. In contrast, when computing how
this vector should be transformed into a motor command, the
subject used a mixed estimate that was 34% visual and 66% pro-
prioceptive. Consistent with these fit values, the data and model
fit seen in Figure 5E show an error pattern intermediate between
those shown in Figure 4, B and D.

Initial velocity data averaged across all subjects are shown in
Figure 6. Baseline directional biases (A, C, dotted lines) varied
from subject to subject but were always within 20° of the target
direction (mean  SE, 7.3°  2.0). All but one subject showed
significant variation in the values of the baseline bias across target
directions (ANOVA, p � 0.05). The shift-induced errors in initial
velocity direction are shown in Figure 6B. To highlight the effects
of INV error, the mean errors across targets for the two shifts are
shown as dashed lines. The separation between these means re-
flects the rotational (CW–CCW) shifts typical of INV error (Fig.
4C,D).

We examined the initial directions of movements made from
the left and right start points in the absence of visual shifts to test
whether the shift-induced errors were caused simply by changes
in the visually perceived start point rather than misestimation of
arm position. Figure 6, C and D, shows that this is not the case.
The bimodal pattern reflecting the MV error is absent, and these
control data do not show the pattern of CW–CCW shifts seen in
the shifted trials (Fig. 6B,D, compare the dashed lines).

The initial direction data presented in Figures 5 and 6 were
sampled from the point in the reach trajectory at which the tan-
gential velocity first exceeded 40% of its peak value (see Materials
and Methods). This landmark occurred 125  24 msec after

reach onset (mean  average within-subject SD) and nearly al-
ways fell within the first centimeter of the reach. Because feedback
signals are able to influence reach trajectories starting at �150
msec (Prablanc and Martin, 1992; Paillard, 1996), it is possible
that on some trials the velocity and acceleration at the time of the
measurement were influenced by sensory feedback of the earliest
portions of the reach. This might be a cause for concern because
our models are strictly feedforward. However, using an earlier
landmark (the point at which tangential velocity exceeds 20% of
peak, which falls 68  15 msec into the reach) yielded nearly
identical average values of initial direction and produced model
fits that were not significantly different from those obtained using
the 40% criterion (data not shown). Because the tangential veloc-
ity was very small at the 20% landmark, however, measurements
of velocity direction taken at this landmark were significantly
more noisy than those taken at the 40% landmark. For this rea-
son, we elected to use the 40% criterion in all of our analyses.

Weighting parameters �MV and �INV

The errors in initial direction were used to fit both the velocity
command model and the torque command model. The fit values
of �MV and �INV for all subjects are shown in Figure 7. The
average values of [�MV , �INV] across subjects were [0.87, 0.28] for
the velocity command model and [0.82, 0.33] for the torque com-
mand model. The values of �MV indicate that the position esti-
mate used for movement vector planning relied predominately
on vision. For every subject and both models, �MV was �0.5, and
in every case we could reject the null hypothesis that x̂MV relied
solely on proprioception (H0:�MV � 0). The values of �INV sug-
gest that the position estimate used for converting a movement
vector into a motor command relied more on proprioception. In

Figure 5. Data and velocity-command model fit from subject HA. Movement paths from all
Center-Left ( A), Center-Zero ( B), and Center-Right ( C) trials. D, Initial velocity direction (with
respect to target direction) as a function of target direction for Center-Left (F, individual trials;
solid black line, mean), Center-Zero (■ , dotted line), and Center-Right ( , gray line) trials. E,
Shift-induced error as function of target direction. Dashed lines represent the errors predicted
by the best-fit velocity-command model (�MV � 0.97, �INV � 0.34). Other symbols as in D.

Figure 6. Initial velocity data averaged across all subjects. A, Initial velocity direction (with
respect to target direction) for Center-Left (solid black line), Center-Zero (dotted line), and
Center-Right (gray line) trials. B, Shift-induced errors in initial velocity direction (line colors as in
A). C, Initial velocity direction (with respect to target direction) for Left-Zero (solid black line),
Center-Zero (dotted line), and Right-Zero (gray line) trials. D, Data from C after subtraction of
the mean Center-Zero directions. Line colors as in C. Target directions in C and D are relative to
the center start point for ease of comparison. Error bars in all plots are 1 SE. Dashed lines in B
and D indicate means for a given dataset.
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all but one case, the fit values of �INV were �0.5 (the exception
was subject HA; torque command model �INV � 0.51), and in
every case the null hypothesis that x̂INV relied solely on vision
(H0:�INV � 1) was rejected. Despite these strong biases toward
vision and proprioception, however, both position estimates ap-
pear to rely on a mixture of sensory inputs: in 7 of 14 cases we
could reject the null hypothesis that x̂MV was purely visual (H0:
�MV � 1), and in 9 of 14 cases we could reject the null hypothesis
that x̂INV was purely proprioceptive (H0:�INV � 0).

