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Neurons in macaque primary visual cortex (V1) show a diversity of orientation tuning properties, exhibiting a broad distribution of
tuning width, baseline activity, peak response, and circular variance (CV). Here, we studied how the different tuning features affect the
performance of these cells in discriminating between stimuli with different orientations. Previous studies of the orientation discrimina-
tion power of neurons in V1 focused on resolving two nearby orientations close to the psychophysical threshold of orientation discrim-
ination. Here, we developed a theoretical framework, the information tuning curve, that measures the discrimination power of cells as a
function of the orientation difference, ��, of the two stimuli. This tuning curve also represents the mutual information between the
neuronal responses and the stimulus orientation. We studied theoretically the dependence of the information tuning curve on the
orientation tuning width, baseline, and peak responses. Of main interest is the finding that narrow orientation tuning is not necessarily
optimal for all angular discrimination tasks. Instead, the optimal tuning width depends linearly on ��. We applied our theory to study the
discrimination performance of a population of 490 neurons in macaque V1. We found that a significant fraction of the neuronal popu-
lation exhibits favorable tuning properties for large ��. We also studied how the discrimination capability of neurons is distributed and
compared several other measures of the orientation tuning such as CV with Chernoff distances for normalized tuning curves.
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Introduction
Neurons in primary visual cortex (V1) are selective for the move-
ment direction or the orientation of line-like simple visual pat-
terns. The shape of the response tuning curve and orientation
selectivity of neurons in macaque V1 are diverse (Ringach et al.,
2002). Our motivation was to understand the possible functional
use of the observed diversity in V1 orientation tuning.

The orientation selectivity of neurons in V1 has been studied
mainly in two different ways. First, the most informative point of
a tuning curve, which is usually the steep flank part of the tuning
curve, is selected, and discrimination capability of the neuron for
two angles is computed using ROC analysis or neurometric func-
tions (Bradley et al., 1987; Hawken and Parker, 1990; Vogels and
Orban, 1990; Parker and Newsome, 1998). But these studies only
analyzed discrimination for two nearby angles and did not clarify
the functional use of broadly tuned neurons. In addition, dis-
crimination capability computed in this way depends only on the
local shape of the tuning curve. The advantage of having diversity
in the global shape of tuning curves may be clear only in terms of
population coding.

Discrimination capability of a population of neurons is more

difficult to study mainly because a practical measure for it has
been lacking. In several studies (Seung and Sompolinsky, 1993;
Abbott and Dayan, 1999; Sompolinsky et al., 2001), Fisher infor-
mation was used to study population coding. But Fisher infor-
mation can be used only when angles are very near to each other.
Other well known measures such as mutual information are
computationally too expensive to calculate for a population of
neurons.

Here, we studied the relationship between the shape of a tun-
ing curve and the discrimination capability of a population of
neurons using the Chernoff distance (Cover and Thomas, 1991;
Kang and Sompolinsky, 2001). The Chernoff distance is a mea-
sure of the difference between two probability distributions and
has direct relationships with other information measures such as
Fisher information, mutual information, and the error of maxi-
mum likelihood discrimination.

For a population of neurons with preferred orientations that
are distributed isotropically, the Chernoff distance between two
distributions of spike counts corresponding to two different ori-
entations depends on only ��, the difference in the orientations.
The information tuning curve is a plot of Chernoff distance as a
function of ��. The shape of the information tuning curve char-
acterizes how different orientations are represented by the activ-
ities of a population of neurons. In Results, we studied how the
information tuning curve depends on various features of the re-
sponse tuning curve.

We applied the theoretical analysis to macaque V1 data. The
results suggest that diversity may exist in V1 because different
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neurons are optimal for different discrimination tasks. It also
shows that neurons in macaque V1 are not optimized for the
discrimination of nearby angles. Finally, we discussed the rela-
tionship between Chernoff distance and several other measures
of orientation tuning such as circular variance (CV) and tuning
width.

Materials and Methods
Preparation and recording. Acute experiments were performed on 40
adult Old World monkeys (Macaca fascicularis) in the laboratories of
R. M. Shapley, M. J. Hawken, and D. L. Ringach and colleagues (cf.
Ringach et al. 2002). The methods of preparation and single-cell record-
ing are the same as those described by Ringach et al. (2002). Each cell was
stimulated monocularly via the dominant eye and characterized by mea-
suring its steady-state response to drifting sinusoidal gratings (the non-
dominant eye was occluded). With this method, basic attributes of the
cell, including spatial and temporal frequency tuning, orientation tun-
ing, contrast response function, and color sensitivity, as well as area,
length, and width tuning curves, were measured. Orientation tuning
curves were measured at high contrast (0.8). Spike times were recorded
for 18 directions (every 20°). Spatial frequency, temporal frequency, and
size of the sinusoidal gratings were optimized for each cell separately to
maximize the peak response.

A model for the directional tuning of the spike count. We introduced a
Gaussian model for the directional tuning of mean spike count and fit the
model to the measured mean spike counts for 18 directions to reduce
noise in the experimental data and to extract a small number of param-
eters to describe the shape of the tuning curve. The model tuning curve
�(�) is described in Equation 1:

��� � � A � B1 exp����2/2�2� � B2exp����2/2�2�, (1)

where �� � R(�, �0) and �� � R(�, �0 � �). �0 is the preferred
direction of the neuron. R( x, y) � min{�x � y�, 2� � �x � y�} is the
angle between x and y. See Figure 2 for examples of tuning curves. For
each neuron in the V1 data, we minimized the squared error, Er( A, B1 ,
B2 , �, �0):

Er� A, B1, B2, �, �0� � �
i�1

18

���� i, A, B1, B2, �, �0� � m��i��
2,

(2)

where m(�i ) is the mean spike counts of the neuron for the direction, �i.
We also defined the error ratio, RER to measure the goodness of the fit to
a Gaussian model:

RER � Er� A*, B1*, B2*, �*, �0*�/Er0, (3)

where Er0 � �
i�1

18 �m0 � m��i�	
2 and m0 is the mean of m(�i). A*, B1*,

B2*, �* and �0* are the values of parameters minimizing the error Er( A,
B1 , B2 , �, �0).

