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The capability of feedforward networks composed of multiple layers of integrate-and-fire neurons to transmit rate code was examined.
Synaptic connections were made only from one layer to the next, and excitation was balanced by inhibition. When time is discrete and the
synaptic potentials rise instantaneously, we show that, for random uncorrelated input to layer one, the mean rate of activity in deep layers
is essentially independent of input firing rate. This implies that the input rate cannot be transmitted reliably in such feedforward
networks because neurons in a given layer tend to synchronize partially with each other because of shared inputs. As a result of this
synchronization, the average firing rate in deep layers will either decay to zero or reach a stable fixed point, depending on model
parameters. When time is treated continuously and the synaptic potentials rise instantaneously, these effects develop slowly, and rate
transmission over a limited number of layers is possible. However, the correlations among neurons at the same layer hamper reliable
assessment of firing rate by averaging over 100 msec (or less). When the synaptic potentials develop gradually, as is the realistic case,
transmission of rate code fails. In a network in which inhibition only balances the mean excitation but is not timed precisely with it,
neurons in each layer fire together, and this volley successively propagates from layer to layer. We conclude that the transmission of rate
code in feedforward networks is highly unlikely.
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Introduction
Our current understanding of the processing of sensory informa-
tion relies on the notion of multiple stages of feature extraction.
This can be implemented as neuronal activity progresses from
one cortical area to another, and within each cortical area. In-
deed, reaction time for nontrivial perceptual tasks (Thorpe and
Fabre-Thorpe, 2001) suggests the existence of several tens of pro-
cessing stages, assuming �10 msec transmission delay between
stages. A very simple model for this type of processing is a feed-
forward chain of layers of neurons, in which each neuron of a
given layer receives multiple synaptic inputs from some of the
neurons in the previous layer. Within such a feedforward net-
work, information can be coded in different ways. One possibility
is that information is carried in such a system solely through the
firing rate of the neurons (Shadlen and Newsome, 1994). In this
“rate code” paradigm, neurons in each layer fire at random times
(Softky and Koch, 1993) and in an uncorrelated manner with
other neurons belonging to the same layer.

In the rate code paradigm, neurons in the next layer compute,
within a short time window, the average firing rate of the neurons

in the previous layer and generate an output rate that is related
uniquely to the input rate. An alternative for rate coding is the
“temporal code” paradigm, in which information is carried by
small groups of neurons that fire in synchrony with each other
(Abeles, 1982, 1991; Bienenstock, 1995; Softky, 1995; Stevens and
Zador, 1998; Diesmann et al., 1999). In a feedforward network, if
each layer fires in synchrony, then the next layer will also do so
and “synfire” activity will develop (Abeles, 1982). Can feedfor-
ward networks of neurons support rate code inherently, or do
such networks tend to generate synfire waves of activity
spontaneously?

Shadlen and Newsome (1994) developed a model to demon-
strate the feasibility of feedforward rate transmission. Their
model is based on the notion of balance between excitation and
inhibition, whereby each synaptic potential is rather large, but
because of this balance, the sum of many random excitatory and
inhibitory presynaptic inputs results in a postsynaptic membrane
voltage that fluctuates strongly around the resting potential.
These random voltage fluctuations occasionally cross the thresh-
old for spike firing and generate random firing in the output
neurons. Shadlen and Newsome claim that their model has a rate
gain (the ratio between the firing rate of one layer and that of the
previous layer) of unity and that the neurons are not sensitive to
the timing of their single inputs. They also claim that if each pair
of output neurons shares �40% of the input neurons, only a
small degree of synchrony will be developed, and this ensures an
efficient rate code. The feasibility of rate code transmission in
unbalanced feedforward layers was studied recently in a model by
van Rossum et al. (2002).

The present work aims at a better understanding of the firing
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dynamics in feedforward networks of neurons. The feasibility of
supporting rate code versus temporal code in feedforward net-
works is discussed.

Materials and Methods
Model neuron. We used three types of model neurons. In two of the
models, the counting model described by Shadlen and Newsome (1994)
was used. In this model, the membrane potential is not continuous but
rather jumps instantaneously in steps of 1 mV whenever a synaptic input
arrives. The model was implemented in two different ways. One imple-
mentation used continuous time, and the other used discrete time steps.
In the third model, synaptic inputs were modeled as current transients
having an � shape; in this model, both time and membrane potentials
changed continuously.

In the first model, the spike trains were represented as series of specific
times when each presynaptic spike occurred. The value of the postsyn-
aptic membrane potential was recalculated analytically at the time of
arrival of each presynaptic spike by adding (excitation) or subtracting
(inhibition) a step of 1 mV from the membrane voltage. Between synap-
tic inputs, the membrane potential decays exponentially toward zero,
with a time constant of 20 msec. The model has a lower reflecting bound-
ary beyond which the neuron does not hyperpolarize. Whenever the
membrane potential hits threshold, the neuron emits an action potential
and the membrane voltage is reset immediately to a “reset potential,”
after which the dynamics of the membrane potential resumes. We refer to
this model as the discrete-PSP continuous-time model. Refractoriness
slows down the output at high firing rates. Thus, one cannot hope to
obtain linear transmission of firing rates over a wide range of input firing
rates. Shadlen and Newsome modeled neurons without refractoriness
and claimed that in such a model, linear rate transmission is possible. We
found that even under this nonphysiological assumption, faithful trans-
mission of rates is not possible. Adding a refractory period worsens the
situation. To gain insight into transmission of rate code, beyond the
impairment of refractoriness, we repeated Shadlen and Newsome simu-
lations with their exact model.