The difference between the fit values of the two weighting
parameters suggests that the two position estimates x̂MV and x̂INV

are indeed distinct quantities. We examined this hypothesis by
testing whether the fit values of �MV and �INV differed signifi-

cantly from each other (see Materials and Methods). In 12 of 14
cases, the permutation test allowed us to reject the null hypothesis
that the two parameters were equal (the exceptions were subjects
DO and HA; torque command model). These results were con-
firmed by an F test ( p � 0.05), which agreed with the permuta-
tion test in all but a single case (subject CA; torque command
model). In the majority of cases, therefore, the two position esti-
mates relied on different combinations of sensory input, reflect-
ing a significant difference between multisensory integration at
the two stages of reach planning proposed by our models.

Both the velocity command and torque command models fit
the observed data well, and neither performed consistently better
across subjects (R 2 values ranged from 0.63 to 0.80 for the veloc-
ity command model and from 0.45 to 0.80 for the torque com-
mand model). This similarity suggests that the choice of con-
trolled variable (joint velocities or joint torques) in the model is
not critical and that our results follow from the assumption of a
two-stage planning process in which a desired extrinsic move-
ment vector is computed and then converted into an intrinsic
motor command. Additionally, our assumption that visual and
proprioceptive signals are additively combined in Cartesian space
(Eqs. 1, 2) did not influence our conclusions. We found nearly
identical values of �MV and �INV (all absolute differences
�0.003) when we refit the data with an alternate model in which
visual and proprioceptive cues were combined in joint angle co-
ordinates, implemented by substituting a �̂ for each x̂ in Equa-
tions 1 and 2.

In our models, the position estimates x̂MV and x̂INV are
weighted sums of x̂vis and x̂prop (Eqs. 1, 2). In other words, we
have assumed that each combined position estimate lies on the
line that connects the two unimodal estimates and that the dis-
tance along that line is determined by the parameter �MV or �INV.
However, van Beers et al. (1999) have argued that because indi-
vidual sensory modalities are more or less reliable along different
spatial axes, a simple scalar weighting of two unimodal estimates
may not produce the statistically optimal combination of these
signals. These authors supported their argument by showing that
in some conditions the integrated estimate of arm position lies off
the straight line connecting the visual and proprioceptive esti-
mates. Such a finding suggests that x̂MV and x̂INV might vary
across the two-dimensional horizontal plane and that a
weighted-sum model might be insufficient. To address this issue,
we fit our data with a second alternate model in which x̂MV and
x̂INV were free to vary across the horizontal plane. Despite this
freedom, the best-fit x̂MV and x̂INV still lay near the line connect-
ing the unimodal estimates, and there was no consistent compo-
nent perpendicular to that line (data not shown). Furthermore,
the component along the line agreed with the fits shown in Figure
7. These results validate the original weighted-sum model of
Equations 1 and 2 for our data. Note, however, that these findings
do not necessarily contradict the model of van Beers et al. (1999),
because our study was conducted in a different part of the work-
space, and workspace location has been shown to influence the
orientations of the unimodal covariance ellipses (van Beers et al.,
1998).

To fit our models to the data, we have also assumed that the
visual and proprioceptive position estimates are unbiased. The
analysis described in the preceding paragraph suggests that if any
biases exist, they lie principally along the axis parallel to the feed-
back shift. In fact, such biases could arise for two different rea-
sons. First, the unimodal estimates may be inherently biased, so
that x̂vis and x̂prop might differ from the locations of the feedback
spot and the fingertip, respectively. A second source of bias could

Figure 7. Best-fit values of �MV and �INV for all subjects and both models. Each symbol is divided
intoquadrantsthatarefilledoremptydependingontheresultsofthespecifiedhypothesistests( p�
0.05; see inset). Ellipses represent 1 SE (bootstrap analysis; see Materials and Methods). Two-letter
labels identify individual subjects. The dashed line represents �INV ��MV.
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arise in the internal transformations of the visual and proprio-
ceptive signals required at each planning stage. For example,
comparing x̂prop with the target location might require comput-
ing the Cartesian fingertip location from the proprioceptive sig-
nal, whereas evaluating the inverse model might require a joint-
based representation. If these transformations were biased, the
true value of x̂prop may not be the same in Equations 1 and 2. In
the Appendix, we show that neither of these types of bias would
significantly affect the fit values of �MV and �INV.

