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Binary Spiking in Auditory Cortex

Michael R. DeWeese, Michael Wehr, and Anthony M.Zador
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724

Neurons are often assumed to operate in a highly unreliable manner: a neuron can signal the same stimulus with a variable number of
action potentials. However, much of the experimental evidence supporting this view was obtained in the visual cortex. We have, therefore,
assessed trial-to-trial variability in the auditory cortex of the rat. To ensure single-unit isolation, we used cell-attached recording.
Tone-evoked responses were usually transient, often consisting of, on average, only a single spike per stimulus. Surprisingly, the majority
of responses were not just transient, but were also binary, consisting of 0 or 1 action potentials, but not more, in response to each stimulus;
several dramatic examples consisted of exactly one spike on 100% of trials, with no trial-to-trial variability in spike count. The variability
of such binary responses differs from comparably transient responses recorded in visual cortical areas such as area MT, and represent the
lowest trial-to-trial variability mathematically possible for responses of a given firing rate. Qur study thus establishes for the first time
that transient responses in auditory cortex can be described as a binary process, rather than as a highly variable Poisson process. These
results demonstrate that cortical architecture can support a more precise control of spike number than was previously recognized, and

they suggest a re-evaluation of models of cortical processing that assume noisiness to be an inevitable feature of cortical codes.
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Introduction
Since the earliest single-unit cortical recordings (Hubel and Wie-
sel 1959), it has been generally accepted that the train of action
potentials elicited by repeated presentations of the same stimulus
is highly variable. This unreliability has contributed to the widely
held view that cortical spike trains are so noisy that only their
average activity can be used to encode stimuli and that the details
of spike count and timing must reflect noise. Conversely, cortical
variability is sometimes taken to reflect a fundamental limitation
on the fidelity of cortical computation. In this view, unreliability
is an unavoidable consequence of cortical architecture, and it can
be used to make inferences about the general principles of cortical
organization (Shadlen and Newsome 1994, 1998; Mazurek and
Shadlen, 2002). Variability thus appears to impose severe con-
straints on cortical representation and computation. Precisely
how cortical circuits overcome this noise limitation and perform
so well as computational devices has been the subject of much
controversy (Softky and Koch, 1993; Marsalek et al., 1997;
Shadlen and Newsome, 1998; Diesmann et al., 1999; Manwani
and Koch, 1999; Pouget et al., 2000; Kistler and Gerstner, 2002;
Mazurek and Shadlen, 2002), but the empirical observation that
cortical spike trains are variable has, until recently, gone widely
unquestioned (but see Gur et al., 1997; Gershon et al., 1998; Kara
et al., 2000).

Spike count variability is often quantified in terms of the
“Fano factor” (Buracas et al., 1998), defined as the ratio of the
variance to the mean spike count over trials. A perfectly repeat-
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able neural response has a Fano factor of zero, whereas a Poisson
process (e.g., the tics of a Geiger counter) has a Fano factor of one.
A Fano factor of order unity is therefore often interpreted as evidence
of a highly random underlying spike-generating process.

The variability of cortical responses has been well studied in
several areas of visual cortex in anesthetized cats and in both
anesthetized and awake primates. An almost universal finding is
that the Fano factor is greater than or approximately equal to one
(Heggelund and Albus, 1978; Dean, 1981; Tolhurst et al., 1983;
Buracas et al., 1998; Oram et al., 1999), although several excep-
tions to this rule have recently been reported (Gur et al., 1997;
Gershon et al., 1998; Kara et al., 2000). By contrast, the variability
of neurons in other noncortical sensory areas, including the ret-
ina (Berry et al., 1997) and the motion-sensitive neuron of the fly
(de Ruyter van Steveninck et al., 1997), can be substantially lower.

Is high trial-to-trial variability thus a general feature of corti-
cal circuitry? Surprisingly, cortical variability has only rarely been
studied outside of the visual system (Lee et al., 1998), so the
widespread belief that cortical spike trains are highly unreliable is
based mainly on experiments in visual cortex. The trial-to-trial
response variability of well isolated single units in the auditory
cortex has not previously been quantified.

Here we show that the majority of spiking responses generated
by neurons in the rat auditory cortex are binary, consisting of
either 0 or 1, but not more, action potentials in response to a
stimulus. Binary spiking represents the lowest variability (Fano
factor) possible for a given spike rate; for some responses, the
reliability of the responses we observe is perfect, i.e., the Fano
factor is zero. Moreover, we show binary spiking is not simply the
result of the transient nature of auditory cortical responses. Our
results demonstrate that cortical architecture can support a more
precise control of spike number than was previously recognized,
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and they suggest a re-evaluation of models of cortical processing
that assume noisiness to be an inevitable feature of cortical codes.

Materials and Methods

Surgery. Sprague Dawley rats (17-24 d) were anesthetized in strict accor-
dance with the National Institutes of Health guidelines, as approved by
the Cold Spring Harbor Laboratory Animal Care and Use Committee.
Recordings were performed under ketamine (60 mg/kg) and medetomi-
dine (0.50 mg/kg). After the animal was deeply anesthetized, it was placed
in a custom naso-orbital restraint that left the ears free and clear. Local
anesthetic was applied to the scalp, and a 1 X 2 mm craniotomy and
durotomy were performed above the auditory cortex. A cisternal drain
was performed before the craniotomy. Before the introduction of elec-
trodes, the cortex was covered with physiological buffer (in mm: NaCl,
127; Na,COs, 25; NaH,PO,, 1.25; KCl, 2.5; MgCl,, 1; and glucose, 25)
mixed with 1.5% agar. Rectal temperature was monitored and main-
tained at 37°C using a feedback-controlled blanket (Harvard Apparatus,
Holliston, MA). Breathing and response to noxious stimuli were moni-
tored throughout the experiment, and supplemental dosages of anes-
thetic were provided when required.

