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Attentional Modulation of Motion Integration of Individual
Neurons in the Middle Temporal Visual Area

Erik P. Cook and John H. R. Maunsell

Howard Hughes Medical Institute and Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030

We examined how spatially directed attention affected the integration of motion in neurons of the middle temporal (MT) area of visual
cortex. We recorded from single MT neurons while monkeys performed a motion detection task under two attentional states. Using 0%
coherent random dot motion, we estimated the optimal linear transfer function (or kernel) between the global motion and the neuronal
response. This linear kernel filtered the random dot motion across direction, speed, and time. Slightly less than one-half of the neurons
produced reasonably well defined kernels that also tended to account for both the directional selectivity and responses to coherent
motion of different strengths. This subpopulation of cells had faster, more transient, and more robust responses to visual stimuli than
neurons with kernels that did not contain well defined regions of integration. For those neurons thathad large attentional modulation and
produced well defined kernels, we found attention scaled the temporal profile of the transfer function with no appreciable shift in time or
change in shape. Thus, for MT neurons described by alinear transfer function, attention produced a multiplicative scaling of the temporal

integration window.
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Introduction

Neurons throughout the visual cortex are modulated by spatial
attention (Desimone and Duncan, 1995; Braun et al., 2001;
Treue, 2003). The number of action potentials produced by a
neuron typically increases when attention is directed to the re-
gion in space that coincides with the receptive field (RF) of a
neuron. How this modulation affects the way neurons integrate
visual stimuli is currently an active area of investigation (McAd-
ams and Maunsell, 1999; Treue and Martinez-Trujillo, 1999;
Reynolds et al., 2000; Fries et al., 2001; Martinez-Trujillo and
Treue, 2002; Niebur et al., 2002). In this study, we used linear
systems identification to understand how attention modulates
the temporal integration of neurons in the middle temporal
(MT) visual area.

Recent studies suggest that attention operates in a multiplica-
tive manner and does not change stimulus selectivity (McAdams
and Maunsell, 1999; Treue and Martinez-Trujillo, 1999; Recan-
zone and Wurtz, 2000). Thus, attentional modulation (AM) can
be thought of as a gain change that scales the tuning curves of
cortical neurons without altering their shape. This observation
has important implications for the way AM of neuronal activity
produces attentional effects on the behavior (Cook and Maunsell,
2002a). What is not known, however, is the extent to which the
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multiplicative action of attention also applies to other aspects of
neuronal processing, such as temporal integration.

One possibility is that attention increases the sensitivity of
neurons without altering the time course of their response. This
would result in the gain change that has been observed in tuning
curves. Alternatively, because tuning curves are typically mea-
sured by counting spikes over hundreds of milliseconds, it is
possible that attention alters both sensitivity and the time course
of the neuronal response. Biophysical mechanisms that may un-
derlie a change in the gain of neuronal responses, such as the
opening or closing of membrane conductances, would also pro-
duce changes in the membrane time constant that could lead to
changes in the temporal integration of synaptic inputs (Rall,
1959). Thus, attention might have measurable effects on the time
course of neuronal responses. Knowing whether or not attention
affects the temporal integration properties of cortical neurons is
important for understanding the way attention exerts its influ-
ence on neuronal activity and has not been previously examined
in detail.

We recorded the activity of single neurons in area MT in re-
sponse to random dot motion from monkeys under two atten-
tional states. We used the correlation between the motion stim-
ulus and neuronal response to estimate the way the neurons
integrated the motion in our random dot stimulus. Neurons that
produced linear kernels with well defined regions of integration
had distinctly different temporal response properties compared
with cells that produced kernels with less-defined integration re-
gions. For the subset of MT neurons that produced good linear
kernels and experienced high AM, we found that attention scaled
the temporal integration profile without changing its shape. This
suggests that attention exerts a multiplicative effect on the tem-
poral integration properties of MT neurons.
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Materials and Methods

Behavioral task. Two monkeys (Macaca mulatta) were trained to perform
amotion detection task. While the animal fixated on a central point, two
patches of random motion were presented (see Fig. 1 A). Initially, there
was no net motion (0% coherent) in the stimulus, and at a random time
between 500 and 8000 msec, coherent motion began in one of the patches
(motion onset times were exponentially distributed). Once coherent mo-
tion began, the monkeys had a reaction time window from 200 to 750
msec in which to release the lever to obtain a juice reward. The strength of
the coherent motion was varied between three preset levels (low, me-
dium, and high) that spanned the animal’s detection threshold. The
proportion of trials the animals correctly detected the coherent motion
across all experiments was 50, 92, and 99% for the low, medium, and high
coherences, respectively. The location and size of one patch was set to
overlap the RF of the neuron under study, and the other was diametri-
cally placed on the other side of the fixation point. The direction and
speed of the coherent motion was matched to the preferred direction and
speed of the neuron. Directional tuning curves were constructed using
the motion detection task with high (50%) coherent motion in one of
eight directions. Only trials in which the animals maintained fixation
within 1° of the fixation point were analyzed. Trials in which the lever was
released before the reaction time window were discarded.

At the beginning of each trial, a static cue of stationary dots was pre-
sented to indicate which patch was most likely to contain the coherent
motion. The animals covertly directed their attention to the cued loca-
tion during the trial. We refer to the condition in which the animal was
cued to direct its attention to the patch of dots in the RF as the “attend-in”
condition, whereas attention directed to the opposite patch is referred to
as the “attend-out” condition. To verify that the animals were covertly
directing their attention to the cued patch of dots, we used an invalid cue
in 20% of the trials (Posner, 1980). Motion detection was better and
reaction times were faster in the valid cueing conditions, when the ani-
mals were instructed to direct their attention to the patch of dots that
contained the coherent motion stimulus (Cook and Maunsell, 2002a).
For example, when the coherent motion occurred in the uncued patch,
the animal’s average detection performance dropped from 92 to 59%,
indicating the animal used the spatial cue to direct its attention to the
patch of dots that would most likely contain the coherent motion. Invalid
cueing only occurred for trials containing the medium strength coherent
motion. The static cue was presented in the same location for blocks of 15
completed trials.

The monkeys were also trained to perform a standard memory-
delayed saccade task (White and Sparks, 1986). In this task, the monkey
fixated on a central point while a peripheral target (0.25° in diameter)
appeared for 500 msec. To obtain a reward, the monkey had to remember
the target location for 500—2500 msec and then, after the central fixation
point was extinguished, saccade to within 2.5° of its location within 300
msec.

Visual stimulus. The animal sat 62 cm from a computer monitor
(£17 X %£13° of visual angle; 1600 X 1200 pixels; 75 Hz refresh). The
stimuli consisted of two patches of white dots (each 0.25° diameter; 78
cd/m?) on a dark gray background (12 cd/m?) with a dot density of 2.1
dots/degree. Each patch of dots was updated every other frame (i.e.,
every 26.6 msec) using the following procedure. The dots in each patch
were evenly divided into two groups. On each update, one group was
replaced with new, randomly positioned dots, whereas dots in the other
group were displaced by a fixed distance. The dots in this latter group
determined the motion coherence. For 0% coherence, all the dots in this
group moved a fixed distance in a random direction. For coherent mo-
tion greater than zero, a proportion of the dots moved with a fixed
distance in the same direction. This proportion determined the strength
of the coherent motion. On the next update (26.6 msec later), the groups
were switched. This arrangement insured that all the dots had a lifetime
of four video frames (two updates or 53.2 msec) before they were re-
placed and that there would be no changes in the apparent dot density
associated with the onset of coherent motion. Because half the dots are
always randomly replotted, regardless of the proportion of dots moving
coherently, our motion had a maximum strength of 50% coherent. For

J. Neurosci., September 8, 2004 + 24(36):7964 —7977 « 7965

example, at 25% coherent motion, half the dots are randomly replotted,
one-quarter are moving with the same fixed distance and direction, and
one-quarter are moving with the same fixed distance in a random
direction.