Position-dependent changes in the distortion matrix
The empirical measurements of the direction of the initial veloc-
ity and acceleration had to be taken after the onset of the reach, at
which point the fingertip had moved a small distance from its
initial position. On the other hand, when fitting the models to the
data, the model distortion matrices were evaluated at the initial
position of the fingertip. This simplification would have a negli-
gible effect if the distortion matrix were nearly constant over the
initial movement segment. However, if the distortion matrix var-
ied rapidly across the workspace, there would be a marked change
in INV error between the initial arm position and the location at
which the velocity and acceleration measurements were made.
We assessed whether the assumption of a constant distortion
matrix significantly affected our results by determining how the
predicted INV error in the velocity command model varies over
the initial segment of the trajectory (Fig. 8). For a given arm
position, the INV error (that is, the error introduced via the
distortion matrix) depends on three variables: the true arm posi-
tion, the error in the estimated arm position, and the desired
movement direction. For this analysis, we assumed that the arm
position estimate was equal to the location of the visual feedback
(�INV � 1). This was the conservative choice, because it maxi-
mizes the INV error. We also averaged the predicted error over
the eight target directions, because the INV error varies little over
the desired movement direction (Fig. 4C). We then calculated the
predicted INV error for each shift direction as a function of the
arm’s position for a representative subject and made a contour
plot of the results (Fig. 8, gray lines). Superimposed on these plots
are the initial segments of the same subject’s reach trajectories,
ending at the point where the velocity and acceleration were mea-
sured. Note that the predicted INV error typically varied �0.5°

over the initial movement segment. In contrast, for this subject,
the direction of the initial velocity had a within-condition SD of
5.73°. Therefore, any error in model prediction stemming from
the assumption of a stationary distortion matrix would be lost in
the inherent movement variability.

Magnitude of initial velocity
In our models, �MV and �INV were fit using only the directional
component of the error in initial reach velocity or acceleration.
Here, we show that the shifts in visual feedback also lead to errors
in the magnitude of the initial velocity and that these errors are
consistent with the predictions of the velocity command model.
The results for initial acceleration and the torque command
model are qualitatively the same.

First consider that both the direction and magnitude of the
INV velocity error are determined by the distortion matrix,
Dvel(�, �̂INV ), as shown in Equation 5. For the starting location
and visual shift directions used in this experiment, the distortion
matrices are mostly rotational, i.e., the desired velocity undergoes
a rotation but very little scaling. We determined this by evaluating
the velocity distortion matrix at the starting location for each
subject for both the left and right visual shifts using the best-fit
�INV. We then found the velocity direction that yielded the great-
est absolute percentage change in the magnitude of the velocity.
Across subjects and shift directions, the average maximum scal-
ing was only 0.75  0.44% (mean  1 SD) of the original length.
The model therefore predicts that in our experiment the INV
error should have a negligible effect on the magnitude of the
velocity.

In contrast, MV error alters both the direction and length of
the planned movement vector, and we would expect these vari-
ables to influence the magnitude of the planned velocity. This
effect can be understood by considering the movements made
from the left and right start points in the absence of a visual shift.
For each subject and target, the peak velocities for reaches in the
Left-Zero and Right-Zero conditions were normalized to the av-
erage peak velocity for the same target in the Center-Zero condi-
tion. These values are plotted as a function of target direction in
Figure 9 (filled symbols). This is the pattern that would be ex-
pected in the Center-Left and Center-Right conditions if the es-
timated arm positions were located at the left and right starting
locations, respectively (i.e., if �MV � 1). If there were no error in
the position estimate (�MV � 0), the average peak velocity would

Figure 8. Initial reach segments and predicted INV error. The initial portion of reaches (un-
filtered empirical data) are shown for all trials from subject HA in the Center-Left ( A) and
Center-Right ( B) conditions. Black lines represent the path from movement onset to the point at
which the tangential velocity first exceeds 40% of the peak velocity (black dots). The large circle
(dashed line) represents the center start point window (radius 1 cm). Gray contour lines show
the magnitude of the predicted INV errors (velocity command model) caused by the distortion
matrix Dvel(�, �̂INV ) as a function of arm position, assuming �INV � 1. Positive contour values
correspond to CCW errors; negative values signify CW errors.