Electrophysiology. Multiunit recordings were obtained using 1 M)
tungsten electrodes (World Precision Instruments, Sarasota, FL) and a
Cyberamp 380 (Axon Instruments, Foster City, CA). Cell-attached re-
cordings were obtained using an Axopatch 200B (Axon Instruments)
and a data acquisition program written by Bernardo Sabatini in the Igor
programming language. For cell-attached recordings, pipettes were filled
with an internal solution consisting of (in mm): KCI, 10; KGluconate,
140; HEPES 10; MgCl, 2; CaCl, 0.05; Mg-ATP, 4; Na,-GTP, 0.4; Na,-
Phosphocreatine, 10; BAPTA 10; and biocytin, 1%, pH 7.25; diluted to
290 mOsm. Resistance to bath was 3—5 M) before seal formation.

One hundred and seventy five cell-attached recordings (from 16 ani-
mals) passed our criteria for inclusion in the analysis: recordings had to
be stable for at least 5 min; electrode capacitance had to be sufficiently
well compensated and seal resistance sufficiently high (range, 10-100
M) to allow unambiguous identification of every spike (see Fig. 2), and
at least one action potential had to be observed. Only stationary epochs
were analyzed.

Stimuli. All experiments were conducted in a double-walled sound
booth (Industrial Acoustics Company, Bronx, NY). Free-field stimuli
were presented using a System I (Tucker-Davis Technologies, Gaines-
ville, FL) running on a host Pentium III computer connected to an am-
plifier (Stax SRM 313), which drove a calibrated electrostatic speaker
(taken from the left side of a pair of Stax SR303 headphones). The stimuli
consisted of 25, 50, and 100 msec pure-tone pips of 32 different frequen-
cies (logarithmically spaced between 2 kHz and 46731 Hz) with 5 msec
cosine-squared windows applied to the onset and termination of each
pip. All 32 tones were repeatedly presented at 65 dB in a fixed pseudo-
random order at a rate of 2 tones/sec.

The natural stimulus depicted in Figure 5d is an 8 sec segment of a
vocalization of the common nightingale taken from an audio CD, sam-
pled at 44,100 Hz, called “The Diversity of Animal Sounds” available
from the Cornell Laboratory of Ornithology.

Response variability analysis. Because the Fano factor of the spike count
in response to repeated presentations of the same tone has the mean spike
count in the denominator, it is only defined for sets of responses that
include atleast one spike on at least one trial. Therefore, we only included
results from such tones in the variability analysis for any given neuron or
multiunit penetration site. For each response set, we chose our window
for counting spikes so that it contained the entire region of the peristimu-
lus time histogram (PSTH), including responses to all presentations of all
tones, that was greater than the spontaneous rate. For example, we used
a 45-msec-long window starting 8 msec after stimulus onset for the neu-
ron shown in Figure 1b,c. The mean window size across all 175 neurons
was 46 msec.

Group statistics analysis. We could not directly assess the degree to
which our data were consistent with binomial statistics without intro-
ducing a specific noise model to account for the occasional occurrence of
multispike responses. Rather than do this, we quantified the statistical
significance of the low variability of our data by comparing with the null
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Figure 1.  Single-unit responses were far less variable than the multiunit responses. a, Mul-
tiunit spike rasters from a conventional tungsten electrode recording showed high trial-to-trial
variability in response to 10 repetitions of the same 50 msec duration, 10 kHz pure tone stimulus
(stimulus envelope at bottom). Darker hash marks indicate spike times within the response
period, which were used in the variability analysis (see Materials and Methods). b, Spike rasters
from a cell-attached recording of single-unit responses to 25 repetitions of the same tone
consisted of exactly one well timed spike per trial, unlike the multiunit responses (a). ¢, The
same neuron as in b responds with lower probability to repeated presentations of a different
tone, but there are still no multispike responses.

hypothesis that the neurons obeyed Poisson statistics. The ability to as-
sess significance depended on two parameters: the sample size and the
firing probability. Intuitively, the dependence on firing probability arises
because at low firing rates most responses produce only trials with zero or
one spikes under both the Poisson and binary models; only when
firing probability is high do the two models make different predic-
tions, because in that case the Poisson model includes many trials
with two or even three spikes, whereas the binary model generates
only solitary spikes (see Fig. 4).

We recorded responses to 32 different 25 msec tones from each of 175
neurons, repeating each tone between five and 75 times (mean, 19 trials).
Thus, our initial ensemble consisted of 32 X 175 = 5600 response sets,
with between five and 75 samples in each set. Of these, 3055 response sets
contained at least one spike on at least one trial. For each response set, we
tested whether the observed variability was significantly lower than ex-
pected from the null hypothesis of a Poisson process.
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For each response set, we computed the cumulative distribution func-
tion (cdf) for the “Fano factor” (defined as the variance divided by the
mean spike count across all trials; this is sometimes called the “coefficient
of dispersion” in the statistics literature) for a sample drawn from a
Poisson process with the same number of trials and mean spike count as
the original data set. Because we were not able to obtain a useful, closed-
form, analytical expression for this cdf, we instead used the brute-force
approach of empirically computing the Poisson probability, and Fano
factor, for every possible response set consisting of between zero and
three spikes on any trial; for response sets with means greater than two
spikes per trial, we considered all response sets with up to five spikes per
trial. We then made an empirical, weighted histogram from this set of
Fano factors, in which the contribution from each response set was
weighted by its Poisson probability. We verified the accuracy of the cen-
tral region of each estimated pdf using a Monte Carlo procedure (100,000
simulations), and we analytically verified the accuracy of the tail near
zero, which was crucial for our analysis. We assigned a Fano factor of zero
to every response set consisting of all zeros.