In the second model, inputs were the same as in the first model, but the
simulation proceeded in time bins of 1 msec, and each spike train was a
sequence of zeros (no spike) and ones (spike firing). The rest of the
simulation was identical to the previous model. We refer to this model as
the discrete-PSP discrete-time model.

The third model neuron had its synaptic inputs modeled by a current
with a continuous time course described by an � function. The mem-
brane potential was simulated by the following equation:

��m

dVm

dt
� R � Isyn � Vm (1)

where Vm is the membrane potential, �m is 20 msec, and Isyn are the
synaptic currents for all inputs since the last action potential. Synaptic
currents were given by the following equation:

Isyn � A � �t � t0)e��t � t0)�syn (2)

where �syn is 1 msec, t0 is the firing time of the presynaptic spike, and A
was adjusted so that either the peak PSP was 1 (A � 24,370) or the total
area under the continuous PSP was equal to that of the discrete PSP (A �
20,140). A was positive for EPSP and negative for IPSP. When the mem-
brane potential reached the threshold for firing, an action potential was
marked, and the membrane potential and all previous synaptic currents
were reset to 0. Although this last point is not physiological, it was needed
to obtain results with continuous time simulation within reasonable
computer time (a few days with 1 GHz processor). When the membrane
potential was smaller than �1, it was clamped at �1, but the previous
synaptic currents were not ignored. There was no explicit refractory pe-
riod, but because the synaptic currents were reset to 0 after an action
potential and new PSPs develop only gradually, it took some time before
the neuron fired again. At the highest input rate (200 spikes/sec) and
lowest threshold of 8 was examined, the shortest interspike interval was

1.3 msec. We refer to this model as the continuous-voltage continuous-
time model.

Results
We first concentrate on results obtained with the discrete-PSP
continuous-time neuron model. This model is identical to the
one used by Shadlen and Newsome, but we extended their simu-
lations by analyzing what happens beyond one or two layers.

Input– output relations for the discrete-PSP
continuous-time neuron
We simulated a single-neuron model receiving 600 inputs, 300
excitatory and 300 inhibitory. The inputs were long, uncorrelated
Poisson spike trains; the average input rate varied between 10 and
100 spikes/sec. In such a precisely balanced situation, the net
synaptic current is zero, and the response is driven entirely by the
variance in the membrane potential. Shadlen and Newsome
found that for this input and for an appropriate choice of param-
eters, the model neuron exhibits a linear relationship between the
mean input rate and the mean firing rate of the neuron. Further-
more, the slope of this linear input– output curve is 1. According
to Shadlen and Newsome, this occurs, for example, when the
reset potential is zero, the lower barrier is slightly below zero, and
the threshold is 15. Although we were able to find parameters for
which the input– output relationship of the model neuron, with
the above balanced input, is approximately linear (for rates up to
100 spikes/sec), we found that it is very hard to obtain an input–
output gain of �1. After testing a large number of combinations
of lower-barrier, reset, and threshold values, the best we could
achieve was when the resting potential was set to 0, the reset
potential was �0.5, and the lower barrier was �17 mV. A thresh-
old value of 12 yielded a gain that was closest to 1. These param-
eters are substantially different from those suggested by Shadlen
and Newsome. Our simulations of the Shadlen and Newsome
model with the parameters quoted by them (Shadlen and New-
some, 1998, their Fig. 1) failed to replicate their results. In fact, we
found that, with the parameters used by Shadlen and Newsome,
the input– output curve deviates from a linear curve with a slope
of unity. For our model, these deviations are smaller (Fig. 1 ).
At very low input rates, the output rate is below the input rate
(because the membrane potential may never reach threshold).
At high input rates, the curves are almost linear; however, it is
impossible to have the output follow the input in exactly a
one-to-one ratio.

Transmission of firing rates in feedforward networks
To test whether the discrete-PSP continuous-time model can
transmit the input firing rate in a multilayered network, the fol-
lowing simulations were performed. A feedforward network con-
taining 20 layers was constructed; all neurons in the network were
identical, as in Figure 1. Each neuron received 600 inputs, of
which exactly 300 were excitatory and 300 were inhibitory. Note
that because of the exact balance, activity is driven solely by the
variance of the membrane potential. According to Shadlen and
Newsome, synchronization among neurons develops only when
the neurons share �40% of their inputs. To avoid this region, we
concentrated our simulations on networks in which any pair of
neurons in a single layer shared only 10% of their inputs, but we
ran sample simulations for other degrees of shared inputs also. To
obtain 10% of shared inputs with 300 excitatory and 300 inhibi-
tory neurons, one needs to have 3000 excitatory and 3000 inhib-
itory neurons in the input layer. Thus, 6000 simulated spike
trains from the one layer were used as inputs to the next layer.
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Exactly half of these spike trains were chosen to be excitatory and
the other half to be inhibitory. The spike trains in the input layer
(layer 1) were random and uncorrelated. Each neuron in the
second layer received, as an input, 600 of these spike trains. Sim-
ulations differed with respect to the average firing rate of the
random spike trains that were used as the input to the first layer.
The same connectivity matrix between adjacent layers was main-
tained throughout the network. To explore the evolution of the
dynamics along multiple layers, we analyzed a system of 20 layers,
although from a physiological point of view, 20 layers seems un-
realistic. As will be shown below, severe transmission problems
became apparent after only three layers.