Figure 9. Effects of visual shifts on reach velocity magnitude. Each line plots the mean peak
tangential velocity (across subjects) for each target normalized to the mean peak tangential
velocity in Center-Zero trials. Target directions are defined as the direction from the fingertip
start position to the visual target. A, Left-Zero (solid line) and Center-Left (dotted line) trials. B,
Right-Zero (solid line) and Center-Right (dotted line) trials. Error bars are 1 SE.
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be the same as in the Center-Zero condition, and so the normal-
ized values would all be near unity. As can be seen from the open
symbols in Figure 9, the dependence of peak velocity on target
direction in the Center-Left and Center-Right trials has the same
shape as that seen in the Left-Zero and Right-Zero conditions,
but the effect is smaller in size. Qualitatively, this is the pattern of
MV errors that the velocity command model would predict for
the best-fit values of �MV , which are less than 1.

Discussion
By dissociating visual and proprioceptive feedback, we induced
errors in the arm position estimates used at two different stages of
reach planning. We then modeled the errors in initial movement
direction as a function of the misestimation at each stage. Com-
parison of our models with the experimental data allowed us to
quantify these position errors and thus compute the extent to
which each planning stage relies on visual feedback. We found
that the arm position estimate used for vector planning relies
mostly on visual feedback, whereas the estimate used to convert
the desired movement vector into a motor command relies more
on proprioceptive signals.

This finding agrees with the results of a recent study by Sain-
burg and colleagues (2003) that employed a reaching task very
similar to our own. In their experiment, the location of the initial
visual feedback was constant across trials whereas the actual ini-
tial location of the fingertip was varied. The authors found that
these manipulations did not affect reach direction, suggesting
that subjects relied heavily on the visual position signal (which
did not change location) when planning movement vectors. Fur-
thermore, an inverse dynamic analysis revealed that subjects gen-
erated intrinsic motor commands that took into account the true
position of the arm, suggesting that subjects relied mostly on
proprioceptive signals when generating motor commands. Al-
though the relative weightings of vision and proprioception were
not quantified, these results are in agreement with our own.

Psychophysical studies of the tradeoff between vision and pro-
prioception in arm position estimation have suggested that each
modality is weighted according to its statistical reliability
(Howard and Templeton, 1966; Welch and Warren, 1980; van
Beers et al., 1999) or depending on the focus of the subject’s
attention (Warren and Schmitt, 1978; Welch and Warren, 1980).
However, although both of these factors may influence multisen-
sory integration, these models provide only a single criterion for
weighting the unimodal signals. Such models cannot account for
our finding that vision and proprioception are weighted differ-
ently at different stages of motor planning.

Our results instead suggest that multisensory integration de-
pends on the computations in which the integrated estimates are
used. To compute the movement vector, for example, the posi-
tion of the hand must be compared with that of the target in a
common coordinate frame. Transforming signals from one co-
ordinate frame to another presumably incurs errors, either from
imperfections in the mapping between them (bias) or because of
noise introduced in the additional computation (variance). The
effects of these errors on movement control can be reduced by
giving less weight to transformed signals. In our experiment,
where targets are presented visually, the increased reliance on
visual feedback when planning movement vectors therefore
would have been advantageous.

A similar argument can explain the predominance of propri-
oception when transforming the movement vector into a motor
command. Computing the inverse model of the arm requires
knowledge of the arm’s posture. Although our experimental con-

straints created a one-to-one relationship between joint angles
and fingertip location, during more natural, unconstrained
movements joint angles cannot be uniquely inferred from visual
feedback specifying only the location of the fingertip. Addition-
ally, errors can arise from biases in the coordinate transformation
from extrinsic to intrinsic coordinates (Soechting and Flanders,
1989) and from variance introduced during the computation, as
in the first stage of planning. Because of these factors, the reduced
reliance on vision at this second planning stage would have been
advantageous.

This interpretation is compatible with a modified minimum-
variance principle that takes into account the errors introduced
by coordinate transformations. The computations performed at
each stage require information about different aspects of the po-
sition of the arm: when reaching to a visual target, movement
vector planning requires only the extrinsic location of the finger-
tip, whereas computing the inverse model of the arm requires
knowing the intrinsic, joint-based posture of the arm. The values
of �MV and �INV reflect this difference, because the nervous sys-
tem relies more heavily on the signals that contain the informa-
tion necessary to perform the relevant computation and do not
need to be transformed.