We identified all response sets for which significance could be assessed
by calculating the smallest possible value that the Fano factor could have
taken given the observed sample mean, which corresponds to the set of
responses containing only ones and zeros and which has the same mean
response and total number of trials as the data. This was not possible for
cases in which the mean spike count was greater than one; for these cases
we set the minimum Fano factor to zero. If the cumulative probability of
this minimum Fano factor was found to be less than our significance
criterion p, then it was possible to assess the significance of the response
set. If the cumulative probability of the observed Fano factor was less
than p, the response set was considered significant.

An example of the procedure for determining statistical significance of
response sets. Suppose that, in response to 20 repeated presentations of
the same tone, we observe the following set of spike counts:
[1,1,0,0,1,1,1,0,1,0,2,0,1,0,0,1,0,1,1,0] (1), which includes only one mul-
tispike response (a doublet on trial 11). Response set (1) has a mean of
0.60 spikes per trial and a variance of ~0.36 (spikes per trial) %, resulting
in a Fano factor of ~0.60 spikes per trial.

To determine whether we can assess the statistical significance of the
low variability of this response set, we first construct the least variable
(i.e., most “binary”) set of responses we could have observed with the
same empirical mean: [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] (2). (For
convenience, we chose to place all the ones in the early trials, which will
not affect any of the calculations). This has a mean of 0.60 spikes per trial
and a variance of ~0.25 (spikes per trial)?, resulting in a Fano factor of
~0.42 spikes per trial. Thus, because of integer-counting statistics, this is
the lowest possible Fano factor we could have observed for the given
number of trials and the observed sample mean.

Next, we compute the probability distribution of the Fano factor un-
der the null hypothesis of a Poisson process with an event rate equal to the
observed mean (0.60 spikes per trial), and we find that the cumulative
probability that the Fano factor could have been equal to or less than the
minimum possible value (0.42 spikes per trial) is p = 0.0045, which
satisfies our significance criterion p < 0.01. Therefore, we can assess the
statistical significance of response set (1), and so it would have been
included in our analysis. However, the cumulative distribution for the
observed Fano factor (0.60 spikes per trial) is 0.058, which is >0.01, and
thus does not satisfy our criterion. Accordingly, despite the low occur-
rence of multispike responses (5% = 1/20), we would have concluded
that response set (1) is not binary because it is not statistically signifi-
cantly different from a Poisson process at the p < 0.01 level.

Results

We recorded responses of neurons in the auditory cortex of
ketamine-anesthetized rats to pure-tone pips of different fre-
quencies (Sally and Kelly, 1988; Kilgard and Merzenich, 1998).
Each pip was presented repeatedly, allowing us to assess the vari-
ability of the neural response to multiple presentations of each
stimulus.
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Figure2. Spikesrecorded in cell-attached mode were easily identified from the raw voltage
trace (top) by applying a high-pass filter (bottom) and thresholding. Spike times (dots) were
assigned to the peaks of suprathreshold segments. The stimulus consisted of a pseudorandom
sequence of 25 msec tones presented every 500 msec (stimulus envelope at bottom; see Mate-
rials and Methods). Note long time scale compared with most rasters in other figures.

Multiunit recordings

We first recorded multiunit activity with conventional low-
impedance tungsten electrodes (Fig. 1a). The number of spikes in
response to each pip fluctuated markedly from one trial to the
next, as though governed by a random mechanism such as that
generating the ticks of a Geiger counter. Such highly variable
responses are comparable to those recorded throughout the vi-
sual cortex (Tolhurst et al., 1983; Softky and Koch, 1993; Buracas
et al., 1998; Shadlen and Newsome, 1998; Stevens and Zador,
1998) and have contributed to the widely held view that cortical
spike trains are so noisy that only the average firing rate can be
used to encode stimuli.

Cell-attached single-unit recordings

Because we were recording the activity of an unknown number of
neurons, we could not be sure of the relationship between the
strong trial-to-trial fluctuations observed in the population and
the underlying variability of the single units. We therefore used
an alternative technique, cell-attached recording with a patch
pipette (Otmakhov et al., 1993; Friedrich and Laurent, 2001;
Margrie et al., 2002), to ensure single-unit isolation (Fig. 2). This
recording mode minimizes both of the main sources of error in
spike detection: failure to detect a spike in the unit under obser-
vation (false negatives) and contamination by spikes from nearby
neurons (false positives). Although single-unit isolation can also
be obtained using high-impedance tungsten electrodes, cell-
attached recording also differs from conventional extracellular
recording methods in its selection bias. With cell-attached re-
cording, neurons are selected solely on the basis of the experi-
menter’s ability to form a seal, rather than on the basis of neuro-
nal activity such as spontaneous activity or responsiveness to
particular stimuli, as in conventional methods.

