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Microglial Expression of the B7 Family Member B7 Homolog
1 Confers Strong Immune Inhibition: Implications for
Immune Responses and Autoimmunity in the CNS
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Inflammation of the CNS is usually locally limited to avoid devastating consequences. Critical players involved in this immune regulatory
process are the residentimmune cells of the brain, the microglia. Interactions between the growing family of B7 costimulatory ligands and
their receptors are increasingly recognized as important pathways for costimulation and/or inhibition of immune responses.

Human and mouse microglial cells constitutively express B7 homolog 1 (B7-H1) in vitro. However, under inflammatory conditions
[presence of interferon-y (IFN-y) or T-helper 1 supernatants], a significant upregulation of B7-H1 was detectable. Expression levels of
B7-H1 protein on microglial cells were substantially higher compared with astrocytes or splenocytes. Coculture experiments of major
histocompatibility complex class II-positive antigen-presenting cells (APC) with syngeneic T cells in the presence of antigen demon-
strated the functional consequences of B7-H1 expression on T-cell activation. In the presence of a neutralizing anti-B7-H1 antibody, both
the production of inflammatory cytokines (IFN-yand interleukin-2) and the upregulation of activation markers (inducible costimulatory
signal) by T cells were markedly enhanced. Interestingly, this effect was clearly more pronounced when microglial cells were used as APC,
compared with astrocytes or splenocytes. Furthermore, B7-H1 was highly upregulated during the course of myelin oligodendrocyte
glycoprotein-induced and proteolipid protein-induced experimental allergic encephalomyelitis in vivo. Expression was predominantly
localized to areas of strongest inflammation and could be colocalized with microglial cells/macrophages as well as T cells.

Together, our data propose microglial B7-H1 as an important immune inhibitory molecule capable of downregulating T-cell activation

in the CNS and thus confining immunopathological damage.

Key words: encephalomyelitis; glia; immunity; microglia; neuropathology; tolerance; costimulation

Introduction

Antigen presentation in the CNS is thought to play a critical role
in the initiation and perpetuation of neuroinflammation. Micro-
glial cells, the resident immune cells, can express major histo-
compatibility complex (MHC) class II molecules and have the
potential to act as effective antigen-presenting cells (APCs) to T
cells (Sedgwick et al., 1993). In multiple sclerosis (MS), the pro-
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totype autoimmune inflammatory disorder of the CNS, close
interactions of MHC class II-positive microglial cells with T cells
are visible within the inflammatory lesions (Bo et al., 1994).

A necessary prerequisite for T-cell activation is T-cell receptor
engagement by MHC peptides (signal 1) together with a second
antigen-independent signal mediated by costimulatory receptors
(signal 2) (Lafferty and Woolnough, 1977). Accumulating evi-
dence suggests that during CNS inflammation, activated micro-
glia express costimulatory molecules such as CD80 (B7.1), CD86
(B7.2), and CD40 in addition to certain adhesion molecules (for
review, see Aloisi, 2001). The interaction of microglial cells and T
cells subsequently leads to either induction of T-cell prolifera-
tion, T-effector functions (e.g., cytokine secretion), or both
(Becher et al., 2000) (for review, see Aloisi, 2001). The modula-
tion of T-cell function by microglial cells entails an important
dichotomy. Microglial cells are capable of secreting high amounts
of proinflammatory cytokines [e.g., interleukin-1 (IL-1), tumor
necrosis factor-a (TNF-a), and IL-12] during CNS inflamma-
tion. In contrast, they can also participate in the downmodula-
tion of inflammation by producing anti-inflammatory cytokines
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such as TGF-f3, IL-10, or IL-1 receptor antagonist (Kreutzberg,
1996). Along this notion, different model systems involving an
inflamed CNS environment have characterized microglia as po-
tent inducers of T-cell cytokine production, whereas their capac-
ity to induce T-cell proliferation is much less evident (Carson et
al., 1999; Juedes and Ruddle, 2001).