In this study, we ruled out neurons with a maximum firing rate lower
than five spikes per second. Seventy-six neurons among 897 neurons
were discarded in this way. We fitted the observed mean spike counts to
our Gaussian model (see Eq. 1) and did not study further those neurons
that did not show a good fit to the proposed model (RER 
 0.3). Three
hundred thirty-one neurons among 821 neurons are discarded in this
way. The total number of neurons in the resulting database was 490. Most
of the discarded neurons should be considered as “noninformative” in
any sense. For most of the discarded neurons, the tuning curves were very
irregular, and baseline firing rates were relatively large. Spiking activities
of those neurons were less reliable so that the statistics of the spike count
had larger variance. For a few neurons (�1%), our model was bad be-
cause the distance between the peaks of the tuning curve was different
from �. But such neurons were rare and ignored in this study.

Classification of neurons. Neurons are classified into orientation-
selective (OS) neurons and direction-selective (DS) neurons based on the

ratio of the heights of two peaks of tuning curves RB. RB is min(B1 ,
B2 )/max(B1 , B2 ) where B1 and B2 are the height of two peaks (see Eq. 1
and Fig. 4). RB is a ratio of the responses for the preferred direction and
the opposite direction. For tuning curves of ideal OS neurons, RB is 1,
and for ideal DS tuning curves, RB is 0. We classified neurons as OS if
RB 
 0.5 or as DS otherwise. We found that 240 neurons are OS and 250
neurons are DS among 490 neurons. A similar method was used in a
previous study (Hawken et al., 1988).

Spike count statistics. As for the statistics of the spike count, we assumed
that it follows a Poisson distribution, the mean of which is the same as the
variance. It is observed in experiments that the variance is often approx-
imately proportional to mean spike count (Tolhurst et al., 1983). Real
distributions show some deviations from Poisson distributions. Figure 1
shows a scatter plot of the mean and the variance of spike count at the
preferred orientation for 490 neurons. Here, we just assumed Poisson
distributions and focused on studying the role of the shape of tuning
curves in the neuronal representation of sensory information.

Significance of correlation. We calculated correlation coefficients be-
tween several features of tuning curves. To show the significance, we
randomly shuffled the indices of one of two quantities with which the
correlation coefficient is calculated and calculated the correlation coeffi-
cient again. We used the frequency that the absolute value of this corre-
lation coefficient after random shuffling is larger than the absolute value
of the correlation coefficient before random shuffling as a measure of the
significance. We did this 1000 times. If none of the trials generated a
correlation coefficient larger than the original, we took the significance as
�0.1%.

Results
Distance measures in the representation space of a population
of neurons
To study the relationship between the shape of a tuning curve and
the capability to discriminate angles, a measure of discrimination
capability should be defined and calculated. Here, we used
Chernoff distance as a measure of orientation discrimination ca-
pability for a population of neurons.

Chernoff distance measures the difference between two distri-
butions. For two distributions, P(r���1 ) and P(r���2 ), Chernoff
distance DC(�1 , �2 ) is defined in the following way:

D	��1, �2� � �log Trr�P
	�r���1�P1�	�r���2� (4)

DC��1, �2� � max
	

D	��1, �2� (5)

Figure 1. Mean and variance of spike counts of 490 neurons for preferred directions of each
neuron. For each neuron, the number of spikes for one period of sinusoidal grating stimulus was
counted. The average value of the ratio of variance and the mean is 1.9, but the distribution of
the ratio between mean and variance has a peak at 1, which is the value for Poisson
distributions.
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DC(�1 , �2 ) is the maximum value of D	(�1 , �2 ) in terms of 	
within an interval 0 
 	 
 1. �i is the orientation of a sinusoidal
grating, and r� is a vector of spike counts for a population of
neurons. P(r���i) is the distribution of activity across the popula-
tion r� when the stimulus with the orientation �i is presented. Trr�

is a summation over all possible r�.
DC(�1 , �2 ) � 0 for any pairs of distributions. DC(�1 , �2 ) is

0 if and only if two distributions are the same. DC(�1 , �2 ) �
DC(�2 , �1 ) so that DC(�1 , �2 ) is uniquely defined for a given
pair of orientations (Cover and Thomas, 1991; Kang and Som-
polinsky, 2001).

Before deriving the form of Chernoff distance for a population
of neurons, we introduced its relationship with Euclidean dis-
tance and the error of maximum-likelihood discriminator to ex-
plain the meaning of the Chernoff distance. For the relationships
with Fisher information and mutual information, see Appendix.
We discuss the advantage of Chernoff distance later (see
Discussion).

The relationship between Chernoff distance and Euclidean
distance
A simple way to measure the difference between two distribu-
tions is to calculate Hellinger distance (Cam and Yang, 2000),
which is the Euclidean distance between �P�r���i�:

DH��1, �2� � �Trr���P�r���1� � �P�r���2�� 2

(6)

Chernoff distance DC is the maximum value of D	 in terms of 	,
and D	 often has its maximum at 	 � 0.5. In this case, DC has the
following relationship with Hellinger distance:

DC��1, �2� � �log�2 � DH
2 � � log2. (7)

Hellinger distance is a more intuitive measure than Chernoff
distance and often gives a very good approximation of Chernoff
distance through Equation 6 if D	 has its maximum near 	 � 0.5.
In fact, for the population of neurons with orientation symmetry
as considered later here, D	 has a maximum at 	 � 0.5 (see
Appendix). So Chernoff distance and Hellinger distance have the
above relationship here.