Surprisingly, single-unit responses were far more orderly than
suggested by the multiunit recordings; responses typically con-
sisted of either 0 or 1 spikes per trial, and not more. In the most
dramatic examples, each presentation of the same tone pip elic-
ited exactly one spike (Fig. 1b). In most cases, however, some
presentations failed to elicit a spike (Fig. 1¢c). Thus, these single-
unit responses could be characterized as a noisy binary process:
“binary” because neurons produced either 0 or 1 spikes, and
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Figure 3.  Multiunit spiking activity was highly variable, but single units obeyed binomial

statistics. a, Response variability for the multiunit tungsten recording (triangles) was high for all
tones that evoked any response from the neurons being recorded. All points lie near or above
one (horizontal line), the value expected from a Poisson process. Single-unit responses recorded
in cell-attached mode were far less variable (circles; same neuron as in Fig. 16,c). All but one of
the 11 tones that elicited at least one spike never produced a multispike response in 25 trials, as
one would expect from a binary process (diagonal line). b, Spike probability tuning curve for the
same neuron as in Figures 1, b and ¢, and 3a fit to a Gaussian tuning curve.

“noisy” because some stimuli elicited single spikes on some trials,
but no spikes on others.

Eleven of the 32 tones presented to this neuron elicited at least
one spike on at least one trial (out of 27 repetitions). For these
eleven tones, we compared the mean spike count to the Fano
factor (the ratio of the variance to the mean of the distribution of
spike counts on individual trials). The Fano factor for any neuron
that displays binary spiking is the same as for a binomial process
with the same probability of spiking per trial, p, and is given by
variance/mean = [p (I — p)]/(p) = I — p, independent of the
number of trials. Thus, on a plot of p versus Fano factor, a collec-
tion of perfectly binary responses (i.e., trials consisting of no
multispike responses) falls along the diagonal (I — p) connecting
the top left and bottom right corners of the unit square (Fig. 3a).
For this neuron, 10 of the 11 tones elicited perfectly binary re-
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sponses and so fell exactly along the diagonal, whereas one point
deviated slightly from the diagonal because of a lone double-
spiked response.

By comparison, most of the multiunit responses fell far above
the diagonal on this plot (Fig. 3a). Indeed, all but one of the
multiunit responses fell above the horizontal line corresponding
to the Fano factor of unity, indicating trial-to-trial variability in
excess of that expected from Poisson spiking. Below we show how
the multiunit and single-unit responses can be reconciled by as-
suming correlations between units (see Reconciling multiunit
and single-unit recordings below).

The probability of firing a single spike was related to stimulus
frequency (Fig. 3b) (Calford and Semple, 1995). This suggests
that the conventional notion of a tuning curve, in which spike
rate is related to some stimulus parameter, can readily be ex-
tended to binary responses.

The majority of responses are binary

How prevalent were binary responses such as those illustrated by
Figures 1, b and ¢, and 3a? One approach to answering this ques-
tion would be to assess directly the degree to which our data were
consistent with binomial statistics. However, in a real experimen-
tal setting, small deviations from perfectly binary spiking are to be
expected, and we do not have a good noise model to account for
these deviations. For example, although it might seem reasonable
to model the deviant spikes that occur during tones as “sponta-
neous”, i.e., as occurring at the same rate as the spikes that occur
during the intertone interval, such a model includes an implicit
assumption about the additivity of noise during spontaneous and
evoked activity. An ideal statistical test would include no such
strong ad hoc assumptions.

We therefore adopted an alternate approach. We devised a
statistical test to distinguish binary responses from those consis-
tent with a Poisson process (the null hypothesis). We formulated
the question in terms of deviations from the null hypothesis of a
Poisson process by asking whether the observed variability was
significantly below that expected from a Poisson process (see
Materials and Methods for details). Expressed this way, establish-
ing significance requires that two conditions be satisfied. First,
the amount of data had to be sufficient (given the observed firing
rate and number of repetitions) to distinguish Poisson from bi-
nary firing. This is because, at low firing rates, Poisson and binary
firing are indistinguishable given limited data (Fig. 4); thus only
some responses can be classified, whereas others must be re-
garded as potentially consistent with either hypothesis. Second,
the neuronal variability (as quantified by the Fano factor) had to
be sufficiently low that the chances of observing such variability
was less than some statistical confidence level. Intuitively, our test
assessed whether, when plotted as in Figure 3a, points were sig-
nificantly below the horizontal (Poisson) line, in the direction of
the diagonal (binary) line. This test is highly conservative, be-
cause a perfectly binary response might nonetheless be character-
ized as unclassifiable if the response probability were too low or
the sample size too small.

Figure 4 (compare ¢, d) emphasizes the difference, evident at
high firing rates, between Poisson and binary spiking. In each set
of simulated trials there are exactly 20 spikes; thus, the mean spike
count is one spike per trial in both cases. In the Poisson set (Fig.
4c), some trials have no spikes at all, some have one, some two,
and some three spikes. By contrast, in the binary set (Fig. 4d), the
same 20 spikes are arrayed over the 20 trials in a much more
orderly manner, with exactly one spike per trial. The two sets of
rasters are thus clearly different, even in the case where there is on



7944 - ). Neurosci., August 27, 2003 - 23(21):7940-7949

a Poisson simulation ¢ Poisson simulation
L
1
1)
I' (]
1
(1]
| II ]
1
(1)
. 3 Spikes/20 trials 20 spikesr20 trials
b Binomial simulation d Binomial simulation
Il
1 II
]
1
1 L)
1
1
III
5
III
x 3 epikes 20 trials [ : 20 spikes 20 trials
Low p High p
(indistinguishable) (distinct)

Figure 4.  Poisson statistics are practically indistinguishable from binomial statistics for low
probability of firing, p, but they are easily distinguished for high p. a, b, Typical examples of
simulated spike rasters from Poisson and binomial processes for low p are statistically indistin-
guishable. ¢, d, Repeating both simulations for high firing probability ( p = 1) nearly always
results in spike rasters for which Poisson and binomial spiking can be clearly distinguished.

average one spike per trial. It is this difference that our statistical
test captures.