The results of one such simulation are presented in Figure 2.
In this simulation, the threshold was 11, the percentage of shared
inputs was 10%, and the initial firing rate was 50 spikes/sec. The
activity of 20 randomly chosen spike trains, out of the 6000 pro-
duced in each layer, is shown. It can be seen that the uncorrelated
firing at a constant rate seen at the input layer is not preserved at
subsequent layers. Instead, in the deep layers, the mean rate de-
creases and the neurons exhibit periods of synchronized activity.

The behavior of the network for various input rates is summa-
rized quantitatively in Figure 3. For input rates of �30 Hz, the
firing rates converge after 20 layers to a common mean rate of
�40 Hz. It is instructive to view the mean rate of a layer as an
iterative dynamic variable in which different layers correspond to
different time units. The results of Figure 3 indicate that for all
initial rates of �30 Hz and above, the mean layer rate converges
to a common fixed point of �40 Hz independent of the initial
value. Conversely, the 10 Hz curve indicates that for low initial
rates, the layer rate does not converge to the 40 Hz fixed point. We
discuss the low-rate behavior later (see Fig. 9). Changing the
thresholds to 12 causes the firing rates to decline rapidly toward
zero for all input rates (data not shown); in particular, for this
threshold, the only stable fixed point of the system is zero. Chang-
ing the threshold to 10 causes the firing rates to build up rapidly
to large values, meaning that the nonzero fixed point is the infi-

nite (or, more realistically, saturated) rate. Thus, the optimal
threshold for the network behavior is found to be slightly lower
than the optimal threshold for a single neuron, which is 12. We
return to this point below.

Figure 3 indicates that (except for low initial rates), the mean
rates of the layers approach a common fixed point value after
20 –30 layers. This by itself would allow for the possibility that
rate information can be transmitted across �10 layers, when the
mean rates corresponding to different input rates are still apart
from each other. Transmitting information by firing rates is
meaningful if the firing rates of the layers can be estimated by
sampling a limited number of neurons over a limited time period.
We thus estimated the errors that would occur in rate estimation
by summing the activity of 600 neurons over 100 msec. The num-
ber 600 was chosen because it is reasonable to assume that the
connectivity of a “read-out” neuron will be similar to that of
the neurons in our network. The time window of 100 msec is on
the order of magnitude of the minimum time of meaningful
sensory processing as measured in psychophysical experiments.
The resultant errors are shown by the vertical bars in Figure 3,

Figure 1. Input– output relations for a continuous-time discrete-PSP model. Simulation of a
model neuron used by Shadlen and Newsome receiving 300 excitatory and 300 inhibitory inputs
firing independent-Poissonian spike trains. This model is identical to the Shadlen and Newsome
model. In this simulation, the membrane time constant was 20 msec, the lower reflecting
boundary was �17, and the reset voltage after reaching threshold was �0.5 mv.

Figure 2. Dot displays for a network of continuous-time discrete-PSP neurons. One second
of activity of 20 randomly selected neurons from the input stream (layer 1) and several layers
along the network. Each layer consisted of 6000 neurons; the percentage of shared inputs
between two neurons at a given layer was 10%. Each neuron received 300 excitatory and 300
inhibitory inputs. The same connection matrix was used for all the layers. Spike trains in the
input layer (layer 1) are random and uncorrelated, with an average rate of 50 spikes/sec. Thresh-
old was set to 11, at which the decline in firing rate in deeper layers was very gradual. Buildup of
synchrony is obvious.
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which correspond to �1 SD. After three layers, the error bars,
corresponding to input frequencies that are 20 spikes/sec apart,
start to overlap. Even after one layer, these error bars become
much larger than the error bars of the input (independent Pois-
sonian) spike trains. The reason for the rapid increase in the
estimation error is the correlations that develop between the neu-
rons, as discussed below.

Emergence of synchrony in the network
Examination of Figure 2 shows that two types of synchrony ap-
pear. Over a long time scale, periods of high firing rates alternate
with periods of low firing rates. Over very short time periods,
vertical lines appear, indicating precise synchrony. To quantify
this synchrony, we measured the cross-correlograms between
neuronal pairs within the same layer. Figure 4A shows the mean
cross-correlograms of 200 randomly chosen pairs from the input
sources (Layer 1) and various subsequent layers. The correlation
builds up gradually as we proceed along the layers. This is shown
quantitatively in Figure 4B, in which spike trains were converted
sequences of zeros and ones, with time steps of 1 msec and then
cross-correlated. The ratio of the peak in the cross-correlation
divided by the peak of the autocorrelation is plotted. The rate of
buildup of synchrony depends on the level of shared inputs
among pairs of neurons in the same layer. If there were no shared
inputs, neurons would fire independently and the graphs in Fig-
ure 1 could be used to evaluate the transmission of rates between
layers. If neurons shared all their inputs (100% shared inputs), all
the neurons in a given layer would have exactly the same inputs,
and they would fire in unison. The results with 10% shared inputs
demonstrate that even with a limited degree of shared inputs,
substantial synchrony builds up relatively rapidly.