These conclusions are made primarily on the basis of the anal-
yses of initial movement direction. However, numerous authors
have argued that the planning of reach direction and extent are
independent processes (Gordon et al., 1994a; Messier and
Kalaska, 1997). If this hypothesis were true, the rules for integrat-
ing vision and proprioception might be different for the planning
of movement extent and direction. Indeed, such a difference was
found in the recent study by Sainburg and colleagues (2003). As
noted above, they found that the direction of movements to a
given target depended on the location of the visual feedback and
not on the actual position of the arm. In contrast, planning of
movement extent appeared to depend on the arm’s true position
to a greater or lesser degree, depending on the position of the arm
relative to the target. Our results do not rule out the possibility
that a separate estimate or set of estimates is used to compute
movement extent. Nonetheless, we have shown in Figure 9 that
the peak velocity relies on a position estimate located between the
positions specified by vision and proprioception, consistent with
the results of our analyses of movement direction. Although these
data suggest that the planning of reach amplitude and direction
might use the same position estimates, this hypothesis would
have to be confirmed by a study that better controlled for the
various factors affecting reach amplitude.

Our quantification of sensory integration relies on model-
based analyses of the empirical data. We therefore must address
how sensitive our conclusions are to the details of the model.
First, the velocity command and torque command models pro-
duce similar estimates of multisensory integration at each plan-
ning stage (Fig. 7). This shows that our results do not depend
critically on the assumption that the nervous system specifies
kinematic or dynamic motor commands. Second, the alternate
model in which the two signals are combined in intrinsic space
produces the same fit values, showing that our results are not
sensitive to the assumption that unimodal signals are additively
combined in extrinsic space. Third, the alternate model in which
�MV and �INV were allowed to vary across the horizontal plane
produces results similar to those of the one-dimensional models,
demonstrating that our results do not depend on the assumption
that vision and proprioception are weighted by a scalar term.

Despite these invariances, however, all of our models make the
basic assumption that motor planning involves two stages, each
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using a separate estimate of arm position. This need not be the
case, because in theory the whole planning process could be done
in a single computational stage that computes an intrinsic motor
command directly from the target location and a single estimate
of the initial arm position (Uno et al., 1989). However, even if
motor planning were performed in a single stage, the two types of
error described in this paper would still arise. A single-stage plan-
ner receiving unshifted feedback from the arm would determine
the motor command appropriate to move the hand from the
initial position to the target. The resulting movement constitutes
the baseline trajectory. If the arm position estimate is shifted, the
motor command will be the one appropriate to move the arm
from the incorrect estimated location to the target. This com-
mand would achieve the target location if the arm were actually at
the estimated position, and we will refer to that hypothetical
trajectory as the planned trajectory. The difference between the
planned and baseline trajectories is essentially the MV error de-
scribed above. Because the arm is not at the estimated location,
however, when the motor command is executed, the resulting
reach direction will differ from that of the planned trajectory.
This difference is the INV error. If such a single-stage planner
were in fact in operation, the MV and INV errors would be at-
tributable to a single shifted estimate of arm position, and so we
would expect that our analyses would find equal values for �MV

and �INV. The fact that we found consistent differences between
�MV and �INV suggests that planning indeed involves two sepa-
rate stages.

Many cortical areas that encode pending movements appear
to integrate information from multiple sensory modalities
(Colby and Duhamel, 1996; Andersen et al., 1997; Wise et al.,
1997), and single cortical neurons encoding arm position show
varying weightings of visual and proprioceptive feedback from
the arm (Graziano, 1999; Graziano et al., 2000). Given these find-
ings, it is tempting to speculate that the two planning stages pro-
posed in this paper might be computed in different cortical areas.
Two lines of evidence support the idea that the parietal cortex is
involved in the computation of extrinsic movement vectors. Re-
cordings from the intraparietal sulcus have revealed coding of
reach direction in retinocentric coordinates (Buneo et al., 2002),
suggesting that this area encodes movement vectors but not in-
trinsic motor commands. Additionally, disruption of neural ac-
tivity in the posterior parietal cortex by transcranial magnetic
stimulation prevents subjects from making corrective move-
ments during reaching (Desmurget et al., 1999), providing fur-
ther evidence that this region might help compute the discrep-
ancy between hand position and target location. Studies
examining the motor and premotor cortices, on the other hand,
suggest a role for these areas in transforming movement vectors
into motor commands. Neural activity in these areas during both
single- and multi-jointed movements encodes the intrinsic de-
tails of the movement in addition to the extrinsic movement
vector (Scott and Kalaska, 1997; Scott et al., 1997; Kakei et al.,
1999). However, these findings do not represent a complete dis-
sociation between parietal and frontal cortices. For example,
Scott et al. (1997) showed that activity in parietal area 5 is also
modulated by intrinsic factors. Future studies that use manipu-
lations of sensory feedback to selectively alter the extrinsic move-
ment vector and intrinsic motor commands will be needed to
clarify the neural bases of these two computations.