The majority of response sets (370/624 = 59%) for which
statistical significance could be assessed (at the p < 0.01 signifi-
cance level) were well characterized as binary (Fig. 54). We em-
phasize that, by definition, <1 of 100 responses (i.e., no more
than ~6 of the 624 for which significance could be assessed)
would have been expected to show such low variability by chance,
given the null hypothesis of a Poisson process. Moreover, the
majority of the 91 neurons (75/91 = 82%) for which significance
could be assessed showed at least one significantly sub-Poisson
response ( p < 0.01). Even using a more stringent criterion of p <
0.001, half (239/458 = 52%) of the response sets and 68% (49/72)
of the neurons were still significantly sub-Poisson. Therefore,
low-variability spiking was not an anomalous finding, character-
istic of a limited subset of neurons or responses, but was instead a
typical mode of firing among neurons in our sample.

Most responses with sub-Poisson variability consisted of ei-
ther one or zero spikes on nearly every trial, as in Figure 1, b and
¢, and thus were well characterized as binary. However, 13 neu-
rons achieved low variability for at least one tone by firing stereo-
typed multispike bursts in which nearly every spike count was, for
example, either 0 or 3, but not 1, 2, 4, or greater (Fig. 5b). Such
bursty responses have been previously described in the anesthe-
tized cat (Phillips and Sark, 1991). Note that we use the term
burst here phenomenologically, with no suggestion of the mech-
anism underlying the multispike response.

Approximately 41% of the responses were not significantly
sub-Poisson. In some cases response variability was supra-
Poisson (i.e., Fano factor greater than unity), as expected from
recordings in other cortical regions. Heterogeneity in response
variability has also been reported in the primary visual cortex of
the anesthetized cat, in which only well isolated and well driven
layer 4 neurons show markedly sub-Poisson variability (Kara et
al., 2000). However, we found no comparable dependence of
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response variability on recording depth. Although our depth
measurements were not validated with electrolytic lesions (cf.
Kara et al., 2000) and should therefore be treated as crude esti-
mates only, our data do not support the hypothesis that binary
spiking in the auditory cortex is limited to a particular layer, but
suggest instead that it is a general feature of the entire neuronal
population recorded using patch electrodes.

We wondered whether binary spiking resulted from the brev-
ity (25 msec) of the stimuli we typically used. We therefore sub-
jected 12 neurons to an additional protocol consisting of at least
10 interleaved presentations each of 100 msec tones and 25 msec
tones of all 32 frequencies (Fig. 5¢). Of the 100 msec stimulation
response sets, 45 were found to be significantly sub-Poisson at the
p < 0.05 level, in good agreement with the 47 found to be signif-
icant among the responses to 25 msec tones. Thus, binary spiking
was not attributable to the brevity of the stimuli. Moreover, even
complex stimuli with rich spectrotemporal structure can produce
binary behavior (Fig. 5d).

Response timing

In many neurons, binary responses showed high temporal preci-
sion, with latencies sometimes exhibiting SD values as low as 1
msec (Fig. 6) (see also Fig. 1b,¢), comparable to previous obser-
vations in the auditory cortex (Heil, 1997), and only slightly more
precise than in visual area MT (Buracas et al., 1998) of the alert
monkey. High temporal precision was positively correlated with
high response probability, both within (Fig. 6a) and across (Fig.
6b) cells.

Poisson model with refractory period

The low trial-to-trial variability ruled out the possibility that the
firing statistics could be accounted for by a simple rate-
modulated Poisson process (Fig. 5a). To illustrate this, we com-
pared the observed spike rasters (Fig. 7a) with simulated spike
trains generated using a rate-modulated Poisson process whose
event rate was fit to the smoothed PSTH derived from the ob-
served rasters. As expected, the simulated spike trains contained
several multispike responses (Fig. 7b). The simulated spike trains
seen here are qualitatively similar those observed in visual area
MT during presentation of dynamic stimuli (Buracas et al.,
1998).

In other systems, low trial-to-trial variability has sometimes
been explained in terms of a Poisson process followed by a post-
spike refractory period (Berry et al., 1997; Kara et al., 2000). In the
present context, if the underlying firing rate were elevated for a
time shorter than the refractory period, then at most one spike
per trial could be generated. Thus, whether a refractory period
can provide a full account of binary spiking depends critically on
whether the refractory period is longer than the period of elevated
firing.

During periods of spontaneous firing, and occasionally dur-
ing stimulus-evoked responses, interspike intervals as short as 2
msec were observed, as expected from previous cortical record-
ings. These short interspike intervals provide an upper bound on
the hard refractory period, which is presumably caused by the
intrinsic properties (for example, the time course with which
sodium channels recover from inactivation) of the spike-
generating mechanism of the neuron. The inclusion of such a
hard refractory period did not substantially reduce the variability
of the simulated Poisson process; several multispike responses
were still observed (Fig. 7c).

These simulations suggest that binary spiking did not result
from the intrinsic properties of the spike-generating mechanism
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of the neuron. Rather, the fact that stimulus-evoked responses
consisted of at most a single spike was more likely the result of
circuit-level mechanisms. Tones elicit a precisely timed sequence
of excitation, followed by strong inhibition (Wehr and Zador,
2002); the inhibition quenches the response and thereby enforces
a very short window for temporal integration during which only
asingle spike can occur. However, this inhibition typically decays
within 50-100 msec, and is therefore unlikely to account for the
long-lasting suppression observed after a stimuli that elicit spikes
with high probability (Fig. 8); such longer-lasting suppression
may be attributable, at least in part, to short-term synaptic de-
pression (Chung et al., 2002).