Comparing Figures 3 and 4 indicates that although the esti-
mation error seems to saturate in the sixth to seventh layers (see
the size of the error bars in Fig. 3), the cross-correlogram peaks
continue to increase roughly linearly up to the 20th layer. This
indicates that the main source of estimation error is the covaria-

tion of rates over long time scales. These rate correlations are not
captured by the cross-correlograms in Figure 4, which measure
the synchrony over time scales of tens of milliseconds.

Input– output relations for a neuron with continuous
membrane voltage and continuous time
The discrete-PSP continuous-time model is peculiar in that it
makes a big difference whether an EPSP arrives immediately be-
fore or after an IPSP. A burst of excitatory spikes can trigger a
spike in the output neuron even if these EPSPs are followed im-
mediately by IPSPs. To study how different the discrete-PSP

Figure 3. Modulation of firing rates along a feedforward network of continuous-time
discrete-PSP neurons. Same network as in Figure 2 but with different initial firing rates at input.
The error bars show SDs in estimation of rates based on observing 600 neurons for 100 msec.
Note the big difference for the errors for the input layer (layer 1) and the next layer (layer 2).
After three layers, the error bars of adjacent curves start to overlap.

Figure 4. Buildup of synchrony along a feedforward network of continuous-time discrete-
PSP neurons. Same network as in Figures 2 and 3. Cross-correlations are based on averaging 200
pairwise correlations. A, At input layer 1, the spike trains are uncorrelated. A small correlation
appears and grows slowly at deeper layers. All graphs were normalized by the product of
average rates of the two neurons. B, Development of correlation for different initial rates. Values
are the ratio between the peak of the cross-correlation and the peak of the autocorrelations.
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model is from a more plausible continuous-voltage model, we
investigated a model in which synaptic potentials were generated
by current pulses having the shape of an �-function (Rall, 1967).

Figure 5 shows the input– output relations for such a neuron
with various thresholds. The deviation from linearity of the
curves is substantially higher than those of the discrete-PSP
model (compare with Fig. 1). At very low rates, they are similar to
those of the discrete-PSP model, whereas at higher rates, they
flatten considerably. The gradual rise of the PSPs allows for inte-
gration of EPSCs and IPSCs before they exert their full effect on
the membrane potential, thereby reducing the gain of the neuron.
The relations in Figure 5 were obtained from simulations with a
lower barrier of �1. Lowering the barrier to �8 or �17 causes
even larger flattening at high rates.

The considerable difference between the continuous-voltage
and the discrete-PSP models may be appreciated by comparing
the corresponding membrane voltage fluctuations in the two
models during a 16 msec simulation (Fig. 6). Input firing rates
were low (10 spikes/sec), and the output neuron did not fire. The
discrete model shows multiple upswings and downswings,
whereas the continuous model (thick line) tends to average them
out. Had the input firing rate been increased 10-fold (to 100
spikes/sec), the discrete model would look almost the same, but
with time squashed to 1.6 msec. The continuous model cannot
vary much within 1.6 msec and would look much smoother.

Simulation of 20 layers with 6000 neurons, each composed of
continuous-time continuous-voltage model neurons, is not
practical even with fast computers. However, one can approxi-
mate this model by using discrete time steps with discrete voltage
jumps. This model first computes the difference between EPSPs
and IPSPs in a single time step and only then updates the mem-
brane potential. Although this model still shows discrete mem-
brane potential jumps, it allows for partial averaging out of EPSPs
and IPSPs at high input rates. This model is similar to the one
used by Salinas and Sejnowski (2000).

Input– output relations for the discrete-PSP
discrete-time neuron
We repeated the simulations leading to Figures 1 and 5 with the
discrete-time discrete-PSP neuron with time steps of 1 msec. As
before, we used 600 inputs, 300 excitatory and 300 inhibitory.
The inputs were long, uncorrelated Poisson spike trains; the av-
erage input rate varied between 10 and 100 spikes/sec. The resting
potential was set to 0, and a lower reflecting barrier was set to �1.
The threshold for spike firing was varied between 12 and 17 to
monitor the sensitivity of the model to changes in threshold
value. The results are presented in Figure 7. The curves tend to
flatten at high input rates, as for the continuous-time and
continuous-voltage model (Fig. 5). The gain clearly depends
strongly on the threshold value. Therefore, fine-tuning of param-
eters is necessary to obtain a gain close to unity even for a re-
stricted range of input rates. On the basis of these results, we
conclude that a threshold value of 15 is the optimal value for
generating a gain close to unity in an appreciable range of input
rates.

The curves in Figure 7 look similar to those of an integrate-
and-fire neuron driven by a net depolarizing current. However,
the mechanism is very different. Here, the firing is highly irregu-
lar because it is driven by the variance of the membrane potential.
In an integrate and fire neuron with constant depolarizing cur-
rent, the firing is very regular.