Relationship with the error of maximum-likelihood discriminator
Another way of measuring the difference between two distribu-
tions is to perform discrimination using a discriminator and cal-
culate the error. If two distributions are well separated, the dis-
crimination error is small. The error of maximum-likelihood
discriminator provides an error of the optimal discriminator.

When DC(�1 , �2 ) 

 1, the error of the maximum-
likelihood discriminator PC has an exponential dependence on
the Chernoff distance DC(�1 , �2 ) (Kang and Sompolinsky,
2001):

PC � exp��DC��1, �2�	 (8)

The error of the maximum-likelihood discriminator PC is de-
fined in the following way:

PC � Trr�P�r���1�
�log�P�r���2�/P�r���1�	�, (9)

where 
( x) is 1 for x 
 0 and 0 for x 
 0. Equation 8 shows that
if the Chernoff distance DC(�1 , �2 ) is larger than 1, discrimina-
tion between two stimuli can be done with small error.

Whether the condition of DC(�1 , �2 ) 

 1 is satisfied or not
depends on the size of the population, the size of the time interval,
and the shape of tuning curves in general. For two far-away ori-

entations, this condition will be satisfied in most cases. For two
orientations very close to each other, this condition may not be
satisfied for a population of neurons with small size. For example,
for a population of �100 typical neurons in V1, time interval
�100 msec and angles larger than a few degrees, the Chernoff
distance for this population is typically of the order of 1 if not
much larger than that. So the condition required for the relation-
ships between Chernoff distance and other information measures
are satisfied in physiologically plausible situations. Chernoff dis-
tance has exponential relationships with mutual information and
the error of maximum-likelihood discriminator. So, in practice,
it is enough for Chernoff distance to be 3– 4 to show good con-
vergence to its asymptotic behavior.

Chernoff distance for a population of neurons
Here, we calculated the Chernoff distance for a population of
neurons to get a quantitative relationship between the shape of
the tuning curve and the discrimination capability of a popula-
tion of neurons. We assumed that each neuron observed in the
experiment represents a population of neurons with tuning
curves that have the same shape as the observed one but in which
preferred directions are different. We calculated DC(�1 , �2 ) for
this population of neurons.

When the tuning curve of a neuron is �(�), we generate tuning
curves for a population of neurons using the operation of rota-
tion and reflection:

�k,a�� � � ���� � �k���1�a	, (10)

where �k � 360� k/N, k � 0 . . . N � 1 and a � 1 or 2. k is an
index for rotation of the tuning curve, and a is an index for its
reflection. The number of neurons in this population is 2N.

For this population of neurons, the Chernoff distance in
Equation 4 has the following form (see Appendix for the
derivation):

DC��1, �2� � �
a�1,2,k�0,. . .,N�1

1

2� ��k,a��1� � ��k,a��2�� 2

.

(11)

The summation in Equation 11 can be approximated by an inte-
gration for large N:

DC��1, �2� �
N

720��d�� ���� � �� � � ���� �� 2

� � ����� � ��� � �������2

. (12)

Equation 12 shows us how the shape of the tuning curve is related
to the discrimination capability of a population of neurons. The
Chernoff distance is an extensive quantity so that it is propor-
tional to the size of the neuronal population. Here, this N will be
assumed to be divided out so that the Chernoff distance will be
Chernoff distance per neuron in the population. DC(�1 , �2 ) will
be also written as DC(�� ) because DC(�1 , �2 ) depends on �1 and
�2 only through ��.

The information tuning curve
We introduced the information tuning curve, a plot of DC(�� ) as
a function of ��, and discussed what it shows. Then we studied
how DC(�� ) depends on the features of a tuning curve.
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Examples of information tuning curves
Figure 2 shows response tuning curves with various shapes. There
are broad tuning curves and narrow tuning curves. There are
neurons with large baselines and neurons with baselines at zero.
Neuron (a) has a bigger peak response than neuron (b). In the
previous section, we found the relationship between the shape of
a tuning curve and discrimination capability (Eq. 12). Figure 3
shows DC(�� ) as a function of �� and how the diversity in the
shapes of response tuning curves affects the discrimination capa-
bilities of neurons.

The information tuning curve shows how the distance be-
tween two orientations in the neuronal representation space
changes as the angle between them, ��, increases. Consider infor-
mation tuning curves (a) and (e) in Figure 3. One thing very easy
to notice in the shape of those information tuning curves is that
OS tuning curves like (a) in Figure 2 have information tuning
curves with two peaks whereas a DS tuning curve like (e) in Figure
2 has an information tuning curve with one peak. Figure 2a is an
OS tuning curve so that it is not able to discriminate two opposite
directions. It is represented by a minimum of DC(�� ) at �� �
180° in Figure 3. Discrimination capability of an ideal DS neuron
such as (e) in Figure 2 should be maximized for two opposite
directions. It is represented by a maximum of the information

tuning curve at �� � 180° in Figure 3e. There are also information
tuning curves between these two cases like Figure 3c.

The information tuning curve also enables us to compare the
discrimination capability of neurons quantitatively. Consider (a)
and (b) in Figure 3. The information tuning curves have similar
shapes, but the overall scale is more than three times bigger for
(b), which means that we need three times as many neurons like
(a) as neurons like (b) to achieve the same discrimination power.
This is because of the big baseline of the response tuning curve of
(a) (Fig. 2). Because the spike count is Poisson, a large baseline
means spike counts are more stochastic. In fact, the modulation
of the tuning curve for (a) is bigger than for (b), suggesting that
without a large baseline, neuron (a) should be the more informa-
tive neuron. Neurons (d) and (f) also have information tuning
curves with similar shape and different overall scales. Neuron (d) has
a discrimination capability about 40 times bigger than neuron (f).