Reconciling multiunit and single-unit recordings

How can the highly variable multiunit recordings (Fig. 1a) be
reconciled with the single-unit binary recordings (Fig. 1b,¢)? Ac-
cording to the simplest model, each multiunit response would
consist of the summed activity of several single-unit recordings. If
responses from enough low firing probability, statistically inde-
pendent binary units are combined, then the trial-to-trial vari-
ability of the population approaches a value close to unity. Thus,
we should expect the multiunit data to be about as variable as a
Poisson process, even if the individual units are statistically inde-
pendent of one another.

Time (sec)

4 5 6 7 8 Thuscomparison of single- and multiunit

data support the idea that binary units are
positively correlated.

The majority of the neuronal population exhibited binary firing behavior. , Of the 3055 sets of responses to 25 msec
tones, 2431 (gray points) could not be assessed for significance at the p << 0.01 level, 254 (red points) were not significantly
binary, and 370 were significantly binary (black points) (see Materials and Methods). All points were jittered slightly so that
overlying points could be seen in the figure. Gray points were plotted with Fano factors recalculated with N (number of trials)
ratherthan N — Tin the denominator of the variance so that response sets containing no multispike responses fell on the diagonal
line even for small V. Figure is truncated at top and right. b, Spike rasters from a neuron different from those shown in previous
figures show non-binary but highly repeatable multispike responses to repeated presentations of the same tone. ¢, The binary
nature of single-unit responses was insensitive to tone duration. Twenty additional spike rasters from the same neuron (and tone
frequency) as in Figure 1b contain no multispike responses whether in response to 100 msec tones (above) or 25 msec tones
(below). Across the population, binary responses were as prevalent for 100 msec tones as for 25 msec tones. d, Binary cortical
responses are not restricted to loud stimulus onsets. High probability single-spike responses (red boxes) can be triggered by
wide-spectrum transients embedded in complex natural sounds (vocalization of the common nightingale); greater spectral power
is represented by darker regions of spectrogram (bottom). Note long time scale compared with most rasters in other figures.

Discussion

We have used in vivo cell-attached record-
ing to assess the trial-to-trial variability of
neurons in the auditory cortex of
ketamine-anesthetized rats. We find that
the majority of responses can be well char-
acterized as a binary process (i.e., as a re-
sponse consisting of 0 or 1 spikes, but not
more) instead of as a more variable Pois-
son process such as has usually been as-
sumed the rule in cortex. Our results dem-
onstrate that cortical architecture can
support a more precise control of spike
number than has previously been recognized, and suggest a re-
evaluation of models of cortical processing that assume noisiness
to be an inevitable feature of cortical codes.

Relation to previous studies of auditory cortex

Response variability has been extensively studied in the visual
cortex (Heggelund and Albus, 1978; Dean, 1981; Tolhurst et al.,
1983; Buracas et al., 1998; Oram et al., 1999), where with three
exceptions (Gur et al., 1997; Gershon et al., 1998; Kara et al.,
2000), Poisson or supra-Poisson variability has been observed.
However, the trial-to-trial variability of single units has not been
previously assessed in the auditory cortex, although the variabil-
ity of stimulus-evoked local field potentials (LFPs) has been con-
sidered (Kisley and Gerstein, 1999).

It has long been known that tone-evoked responses in the
auditory cortex can be transient. For example, in one early study
of auditory cortical responses, it was noted that “nearly 95% of
the neurons responded with a single spike, or short bursts of 2 to
five spikes, to pure tones delivered monaurally or binaurally re-
gardless of the duration of the tone” (Brugge et al., 1969). Subse-
quent work over the intervening three decades has supported the
view that transient responses are common (Calford and Semple,
1995; Heil, 1997; Sutter et al., 1999), although more sustained re-



7946 - ). Neurosci., August 27, 2003 - 23(21):7940-7949

: 071001 md04
a
14 f N = 32 tones
Ty 12 o
Q ST,
b * 071001 md04
E 10
E 8
= 6
: f
2
. +d o
0
0 0.2 0.4 0.6 0.8 1
Mean response (spikes/trial)
b
40
o’ . N = (62 cells)x(32 tones)
d L]
301" 8°
— Kt -
g L] . ‘..
E :
= 20
£
-2
10 2
L ]
z L)
0 » i 1 J
0 0.4 0.8 1.2 1.6 2.0
Mean response (spikes/trial)
Figure 6.  Trial-to-trial variability in response latency to repeated presentations of the same

tone decreased with increasing response probability. a, Scatter plot together with best linear fit
of SD of latency (jitter) versus mean response for 25 presentations each of 32 tones for the same
neuron as in Figure 2. Rasters from 25 repeated presentations of a low response tone (top left
inset, which corresponds to leftmost diamond) display much more variable latencies than ras-
ters from a high response tone (bottom right inset; corresponds to rightmost diamond). b, The
negative correlation between latency variability and response size was present on average
across the population of 62 significantly binary neurons described in Results; the best linear fit s
also shown.

sponses are also sometimes observed, even in the anesthetized prep-
aration (Phillips and Sark, 1991; Furukawa et al., 2000) (Fig. 5b).
However, the binary responses we describe are not simply
transient. To demonstrate the transient nature of auditory spik-
ing, it would have sufficed to show PSTHs, because the brevity of
the response can be fully assessed by the mean activity. “Tran-
sient” refers to the time course and the mean spike count per trial,
whereas “binary” makes a statement about the variance of the
spike count as well. Our study thus establishes for the first time
that transient responses in auditory cortex can be described as a
binary process, rather than as a highly variable Poisson process.