Data collection. Using standard extracellular recording techniques, we
recorded from single neurons in area MT in both animals. When a neu-
ron was isolated, the RF was mapped using a manually controlled bar
while the animal fixated on a central spot. The diameter of the RFs ranged
from 3.9 to 10.7° (median, 7.4). RF center eccentricities ranged from 3.9
to 11.1° (median, 7.9). The preferred speed was also judged using a bar
moved by hand. The animals were trained to perform the task at slow or
moderate motion speeds, so we usually selected neurons with a preferred
speed between 4 and 12°/sec. For most cells, once the RF location, size,
preferred direction, and speed were determined, the memory saccade
task was run with the targets at the centers of where the random dot
patches would be located. Five to 30 (median, 12) correctly completed
trials were collected for this task. The motion detection task was then run,
and we recorded from the neuron as long as possible. The number of
completed trials per coherence level for the motion detection task ranged
from 15 to 175 (median, 35). The monkey’s performance varied with
patch location, size, and motion speed, which were determined by the
response properties of the neuron under study. Consequently, different
neurons were tested with different coherence levels. The animal’s eye
position was measured every 5 msec using a scleral search coil (Robinson,
1963; Judge et al., 1980), and the occurrence of action potentials was
recorded to the nearest millisecond.

Extracting the global motion from the stimulus. Given two frames of a
random dot stimulus, what is the motion stimulus? To answer this, we
used a method described by Barlow and Tripathy (1997) that used the
correspondence between dots in two sequential frames. Figure 1B illus-
trates this approach using two consecutive frames that each contains four
dots. Because it is unknown how each dot moved from frame 1 to frame
2, we calculated all possible motion vectors. The possible ways in which
the center dot (labeled 1) could have moved are shown by the four
motion vectors. Each motion vector has a direction and magnitude, and
there are 16 motion vectors in this example (four possible vectors for
each of four dots). Thus for N dots, we computed N2 motion vectors
between consecutive updates of the random dot motion stimulus. The set
of N2 motion vectors represents our description of the global motion
from one update to the next. Because the size and location of the patch of
dots was set to overlap the RF of the neuron under study, this model of
the motion assumes spatial uniformity of motion vectors within the RF.
Thus, our motion description has no spatial component.

Figure 1C shows six updates of a 0% coherent random dot stimulus
used during an experiment. Each patch of dots was updated every 26.6
msec (every other video frame). N motion vectors were computed for
each time point using the current and proceeding update, and their dis-
tributions are shown in the polar histograms below each patch. In these
histograms, the location of a bin corresponds to motion direction, and
the distance a bin is from the origin corresponds to the magnitude of the
motion vector (dot speed). Each plot has 96 bins (12 directions X 8
speeds), and the number of vectors per bin is indicated by the grayscale of
the bin. For example, the transition from 756 to 783 msec shown in
Figure 1C had, by chance, a relatively strong rightward motion compo-
nent at ~15°sec as shown by the two nearby light gray bins (arrow).

One important issue was how to represent the sequence of motion
vectors in time. The scanning process of the cathode-ray tube (CRT)
display resulted in the dots located at the top of each patch being updated
first. We used the simplifying assumption that the dots would be updated
simultaneously at the time our CRT display scanned the vertical mid-
point of the RF of the neuron. Thus, our motion stimulus was modeled as
a set of motion impulses occurring every 26.6 msec (Fig. 1C).

Motion vectors with speeds >23.5°/sec were not used in the analysis
because most of the MT neurons we recorded from preferred slower
speeds (median, 10.7°/sec; maximum, 16°/sec) and were likely not sensi-
tive to high speeds (Van Essen et al., 1981; Lagae et al., 1993). The reason
for the bias toward slower speed preferences was that the monkeys were
trained with only low speed coherent motion and had difficulty detecting



7966 - J. Neurosci., September 8, 2004 + 24(36):7964 —7977

the coherent motion at higher speeds. Thus,
during recording sessions, we selected neurons
that preferred the lower motion speeds.

Estimation of the linear transfer function. We
assumed that the neuronal response of our MT
neurons, R, was equal to the motion in our ran-
dom dot stimulus, M, convolved with a linear
kernel, K, or as follows:

R=K=#*M. (1)

We did not use a spike-triggered average ap-
proach to estimate K because our motion stim-
ulus, M, contained autocorrelations (i.e., was
non-white). To estimate the linear kernel, we
instead used the discrete formulation approach
(DiCarlo et al., 1998; Theunissen et al., 2001;
Blake and Merzenich, 2002). This approach ex-
presses the convolution in Equation 1 as alinear
regression problem that compensates for any
autocorrelations in the motion stimulus.

Only the 0% coherent motion was used to
estimate the linear kernel, K. The neuronal re-
sponse is modeled as the sum of the output of 96
filters convolved in time for each motion direc-
tion and speed (Fig. 1 D). The spike response of
the neuron was represented as a sequence of
zeros and ones (indicating spikes) at the 1 msec
sampling interval.

Using digital signal processing routines in
MATLAB, we filtered and resampled the se-
quence of motion impulses and the recorded
spikes at a Nyquist sampling rate of 100 Hz.
This corresponds to a sampling interval of 10
msec and limited our maximum frequency to
50 Hz. The filtered and resampled neuronal re-
sponse was assumed to represent the underly-
ing rate function that drives spike production.
Other studies have usually binned the neuronal
response (e.g., 10 msec bins) to estimate the rate
function (DiCarlo et al., 1998). Although both
methods are qualitatively similar, Nyquist fil-
tering and resampling eliminates aliasing that
could potentially add noise to the estimated
kernels.

We defined each of our 96 motion filters to
have nine weights (or taps) to cover a 90 msec
range (Fig. 1 D). We varied the latency of the
kernel, t,, to account for the neuronal latency
and to insure our kernel overlapped the neuro-
nal integration window. We computed a sepa-
rate kernel for each value of t, and selected the
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Figure 1. Description of the motion stimulus. A, The random dot stimuli consisted of two diametrically opposed patches of
random dots, one of which overlapped the RF of the neuron under study. 8, Example of calculating vectors between corresponding
dots to describe the global motion in the stimulus. In the sequence from frame 1 to frame 2, dot 1 could have moved in one of four
possible ways as illustrated by the motion vectors. There are a total of 16 motion vectors between frames 1and 2. C, Sequence of
random dots appearing in the RF of an MT neuron during an experiment. Each patch was updated every other frame on a 75 Hz
monitor (every 26.6 msec). Below each patch is the polar histogram of all motion vectors between the previous and current patch.
The bin location corresponds to the direction of the motion vector and the distance from the origin is the speed. The grayscale
indicates the number of motion vectors per bin. Motion vectors corresponding to speeds >23.5%/sec were not included. Motion
vectors were modeled as impulses occurring every 26.6 msec. The arrow indicates a strong rightward motion component occur-
ring at 783 msec at ~15°/sec. The corresponding recorded spike times are shown below the motion vector histograms. D,
Structure of the linear kernels. Each bin of the motion vector histograms was convolved with a filter made up of nine weights ()
at 10 msecintervals. The response of the neuron was modeled as the sum of the individual filter outputs plus a constant. A variable
time delay t;, was inserted to account for the latency in the neuronal response.