Information tuning also shows which tuning curves are good
for the discrimination of nearby angles or faraway angles. Con-
sider the information tuning curves of (d) and (e) in Figure 3. For
(d), DC(�� ) increases with a large slope as �� increases from 0.
For (e), the information tuning curve has a much smaller slope.
For narrow response tuning curves like Fig. 2d, information tun-
ing curves increase with large slopes as �� increases from 0 and
saturate soon. For broad response tuning curves like Figure 2e,
information tuning curves increase with small slopes and do not
saturate. This makes neurons with narrow response tuning
curves have a discrimination capability larger for small �� and
smaller for large �� than neurons with broad tuning curves.

Parameters to determine the Chernoff distance
Here, we study which features of tuning curves determine
DC(�� ). Consider the model of tuning curve �(�) shown in
Figure 4. �(�) has two peaks at opposite directions. A is the level
of baseline. B1 and B2 are the size of Gaussian peaks on the top of
the baseline. � is the width of the Gaussian functions. For sim-
plicity, we considered only the case of OS tuning curves (B1 �
B2 � B) here.

Equation 12 shows that DC(��, A, B, �) is MBDC(��, A/MB ,
B/MB , �), where MB � A � B is the peak response of the tuning
curve. Note that DC(��, A/MB , B/MB , �) is the Chernoff dis-
tance for a normalized tuning curve, the peak response of which
is 1 because A/MB � B/MB � 1. We found that it is convenient
to factor out the peak response MB and study how Chernoff
distance depends on the remaining parameters because once we
understand how DC(��, A/MB , B/MB , �) behaves, it is easy to
see how the original Chernoff distance depends on the peak re-
sponse MB: it is proportional to MB. For this reason, we factored

Figure 2. The response tuning curves of six neurons in V1. Solid lines are models of tuning
curves fitted to experimental results. Filled dots present the observed mean spike counts for 1 sec.

Figure 3. Plots of DC(��) (i.e., examples of information tuning curves). Response tuning
curves of corresponding neurons are shown in Figure 2.

Figure 4. A model of tuning curve �(�). �(�)�A�B1 exp(���2/2�2)�B2 exp(���2/
2�2). �� (��) is the angle between � and 90° (270°). For this example, A � 5, B1 � B2 � 20
� � 22.5°.
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out peak response MB and studied how DC(�� ) depends on three
parameters: ��, relative baseline RA � A/MB , and tuning width
�. Relative baseline RA � A/MB is also the ratio of the responses
to preferred orientation and orthogonal orientation (Gegenfurt-
ner et al., 1996) and has been considered as a measure of orien-
tation selectivity.

Dependence on the relative baseline RA

DC(�� ) decreases monotonically as RA increases because RA is a
nontuned component of the tuning curve. Figure 5 shows a two-
dimensional plot DC(��, RA , �) for � � 17.2°, a typical value of
� for neurons in V1. For RA as large as 0.5, DC(�� ) is already very
small for all ��. Also note that DC(�� ) for large RA looks flatter
than DC(�� ) for small RA. This point is more clearly shown by
the inset in Figure 5. DC(�� ) decreases monotonically as RA

increases and decreases faster for larger ��.
To study these points more quantitatively, we use the “half-

width” value of RA , AH , where DC(��, RA � AH , �) is DC(��,
RA � 0, �)/ 2. AH measures how fast DC(�� ) decreases as RA

increases. If AH were small, it would mean DC(�� ) decays very
fast as RA increases. If RA of a tuning curve were much larger than
AH , the discrimination power of the tuning curve would be
small, unless peak response MB were very big.

Figure 6 shows a plot of AH for several different values of � and
for all possible values of ��. Note that DC(�� ) is very sensitive to
RA. For RA as large as 0.15, DC(�� ) is already significantly
smaller than DC(�� ) for RA � 0 because a typical value of AH is
0.1. AH is smaller than 0.142 and larger than 0.059 for any � and

��. These values of AH provide a scale for RA to be “too big” or
“small enough.” For example, the response tuning curve of Fig-
ure 2a has too large a relative baseline because RA is about 0.5.

The effect of RA is not the same for different ��. For small ��,
AH is 0.142 for any tuning width �. Figure 6 shows that when ��
is close to 90° or 270°, AH tends to be smaller, which means that
degradation of the discrimination capability is bigger for such ��.
This is the reason why DC(�� ) for large RA is flatter than for
smaller RA as a function of �� in Figure 5.

Dependence on tuning width �
Consider the case that the relative baseline RA � 0. In this case, it
is possible to calculate DC(�� ) analytically. Performing the inte-
gration in Equation 14 gives the following result:

DC��� � � 4N��1 � e�R���,0�2/8�2
� e�R���,��2/8�2

�,

(13)

where R( x, y) is the angle between x and y.
As a function of �, DC(�� ) has a maximum at a nonzero value

of �. Figure 7 shows a surface plot of DC(�� ) as a function of �
and ��. For small �, exponential terms in Equation 13 are very
small for nonzero ��, and DC(�� ) rapidly saturates to 4N� as ��
increases [for another example see (d) in Fig. 3]. This makes
DC(�� ) flat as a function of ��. Figure 7 also shows that a very
narrow tuning curve does not produce large DC(�� ) because
DC(�� ) converges to a value proportional to � as � 3 0. For
larger �, DC(�� ) has round shape. In this case, the 4N� factor is
larger but the exponential terms in Equation 13 decrease
DC(�� ).

For each ��, there is an optimal tuning width maximizing
DC(�� ). Maximization of Equation 13 gives this optimal width,
�*, which is proportional to ��:

�* � ��/�8x* � 0.316��, (14)

where x* satisfies 1 � e �x* � 2x*e �x* � 0. We assumed that
�� �� �.