The results of one such simulation are presented in Figure 8.
In this simulation, the percentage of shared inputs was 10% and
the initial firing rate was 50 spikes/sec. Twenty randomly chosen
spike trains, out of the 6000 produced in each layer, are shown.
The uncorrelated firing with a rate of 50 spikes/sec seen at the
input layer (layer 1) builds up rapidly toward 90 spikes/sec, and
correlations appear.

Transmission of firing rates in feedforward networks
To test whether the discrete-PSP discrete-time model can trans-
mit the input firing rate in a multilayered network, we repeated

Figure 5. Input– output relations for a continuous-time continuous-voltage model. Same
conventions as in Figure 1. The model neuron here had PSPs modeled by a current having an �
shape (see Materials and Methods). The lower-voltage barrier was set to �1, and the reset
voltage after hitting threshold was 0 mV. At very low input rates, the curves must be convex, but
for most of the range, they are concave. Rates were estimated by measuring the time required
to generate 400 spikes. Error bars are �5%.

Figure 6. Membrane potentials for neuronal models. The membrane potential during the 16
msec span is shown for a simulation with 300 excitatory and 300 inhibitory neurons, each firing
at 10 spikes/sec. The resting potential of the model neurons is 0 mV, and the lower barrier is �1
mV. Curve a shows the behavior of the continuous-time discrete-PSP model. The membrane
potential shows frequent up and down jumps of 1 mV in size. Curve b shows the behavior of the
continuous-time continuous-voltage model. The EPSPs and IPSPs tend to average out. Note
that, for the continuous-voltage model (graph b; time, 8 –12 msec), hyperpolarizing currents
may continue to pull the membrane potential down even when the potential is clamped by the
lower barrier. In contrast, in the discrete model (graph a), once the membrane potential hits the
lower barrier, all the previous IPSPs are “forgotten.”
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simulations for a network as in Figures 2– 4 but with the discrete-
time neuron.

In the first group of simulations, we used a set of precisely
balanced connection matrices in which each neuron at each layer
received exactly 300 excitatory and 300 inhibitory inputs. This
guaranteed a precise balance of excitation and inhibition.

When the threshold was set at 15, which is the optimal value
for a gain of unity in a single neuron, and the neurons shared 10%
of their inputs, activity declined quickly to zero for all initial rates.
We next examined whether we could preserve firing rate by fine-
tuning the threshold. The results (with 10% shared connections
and an input firing rate of 50 spikes/sec) are summarized in Fig-
ure 9A. The threshold of the model neurons was varied between
10 and 15. Decay of firing rates was observed for threshold values
�12. The decay started after an initial increase in the firing rate in
the first three to four layers. For threshold values of �12, the rate
stabilized at a constant value after the initial increase. The smaller
the threshold for spike firing, the higher the final firing rate was.

How does the stable firing rate at deep layers correspond to the
values of the input rate? Figure 9B shows that, for a firing thresh-
old of 12, the firing rates at deep layers converged to the same
stable fixed values (fixed point of the dynamics) of �90 spikes/sec
for all the initial conditions except for the lowest (10 spikes/sec).
This situation is similar to the trend observed in the continuous-
time discrete PSP model (Fig. 3). As in Figure 3, averaging over
many (600) neurons for a short time span (100 msec) already
does not produce accurate rate estimation, even after three to
four layers, well before the mean layer rates converge to the as-
ymptotic fixed-point value. This is partly because, at high initial
rates, the mean layer rates approach each other well before they
converge to the fixed point and partly because of the growth of
the estimation error bars as a result of the buildup of correlations.

Figures 3 and 9A indicate that at low input rates, the layer rates
do not converge to the fixed point obtained with high input rates.
Does this mean that rate transmission is possible in this system at

low rates? To answer this question, we simulated networks with in-
put rates of 5–25 spikes/sec, in steps of 5 spikes/sec. For the initial
firing rate of 5 spikes/sec, the firing rate decayed to zero after a few
layers. For the other input rates, the network switched between pe-
riods of silence and periods of high firing rates. Detailed analysis
showed that the states of the network for different input rates dif-
fered in number and length of silent periods and not in the firing
rates at periods when neurons do fire (Fig. 10, top).

We explain this behavior by suggesting that the network
shifted constantly between two stable fixed points. The lower
fixed point has a firing rate equal to zero, and the higher fixed
point has a high firing rate whose value does not depend on the
input to the network. The percentage of time spent at each fixed
point determines the average firing rate in each case. Evaluating
the firing rate of the network, given such behavior, requires aver-

Figure 7. The gain of a discrete-time discrete-PSP model neuron is a nonlinear function of
the input rate and depends on firing threshold. The model neuron received 300 excitatory and
300 inhibitory inputs and was simulated for 300 sec. The membrane time constant was 20 msec,
and the lower reflection barrier was �1. Firing threshold was varied between 12 and 17 (num-
bers at right). The curves are more similar to those of Figure 5 than to Figure 1.