Equation 2 can be written as a single linear equation with 865 un-

kernel that had the best signal-to-noise ratio (S/N; described below). The
neuronal response r at time sample index ¢ can be expressed as the
weighted sum of the past motion vectors for each direction and speed, or
as follows:

12 8 9
re =c¢+ E E E KaoMasi— 7 - 1) > 2)
d=1s=17=1

where my, is the motion strength and k,, is the filter (or kernel)
weight corresponding to direction index d and speed index s at time
sample index . The value cis a constant to account for any static offsets in
r,and t ranged from 20 to 100 msec in 10 msec intervals. Thus, for each
of the 96 direction and speed bins in our motion stimulus, there is a linear
filter with nine unknown weights corresponding to 10 msec sample in-
tervals. Combining the output from all the linear filters results in 96 X
9 = 864 total unknown weights plus a constant (Fig. 1 D). We refer to this
collection of weights as the linear kernel of the neuron.

knowns for every observation of r(t). For example, a neuron that pro-
duced 5 min of data would result in ~30,000 observations (or equa-
tions). From this set of linear equations, the kernel weights were
determined using built-in MATLAB routines for solving over-
determined systems of linear equations in a least squares manner. Math-
ematically, this is equivalent to linear regression with 865 unknowns and
estimates the first-order Wiener kernel that provides the best approxi-
mation to the linear impulse response function of the neuron in direc-
tion, speed, and time.

Because the noise in the kernel estimates is uncorrelated among the
coefficients (DiCarlo et al., 1998), kernels were smoothed by convolving
with a three-dimensional low-pass filter (Hamming-windowed-based,
linear phase, with a cutoff set at 0.7 of the normalized sampling fre-
quency; from the Digital Signal Processing toolbox in MATLAB). The
impulse response function of this smoothing filter is similar in width to a
Gaussian filter with a SD of 1 bin but provides better filtering of the
high-frequency noise in our kernels with less distortion of the low-
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frequency kernel shape. Reducing the noise in our estimated kernels was
important for analyzing how the kernels were altered by attention. Using
other smoothing filters, such as a 1 bin Gaussian, produced kernels with
more noise but did not qualitatively change the results of our analysis.

In displaying the kernel weights, we used grayscale plots that show the
kernel coefficients as a function of direction and speed. The center of
each of the 96 direction and speed bins corresponds to the value of the
kernel weight, and linear interpolation was used between the bin centers.

Assessing the kernel quality. We assessed the quality of our kernels using
a S/N. We assumed the total variance of our estimated kernel (07,,;) was
equal to the variance of the underlying kernel (07,,,,.;) plus the variance
of the noise (07;.), or as follows:

oise

O-Zkerncl + Uznoisc . (3)

(Tzlotz\l =
To estimate the variance of the noise, 02 ;.., we computed a noncausal
kernel for each neuron. The noncausal kernel correlated the neuronal
response with motion vectors forward in time from 0 to 80 msec. Because
future motion vectors should be uncorrelated with the current neuronal
response, the true noncausal kernel is zero for all coefficients, and any
variations represents noise in our estimation process. To check that the
variance of the noncausal kernel provided an accurate estimate of the
noise variance, we also computed noise variance using the SD of each
kernel coefficient that was returned by our regression package in
MATLAB. Both methods produced nearly identical estimates of the noise
variance in our kernels (r*> = 0.96 across our population of neurons).
However, we used the noncausal kernel to estimate 02, because this
allowed us to first smooth the noncausal kernels in the same manner as
the causal kernels.
Using the variance of our smoothed noncausal kernel as our estimate

of the variance of the noise (07,;..), we computed the variance of the
underlying kernel of the neuron as follows:
2 —
O kernel — 0210&\1 - Uznnise . (4)

We then defined the S/N of the estimated kernel as follows:

Okernel

SIN = (5)

O noise

Thus, for neurons with causal kernels containing well defined regions of
integration and noncausal kernels that were mostly flat, the S/N would be
large. If no underlying kernel existed for a particular neuron, the causal
and noncausal estimates would have equal variances (o~ Oroise)s
and the S/N would be zero.

Parametric fitting of the kernels. We fit each smoothed causal kernel
with a product of Gaussian function that described the tuning along
direction (d), speed (s), and time (¢):

otal —

—=(d—pa)?

f(d,s,t):(C+G><e 20, >><e 2oxe M, (6)

(5= ps)? = (t=p)?

where G is the gain of the kernel, w4 is the preferred direction, o is the
directional tuning width, u, is the preferred speed, o is the speed tuning
width, w, is the peak temporal integration, o is the width of the temporal
integration, and C is an offset term to allow for inhibition. Both atten-
tional conditions were fit separately using optimization routines in
MATLAB. We limited o, to a lower bound of 4 msec because this is
approximately the smallest Gaussian that could be represented without
distortion at our 10 msec sampling interval.

Multiplicative scaling of kernels. We scaled the kernels derived for the
attend-out condition (Kyyp) to match the kernels derived for the
attend-in condition (Kjy). Thus, we computed a scale factor, 3, that best
satisfied K;py = BKou- For this, we minimized the x* merit function
(Press et al., 1986):

2 _ < (klN, - Bkou’r()z
X E (0211oise,N + Bzolnoiseow) ’ (7)

i=1
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where k;; and kg, are the ith kernel weights for the attend-in and
attend-out conditions and oﬁmism and o’zmis%w are the variances of the
kernel noise estimated from the smoothed attend-in and attend-out non-
causal kernels.

We also computed a second scaling factor using the estimated kernel
variances oy e, and 05, (from Eq. 4) for the attend-in and attend-
out conditions. In this case, a scaling factor, vy, that satisfied Ky = YKoyt
was estimated as follows:

Ukcrns]m

Y= (8)

a-kcrnclour '
To examine whether kernels changed their shape with attention, we ex-
amined the residuals as follows:

Kies = Ky — BKour 9)

where K., is the kernel residual and B is the multiplicative scale factor
attributable to attention. If attention produced a true multiplicative scal-
ing of the kernels, then K., would be flat (or zero). However, if the
attention produced a shape change in the kernels, then K, would have
some weights that are non-zero.

A difficulty in using the kernel residuals to determine the effects of
attention is that any noise in the estimated kernels also contributes to
non-zero elements in K. However, given our estimates of the noise in

res*
the attend-in and attend-out kernels ((7}2misew and fnoisem), we can pre-

dict the variance of K., that we would expect given a pure scaling with no

res

change in shape. This predicted variance, 020, of the residual kernel is as
follows:

2
gy

= o’ + B

noise;

(10)

oiseqyr »

where B is our estimated multiplicative scale factor. If attention produced
a change in kernel shape, the variance of K, (referred to as o2.,) would

be larger than predicted by Equation 10. This hypothesis can be tested
using the following statistic:

L=—, (11)

where L is a y? value with v = 864 — 1 degrees of freedom (Zar, 1999).

Results

The goal of this study was to understand the effects of attention
on the neuronal integration of motion in MT. To accomplish
this, our analysis proceeded in three steps. First, we determined
the linear transfer function (or kernel) that described the integra-
tion of the motion stimulus by MT neurons. Second, we selected
neurons that produced kernels with clear regions of integration as
indicated by their good S/N. Finally, we used this subpopulation
of neurons to examine the effects of attention on the kernel. Thus,
by examining how attention affected the linear transfer function,
we could see how attention affects the temporal integration of
MT neurons. The neurophysiological recordings analyzed here
have been used in two other studies that examined the link be-
tween neuronal activity in MT and the perceptual capabilities of
the subjects (Cook and Maunsell, 2002a,b). This new study fo-
cuses exclusively on how attention affected the way MT neurons
processed the motion stimulus. Portions of our results have been
previously published in abstract form (Cook and Maunsell,
2003).