An optimal value is more important when DC(�� ) decreases
rapidly as the difference between tuning width � and optimal
tuning width �* increases. We defined �H to measure how fast
DC(�� ) decreases as � departs from �*. It is defined in a way
similar to AH , such that DC(��, RA , �H ) � DC(��, RA , �*)/ 2.
There are two �H for a given �� and RA. Because the optimal
tuning width �* is non-zero, DC(�� ) would be decreased if �
deviated from �* either by increasing it or decreasing it.

Figure 5. A surface plot of DC(��) as a function of RA and ��. �� 17.2°. The inset has plots
of DC(3°) and DC(10°) as a function of RA. The solid line is for DC(3°). The dashed line is for DC(10°).

 

 

 

 

 

Figure 6. Plot of the half-width for relative baseline AH as a function of angular difference
��. The dependence on tuning width is revealed by comparing these curves for tuning width
� � 11.5, 17.2, and 22.9°.

Figure 7. A plot DC(��) as a function of tuning width � and ��. Relative baseline RA � 0.
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DC(�� ) depends on � more sensitively for smaller ��. Ana-
lytical study of Equation 13 shows that ��* � �H� is O(�� ) for
small ��, that is, smaller for smaller ��. Figure 8 shows �H and �*
together for A � 0. It is clear that �H is closer to �* for small ��.
It means that neurons with broad tuning curves have poor capa-
bility to discriminate two nearby angles because tuning width is
very different from the optimal value for nearby angles and
DC(�� ) depends on � very sensitively. In contrast, for a large ��,
DC(�� ) depends on � more weakly so that informative neurons
do not need to have � very close to �*.

We now consider the more general case in which the relative
baseline RA 
 0. This cannot be calculated analytically but can be
calculated numerically. Figure 9 shows DC(3�) and DC(45�) for
various values of RA. These should be compared with the RA � 0
case in Figure 7.

DC(�� ) has non-zero and finite optimal widths, �* for non-
zero RA , too. A smaller value of � decreases the number of neu-
rons active for the stimuli making DC(�� ) smaller. But it also
increases the slope of the tuning curve making DC(�� ) bigger.
This competition of two effects results in the existence of an
optimal � to discriminate two orientations in general.

Optimal tuning width �* is bigger for larger RA. There is a
small shift of �* peaks as RA goes from 0 to 0.3. Figure 10 shows
�* for various values of RA. This graph also shows the �� depen-
dence of the optimal tuning width �*.

Neurons in V1
Here, we studied how the features of tuning curves are distributed
within the population of neurons in V1 of macaque monkeys.

After that, we discussed the distribution of discrimination capa-
bility of neurons in V1.

Features of V1 tuning curves
We studied how the features of tuning curves are distributed in
V1 separately for OS and DS neurons. Figure 11 shows histo-
grams of peak responses, relative baselines, and response tuning
widths for 240 OS neurons and 250 DS neurons.

Peak responses, MB � max{B1 , B2} � A, to 80% contrast
stimuli are �100 spikes/sec for most of the neurons in V1. The
means of MB are 38.6 and 49.7 spikes/sec for OS neurons and DS
neurons, respectively. Only 37 neurons among 490 neurons have
peak response higher than 100 spikes/sec. Thirty-three neurons
among them are DS neurons.

Figure 11 shows the histograms of relative baseline RA �
A/MB , too. Remember that typical values of AH are between
0.059 and 0.142 (Fig. 4). AH gives us a scale to see whether there is
a significant degradation of discrimination capability attributable
to the baseline. Figure 11 shows that RA is smaller than these
values for most neurons. It means for most neurons RA of the
tuning curve is not too large to degrade discrimination capability.
The mean of RA is bigger for the OS population than the DS
population.

Finally, the histograms of tuning width � show that the distri-
butions of � are broad or nearly flat within intervals of allowed
values. � cannot be much larger than 40° for OS neurons because
two Gaussians overlap if the peaks of Gaussians are too broad.
Only DS neurons with one peak can have � as large as 60°. This
gives an upper bound condition on the value of �. There is also a
lower bound for �. Because our experiment was done only for 18
directions (every 20°), this resolution limitation requires that �
should be larger than 7°. If neurons with tuning width smaller
than this existed, our estimation of tuning width would be an
overestimation.

It should be emphasized that the tuning widths of neurons in
V1 are not optimized for the discrimination of nearby angles.
Equation 14 and Figure 10 show that the optimal tuning width �*
is about 0.3��. This means for �� as large as 10°, �* is only 3 or 4°.
Such a small tuning width is hard to find, if not impossible, in
macaque V1. As orientation discriminators, neurons in V1 are
optimized for �� larger than 20°.

Table 1 shows the means and median values of distributions
shown in Figure 11. The features of tuning curves are not inde-
pendent of each other. There seems to be several different types of
tuning curves in the neuronal population such as narrow OS
tuning curves with zero baselines or broad OS tuning curves with
large relative baselines and large peak responses. This gives cor-
relations between different features of tuning curves within the

Figure 8. Half-width for tuning width �, �H , and �*. Solid lines are for �H. The dashed line
is for optimal tuning width �*. Relative baseline RA � 0.

Figure 9. Plots of DC(3°) and DC(45°) as functions of tuning width �. Each line is for a
different value of relative baseline RA. From top to bottom, RA � 0, 0.1, and 0.2, respectively.

Figure 10. Optimal tuning width �* for several different values of relative baseline RA.
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neuronal population. We calculated cor-
relation coefficients between different
features for the OS and the DS popu-
lations. Table 2 shows these correlation
coefficients.