Figure 8. Dot displays for a network of discrete-time discrete-PSP neurons. One second of
activity of 20 randomly selected neurons from the input stream (layer 1) and several layers along
the network is shown. Each layer consisted of 6000 neurons; the percentage of shared inputs
between two neurons at a given layer was 10%. Each neuron received 300 excitatory and 300
inhibitory inputs. The same connection matrix was used for all the layers. This is the same
architecture as in Figure 2. Trains in the input layer (layer 1) are random, uncorrelated spike
trains with an average rate of 50 spikes/sec. Threshold was set to 12, at which the firing rates
changed only moderately. Firing rate buildup and synchrony are obvious. Synchrony is ex-
pressed both by bands of dense and sparse firing and by short vertical lines of precise synchrony.
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aging over a very long time. Because all the neurons switch states
together, averaging over large number of neurons rather than
over a long time does not help reduce errors.

Networks with imprecise balance
The scenario with exactly the same number of inhibitory and
excitatory inputs to every neuron is not easy to achieve in biology.
We tested this assumption by running two types of simulations.
In the first, simulation of the connectivity between layers was
probabilistic. In the second, exactly half of the inputs were inhib-
itory, but they were not synchronized with the excitatory inputs.

In the first group of simulations, we tried to achieve a more
realistic condition in which the connections matrix was created
randomly with a given probability for a contact between neurons
in two subsequent layers; excitatory and inhibitory neurons were
chosen randomly, with a probability of 0.5. The results of these
simulations show that the changes in the mean firing rates be-
tween subsequent layers were not monotonous. Fluctuations
with an amplitude of tens of spikes/sec were observed between

subsequent layers. Eventually, at deep layers, activity was either
eliminated completely in the case of high thresholds (Fig. 11A) or
it underwent broad fluctuations with a firing rate that is indepen-
dent of the initial rate for low thresholds (Fig. 11B). These huge
rate fluctuations were induced by the violations of the exact bal-
ance between excitation and inhibition caused by random choice
of inhibitory and excitatory neurons.

Development of synfire waves in networks with excitation
and inhibition that are not timed precisely with each other
Previous studies (Abeles, 1991; Herrmann et al., 1995; Diesmann
et al., 1999) have shown that in long-feedforward networks,
waves of synchronous activity appear and propagate in a stable
manner through many layers. Networks in which these synfire
waves were observed differ from the balanced network used
above in several respects. Our purpose in this section is to pin-
point the primary factor that differentiates networks in which
synfire activity can develop under a wide range of conditions and
networks in which synfire activity is unstable.

Shadlen and Newsome (1998) argued that synfire waves de-
velop only in networks with sparse connectivity, a high percent-
age of shared inputs, and low firing rates. They claim that in

Figure 9. Dependence of model behavior on firing threshold. Simulations had the same
network architecture as in Figure 8. A, Firing threshold was varied between 10 and 15, with
initial firing rate of 50 spikes/sec in all cases. For threshold values �15, the rate increased in the
first two to three layers and then either stabilized (for thresholds 10, 11, and 12) or decayed to
0 (for thresholds 13, 14, and 15). Note that, for a threshold equal to 15, the rate does not change
significantly between the first and second layers, which is consistent with the single-neuron
simulation shown in Figure 7. Other parameters are as in Figure 8. B, Initial firing rate varied
between 10 and 90 spikes/sec, with a firing threshold of 12 in all cases. Error bars were com-
puted as described in Figure 3.

Figure 10. Firing rate in deep layers is essentially independent of initial input rate. Dot
displays of 20 randomly chosen neurons from layer 10 for the network shown in Figure 9B.
Numbers to the left of displays denote the initial firing rate in spikes/sec.
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networks in which each neuron receives multiple inputs at any
given time (“high-input regime”) and the percentage of shared
inputs is �40%, no substantial synchrony can develop. To test
this hypothesis, we performed a simulation in which inhibitory
inputs had the same average rate as the excitatory inputs but were
not synchronized precisely with each other. To achieve this, the
spike trains that were chosen as inhibitory at each layer were
replaced with random spike trains, with an average rate equal to
the rate of the excitation. The results of this simulation can be
seen in Figure 12, in which only the excitatory spike trains are
shown. Synfire waves were formed after a few layers, interleaved
with periods of no activity. These waves propagated stably for any
number of layers tested. Thus, the precise synchronization of the
excitatory and inhibitory inputs with each other, rather than the
high-input conditions, is the reason for the stability of the partial
synchrony in the feedforward network.

Discussion
In this study, we have shown that in feedforward networks with
an exact balance between excitation and inhibition, it is difficult
to transmit the population firing rate faithfully through many
layers. Thus, the idea that a balance between excitation and inhi-
bition in a feedforward network accounts for randomness of fir-
ing time and lack of synchrony and is highly problematic for

transmitting rates. This is in marked contradiction to the conclu-
sions of Shadlen and Newsome (1998), which are based primarily
on studies of only one layer. There, the problems of convergence
to a fixed point, the buildup of synchrony, and the inability to
distinguish among different input firing rates in a short time span
are minor. Here, we show that in the full-layered network, severe
problems for rate transmissions appear. They are associated with
(1) single-neuron input– output properties (2) the dynamics of
the mean layer rates, (3) the buildup of rate variances, and (4) the
sensitivity to deviations from balance conditions. These issues are
discussed below.