Anesthesia and transient responses in auditory cortex
Although there has recently been renewed interest in the stimulus
dependence of sustained spiking in the awake auditory cortex
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Figure7.  Thelack of multispike responses elicited by the same neuron as in Figures 2 and 6a
was not caused by an absolute refractory period, because the range of latencies for many tones,
like that shown here, was much greater than any reasonable estimate for the refractory period
of the neuron. g, Experimentally recorded responses to multiple presentations of the same tone
contain no multispike responses. b, A representative example of rasters generated under the
assumption of Poisson firing and the same PSTH as a includes four double-spike responses
(arrows at left) of 25 trials. ¢, Representative rasters generated by a Poisson process subject to a
hard, 2 msec refractory period still include one triple-spike and three double-spike responses.

[particularly in response to complex stimuli (deCharms et al.,
1998; Lu et al., 2001)] purely transient responses have also com-
monly been reported in this preparation since they were observed
in single-unit recordings over 40 years ago (Hubel et al., 1959;
Abeles and Goldstein, 1972; Dear et al., 1993). Such transient
responses can be seen, for example, in early studies on responses
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Figure 8.  Spontaneous activity is reduced after high-probability responses. The PSTH (top;

0.25 msec bins) of the combined responses from the 25% (8/32) of tones that elicited the largest
responses from the same neuron as in Figures 1, b and ¢, 3, and 5¢ illustrates a preclusion of
spontaneous and evoked activity for over 200 msec after stimulation. The PSTHs from progres-
sively less responsive groups of tones show progressively less preclusion after stimulation.
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Figure 9. A comparison between the multiunit (Fig. 1a) and single-unit (Figs. 1b,¢, 3a)
recordings suggests that neurons are correlated with each other (Zohary et al., 1994; Abbottand
Dayan, 1999). We illustrate this with a simple model in which many binary single units are
combined to produce a highly variable multiunit recording. If responses from N statistically
independent binary units, each with firing probability p, are combined, then the Fano factor of
the population response is given by variance/mean = [Np(1 — p)J/(Np) = 1 — p. However,
introducing positive correlations between neurons leads to higher trial-to-trial variability, as
seen in our multiunit recordings. We simulated a multiunit recording consisting of five noisy
binary neurons, each with a per trial spiking probability, p, of 0.2. The responses of the neurons
were designed so that a fraction of the spikes of each neuron occurred on the same trials as
spikes in all other neurons. For example, the point at the far left of the graph corresponds to the
case of five statistically independent neurons; in this case, coincidences happen at the level of
chance. At the farright, the activity of every neuron is identical up to differences in the response
latency of each neuron, which allow the individual spikes to be detected; an example of a typical
response set for this case is [0,0,5,0,5,0,0,0,0,0. . . ]. The variability of this multiunit simulation
increased with the degree of correlation between the neurons.

to complex vocalizations (Wollberg and Newman, 1972;
Creutzfeldt et al., 1980). Particularly clear examples of purely
transient spiking are evident in an early study of attentional mod-
ulation of auditory cortical responses (Hocherman et al., 1976).
In the awake rat, up to 50% of neurons show phasic short-latency
responses such as those observed here (Talwar and Gerstein,
2001). Indeed, even in a recent study focusing on the contrast
dependence of the sustained component, a substantial fraction of
neurons show purely transient responses under all stimulus con-
ditions (Barbour and Wang, 2003). Thus transient firing per se is
not an artifact of anesthesia. However, none of these earlier stud-
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ies distinguished between Poisson and binary responsiveness,
and so provide no insight into the reliability of cortical coding.

There is nevertheless little doubt that sustained responses are
less common in the anesthetized preparation. Unfortunately,
there have been relatively few studies in which the activity of
individual single units is compared when the animal is in differ-
ent states of arousal. In one study comparing single-unit activity
in sleeping to awake rats, most response properties remained
primarily unchanged, with at least some neurons remaining tran-
sient under all conditions (Edeline et al., 2001).

Interestingly, firing rates observed with cell-attached and
whole-cell recording methods in the awake preparation (Margrie
et al., 2002) are much lower than previously reported based on
conventional extracellular recordings, supporting the idea that
these methods differ in their selection bias. There is at present no
evidence to suggest that responses of well isolated transient re-
sponders are any less reliable in the awake preparation, and it
remains an open question whether the subpopulation of tran-
sient responders in the auditory cortex of awake animals show the
binary behavior we describe here.

Relation to other areas

Transient responses are also observed in other cortical areas.
However, in contrast to the present results, transient responses in
other cortical areas typically show the same high trial-to-trial
variability as sustained responses and can, to first approximation,
be considered to result from a rapidly modulated Poisson pro-
cess. For example, in area MT of the awake monkey, even when
the response to a brief stimulus consists of on average only a
single spike per trial, individual trials may show as many as two or
three spikes (Buracas et al., 1998). These area M T responses thus
have more in common with the simulated responses shown in
Figure 7, b and ¢, than with the binary auditory responses de-
scribed here.