There are three significant correlations.
For the OS population, the relative base-
line RA showed a significant correlation
with the peak response MB (correlation
coefficient, 0.24.). So there is a tendency
that OS neurons with a large peak response
have a large baseline. The mean of peak
responses for OS neurons with relative
baseline RA 
 0.2 (80 cells) is 47.8 spikes,
whereas that for OS neurons with relative
baseline RA � 0.2 (160 cells) is 34.0 spikes.

Another significant correlation is found between RA and � in
the OS population (correlation coefficient, 0.39). Many narrow
tuning curves of OS neurons do not have a baseline. The mean of
tuning width � for OS neurons with relative baseline RA 
 0.2
(80 cells) is 26.4°, whereas that for OS neurons with relative base-
line RA � 0.2 (160 cells) is 20.0°.

The last significant correlation is between MB and � in the DS
population. DS neurons with large peak responses tend to have
broad tuning curves. For example, the average tuning width of 33
DS neurons with MB 
 100 spikes/sec is 34.2°. The mean of � for
the other 217 neurons is 23.4°.

Specialization of neurons to different tasks
Here, we studied specialization in V1. We showed in Equation 14
and Figure 9 that optimal tuning width is different for different
�� so that neurons with different tuning width may be specialized
to discrimination between angles with different ranges of ��.

One way to study the specialization of neurons to different
tasks is to compare the discrimination capability of neurons for
two different angles. We made scatter plots of DC(�� ) for two
different values of �� for normalized tuning curves of 490 neu-
rons. Figure 12 shows three scatter plots of DC(��1 ) and
DC(��2 ) for ��1 � 3° and ��2 � 10, 45 and 90°, respectively. We
can see that as ��2 increases, the spread in the scatter plots in-
creases.

We calculated the correlation coefficient between DC(3�) and
DC(�� ) as a function of ��. Figure 12d shows this correlation
coefficient decreases almost linearly and becomes negative at
�� � 156°. This shows that neurons with large tuning widths do
not have large discrimination capability for small ��.

Comparison with other measures of orientation selectivity
Here, we compared Chernoff distance with several other mea-
sures of orientation selectivity such as CV (Swindale, 1998;
Ringach et al., 2002), tuning width, and the ratio of the responses
to preferred orientation and orthogonal orientation (Gegenfurt-
ner et al., 1996). These measures were used as a measure of ori-
entation selectivity without rigorous theoretical background.
Here, we calculated each measure for 490 neurons and made
scatterplots for various values of ��. These measures weakly cor-
related with Chernoff distance in general because Chernoff dis-
tance is proportional to the overall scale of a tuning curve and the
three measures we are comparing do not depend on it. It means
what they measure should be orientation selectivity in terms of
the shape of tuning curve ignoring overall scale. Therefore, we
compared these measures with Chernoff distance after factoring
out the peak response.

Comparison with CV and Chernoff distance
For a given orientation tuning curve �(�), CV is defined in the
following way:

CV � 1 � �f2�/�f0�, (15)

fn is �d�e in��(� ).
For a flat tuning curve, the CV is 1, and for a very narrow

tuning curve with zero baseline, the CV is 0. Therefore, a bigger
(smaller) CV is interpreted as a sign of lower (higher) orientation
selectivity.

We found that the CV showed a very strong correlation with
DC(�� ) when �� is smaller than 90°. It has strongest correlation
with DC(�� ) for �� � 45°. Figure 13 shows three scatter plots
between the CV and DC(�� ) for �� � 3, 45, and 180°, respec-
tively. The relationship between the CV and DC(�� ) is very
linear.

Our result shows that the CV is a good measure of orientation
selectivity. But we also find that the CV behaves in a qualitatively
opposite way to Chernoff distance sometimes. For example, we
can calculate the CV and DC(�� ) for our model tuning curve
shown in Figure 4. For one case, we fixed relative baseline RA to be
0 and changed � from 8 to 40°. For another calculation, we fixed
� to be 20° and changed RA from 0 to 0.2. Figure 14 illustrates the
results. Because the smaller CV (larger DC(�� )) represents
higher orientation selectivity, a plot of the CV and DC(�� )
should have a negative slope to be qualitatively correct. Figure 14
shows that, however, there are cases when the CV and DC(�� )
are positively correlated. When tuning width � is small, the ori-
entation selectivity for �� � 90° increases, as we increase �. The
CV tells us, however, that orientation selectivity decreases. For
smaller ��, the part of line (a) with positive slope is shorter so that
this problem disappears. When � is fixed to be 20° and RA is
changed, the line of the CV and DC(90�) has a negative slope.

Figure 11. Histograms of peak response MB , baseline RA , and response tuning width � for OS population (top graphs) and for
DS population (bottom graphs). MB is A � max{B1 , B2}. RA is A/MB , where A is the baseline of the tuning curve and MB is the peak
response. See Figure 4 for the description of the model of the tuning curve.

Table 1. Mean and median values of relative baseline RA, peak response MB, and
tuning width �

RA MB �

OS 0.16 (0.11) 38.6 (31.1) 22.2° (22.2°)
DS 0.10 (0.048) 49.7 (35.6) 24.8° (22.1°)

Table 2. Correlation coefficients between relative baseline RA, peak response MB,
and tuning width �

RA and MB M
B

and � � and RA

OS 0.24 (�0.1%) 0.09 (0.14%) 0.39 (�0.1%)
DS �0.1 (11.2%) 0.28 (�0.1%) 0.12 (5.7%)
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Relative baseline and tuning width
In a previous section, we showed how DC(�� ) depends on RA

and � for idealized OS tuning curves. Here, we show correlations
between DC(�� ) and these quantities calculated for 490 neurons
in V1.

Relative baseline RA , the response to orthogonal orientation

divided by the response to preferred orientation, is strongly cor-
related with DC(�� ) for intermediate values of �� (Fig. 15). RA is
weakly correlated with DC(�� ) for small �� because DC(�� )
depends on � more sensitively for smaller �� (Fig. 8). When �� is
close to 180°, whether a neuron is DS or OS is a decisive factor for
the discrimination capability. This makes RA relatively less im-
portant in determining DC(�� ).