The discovery of coinhibitory molecules of the B7-CD28 fam-
ily has brought tremendous advancements in understanding the
control of T-cell immunity in different immune compartments
(Chen, 2004). Programmed death-1 ligand (PD-L1) or B7 ho-
molog 1 (B7-H1) has been attributed to costimulatory and im-
mune regulatory functions (Kobata et al., 2000; Coyle and
Gutierrez-Ramos, 2001; Carreno and Collins, 2002; Liang and
Sha, 2002; Sharpe and Freeman, 2002). Previous work described
that the costimulation of T cells with B7-H1-Fc fusion protein
induces T-cell proliferation and the secretion of IL-10 and
interferon-vy (IFN-vy) (Dong et al., 1999). However, more recent
data suggest that B7-H1 may also negatively regulate T cells by
inhibiting cell cycle progression (Freeman et al., 2000; Carter et
al., 2002). B7-H1 exhibits a broader tissue distribution than
B7.1/2 (CD80/CD86) (Freeman et al., 2000; Eppihimer et al.,
2002; Mazanet and Hughes, 2002; Petroff et al., 2002; Wiendl et
al., 2003). B7-H1 is upregulated by IFN-y and regulates immune
responses by interacting with programmed death receptor-1
(PD-1) and another yet unidentified receptor on activated T cells,
although not CD28/cytotoxic T-lymphocyte-associated antigen
receptor 4 (Coyle and Gutierrez-Ramos, 2001; Carreno and Col-
lins, 2002; Dong et al., 2002; Liang and Sha, 2002; Sharpe and
Freeman, 2002; Wang et al., 2003). Interestingly, PD-1-deficient
mice suffer from autoimmune disorders resulting from inappro-
priate activation of B and T cells (Nishimura et al., 1999, 2001),
suggesting that PD-1 is an important inhibitory signal that acts to
prevent uncontrolled proliferation of autoreactive T cells.

Materials and Methods

Antibodies and reagents. Myelin oligodendrocyte glycoprotein (MOG)
peptide 35-MEVGWYRSPFSRVVHLYRNGK-55 was synthesized by
MWG Biotech (Ebersberg, Germany). The proteolipid protein 139-151
(PLP139-151) (HCLGKWLGHPDKF) was synthesized using standard
g-fluorenylmethoxycarbonyl chemistry. Protein purified derivate (PPD)
of Mycobacterium tuberculosis was purchased from Statens Serum Insti-
tut (Copenhagen, Denmark). Staphylococcal enterotoxin B (SEB) was
provided by Sigma (Deisenhofen, Germany). The following primary an-
tibodies (Abs) were used: anti-mouse B7-H1 (PD-L1), MIH5 (eBio-
science, San Diego, CA), 10H5 (L. Chen, Mayo Clinic Rochester, Roch-
ester, MN), BAF1019 (R&D Systems, Minneapolis, MN); anti-mouse
inducible costimulatory signal (ICOS), HK5.3 (eBioscience); anti-mouse
MHC 1II, I-A/I-E (BD PharMingen, Heidelberg, Germany); anti-mouse
MAC3 (PharMingen); anti-mouse CD45, anti-mouse CD11b, anti-
mouse CD3 (all from BD Biosciences, Heidelberg, Germany); anti-
mouse F 4/80 (Serotec, Kidlington, UK); and anti-mouse GFAP (Dako-
Cytomation, High Wycombe, UK). Secondary Abs are as follows: goat
anti-mouse IgG (H+L) F(ab),-PE, rat anti-mouse IgG F(ab),-FITC (Di-
anova, Hamburg, Germany), anti-rabbit IgG F(ab),-FITC (Dianova),
and donkey anti-rat Cy3 (Jackson ImmunoResearch, West Grove, PA).
Mouse IFN-y and TNF-a were from Sigma. Mouse IL-2 and IFN-y
ELISA were from PharMingen.