Estimating the MT motion integration kernels

Using neuronal responses to 0% coherent motion and an optimal
estimation procedure, we constructed linear models that de-
scribed how MT neurons integrated the motion stimulus. This
type of analysis has been used to examine the integrative proper-
ties of neurons in many sensory cortical areas (Jones and Palmer,
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1987; DeAngelis et al., 1995; DiCarlo et al., 1998; Blake and Mer-
zenich, 2002) and recently in MT (Bair et al., 1997; Livingstone et
al., 2001; Borghuis et al., 2003). The kernel weights in these mod-
els describe how an MT neuron integrates the motion signal. We
wanted to know how these weights were affected by attention to
the stimulus.

The optimal set of kernel weights (also referred to as the first-
order Weiner kernel) was determined for both attentional states
in each neuron using standard numerical methods (see Materials
and Methods). Figure 2 A shows the computed kernel weights for
one MT neuron. Each column shows the time evolution of the
kernels for one attentional condition. The kernel weights are
shown using the same polar format as the stimulus in Figure 1C,
except that the plots have been smoothed by linear interpolating
between bin centers. This interpolation makes it easier to distin-
guish excitatory (light shades of gray) and inhibitory (dark shades
of gray) regions. This particular neuron began integrating the
motion ~40 msec after the motion onset. At 40 msec, the kernel
weights showed a clear preference for motion up and to the right
ataspeed of ~8.5%/sec (white). There was pronounced inhibition
for motion in the opposite direction (black). By 60 msec after
stimulus onset, the neuron no longer integrates the motion ap-
preciably. The sequence of kernel weights over time provides a
model of how the MT neuron integrated the motion.

Figure 3A shows the time evolution of the kernel weights for
another MT neuron. For this cell, the integration window also
starts at ~40 msec, and the preferred direction is toward the left.
Note that the grayscale range used for displaying the kernels was
optimized individually for each neuron. The structure of our
kernels is very similar to that calculated for MT neurons by Liv-
ingstone et al. (2001) using a sparse stimulus of two random dots.
For both example neurons, the kernels look similar between the
two attentional conditions. To more closely address the effects of
attention on the kernels, however, we needed to first evaluate the
quality of our estimated kernels.

Assessing the estimated kernels

The example neurons in Figures 2 and 3 produced kernels with
clear regions of excitatory and inhibitory integration. Not all of
our MT neurons produced kernels with as well defined regions of
integration as shown by these two example cells. To separate
neurons that produced kernels with well defined regions of inte-
gration from those that did not, we computed the S/N in our
kernels (see Materials and Methods).

To estimate the noise in our kernels, we first computed a
noncausal kernel using the same methods to compute the causal
kernels described above. A noncausal kernel is the optimal linear
transfer function between future motion and current neuronal
activity. Because there should be no correlations between the
spike rate of a neuron and stimuli that will occur in the future, the
expected noncausal kernel is flat with all coefficients equal to
zero. Any deviations from zero represent chance correlations.
These chance correlations are a measure of the noise in our ker-
nels and can be expressed as the variance of the noncausal kernel
or O-Znoise'

For each neuron, we assumed the total variance of our esti-
mated kernel (02,,,)) is attributable to the variance of the under-
lying kernel (0%e.ne) Plus noise (07;.). Because we calculate
07 oise from the noncausal kernel, we can estimate the variance of
the underlying kernel by subtracting the noise variance from the
total variance of our kernel (Eq. 4). We then computed a S/N for
our kernel by dividing the SD of the true kernel by the SD of the
N0i8€ (Oernet/ Tnoise)- AN attractive property of this measure of
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Figure2. Linear kernel for an example MT neuron. A, Kernel weights for the attend-in (left)
and attend-out (right) conditions. The weights of the kernels are shown in the same polar
format as the motion vectors in Figure 1. Each time point corresponds to 96 kernel weights
with linear interpolation applied between bin centers. At 40 mse, the kernel has an excitatory
region (shown in white) corresponding to a motion direction of 45° and speed of 8.5°/sec. An
inhibitory region (shown in black) corresponds to motion in the null direction (225°). The ker-
nels derived from the two attentional states are nearly identical for this cell. B, Directional
tuning of the neuron and linear kernel. The average neuronal response of the cell (gray filled
triangles) and the predicted response of the linear kernel (black filled circles) are shown for
coherent motion in different directions. The stimuli were coherent motion (50%) in each of
eight directions. For the kernel, the response was calculated by convolving the linear transfer
function in A with the motion vectors calculated from the random dot stimulus. The
horizontal lines are the responses of the model and cell to the 0% coherent motion in the
directional selectivity trials. The error bars are SEM. C, Average firing rate of a cell (gray)
and linear kernel (black) to different motion coherences in the preferred direction. The
open symbols correspond to the trials where the animal’s attention was directed away
from the RF. The horizontal lines show the neuron and the response of the model to the 0%
coherent motion for the attend-in (solid) and attend-out (dashed) conditions. The aver-
age neuronal responses in B and C were calculated using the 300 msec period just before
and after the coherent motion began. D, Excitatory and inhibitory temporal profiles of the
linear kernel for the two attentional conditions. The excitatory temporal profiles are
shown for a constant direction of 45° and a constant speed of 8.5°/sec. The inhibitory
temporal profiles are for a constant direction 225° and a constant speed of 8.5°/sec. The
curves are from the Gaussian function (Eq. 6) fitted to the entire kernel. Both attend-in
(solid symbols) and attend-out (open symbols) profiles are shown. £, Directional tuning
profile of kernels for the two attentional states. The directional profiles correspond to 40
msec and 8.5°/sec. The lines are the fitted Gaussian function.
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kernel quality is that no assumptions need to be made regarding
the shape of the underlying kernel.

If an estimated kernel produced no well defined regions of
integration, then the S/N would be expected to be small. Likewise,
kernels with well defined regions of integration as in Figures 2
and 3 would be expected to produce relatively high values for the
S/N. For our measure of how well the kernel contained well de-
fined regions of integration, we averaged the S/N from both at-
tentional conditions. The distribution of the average S/N is
shown in Figure 4 A. For reference, the kernels in Figures 2 and 3
produced an average S/N of 2.4 and 1.8, respectively. Figure 5
illustrates three other example cells with a progressively lower
S/N. For kernels with a low S/N, there is less of a discernable
region of motion integration. In Figure 5C, a S/N of 0.6 corre-
sponds to a kernel that is dominated by noise and was not in-
cluded in the analysis.