Scatter plots between tuning width � and DC(�� ) have a big-
ger dispersion than for the CV or RA versus DC(�� ). Figure 16
shows that tuning width � is strongly correlated with DC(�� )
only for small �� and for �� close to 180°. This is partly because
for a fixed RA and small ��, DC(�� ) decreases monotonically as
� increases. For a fixed RA and �� close to 180°, DC(�� ) increases
monotonically as � increases. Because the relationship between
DC(�� ) and � is linear, the correlation is strong there. For a fixed
RA and intermediate values of ��, DC(�� ) maximizes at an op-
timal tuning width �*, and the relationship between DC(�� ) and
� is convex. This makes the correlation coefficient small, but the
small correlation coefficient is also because DC(�� ) depends on
RA more sensitively than �.

Figure 12. Scatter plots of DC(��1 ) and DC(��2 ) for 490 neurons in V1. For the three scatter
plots, ��1 � 3° and ��2 � 10, 45, and 90°, respectively. d is a plot of correlation coefficients
between DC(3°) and DC(��) as a function of ��.

Figure 13. Correlation between CV and DC(��). a– c are scatter plots for �� � 3, 45, and
90°, respectively. d is a plot of correlation coefficients between RA and DC(��).

Figure 14. Plot of CV and DC(90°). For the model of tuning curve, see Figure 4. For line (a),
relative baseline RA � 0 and tuning width � is from 8 to 40° (left side is for smaller �). For line
(b), � is 20°, and RA is from 0 to 0.2 (left side is for smaller RA).

Figure 15. Correlation between RA and DC(��) in the V1 population. a– c are scatter plots
for �� � 3, 45, and 180°, respectively. d is a plot of correlation coefficients between RA and
DC(��).

Figure 16. Correlation between � and DC(��) in the V1 population. a– c are scatter plots for
���3, 90, and 180°, respectively. d is a plot of correlation coefficients between � and DC(��).
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Discussion
Information measure for a population of neurons
Because many neurons in V1 have receptive fields at the same
place or nearby places, it is natural to assess their discrimination
capability in terms of population coding. However, it has been
difficult to study population coding partly because it is difficult to
calculate an information measure such as mutual information
(Rolls et al. 1997; Panzeri et al., 1999) and the error of maximum-
likelihood discriminator for a population of neurons. Chernoff
distance often can be calculated when these measures are impos-
sible to calculate. It is because sum of log is difficult when the log
of a sum is tractable. Chernoff distance has analytical expressions
for several important cases such as Poisson and Gaussian distri-
butions. When the responses of neurons to given stimuli are
independent of each other, the computational cost to calculate
Chernoff distance increases linearly, not exponentially as the size
of the neuronal population increases. Chernoff distance provides
a clear interpretation through its relationships with mutual infor-
mation, Fisher information, and the error of maximum-
likelihood discrimination. Here, we calculated Chernoff distance
for a population of neurons with tuning curves that are the same,
except for preferred orientation. We considered homogeneous
populations of neurons because we wanted to study how much
contribution comes from such a population to the total discrim-
ination power of the whole population of neurons in V1. Neu-
rons in V1 have various shapes of tuning curves. The Chernoff
distance for the whole population in V1 will be a sum of the
Chernoff distances calculated for many homogeneous
populations.

Information tuning curves
When we studied how the activities of a population of neurons
represent a set of stimuli, tuning curves separately drawn for each
neuron did not give much intuition. One natural idea may be to
make a table of “distances” between pairs of stimuli in represen-
tation space of the population of neurons. This table may play the
role of the tuning curve for a population of neurons. We used the
Chernoff distance as a measure of the distance. For a population
of neurons with preferred orientations that are distributed iso-
tropically, this table of distances can be summarized by a curve.
This information tuning curve helps us to study the relationship
between the discrimination capability of a population of neurons
and the shape of response tuning curves. Our method does not
assume that it is for nearby angles, or for a small population of
neurons, or for a readout with a specific form. Therefore, this
method is more general than previous studies of population
coding.

Discrimination capability and the shape of the response
tuning curve
We introduce a Gaussian model of a response tuning curves of
neurons in V1 to study the relationship between the discrimina-
tion capability of a population of neurons and the shape of re-
sponse tuning curves. The discrimination capability of a neuron
is very sensitive to its baseline activity RA. A response tuning
curve with a relative baseline RA as large as 0.1 has significantly
smaller discrimination capability than a tuning curve with no
baseline. This result shows that it could be very wrong to subtract
spontaneous activity level from evoked activity level in studying
the discrimination capability of neurons. We found that the op-
timal tuning width �* is about 0.3 �� for small �� and that �* has
a value from 0 to 20° for any ��. Discrimination capability is more
sensitive to � for smaller ��.

Specialization and optimization of neurons in V1
We fit our model to the tuning curves of neurons in V1 and
studied how these parameters of tuning curves are distributed in
V1. The degradation of discrimination capability attributable to
relative baseline RA is small for most of the neurons in V1. OS
neurons tend to have a bigger baseline relative to their peak re-
sponse than DS cells. We found that the distribution of tuning
width � is relatively flat between 10 and 40°. This may suggest that
different neurons are specialized for discriminations with differ-
ent ��. But it also means that neurons with tuning width optimal
for discrimination with �� � 20° do not exist in V1 because the
optimal tuning width, �*, is �0.3 ��. This means neurons in V1
are not optimized to discriminate nearby angles.