Isolation of human microglial cells. The studies were performed in ac-
cordance with the guidelines set by the Institutional Review Board of
McGill University (Montreal, Canada). Primary adult human glial cells
were obtained from surgical resections performed for the treatment of
non-tumor-related intractable epilepsy. Tissue was obtained from re-
gions requiring resection to reach the precise epileptic focus and was
distant from the main electrically active site. Dissociated cultures of mi-
croglia were prepared as described previously (Williams et al., 1992),
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based on the differential adherence of the glial cells. Briefly, brain tissue
was subjected to enzymatic dissociation with trypsin (0.025%) and
DNase I (25 ug/ml) (Boehringer Mannheim, Laval, Quebec, Canada) for
30 min at 37°C, followed by mechanical dissociation by passage through
a 132 um nylon mesh (Industrial Fabrics Corporation, Minneapolis,
MN). Cells were further separated on a linear 30% Percoll density gradi-
ent (Amersham Biosciences, Baie D’Urfé, Quebec, Canada) and centri-
fuged at 15,000 rpm at 4°C for 30 min. The cells recovered from the
interface contained a mixed glial cell population consisting of ~65%
oligodendroglia, 30% microglia, and 5% astrocytes. To enrich for micro-
glia, the mixed cell population was suspended in minimal essential cul-
ture medium, supplemented with 5% FCS, 2.5 U/ml penicillin, 2.5 pug/ml
streptomycin, 2 mm glutamine, and 0.1% glucose (all from Invitrogen,
Burlington, Ontario, Canada), and left overnight in 12.5 cm? tissue cul-
ture flasks (Falcon; Fisher Scientific, Montreal, Quebec, Canada) in a
humid atmosphere at 37°C with 5% CO,. The less-adherent oligoden-
droglia were removed by gentle pipetting, and the remaining adherent
cells were allowed to develop morphologically for 3 d. Remaining micro-
glia were of 95% purity as assessed by immunocytochemistry and flow
cytometry (Williams et al., 1992; Becher and Antel, 1996). Microglia were
cultured for ~7 d and then harvested by trypsinization (0.25%). T-helper
1 (Thl) as well as Th2 supernatants from T cells were generated as de-
scribed previously (Kim et al., 2004).

Isolation of human monocytes. For monocyte isolation, blood was ob-
tained by venipuncture, and peripheral blood mononuclear cells were
isolated by density gradient centrifugation using lymphocyte separating
solution (PAA Laboratories, Linz, Austria). Monocytes were enriched by
1 h of adherence to plastic flasks at 37°C in RPMI 1640 (BioWhittaker,
Verviers, Belgium) supplemented with 10% FCS (Biochrom, Berlin, Ger-
many) and penicillin (100 international units (IU)/ml)/streptomycin (10
pg/ml) (Invitrogen). Nonadherent cells were removed. Adherent cells
were detached using cell dissociation buffer, and purity was analyzed by
flow cytometry (>90% CD14-positive cells). Where indicated, mono-
cytes were stimulated by supernatants from Th1 or Th2 cells as described
previously (Kim et al., 2004).

Isolation of murine microglial cells and astrocytes. Mouse microglial
cells and astrocytes were isolated from primary mixed brain glial cell
cultures using a modification of methods described previously (Giulian
and Baker, 1986; Magnus et al., 2001, 2002). In brief, cultures were pre-
pared from the brains of newborn C57BL/6 mice [postnatal day 0 (P0)
toP2; Charles River, Sulzfeld, Germany], which were freed of their me-
ninges and minced with scissors under a dissecting microscope (Wild,
Heerbrugg, Switzerland). Mixed cell cultures were then grown in basal
Eagle’s medium supplemented with 10% fetal calf serum (Sigma), 50
IU/ml penicillin, and 50 pg/ml streptomycin at 37°C for 10—14 d. Mi-
croglial cells and astrocytes were separated by shaking the culture flasks
for 7 h (Primaria; Falcon, Franklin Lakes, NJ). To check the purity of the
cell-culture system, we took a small fraction and performed immunocy-
tochemistry with the monoclonal antibodies (mAbs) F 4/80 (1:100) and
GFAP (1:100) as described previously (Giulian and Baker, 1986; Zielasek
etal,, 1992). A total of 95% or more of the cells were either F 4/80 positive
(microglial cells) or GFAP positive (astrocytes). All cells used for our
studies came from the same primary glial cell preparation.