By inspection, we found that kernels with a S/N <0.75 lacked
clear structure. We therefore set an arbitrary S/N acceptance cri-
terion of 0.75, resulting in 44 of 93 MT cells classified as “good
S/N” (Fig. 4 A, gray bars). The remaining cells were considered to
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Figure4.  Comparison of kernel S/N estimates. A, Distribution of the kernel S/N estimates for

all cells. The filled bars correspond to kernels with an S/N = 0.75 (good S/N). The open bars are
those kernels classified as poor S/N. B, Distribution (stacked histogram) of the proportion of the
average response to the coherent motion that was accounted by the linear transfer function
(r, ?). The filled bars correspond to kernels with a good S/N. €, Distribution (stacked histogram)
of AM in a ratiometric form. Modulation was calculated from the average response to the 0%
coherent motion using an attentionalindex of (R,, — R, )/(Ri, + Ry ), where R, and R, are
the average response for the attend-in and attend-out conditions, respectively. The top axis
shows the equivalent ratio of responses. D, Average normalized response to the onset of coher-
ent motion (at 50% strength). £, Average normalized response to the onset of a small target
located in the center of the RF. Responses are shown for cells with a good S/N (thick gray line)
and a poor S/N (thin dashed black line). The error bars are SEM and, for clarity, are not shown for
all points.

have “poor S/N” and not useful for examining the effects of at-
tention on temporal integration. This is because we could not
assess the effects of attention on the structure of the kernels if the
kernels lacked any discernable structure to begin with.

None of our results were sensitive to the particular criterion
used. Using other measures of kernel quality, such as the good-
ness of a Gaussian fit or the ability of the kernel to account for the
average stimulus selectivity of the neuron (shown below) pro-
duced very similar sets of acceptable neurons and did not affect
our results or conclusions.

To further assess the kernels, we compared the predicted re-
sponse of the kernels to that of the actual response of the neurons.
We wanted to know whether the kernels captured the directional
tuning of the neuron as well as the increased firing rate to coher-
ent motion. To do this, we calculated the average response of the
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neuron and kernel to coherent motion of
varying strength and direction. Average
responses were computed using the 300

A SIN=1.1

motion began on each trial. We compared
the average firing rate predicted by the ker-
nel to the actual response of the neuron. It
is important to emphasize that the kernel
was estimated based on the response of the
neuron to the 0% coherent motion. Thus,
we tested the model using coherent mo-
tion that was not used to construct the
model.

Figures 2 Band 3B show the average fir-
ing rates of the two example MT neurons
to coherent motion in eight different di-
rections (gray filled triangles). The average
firing rates predicted by the kernels (black
filled circles) are also shown. The horizon-
tal lines represent the average and pre-
dicted response to the 0% coherent mo-
tion that preceded the coherent motion in
every trial. Although both kernels capture
the directional selectivity of the neurons,
the one in Figure 3B does a better job
matching the average firing rate of the cell.

We also compared the response pre-
dicted by the kernel with the response of
the cell to increasing coherent motion
strength. Figures 2C and 3C show the av-
erage response of both the kernel and cell
to the three levels of coherent motion in
the preferred direction of the cell. The ker-
nel in Figure 2C matched the firing rate of
the cell as the strength of the coherent mo-
tion increased, whereas in Figure 3C, the
kernel exhibits a slight reduction in gain.  ~“Z357 5 55
The solid horizontal line is the average re- deg/s
sponse to the 0% coherent motion. As ex-
pected, the kernels predicted the average
response to the 0% coherent motion in
Figures 2C and 3C because they were esti-
mated using these data. We also compared the response of the
neuron and kernel when the animals withdrew their attention
(attend-out), which occurred during the medium strength co-
herent motion only (Figs. 2C, 3C, open symbols). For this, we
used the kernel derived when the animals were attending to the
stimulus outside the RF. Withdrawing attention reduced neuro-
nal responses to the medium coherent motion and to the 0%
coherent stimulus (dashed lines).

We quantified the ability of the kernel to account for the neu-
ronal response to the coherent motion stimuli. Using the direc-
tional tuning and response gain (Figs. 2B,C, 3B,C), we com-
puted the proportion of the variance (rpz) in the neuronal
response accounted for by the kernels. Twelve points were used
(eight directions, three attended coherent motion levels, and one
unattended medium coherent motion). We found a wide range
of kernel performances as illustrated by the wide distribution of
r,” values for all MT neurons (Fig. 4B). For comparison, the
linear kernels for the example neurons in Figures 2 and 3 had r,,>
values of 0.68 and 0.84, respectively. Notably, the kernels that had
agood S/N tended to have high r,* values (Fig. 4 B, gray bars) and
thus captured the neuronal response to the coherent motion.
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Example of kernels with a progressively lower S/N. A, B, Example of kernels with an S/N above the 0.75 criterion and
included in the analysis. C, Example of a kernel with a poor S/N and not included in the analysis.

Figure 4 B also indicates some kernels with a poor S/N also had
high r,,* values. These cells did not have well defined regions of
integration, yet accounted for the mean firing rate to the coherent
motion. Visual inspection of these cells revealed that many had
either weak directional tuning to begin with or, in most cases, had
regions of integration that were overwhelmed with noise.

MT neurons usually increase their response when the animals
orient their attention to the stimulus located in the RF of the
neuron (Seidemann and Newsome, 1999; Treue and Maunsell,
1999; Cook and Maunsell, 2002a). The amount of AM of the
average firing rate in response to the 0% coherent motion (in a
ratiometric form) is shown for our population of MT neurons in
Figure 4C, and as this histogram illustrates, the amount of mod-
ulation varies widely between cells. The mean AM to the 0%
coherent motion for cells that produced kernels with a good and
poor S/N was 11 and 21% (median, 7 and 16%), respectively.
However, this difference in modulation was not significant ( p =
0.12; two-sample ¢ test).

Why did some neurons produce kernels with regions of well
defined integration (as measured by the S/N), whereas others did
not? Possible explanations include failure of our description of
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the motion stimulus to capture the true input driving the cell and
the assumption that MT neurons are linear. The quality of the
kernel can also be affected by the limited amount of data available
for neurons that had very low firing rates or for which fewer trials
were sampled. These last two possibilities were analyzed by com-
puting the partial correlations (p) between the number of spikes
recorded (n,), the S/N of the kernel, and the amount of AM. We
found that the number of spikes recorded correlated with the S/N
(p between n, and S/N = 0.70). Thus, neurons for which we had
more data produced kernels with a higher S/N and better defined
regions of integration. We found, however, no strong correla-
tions between the kernel S/N and AM or between the number of
spikes and AM (p between S/N and AM = —0.02; p between
and AM = —0.15). Other studies that have investigated temporal
integration of motion by MT neurons did not quantify the quality
of their kernels (Bair et al., 1997; Livingstone et al., 2001; Bor-
ghuis etal., 2003), and thus we do not know whether the observed
range of quality in our estimated kernels is typical.

In addition to the difference in the amount of AM between
cells that produce good and poor S/N kernels, these two popula-
tions also exhibited substantially different response dynamics to
visual stimulus. Figure 4, D and E, shows the average response of
neurons to the onset of the coherent motion and to a flash of a
small stationary target in the center of the RF. Normalized pop-
ulation averages are shown for the neurons with good S/N
kernels (thick gray) and poor S/N kernels (thin dashed black).
For each cell, we normalized by the peak neuronal response,
allowing each neuron to contribute equally to the average re-
sponses shown. The responses to the coherent motion in Fig-
ure 4 D came from directional tuning trials that used the same
coherent motion level (50%) for all cells. The responses shown
are for motion in the preferred direction (as determined from
the directional tuning trials). The responses to the target in
Figure 4E came from memory saccade trials performed for
most cells (see Materials and Methods). In this case, the ani-
mals were fixating when a small target first appeared in the
center of the RF (target on).