Single-neuron input– output properties
The starting point of the Shadlen and Newsome model is a single
neuron with a gain that is close to unity. Our results show that at
the level of a single neuron, such a gain is extremely hard to
achieve for plausible single-neuron model parameters. Even if an
approximately linear input– output relationship is obtained (Fig.
1), achieving a gain of unity requires extreme fine-tuning of
model parameters.

Figure 11. The impact of small deviations from precise balance on the system behavior.
Simulations with random connection matrices, different for each layer, and randomly chosen
inhibitory neurons (with a probability of 0.5). A, Simulation with the same single-neuron pa-
rameters as in Figure 9A (threshold 15). Decay of the rate is observed here also, but it is not
monotonous. B, Simulation with threshold 12. The firing rate does not decay.

Figure 12. Emergence of precisely synchronized waves. Spike trains of inhibitory neurons
produced by the model at each layer were replaced by random spike trains with average firing
rates of the excitatory inputs. This preserved the balance of firing rates between excitation and
inhibition but prevented the two types of inputs from synchronizing with each other. In this
simulation, precisely synchronized waves of activity formed after three to four layers and prop-
agated stably for any number of layers tested.
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Dynamics of mean rates
A faithful rate transmission in the feedforward model requires that
the mean rate of the layers will remain roughly the same as the input
rate; namely, that the input–output gain of rate for the whole system
will be close to unity. Our results show that for the neuron model
used by Shadlen and Newsome, it is possible to achieve approxi-
mately a unity gain for a system with �10 layers (Fig. 3). For longer
chains, the layer rates converge to a fixed point, independent of the
input rates (except for low-input-rate regimes).

The slow convergence of the layer rate to a common fixed-
point value is probably a result of the peculiarity of the
continuous-time discrete-PSP model, in which even an infinites-
imal time difference between excitatory and inhibitory inputs
makes a big difference in the chances of hitting threshold. Com-
parison of Figure 1 with Figure 5 and examination of Figure 6
show the huge difference between this model and the more real-
istic model with gradually rising PSPs.

Maintaining reasonable mean rates across the layers required
fine-tuning of the single-neuron gain. Changing the single-
neuron threshold by �10% induced either a fast decay of the
rates or rapid growth to unrealistically high levels. Intuitively, one
might think that the optimal value for rate transmission is a gain
of unity. Indeed, this was the rationale behind the Shadlen and
Newsome model. However, we have shown (Fig. 9) that with this
choice, the activity at deeper layers decays to zero because of the
partial synchrony that develops in the network. This synchrony
between either a pair of excitatory cells or a pair of inhibitory cells
in a given layer increases the variance of the input of this layer to
the neurons in the next layer, whereas the synchrony between
excitatory and inhibitory cells decreases this variance. As we show
in the Appendix, the net effect of the synchrony in a given layer is
to reduce the variance of the input to the next layer. This will
cause a decrease in the mean firing rate in successive layers. Thus,
a gain larger than unity is required to maintain a persistent activ-
ity across the chain. In this case (Figs. 3, 9), the firing of each layer
will settle into a state with a nonzero firing rate and a mild level of
synchrony.

Buildup of rate variance
The feasibility of rate transmission depends not only on the prop-
agation of the mean rates across the layers but also, critically, on
the variance of these rates. We have shown here that even when
the mean rates are transmitted faithfully, rate information is lost
because the fluctuations of the population rates build up quickly
even after only three to four layers. This results from the emer-
gence of correlations between the rates of different neurons be-
cause of their common input. In our simulations, we have used
100 msec as the window of integration time for the rate estima-
tion. To ensure accurate rate estimates, the fluctuations in pop-
ulation rates have to be reduced by at least a factor of 3, and for
this, the window of integration time needs to be increased to �1
sec. Thus, a simple spatial averaging of the activity of each layer
will not transmit rate information faithfully, because the spatial
averaging will not suppress the random fluctuations in the rates
efficiently, as would occur in the uncorrelated case. Thus, we
conclude that in a feedforward network, firing rates may be used
as codes only for a small number of processing stages. Whether a
more sophisticated decoding scheme can overcome this problem
has yet to be studied (Yoon and Sompolinsky, 1998).

Requirement of precise balance
The scenario of both excitation and inhibition being fed forward
from layer to layer is probably not physiological when dealing

with layers of neurons that reside in separate cortical areas.
Transmission between cortical areas is excitatory. Thus, the bal-
anced network cannot emulate rate transmission between corti-
cal areas. Here, the simulations shown in Figure 12 are more
appropriate. Even within a cortical column, the physiological
adequacy of a scheme with identical inhibitory and excitatory
neurons is questionable. The local axonal distribution of excita-
tory and inhibitory neurons is very different, as are the intrinsic
neuronal properties (Thomson and Deuchars, 1994; Markram et
al., 1998). In view of the relatively small percentage of inhibitory
neurons and inhibitory synapses in most cortical regions, one
may prefer to consider a pool of inhibitory neurons that receives
excitation from many excitatory neurons in the region and deliv-
ers inhibition to both excitatory and inhibitory neurons, ignoring
their layer membership. Under these conditions, when the inhib-
itory neurons are not part of the feedforward chain, the inhibi-
tion can balance the excitation without being timed precisely
with it. This type of architecture leads to the realization of the
third scenario of network behavior, the synfire chain, depicted in
Figure 12.