For the isolation of splenocytes, the spleen was isolated from syngeneic
mice and then cell suspensions were generated and used in the experi-
ments (Jung et al., 2001).

Coculture experiments with T cells. V-specific activation of naive T
cells by SEB (5 ug/ml) was measured by coculturing naive T cells with
irradiated syngeneic APC. T cells were mixed with microglial cells or
astrocytes in a ratio of 15:1 to achieve good levels of cytokine secretions
by the T cells. In the experiments with splenocytes, the ratio was 1:1. The
optimal ratio of microglial cells, astrocytes, or splenocytes and T cells for
the maximal T-cell cytokine production had been titrated previously.
Microglial cells or astrocytes alone produced no IFN-vy or IL-2, and T
cells alone (with or without antigen) secreted rather small amounts of
IEN-v or IL-2. A 10- to 100-fold increase in IFN-+y or IL-2 production
could be detected after antigen had been added to the cocultures (data
not shown). Supernatants were collected at 24 h, centrifuged to remove
particulate debris, and stored in aliquots at —70°C.
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sion was performed using the ABI prism 7700
Sequence Detection system (Applied Biosys-
tems, Foster City, CA). Primers (BioChip Tech-
nologies, Freiburg, Germany) were designed
when possible to span exon—exon junctions to
prevent amplification of genomic DNA and to
result in amplicons <150 bp to enhance effi-
ciency of PCR amplification. Relative quantifi-
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et al,, 2003). Templates were multiplied using
PerkinElmer Life Sciences (Emeryville, CA)
SYBR Green PCR Master Mix [containing hot-
start AmpliTaqGold, SYBR Green PCR buffer
(2X), MgCl,, and dNTPs). Reverse-
transcription PCR of ¢DNA specimens was
conducted in a total volume of 15 ul with 1X
TaqMan Master Mix (PerkinElmer Life Sci-
| ences) with primers at optimized concentra-

tions. Thermal cycler parameters were 2 min at
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Figure 1.

For the antigen-specific T-cell experiments, T-cell lines were estab-
lished from inguinal lymph nodes (LNs) or spleens of immunized mice
according to standard procedures (Korn et al., 2003). T-cell lines were
restimulated with their respective antigen at least two times before the
experiments. For in vitro recall, inguinal LN cells or splenocytes were
isolated on day 12 after injection and seeded at 75,000 or 150,000 per
microtiter-well in restimulation medium. The T-cell lines were CD4 pos-
itive and clearly MHC II restricted. PPD (10 ug/ml) was used for PPD-
specific T-cell stimulation. To measure antigen-induced cytokine pro-
duction by T cells, PPD-specific T cells and microglial cells were cultured
in the presence or absence of antigen at a ratio of 5:1.

To achieve higher levels of B7-H1 expression in the blocking experi-
ments, microglial cells, astrocytes, or splenocytes were preincubated with
IEN-vy (500 IU/ml) for 24 h, which was thoroughly washed off before the
interaction with the T cells. B7-H1 or control antibodies were used at a
dilution of 1:100. Concentrations had been titrated and tested previously.
Of note, IFN-v, which was used to stimulate microglial cells, astrocytes,
or splenocytes, was undetectable in control cultures.

ELISA. OptEIA ELISA kits from PharMingen were used for the detec-
tion of mouse INF-vy and IL-2 in the supernatant.