Whereas this is the first description of binary spiking, there
have been several reports of low variability spiking. Under some
(de Ruyter van Steveninck et al., 1997) but not all (Warzecha and
Egelhaaf, 1999) stimulus conditions, motion-sensitive neurons
in the fly visual system can show sub-Poisson firing. Similarly,
neurons in the vertebrate retina (Berry and Meister, 1998; Kara et
al., 2000) and thalamus (Kara et al., 2000) have been reported to
respond with low variability under some conditions. There have
also been three reports describing sub-Poisson variability in the
cortex (Gur et al., 1997; Gershon et al., 1998; Kara et al., 2000),
although even the least variable neurons from these studies do
not approach the extremely low variability attainable by the bi-
nary units we describe here. It is interesting to note that variabil-
ity of responses reported in the auditory nerve is high (typical
Fano factors are of order unity) (Teich et al., 1990), indicating
that in the auditory system spike count variability decreases cen-
tripetally; in contrast, in the visual system spike count variability
shows the opposite trend, increasing from the retina to the visual
cortex.

Cortical physiology and circuitry are similar across many dif-
ferent cortical regions, and it is tempting to speculate that basic
cortical computations are, as a result, also similar. It is therefore
somewhat puzzling that different regions should differ so strik-
ingly in so fundamental a characteristic as the operating fidelity.
One possibility is that auditory and visual processing are indeed
fundamentally different. An alternative interpretation is that the
difference results not from the sensory modality, but instead
from the difference between the stimuli used. In this view, the
binary responses may not be limited to the auditory cortex; neu-



7948 - ). Neurosci., August 27, 2003 - 23(21):7940-7949

rons in visual and other sensory cortices might exhibit similar
responses to the appropriately punctate stimuli. Conversely, au-
ditory stimuli analogous to edges or gratings (Kowalski et al.,
1996; deCharms et al., 1998) or other complex stimuli (Lu et al.,
2001) may be more likely to elicit conventional, rate-modulated
Poisson responses in the auditory cortex.

Sparse and efficient representations

The first spike is privileged in that it often carries most of the
information in the spike train (Heil, 1997; Buracas et al., 1998;
Panzeri et al., 2001). In fact, it has been suggested that complex
image recognition can occur with only a single spike per neuron
(Delorme and Thorpe, 2001). Because in the binary mode we
have described each spike is a “first spike,” binary spiking is an
efficient or sparse representation (Olshausen and Field, 1996;
Hahnloser et al., 2002).

Because binary responses consist of at most a single spike, no
possible information can be contained in the precise substructure
of the spike train, ruling out the possibility of a privileged role for
bursts (Martinez-Conde et al., 2000) or temporal multiplexing
(Richmond and Optican, 1987) as has been reported in visual
cortex; a stimulus parameter, such as the frequency of a tone, is
encoded as the probability of firing a single spike (Fig. 3b). From
the perspective of a single neuron, this probability fully specifies
the response and implies that any additional information about
the stimulus can be decoded only by looking over the neuronal
population.

Implications for cortical processing

The well established observation that neuronal firing in the visual
cortex typically shows Poisson or supra-Poisson variability has
often been assumed to be a general principle true of all cortical
areas (Shadlen and Newsome, 1998) or even every cortical neu-
ron (Pouget et al., 2000). High variability is thus often taken as a
starting point for a general theory of cortical dynamics, a con-
straint that any biologically plausible theory must satisfy. Natural
questions then become: what biophysical (Softky and Koch,
1993) or circuit (van Vreeswijk and Sompolinsky, 1996) mecha-
nisms allow such variability to arise or propagate (van Rossum et
al., 2002) and how can populations of noisy neurons represent
sensory stimuli with fidelity (Pouget et al., 2000)? On the other
hand, if such high variability is not a necessary feature of cortical
function, then inquiry turns naturally to the question of why one
area or modality should show high variability whereas another
does not, or to the dependence of variability on stimulus
parameters.

High variability greatly constrains the kinds of processing that
might occur at the level of a single neuron and may complicate
models in which separate computations are performed on major
dendritic branches (Shepherd and Brayton, 1987; Mel, 1994). For
example, consider a hypothetical patch of dendrite in which the
appropriate complement of voltage-dependent channels are ar-
rayed to produce a logical AND gate of the activity of two nearby
inputs (Shepherd and Brayton, 1987). In other words, suppose
that the arrival of two presynaptic action potentials to one or both
of these synapses within a short time period can result in a much
greater signal to the soma than twice the affect of one action
potential alone. In conventional high-variability models of corti-
cal processing, a response that, on average, consisted of a single
spike in input A would, on particular trials, often consist of a pair
of spikes, and so would be indistinguishable from the simulta-
neous firing of A and B. If, however, each input neuron A and B
reliably produced either zero or one spike, then such a scheme
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could sensibly signal the presence of simultaneous activity in both
neurons. Similarly, some models for harnessing the computa-
tional power of dynamic synapses depend on temporally precise,
low-variability spiking (Maass and Zador, 1999). Thus, binary
spiking provides a possible substrate for models requiring a de-
gree of control over spike number that, heretofore, had not been
documented in the cortex.

The precise organization of both spike number and time we
have observed suggests that cortical activity consists, at least un-
der some conditions, of packets of spikes synchronized across
populations of neurons. Theoretical work (Marsalek et al., 1997;
Diesmann et al., 1999; Kistler and Gerstner, 2002) has shown how
such packets can propagate stably from one population to the
next, but only if neurons within each population fire at most one
spike per packet; otherwise, the number of spikes per packet (and
hence the width of each packet) grows at each propagation step.
Interestingly, one prediction of stable propagation models is that
timing precision should increase with increasing spike probabil-
ity, a prediction born out by our observations (Fig. 6). The role of
these packets in computation remains an open question.
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