Relationship with other measures
We show the relationships between Chernoff distance with other
measures of orientation selectivity. Several measures of orienta-
tion selectivity have been used without a theoretical background.
Examples of such measures are CV, tuning width, and the ratio of
the response to orthogonal orientation divided by the response to
preferred orientation. For 490 neurons in V1, we calculated these
values and compared them with the Chernoff distance for nor-
malized tuning curves. It turns out that the CV showed an almost
linear relationship with Chernoff distance. The CV shows the
strongest correlation with DC(45�). The ratio of the response to
orthogonal orientation divided by the response to preferred ori-
entation is relative baseline RA. The Chernoff distance strongly
correlates with it. Tuning width shows the weakest correlation
with Chernoff distance among the three measures. It is mainly
because the Chernoff distance is most sensitive to tuning width
when tuning width and �� are small. Such small tuning width
does not exist in V1 (Rolls et al., 1997; Panzeri et al., 1999).

Applications to other sensory areas
It is natural to believe that population coding is being used in
many different areas of the cortex because the same or similar
information is often delivered by many neurons. But a satisfying
measure of efficiency of population coding has been lacking.
Many sensory stimuli such as sound patterns and odors are either
complex or discrete by nature. For such cases, Chernoff distance
can be useful to study the neuronal representation of various
kinds of sensory information.

Appendix
Proof of Equation 11
Because we assumed that the statistics of the spike counts are
Poisson, the mean spike count generated determines P(r��� ) the
probability distribution of spike count for a given direction of the
stimulus. r� � {r 1,1, r 2,1, . . . , r N,1, r 1,2, . . . , r N,2} is a vector of
spike counts of 2N neurons, the mean of which value is r� � {�1,1,
�2,1, . . . , �N,1, �1,2, . . . , �N,2}. �k,a for � is �[(� �
�k)(�1)a], where �k � 360�k/N, k � 0 . . . N � 1, and a � 1
or 2. k is an index for rotation of the tuning curve, and a is an
index for reflection of the tuning curve.

P(r��� ) is a product of 2N Poisson distributions:

P�r��� � � �
a�1,2,k�1. . .N

P�rk,a�� �

� �
a�1,2,k�1. . .N

��k,a�� ��rk,a

rk,a!
e��k,a�� �. (A-1)
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Trr� in Equation 4 was summation over all possible values of r�. For
this population of neurons, it has the following form:

Trr�f�r�� � 	 �
a�1,2,k�1,. . .N

�
rk,a�0

� 
 f�r��. (A-2)

Inserting Equation A-2 into Equation 4 gives the following result:

D	��1, �2� � �log	 �
a�1,2,k�1,. . .N

�
rk,a�0

�

P	�r���1�P1�	�r���2�

(A-3)

� � �
a�1,k�0

a�2,k�N�1

log �
rk,a�0

P	�rk,a��1�P1�	�rk,a��2�.

(A-4)

Remember that D	(�1 , �2 ) should be maximized in terms of 	
to get DC(�1 , �2 ). Here is short proof that 	*, the value of 	
maximizing D	(�1 , �2 ), is 0.5 in this case because of orientation
symmetry of the neuronal population. For each term in the sum-
mation in Equation A-4 with index k and a � 1, there exists
another term with index k� and a � 2 such that �k,1(�1 ) �
�k�,2(�2 ), and �k,1(�2 ) � �k�,2(�1 ). This means that
P(r k,1��1 ) � P(r k�,2��2 ) and P(r k,1��1 ) � P(r k�,2��2 ), because
mean values determine Poisson distributions. Now note that
D	(�1 , �2 ) has the same value when we replace 	 with 1 � 	
because P(r k,1��1 )1�	P(r k,1��2 )	 � P(rk�,2��2)1�	P(rk�,2��1)	.
Therefore, 	* � 1 � 	* and 	* is 0.5.

We get the following result by inserting Equation A-1 into A-4:

D	�0.5��1, �2� � � �
a�1,k�0

a�2,k�N�1

log �
rk,a�0

�P�rk,a��1�P�rk,a��2�

(A-5)

� �
a�1,k�0

a�2,k�N�1

1

2� ��k,a��1� � ��k,a��2�� 2

.

(A-6)

This is the derivation of Equation 11 in the text.

Relationship with Fisher information
Fisher information (Cover and Thomas, 1991; Seung and Som-
polinsky, 1993; Abbott and Dayan, 1999; Sompolinsky et al.,
2001) measures the estimation error of a continuous variable. For
two separated angles, the error of the maximum-likelihood dis-
criminator is determined by Fisher information when these two
angles are very close to each other.

When P(r��� ) is defined for a continuous variable, �, and �� �
�1 � �2 is much smaller than the width of the tuning curve, the
Chernoff distance DC(�1 , �2 ) is proportional to Fisher informa-
tion, J (Cover and Thomas, 1991):

DC��1, �2� �
J��1�

8
��2 (A-7)

J�� � � Trr�P�r��� �� �

��
log P�r�����2

. (A-8)

Relationship with mutual information
To measure the discrimination capability for any pair of orienta-
tions, we may calculate mutual information (Cover and Thomas,
1991; Rieke et al., 1997). Mutual information, I from information
theory (Cover and Thomas, 1991), is defined in the following way:

I � �
i�1,2

P��i�Trr�P�r���i�log
P�r���i�

P�r��
. (A-9)

P(�i ) is a priori probability of �i. P(r�) � P(�1 ) P(r���1 ) �
P(�2 ) P(r���2 ). As the difference between P(r���1 ) and P(r���2 )
increases, I converges to its maximum value [i.e., the entropy of
stimuli, H(� )]:

H�� � � � �
i�1,2

P��i�log P��i�. (A-10)

When I is close to H(� ) or DC(�1 , �2 ) 

 1, there is an expo-
nential relationship between mutual information I and Chernoff
distance DC(�1 , �2 ) (Kang and Sompolinsky, 2001):

H�� � � I � exp��DC��1, �2�	. (A-11)
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