RNA extraction, cDNA synthesis, and quantitative real-time PCR. Cells
were detached by trypsinization, collected and resuspended in 1 ml of
TRIzol, and then frozen at —80°C. Total RNA extraction was performed
using peqGOLD Tri Fast isolation reagent (peqLab, Erlangen, Germany).
For first-strand ¢cDNA synthesis, 2.5 ug of total RNA was dissolved in
21.5 ul of DEPC-treated double-distilled water (H,O44 ). A total of 2 ul
of random hexamers (200 ng/ul) was added to each sample before incu-
bation at 70°C for 10 min. Samples were cooled on ice and subjected to a
mixture consisting of 5X Moloney murine leukemia virus (M-MLV)
reverse-transcription buffer (10 ul/sample; Promega, Madison, WI),
deoxyNTPs (dANTPs) (10 mm; 10 wl/sample), RNasin (40 U/ul, 0.25
ul/sample; Promega), M-MLYV reverse-transcription buffer (200 U/ul, 1
wl/sample; Promega), and DEPC-treated H,O44 (5.25 ul/sample). This
mixture of 26.5 ul was added to each RNA/random hexamer solution.
Samples were mixed and incubated for 10 min at room temperature, for
50 min at 42°C, and finally for 15 min at 70°C.

For quantitative real-time (QRT)-PCR, measurement of gene expres-
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Expression and differential modulation of B7 family members and HLA-DR mRNA in human microglial cells and
peripheral blood monocytes. Human microglial cells from two different donors [denominated microglia | (HA376) and microglia
11 (HA382)] were cultured in the absence or presence of Th1and Th2 supernatants, harvested after 48 h of induction, and analyzed
for the expression of the indicated mRNA by QRT-PCR [B7.1 (CD80), B7.2 (CD86), MHC class Il (HLA-DR), B7-H1 (PD-L1)]. For
comparison, monocytes from two independent donors (monocytes | and Il) were processed under the same conditions. Bars and
numbers represent the relative gene expression of indicated molecules calculated in relation to unstimulated microglia (set to 1).
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Monocytes | extension at 60°C for 1 min. The fluorescence

resulting from binding of SYBR Green dye to
double-stranded DNA was measured directly in
the PCR tube. Data were analyzed with the ABI
PRISM Detection system using the comparative
threshold cycle (C;) method (user bulletin;
PerkinElmer Life Sciences). Samples were nor-
malized to 18S rRNA to account for the vari-
ability in the initial concentration of the total
RNA and conversion efficiency of the RT reac-
tion. Product specificity of the PCR products and quality of primers were
confirmed by agarose gel electrophoresis, sequencing of bands, and dis-
sociation curve analysis. The internal reference dye ROX included in the
PCR buffer was used to check for fluorescence fluctuations caused by
changes in concentration or volume. All PCR assays were performed in
duplicate. Real-time monitoring of fluorescent emission from cleavage of
sequence-specific probes by the nuclease activity of Tag polymerase allowed
definition of the threshold cycle during the exponential phase of amplifica-
tion. Standard curves were generated for each gene quantitated and were
found to have excellent PCR amplification efficiency (90—100%) as deter-
mined by the slope of the standard curves. Linear regression analysis of all
standard curves was 0.99. Normalization of samples was performed by di-
viding the copies of the gene of interest by copies of the reference gene, 18S
rRNA, to account for the variability in the initial concentration of the total
RNA and conversion efficacy of the RT reaction.