It is clear from Figure 4, D and E, that the two populations
show different temporal dynamics in response to the same stim-
uli. For the coherent motion, neurons with good S/N kernels
show strong, transient responses each time the coherent motion
was updated (every 26.6 msec). Although neurons with poor S/N
kernels demonstrate a comparable average response to the coher-
ent motion, their dynamics exhibit much less temporal modula-
tion. For the contrast change produced by the target onset in
Figure 4 E, cells with good S/N kernels had robust transient re-
sponses, whereas the cells with poor S/N kernels responded
weakly. One possibility for this difference is that neurons that
produced kernels with a high S/N have their response properties
tightly linked to the visual stimulus. The response properties of
neurons with poor S/N kernels may either be influenced by other
aspects of the visual input or contain larger extra-retinal compo-
nents, neither of which would be captured in our kernel esti-
mates. Another possibility is that the integration window of neu-
rons with poor S/N kernels may have exceeded the 90 msec
duration defined by our analysis. We do not think this is likely
because we varied the delay between stimulus and response up to
100 msec to make sure our kernels would overlap with the tem-
poral integration window of the cell.

Effects of attention on Gaussian fits of the kernels
We wanted to know how the attentional state of the animal af-
fected the kernels estimated for our MT neurons. To address this
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question, we only analyzed the population of neurons with good
S/N kernels because those were the cells that produced kernels
with reasonably well defined regions of motion integration that
also tended to account for the average response to the coherent
motion.

To reveal how attention affected temporal integration, we first
parameterized the shape of the estimated kernels. For this, we fit
each kernel with a function that was the product of three Gauss-
ians corresponding to direction, speed, and time (Eq. 6). Figures
2, D and E, and 3, D and E, show the results of fitting kernels for
our two example cells. In Figures 2 D and 3D, we plot as a function of
time the coefficients (or weights) of the kernels and the Gaussian fit
corresponding to a constant (preferred) direction and speed.
This slice of the kernel through time provides a profile of the
temporal integration window. Each plot shows four time slices
corresponding to the peak excitatory and inhibitory regions
for the two attentional conditions. Fits were done for each
attentional condition independently. In Figures 2 E and 3E, we
plot slices of the kernels through direction (constant speed
and time), which shows the directional tuning profiles for
both attentional conditions. Spatial attention increased the
values of the kernel weights for both cells, although the effect
was somewhat larger for the cell in Figure 3.

To examine the effects of attention on the kernels, we param-
eterized the shape of the kernels using the fits to our Gaussian
function. Figure 6 A shows five of the Gaussian parameters for the
kernels with good S/N cells corresponding to the two attentional
states: (1) the amplitude of the kernels (G); (2) the time of the
peak excitatory and inhibitory integration regions (u,); (3) the
SD of the temporal width of the kernels (o); (4) the preferred
direction of motion that corresponds to the peak (w4); and (5)
the SD of the width of the directional tuning (o). The other three
parameters of the Gaussian for speed tuning and offset showed
similar relationships with attention. Because the average AM of
our neurons with good S/N kernels was relatively weak, we sepa-
rated out those cells that also had high AM = 10% (Fig. 6 A, filled
circles) (n = 20).

In Figure 6B, we show the distribution of the AM of each
parameter. AM was expressed in a ratiometric form (P;,, — P,,)/
(P, + P,..), where P is the parameter of interest. The exception,
however, was for the modulation of the time and direction peaks,
which was computed as the difference between the two atten-
tional conditions (P;,, — P, ). The filled bars correspond to good
S/N kernels that also experienced high AM. The median modu-
lation of each parameter for good S/N neurons and good S/N
with high-attention neurons is indicated by the open and filled
triangles, respectively.

Although there is a relatively large amount of variability in the
data in Figure 6, only the kernel magnitude ( G) tends to be con-
sistently larger when the animals directed their attention to the
RF of the neuron. The median AM of the kernel magnitude is 7
and 17% for the kernels with good S/N and good S/N plus high
attention, respectively. This modulation was significantly differ-
ent than zero for the high-attention group (p = 0.21 and 0.004
for the good S/N and good S/N plus high attention, respectively;
Wilcoxon signed rank test). The median modulation of the other
parameters was not significantly different than zero for either
kernels with good S/N or good S/N plus high-attention groups
(Wilcoxon signed rank test). Overall, these data suggest attention
scaled the Gaussian fits of the kernels with no appreciable shift in
peak or change in shape.
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Effects of attention on population kernels

To further examine the effects of attention on the linear model,
we compared the average population of good S/N kernels for each
condition. For each cell, we normalized the kernel weights to the
peak value in the attend-in condition. We then computed the
population kernel by averaging the normalized kernels from each
cell. Before averaging, we aligned both the temporal peak (at time
0 msec) and the speed peak (at 8.5°/sec) for each kernel based on
the Gaussian fit to the attend-in condition. We then rotated the
kernel so that the preferred direction was up. Because we used
only Gaussian parameters for the attend-in condition to align the
kernels, this analysis would reveal any systematic shifts or
changes in kernel shape that occurred in the attend-out condi-
tion. Figure 7A shows the average population kernels for each
attentional condition for our neurons with a good S/N. We chose
to align the kernels at the peak to reveal the average integration
period.

The average population kernels for the 44 good S/N kernels
are very similar for both attentional conditions. Figure 7C shows
a comparison of the average normalized firing rate to the coher-
ent motion for the cells and that predicted by the kernels. On
average, the kernels capture the directional selectivity and in-
creased response to the coherent motion. Figure 7C reveals, how-
ever, that the kernels predicted a persistent reduction in response
amplitude at higher coherence levels. Because individual cells
were recorded using different levels of coherent motion, re-
sponses were grouped into low, medium, and high coherent lev-
els in Figure 7C. The average normalized response in the unat-
tended condition shows a small amount of modulation at both
0% coherent (dashed line) and medium coherent motion (open
symbols) for both the cells and kernels.

To better reveal the effects of attention on the kernels, we
further subdivided the 44 good S/N neurons by computing an
average population kernel using only cells with high AM = 10%
(Fig. 7B). The average amount of AM of the spike rate for this
group was 33% (median, 27%). For these cells, attention did not
significantly alter the shape of the kernels between the attend-in
and attend-out conditions. Figure 7D shows the average normal-
ized responses for the cells and predicted response for the kernels
corresponding to the high-attention group. Note that the average
predicted response did not match the gain of the neurons at high
coherence levels. However, for the high-attention group of cells,
the effect of withdrawing attention is readily seen in the normal-
ized population response to the 0% coherent motion (dash line)
and medium coherent motion (open symbols) for both the cells
and their corresponding kernels.

To examine the effect of attention on the integration of the
motion, we fit the average population kernels in Figure 7, A and
B, with the product of the Gaussian model of Equation 6 (fitting
was done in the same manner as for the individual kernels). Fig-
ure 8, A and B, show the time, direction, and speed profiles of our
population kernels and the optimal fits for both attentional con-
ditions. For the temporal profiles, we show slices through both
the peak excitatory and inhibitory integration regions. It should
be noted that the reason some of the fits do not appear optimal in
Figure 8 is because they were optimized on the entire set of kernel
coefficients and not just the subset of data points shown.

For the fits to the population kernels, attention produced a 10
and 34% modulation in the amplitude parameter ( G) in the good
S/N and good S/N plus high-attention kernels, respectively, and
was similar to the AM of the spike rate for the two populations of
neurons. The width of the temporal integration window did not
appreciably change for the high-attention population (attend-in
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sec for good S/N plus high attention). At
the higher speeds, however, our Gaussian
fits underestimated the data and may re-
flect the skewed shape of MT neuron
speed tuning expressed on a linear scale
(Lagae et al., 1993). Overall, attention

91 80 0 780 Scaled theaverage population kernels with
Direction (deg) no appreciable change in shape.
0.8 AM of kernels and spike rate

Our results thus far suggest that attention
scaled the kernels with no appreciable
change in shape. However, not all neuro-
nal spike rates were equally modulated by
attention. Some neurons experienced
more modulation of their spike rate than
others. We therefore wanted to know how
changes in kernel amplitude corre-
sponded with changes in the neuronal
spike rate attributable to attention.