These instances of synchronous firing propagating in a robust
way from one layer to the next are, in fact, identical to the synfire
waves first suggested by Abeles (1982) to account for experimen-
tally observed precise firing patterns in recordings from monkey
frontal cortex. The stability of such waves has also been con-
firmed by a number of theoretical studies (Abeles, 1991; Bienen-
stock, 1995; Herrmann et al., 1995; Diesmann et al., 1999), and
synfire-like phenomena have also been observed recently in vitro
by Reyes (2002).

This work has highlighted the difficulty of achieving neuronal
variability through balance between excitation and inhibition in
purely feedforward architecture. This situation should be con-
trasted with the balanced state in recurrent networks. As shown
by van Vreeswijk and Sompolinsky (1996, 1998), in these net-
works, the balance between excitation and inhibition is generated
by the internal feedback via the dynamic adjustment of the firing
rates of the excitatory and inhibitory populations. Consequently,
there is no need to fine-tune the connectivity parameters. Fur-
thermore, the firing rates in the balanced state of the recurrent
networks vary linearly with the rate of their external input. Thus,
transmission of rates in a long chain of neuronal layers may be
feasible if the layers possess appropriate lateral feedback.

Our results do not rule out completely the possibility of rate
transmission in a strictly feedforward network. The question of
whether there is still a theoretical possibility of maintaining rate
transmission in feedforward networks requires additional mod-
eling studies. Van Rossum et al. (2002) found that the input-rate
to output-rate of a single-neuron model may be linearized while
large variability is added to output timing by incorporating a bias
and large membrane noise. In a network of such neurons, firing
rates may be maintained with low time correlations. The study by
van Rossum et al. differs from ours in several key aspects. First, to
obtain their results, all neurons were injected with a Gaussian
noise with positive mean. Fine-tuning of the noise parameters
was necessary to achieve propagation of rate coding. Further-
more, in these tuned parameters, each neuron was firing in al-
most periodic manner (particularly in the first layers), as shown
in their Figure 4A. This resulted in a low variability in the total
spike counts, which is required for the decoding of the rate. These
regular patterns of individual neurons are very different from the
observed cortical activity. Both the Shadlen and Newsome model
and ours were aimed at exploring propagation of rate code via
firing activity patterns, which are highly irregular, as observed in
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cortex. Another unrealistic feature in the van Rossum et al. model
is the small numbers of neurons per layer and all-to-all connec-
tivity between layers. Again, our model assumed a degree of con-
nectivity and population size that mimic cortical architecture
more realistically. How these differences will affect the van Ros-
sum network compared with ours is an issue that needs addi-
tional detailed investigation.

Appendix
In this appendix, we show, using analytical methods, that the
emergence of synchrony in a long feedforward network with bal-
anced excitation and inhibition lowers the effective gain of the
network layers. This phenomenon is the reason for decay of the
rate in a feedforward network with single neurons that have a gain
approaching 1 (Fig. 9). The input to a neuron during a single
integration time is the sum of its excitatory and inhibitory inputs,
as follows:

I � �
i�1

k

xi � �
j�1

k

yj (3)

where xi and yj denote excitatory and inhibitory inputs from
single presynaptic cells, respectively, and k represents the num-
bers of excitatory and inhibitory inputs, which are equal in the
balanced model.

The mean of the input over time is zero as a result of the
balance between excitation and inhibition, as follows:
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where r represents the average firing rate.
The variance of the input is given by the equation
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where � represents the variance of a single input and c represents
the average covariance of pairs of inputs. We use the fact that all
the presynaptic neurons are identical in their properties, and
therefore, all the pairs of different presynaptic neurons covary in
their rates in the same way. Note that for c � �, the current
vanishes. In this case, all neurons fire in full synchrony; hence,
there is perfect cancellation of the excitatory and inhibitory cur-
rents at any time step.

The effect of synchrony on the transmission of firing rates by
the network can be summarized as follows. The synchrony be-
tween either a pair of excitatory or inhibitory cells in a given layer
increases the variance of the input of this layer to a neuron in the

next layer. Conversely, the synchrony between excitatory and
inhibitory cells decreases the variance of their input to the next
layer. The total number of pairs of excitatory and inhibitory cells
in the input to each cell is k(k � 1), and the total number of
excitatory-inhibitory pairs is k 2. Hence, the net effect of the syn-
chrony in a given layer is to reduce the variance of the input to the
next layer, which will cause a decrease in the mean rate of this
layer. As a result, the gain of the single neuron, when fine-tuned
to unity in the absence of synchrony (c � 0) is insufficient to
preserve the firing rate in the presence of synchrony. In a recent
work by Salinas and Sejnowski (2000), it was claimed that when
the correlations are uniform across the network, as is assumed
here, the current variance is unaffected by the correlations, be-
cause the correlations within the two populations cancel exactly
the contribution of the correlations between the two populations.
Here, we show that this cancellation is not exact but rather is valid
only on the order of k 2 contribution to the current variance.
Conversely, the term that is linear in the connectivity k is nonzero
and contributes negatively to the current variance. For this rea-
son, the layer rates decay quickly to zero unless the single-neuron
gain is chosen to be greater than unity to compensate for the
effect of correlations, as shown in Figure 9.
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