Oligonucleotides used in this study are as follows. 18S: 18S-forward
(for) (450-469), 5'-CGGCTACCACATCCAAGGAA; 18S-reverse (rev)
(636—619), 5'-GCTGGAATTACCGCGGCT. Human, hB7-H1 (PD-
L1): B7-H1-for (441-460), 5'-TCAATGCCCCATACAACAAA; B7-H1-
rev (560-541), 5'-TGCTTGTCCAGATGACTTCG. hPD-L2: PD-L2-for
(360-383), 5'-GTACATAATAGAGCATGGCAGCA; PD-L2-rev (460—
439), 5'-C-CACCTTTTGCAAACTGGCTGT. hCD80: CD80-for
(23-43), 5'-AGTTAGAAGGGGAAATGTCGC; CD80-rev (133-112),
5'-TCAGGGTAAGACTCCACTTCTG. hCD86: CD86-for (509-530),
5'-ATTCTGAACTGTCAGTGCTTGC; CD86-rev (633-612), 5'CTTC-
TTAGGTTCTGGGTAACCG. Human leukocyte antigen (HLA)-DR-a:
HLA-DR-a-for (274-294), 5'-TGAAGAATTTGGACGATTTGC; HLA-
DR-a-rev (400-380), 5'-GGAGGTACATTGGTGATCGG. Murine,
mB7.1 (mCD80): mB7.1-for (694-713), 5'-CGCAACCACACCATTA-
AGTG; mB7.1-rev (843-823), 5’ GACGACTGTTATTACTGCGCC. mB7.2
(mCD86): mB7.2-for (368-387), 5-ACAAAAAAAGCCACCCACAG;
mB7.2-rev (507-487), 5'-ACGTGCAGGTCAAATTTATGC. mB7-H1
(PD-L1): mB7-Hl-for (579-598), 5-TGCTTCTCAATGTGACCAGG;
mB7-Hl-rev (712-693), 5'-ATGTGTTGCAGGCAGTTCTG. mPD-L2:
mPD-L2-for (505-524), 5'-AGTACCGTTGCCTGGTCATC; mPD-L2-rev
(646—627), 5'-CTAGCCTGGCAGGTAAGCTG.
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Mouse strains and induction of experimental allergic encephalomyelitis.
For active induction of MOG;,_s5-experimental allergic encephalomy-
elitis (EAE), C57BL/6 mice (Charles River) were immunized with 200 ul
of an emulsion of equal volumes of MOG;;_55 in PBS (2 mg/ml) and
Freund’s incomplete adjuvant oil (Invitrogen) supplemented with M.
tuberculosis H37Ra (2 mg/ml; Difco, Detroit, MI). To enhance the im-
mune response, immunized animals were administered 400 ng of pertus-
sis toxin (Sigma) on the day of immunization and on day 2 after injec-
tion. Animals were killed after induction of EAE at times indicated in
Results, and tissues were fixed in paraformaldehyde.

For kinetic analysis of B7-H1 expression by flow cytometry, SJL mice
(female, 6—12 weeks of age; Harlan Winkelmann, Borchen, Germany)
were used according to approved protocols. EAE induction was per-
formed essentially as described previously (Bischof et al., 2004). In brief,
50 nmol of the peptide PLP139-151 in PBS emulsified with an equal
amount of CFA containing 200 ug of M. tuberculosis H37RA (Difco) was
injected subcutaneously in the back of the foot. In addition, mice re-
ceived a single intravenous injection of 300 ng of pertussis toxin (List
Biologic, Campbell, CA) in PBS. Diseased animals had scores between 2
and 4 on the five-point EAE scale, with a score of 0 being disease free and
5 being moribund or dead.

Flow cytometry. For flow cytometric analysis of inducible surface ex-
pression of MHC class II and B7-H1, microglial cells, astrocytes, and
splenocytes were preincubated with IFN-vy (500 U/ml) for 48 h. Adherent
cells were detached from the surface of the 48-well plastic dishes by
incubation with 0.02% EDTA in PBS. Subsequently, samples were
treated as described previously (Tabi et al., 1994).

As a marker for T-cell activation in coculture experiments, we mea-
sured upregulation of the inducible costimulatory protein ICOS on the
PPD-specific T cells after they had been separated from the adherent
microglial cells by gentle washing.