In Figure 9A, we plot the AM of the
fitted Gaussian amplitude versus the AM
of the spike rate in response to the 0% co-
herent motion. AM is expressed as a ratio-
metric index and, as in previous analyses,
we only show the 44 neurons classified
with good S/N kernels. Although there is
scatter, this analysis suggests that as the
modulation of the spike rate increases, so
does the modulation of the fitted Gaussian
amplitude (r* = 0.46). To reveal how the
noise in our kernels affected our analysis,
we separated out those neurons with the
highest S/N kernels (S/N = 1.3; n = 15)
(Fig. 9A, filled circles). Cells with the high-
est S/N kernels show good correlation be-
tween the fitted Gaussian amplitude and
spike rate modulation (r* = 0.52). Thus,
for neurons for which we had the most
reliable kernel estimates, AM of kernel
amplitude and spike rate were closely
matched.

s

Motion coherence

high-attention
(n=20)

180
Direction (deg)

Motion coherence

kernels was based on parameters from the Gaussian fits for the attend-in condition only. A, Average population kernels from the

44 good S/N cells. Time points are relative to the alignment of the peaks. B, Average population kernels from the 20 good S/N cells
that also had high AM (=10%). C, D, Comparison of the average response predicted by the kernels with the actual average
response for each subpopulation of cells. Averages were computed using the normalized responses during the 300 msec before
and after the coherent motion began. The format shown is the same as that in Figure 2, Band C. The error bars are SEM.

vs attend-out: o, = 15.0 vs 14.0 msec for all good S/N and o, =
16.2 vs 17.4 msec for good S/N plus high attention). Comparing
the two population temporal integration profiles suggests that
cells with larger AM tended to have wider temporal integration
windows [across our 44 good S/N cells, there was a weak correla-
tion between temporal integration width in the attend-in condi-
tion (o) and the amount of AM of 0.24].

The directional tuning widths of the population kernels were
also similar between the two attention conditions (attend-in vs

Model-free effects of attention on

the kernels

Until now, we have used the parameters of
the Gaussian fits to examine the effects of
attention on the motion kernels in MT.
Although most kernels were well described by our product of
Gaussian model, it is possible some kernels may have experienced
changes attributable to attention that were not captured by the
Gaussian fit. To address this, we used a model-free analysis to
examine how our kernels changed with attention.

If attention multiplicatively scales the kernels, then it should
be possible to estimate this attentional scale factor (B) with
no prior assumptions on kernel shape. This can be expressed as
Kin = BKour where Ky and K, are the attend-in and attend-
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Figure 8.  Temporal, directional, and speed profiles for the average normalized population
kernels shown in Figure 7, A and B. A, Good S/N kernels. B, Good S/N plus high attention. The
curves are the best fit Gaussian function (Eq. 6) using all kernel coefficients from Figure 7, A and
B. The error bars are SEM.

out kernels, respectively. To compute 3, we nonlinearly scaled
the attend-out kernels to match the attend-in kernels (Eq. 7).
Figure 9B shows the scale factor, B, for each cell plotted against
the AM of spike rate. Both 8 and spike rate modulation are ex-
pressed in a ratiometric form. For our 44 good S/N neurons, 3
and spike rate modulation weakly covaried (all points; 7> = 0.13).
However, for the 15 neurons with the most reliable kernel esti-
mates, the multiplicative scaling factor, 3, was strongly related to
the modulation in spike rate (filled points; r> = 0.76).

The multiplicative scaling of the kernels with attention can
also be computed using the estimated kernel variance 0. If
the kernels are multiplicatively scaled copies of each other, then
the scale factor can also be computed as the ratio of the SDs of the
kernels (Eq. 8). Figure 9C shows this scale factor, v, plotted
against the AM of spike rate (both expressed as an equivalent
ratiometric) and is nearly identical to the nonlinearly estimated
scale factor B. Importantly, the two model-free scale factors, 3
and v, are very similar to the scaling predicted by the Gaussian fits
in Figure 9A. This is especially true for the kernels with the highest
S/N. Thus, for cells for which we were able to estimate the most
reliable kernels, the multiplicative scaling of the kernels with at-
tention, regardless of how it was computed, did a good job of
predicting the AM in average firing rates.

Computing a kernel scale factor does not address whether
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(y) expressed in an equivalent ratiometric form versus the AM of the firing rate. y was com-
puted by dividing the attend-in kernel SD by the attend-out kernel SD. D, Distribution of p values
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dicted by a multiplicative scaling of the noise, a3, or Hy: 0%, = 0%, Hy: 0%, > o2 The filled
bars correspond to those kernels with a high S/N. No kernel had a p value that was statistically
significant at 0.05.

attention produced a multiplicative scaling alone or also pro-
duced a change in kernel shape. To examine whether kernels
underwent a change in shape with attention, we computed the
residual kernel K., = Ky — BKoy» using the estimated multi-
plicative scaling factor, B. If Ky and K are multiplicatively
scaled copies of each other, then K., would be zero. Alternatively,
non-zero elements in K., would indicate a change in kernel shape
with attention. One difficulty in determining whether K, is flat
(or contains all zeros), is that noise in our kernel estimates also
contributes to non-zero elements in K. To determine whether
the non-zero elements in K, are attributable to noise or a shape
change in our kernels, we used the estimates of kernel noise
(0% ie) to predict the variance in K, (referred to as o7.) we
would expect from a pure multiplicative scaling with attention. If
0. is greater than the expected variance (%), this would suggest
that attention produced a change in kernel shape.

We used a x? distribution to test whether the variance in K.,
was greater than expected given the variance of the noise in Ky
and Koyt (Eq. 11). For this analysis, we used the scaling factor 3
to compute the expected variance, 0%, in K. The distribution of

p values for this test are shown in Figure 9D for our 44 good S/N
kernels (one-tailed x? for the null hypothesis 02, = 073).
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Most p values in Figure 9D fall well above 0.05, which sug-
gests no kernels underwent a significant change in shape. Because
noise in the kernels reduces the power of this test to detect a shape
change, neurons with the best S/N estimates are highlighted
in Figure 9D (solid bars). Even for kernels with the lowest
amounts of noise, the p values are well above significance, sug-
gesting these kernels underwent a pure multiplicative scaling
with attention. This result agrees with the population averages in
Figure 7 that also suggest AM does not change kernel shape in a
systematic way.

Discussion

We examined the effects of attention on the estimated linear
transfer function of MT neurons. From a subpopulation of neu-
rons that produced well defined kernels, we found that attention
scaled the directional, speed, and temporal profiles of the linear
transfer function without an appreciable change in shape. This
suggests that AM does not alter the period of temporal integra-
tion of single neurons in MT. In addition, we found that neurons
that produced the best kernels with the lowest noise also had their
response properties to the coherent motion well described by the
kernels and demonstrated strong transient response dynamics.