Appendix
As described in Materials and Methods, in determining the
weighting parameters �MV and �INV we assumed that the unimo-

dal position estimates x̂vis and x̂prop were unbiased. In this Ap-
pendix, we consider the effects of biases in the unimodal position
signals on the fit values for the �MV and �INV. We will show that
sensory biases along the direction of the visual shift (Fig. 1, 0°)
would not bias our fit values for �MV and �INV.

Given values for the unimodal positions estimates, an inte-
grated position estimate x̂ (which could be either x̂MV or x̂INV)
can be computed from the appropriate weighting parameter �
(�MV or �INV ), and vice versa:

x̂ � x̂prop � �� x̂vis � x̂prop�, (11)

� �
x̂ � x̂prop

x̂vis � x̂prop
. (12)

Note that in contrast to Materials and Methods, in Equation 12
and the rest of this Appendix we treat all position and bias vari-
ables as scalar values along the 0° axis. Because we do not have
direct access to the internal unimodal estimates x̂vis and x̂prop, we
previously assumed that these estimates were unbiased, i.e., that
x̂prop � x, the true location of the arm, and that x̂vis was offset
from that location by the visual shift. Here, we consider the pos-
sibility that the unimodal estimates are biased by amounts bprop

and bvis, respectively:

x̂prop � x � bprop

x̂vis � x 	 � � bvis,

where the visual shift is �� in Center-Left trials and �� in
Center-Right trials.

We first explore how these biases would affect our estimates of
� when fit separately to trials with left and right visual shifts.
Consider dividing our data into two sets, one containing Center-
Left and Center-Zero trials and the other containing Center-
Right and Center-Zero trials. The integrated position estimates
and the best-fit weighting parameters pertaining to the two data-
sets will be identified by the subscripts L and R. Given values
for the unimodal biases, the integrated position estimates can
be determined from the true weighting parameter � and Equa-
tion 11:

x̂L � x � bprop � ���� � bvis � bprop�, (13)

x̂R � x � bprop � ���� � bvis � bprop�. (14)

If �L were fit with the assumption that bprop � bvis � 0, we would
still be able to obtain the true value for x̂L by evaluating Equation
13 with bprop � bvis � 0 and the fit value of �L. Counterintuitively,
this means that we would be able to recover the true value of x̂L

even from a biased fit value for �L. Next, we can determine the
bias in our fit value of �L by inserting the true value of x̂L (Eq. 13)
into a version of Equation 12 that assumes, as do our models, that
x̂vis and x̂prop are unbiased:

�L �
x̂L � x

�x � �� � x

� � � ��bvis � �1 � ��bprop	/�. (15)

Similarly, from the Center-Right trials and Equations 12 and 14
we would find:

�R � � � ��bvis � �1 � ��bprop	/�. (16)

Equations 15 and 16 suggest that the presence of biases in the
internal unimodal position estimates would cause errors in our
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fit values of �MV and �INV. However, a comparison of these two
equations shows that the effects on the Center-Left and Center-
Right trials are in the opposite direction, as long as the bias terms
do not depend on the trial condition (a reasonable assumption
given that the trials are interleaved and that the proprioceptive
location, at least, is constant across trials). Therefore, in the com-
plete analysis in which �MV and �INV are fit to all trials, we expect
that any bias effects would cancel out.

This observation can be made more rigorous by averaging
Equations 15 and 16, giving:

��L � �R�/2 � �. (17)

Equation 17 tells us that the average of the parameters fit to the R
and L datasets should be equal to the true weighting parameters,
regardless of potential biases in the unimodal position signals.
For each subject and each model, we fit �MV and �INV to the R
and L datasets, and then compared (�L � �R )/2 with the fit values
of � shown in Figure 7. The mean  SD difference is 0.0067 
0.017, with a maximum absolute difference of 0.068. These re-
sults show that our assumption of unbiased unimodal signals had
a negligible effect on our results. Additionally, note that because
these arguments can be applied separately to the parameters �MV

and �INV , Equation 17 holds for both parameters even if the
biases in a unimodal position estimate are different between
Equations 1 and 2. For this reason, biases in the transformations
between coordinate frames (see Results) cannot be responsible
for our findings.
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