For flow cytometric analysis of B7-H1 expression in the CNS in vivo
during EAE, cells isolated from the CNS were stained on ice with the
indicated antibodies for 20 min and directly before analysis with 1 pg/ml
propidium iodide. Flow cytometric analysis was performed on life lym-
phocytes with a Cyan Cytometer (DakoCytomation) using Summit soft-
ware (DakoCytomation) for data acquisition and analysis.

Histology. Spinal cords and brains were harvested on days 1421 after
immunization (controls as well as antigen-immunized mice) and snap-
frozen in optimal cutting temperature compound. Four- to 10-um-thick
sections were cut, fixed in acetone, and subsequently stained. Single
stainings were performed using the avidin—biotin technique (Vector
Laboratories, Burlingame, CA) and counterstained with hematoxylin.
Antibodies used were anti-B7-H1 (MIH5), anti-MAC3, anti-GFAP, and
anti-CD3. Isotype-matched control IgG served as a negative control. For
triple fluorescence stainings of CNS cells, spinal cords and brains were
sectioned at 8 wm and incubated with anti-B7-H1 (MIH5), anti-GFAP,
or anti-CD3 and counterstained with 4',6-diamidino-2-phenylindole
(DAPI). Sections were analyzed using the Zeiss (Thornwood, NY) Axio-
plan microscope equipped with an image analysis system.

Statistical analysis. Data are representative of experiments performed
at least three times with similar results. Significance was assessed by
two-sided f test (*p < 0.05; **p < 0.01).

Results

Expression of B7-H1 on human microglial cells: strong
upregulation by inflammatory stimuli

Human microglial cells were examined for the expression of B7-
H1. We analyzed total RNA from cultured human adult micro-
glial cells for different B7 molecule transcripts and HLA-DR by
QRT-PCR. Microglial preparations from two different donors
were used (HA376 and HA382). We also studied purified human
peripheral blood monocytes, which were previously described to
constitutively express B7-H1 mRNA and protein (Selenko-
Gebauer et al., 2003; Schreiner et al., 2004). mRNA transcripts of
B7-H1 (PD-L1) were detectable on monocytes and microglial
cells already before the addition of inflammatory stimuli (Fig. 1).
Monocytes and microglia were cultured in the presence of super-
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Figure 2.  B7-H1 protein expression in cultured murine microglial cells, astrocytes, and

splenocytes. The expression of B7-H1and MHC class Il (HLA-DR) was assessed by flow cytometry
in purified and cultured microglial cells, astrocytes, and splenocytes maintained in the absence
or presence of [FN-y (500 U/ml; 48 h). Histograms show staining with the designated antibod-
ies (open) underlaid with the respective isotype controls (filled). The expression analysis was
performed with glial cell cultures from five different animal preparations. A representative
experiment is shown.

natants from Thl or Th2 T-cell lines to assess whether B7-H1
expression on these cell types can be differentially regulated by
exposure to a proinflammatory or an anti-inflammatory envi-
ronment, respectively. Exposure of microglial cells to either Th1
or Th2 supernatants led to a significant upregulation of B7-H1
mRNA, which was clearly higher with Th1 than with Th2 super-
natants [relative increases for Thl, 18.5 (HA376) and 9.4
(HA382); for Th2, 10.1 (HA376) and 2.8 (HA382)]. mRNA tran-
scripts for the classical B7 molecules CD80 (B7.1) and CD86
(B7.2) as well as expression of MHC class II were assessed in
parallel. Upregulation of CD80 in response to the proinflamma-
tory Th1 supernatants was stronger in monocytes compared with
microglia [relative increases for monocytes, 7.7 and 6.2; relative
increases for microglia, 2.0 (HA376) and 3.2 (HA382)] (Fig. 1).
CD86 was mildly upregulated by Th2 rather than by Th1 super-
natants with no substantial differences between monocytes and
microglial cells (Fig. 1). Thl supernatant exposure results in
downregulation of CD86 mRNA in monocytes but not microglia.
The pattern of regulation of HLA-DR transcripts by T-cell super-
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Figure 3.