For kernels with good S/N that also had high AM, the effect of
attention was also a multiplicative scaling of the kernel. Attention
scaled these kernels by 34% (Fig. 8 B), approximately the same
amount the average firing rate was modulated by attention. Thus,
even strong AM did not overtly change the shape of the integra-
tion window or shift the window in time. This agrees with previ-
ous observations that suggest attention does not alter the stimu-
lus selectivity of neurons in the visual cortex (McAdams and
Maunsell, 1999; Treue and Martinez-Trujillo, 1999; Recanzone
and Wurtz, 2000). In these studies, the tuning curves of neurons
to various stimulus dimensions (e.g., orientation, motion direc-
tion) were multiplicatively scaled by attention. Multiplicative in-
teractions have also been observed between different stimulus
dimensions (Tolhurst, 1973; Tolhurst and Movshon, 1975;
Holub and Morton-Gibson, 1981; Albrecht and Hamilton, 1982;
Sclar and Freeman, 1982; Skottun et al., 1987; Hamilton et al.,
1989; Friend and Baker, 1993; McLean and Palmer, 1994; Geisler
and Albrecht, 1997), suggesting that attentional and sensory in-
puts may be processed in a similar manner (McAdams and
Maunsell, 1999). That attention does not change the shape of the
neuronal kernel is supported by a recent study that found atten-
tion had a multiplicative effect on the psychophysically measured
perceptual filter in humans performing a visual detection task
(Eckstein et al., 2002).

Recently, two abstracts have described the effect of attention
on spatiotemporal RFs (STRFs) of neurons in V1 (McAdams and
Reid, 2003) and V4 (David et al., 2002). The V1 study reported
AM of the peak of the estimated STRFs but did not address
whether there were corresponding changes in shape. In contrast,
the V4 study, which was computed under free-viewing condi-
tions, reported changes in the spatial and temporal tuning of the
estimated STRFs. It has also been suggested that attention pro-
duces subtle effects on spike timing without changes in the aver-
age rate (Niebur et al., 2002). Because of our 10 msec sampling
interval, small changes in response latency or the length of the
integration window would not be resolved by our kernel
estimates.

Before we began this study, there was no a priori reason to
think that spatial attention would multiplicatively scale temporal
integration of motion. Previous studies used the number of
spikes produced over hundreds of milliseconds to describe the
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multiplicative effects of attention on stimulus selectivity in corti-
cal neurons. Because changes in the synaptic conductance asso-
ciated with attention could theoretically alter the membrane time
constant of neurons (Rall, 1959), it was possible that attention
could have dramatically affected the time course of integration,
yet still have a multiplicative effect on spike counts. Other models
that include the effects of voltage-dependent mechanisms suggest
that the membrane time constant can be maintained under
changes in synaptic input (Cook and Johnston, 1999). However,
these models do not explain how multiplication, which plays a
central role in models of sensory processing, is implemented by
neurons (Albrecht and Geisler, 1991; Andersen et al., 1997; Sun
and Frost, 1998; Taylor et al., 2000; Pena and Konishi, 2001).
Although various mechanisms have been proposed to underlie
multiplicative interactions in neurons (Srinivasan and Bernard,
1976; Heeger, 1992; Koch and Poggio, 1992; Mel, 1993; Salinas
and Abbott, 1996; Hahnloser et al., 1999; Chance et al., 2002), the
biophysical mechanisms remain unclear (but see Gabbiani et al.,
2002).

The structure of our MT kernels is equivalent to those esti-
mated by Livingstone et al. (2001). In that study, the authors used
the motion vectors between two randomly moving dots located
in the RF and compensated for small changes in eye position
during fixation. Given the relatively large size of the RFs in our
population (3.9-10.7° median, 7.4°), we do not think that small
changes in fixation added much noise to our kernel estimates.

Our average temporal profile of our kernels was similar in
width to those computed by Borghuis et al. (2003) and Bair et al.
(1997) using reverse correlation with random motion sequences.
However, many of our best neurons that produced very high S/N
kernels had narrow integration windows compared with these
previous studies (such as the neuron in Fig. 2). We do not know
the origin of this difference. In fact, neurons that produced well
defined kernels with a good S/N tended to have shorter temporal
integration (the correlation between the kernel /N and the width
of temporal integration was —0.27). Interestingly, neurons with
higher AM tended to have slightly longer temporal integration
windows (Fig. 8). The reason for this is not known.

It is also possible that some neurons may have been sensitive
to motion occurring at speeds higher than that defined by our
kernels. We do not think this was likely because we intentionally
selected neurons with low speed preferences. This was because
the animals were not trained with faster motion stimuli and had
difficulty detecting the coherent motion at speeds greater than
~15°/sec. Using the peak plus 1 SD along the speed dimension of
the Gaussian fits (u, + o) as a measure of maximum speed
sensitivity, for the good S/N kernels, the median and maximum
were 12.1 and 23.2°/sec, which are below the speed cutoff of
23.5°/sec used in our analysis.

Our average population kernels (Fig. 7A, B) show no trailing
temporal inhibition, although several individual cells showed
hints of this feature. In the cross-correlation between neuronal
responses in MT and a one dimensional moving stimulus, Bair et
al. (1997) showed that some MT cells have kernels with weak
trailing inhibition. Borghuis et al. (2003) reported approximately
half their kernels showed trailing inhibition of some kind. The
reason for this discrepancy is unknown. However, our random
motion vectors are a more “broadband-like” stimulus compared
with the full-field movement impulses used by both the previous
studies. Although we assumed the relationship between stimulus
and neuronal responses in MT are stationary, recent results sug-
gest that stimulus attributes can affect the estimated linear trans-
fer function of neurons (Bair et al., 1997; Theunissen et al., 2000;
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Blake and Merzenich, 2002), and this may explain the difference
in our results. In addition, the use of the Gaussian function to
parameterize the estimated kernel shapes was an approximation
and not suggestive that the kernel profiles are true Gaussian.

Our analysis likely selected neurons that were driven by the
global motion as described by our motion vectors. MT neurons
respond to other stimulus attributes such as visual disparity
(DeAngelis et al., 1998) and changes in contrast such that oc-
curred during the replotting of the dots in our stimulus (flicker).
We further assumed that MT neurons integrated the motion vec-
tors uniformly across the RF. Therefore, our model would not
account for non-uniform motion integration because of “hot
spots” of integration in the RF. In addition, it has been suggested
that MT neurons use a power-law summation when presented
with multiple stimuli in the RF (Britten and Heuer, 1999), which
would not be captured by our linear transfer function.

Livingstone et al. (2001) showed that some MT neurons can
integrate motion across several previous stimulus frames, al-
though the contribution of this integration was weak. Such inter-
actions were not included in our model. Other factors, such as the
number of spikes available (affected by the duration of recording
and responsiveness to the 0% coherent motion), also contributed
to whether the kernel of a cell could be estimated. It has also been
shown that visual cortical neurons, including MT, respond
slower to stimuli that increase firing rates than those that reduce
firing rates (Bair et al., 2002). This asymmetry in latency is not
featured in our linear model.

Despite these limitations, the kernels did a good job of repro-
ducing the directional selectivity of the 44 good S/N neurons in
our population (Fig. 7C). Thus, our estimated kernels captured a
large portion of how the neurons processed the motion stimulus.
The nonlinear components of the neuronal processing that were
not captured by our kernels are evident in the fact the kernels
underestimated responsiveness to coherent motion. It is possible
that a static nonlinearity could be added to the output of the
linear kernel to eliminate these discrepancies (Hunter and Ko-
renberg, 1986). Although it is unlikely that attention would affect
the nonlinear components of neuronal processing in such a way
as to change the attentional effects on the linear kernels reported
here, this is an important topic for future studies.
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