mRNA expression of B7 family members in cultured murine microglia and astroglia. Microglia and astrocytes cultured in the absence or presence of IFN-y (500 U/ml) were harvested

after 48 h of induction and analyzed for the expression of the indicated mRNA by QRT-PCR. 4, B7.1 (CD80); B, B7.2 (CD86); €, B7-H1 (PD-L1); D, PD-L2. Splenocytes and PHA-stimulated splenocytes
were used as controls. Bars and numbers represent the relative gene expression of indicated molecules calculated in relation to unstimulated splenocytes (set to 1). Data represent expression analysis

from glial cultures from three different animal preparations (mean = SEM).

natants was similar for monocytes and microglial cells, in that
Thl supernatants enhanced HLA-DR expression on both cell
types, whereas Th2 supernatants had relatively little effect. The
induction of HLA-DR mRNA by Th1 supernatants was higher in
monocytes than in microglial cells [relative increases for mono-
cytes, 7.3 and 20.9; relative increases for microglia, 4.2 (HA376)
and 9.4 (HA382)] (Fig. 1).

IFN-vy-inducible B7-H1 protein in cultured murine microglial
cells: comparison with astrocytes and splenocytes

To validate our data achieved with RNA from human monocytes
or microglial cells cultured in the presence or absence of Th1 or
Th2 supernatants, we next investigated the expression of B7-H1
and B7 proteins on murine microglial cells in comparison with
astrocytes and splenocytes. In the absence of added cytokines,
cultured microglial cells expressed B7-H1 protein, which was
higher than on astrocytes or splenocytes (Fig. 2). Consistent with
our observations with the Thl supernatants, B7-H1 expression
on microglial cells was substantially increased when cells were
cultured in the presence of inflammatory stimuli (500 IU/ml
IFEN-vy). B7-H1 upregulation was visible 12 h after stimulation,
and the maximum effect was observed at 72 h (data not shown).
In contrast, TNF-« had no effect on B7-H1 expression (data not
shown). Similar to the observations in microglia, B7-H1 expres-
sion was also inducible by IFN-v in astrocytes and splenocytes.
Relative increases and absolute protein expression levels of
B7-H1 were higher in glial cells than in splenocytes (Fig. 2). As a
control, we measured MHC II expression, which was induced by
IEN-+ in all cells (microglia, astrocytes, splenocytes). Four inde-
pendent experiments of primary cultured glial cells from differ-
ent animal preparations were examined.

To corroborate the murine protein data, we analyzed total
RNA from microglia, astrocytes, and splenocytes for different B7
molecule transcripts by QRT-PCR. According to the literature,
murine microglia expressed CD80 and CD86 mRNA, which was
upregulated by IFN-+y (Fig. 3A, B). On astrocytes, expression and
regulation was lower (Fig. 3A, B). Corresponding to the protein
data (Fig. 2), mRNA for B7-H1 (PD-L1) was expressed in unex-
posed microglia and was substantially induced after exposure to
IFN-y (factor of 6.3-10.5) (Fig. 3C). Astrocytes expressed lower
basal levels, which were also highly upregulated after stimulation
with IFN-y. Of note, low levels of PD-L2 were also detected on
microglial cells and were upregulated after treatment with IFN-y
(Fig. 3D).

Functional role of B7-H1 on microglial cells: strong
inhibition of naive polyclonal T-cell activation
To assess the functional consequences of B7-H1 expression on
microglial cells, we used a coculture setting in which microglial
cells, astrocytes, or splenocytes were used as APC. APC were in-
duced to upregulate B7-H1 and MHC-II by IFN-vy and subse-
quently cocultured with naive syngeneic T cells and superantigen
(SEB) in the presence of neutralizing anti-B7-H1 antibody
(MIHS5 or 10B5) or the appropriate isotype control antibody. The
release of IFN-y and IL-2 into the supernatant was measured at
the times indicated. Both cytokines are produced primarily by T
cells and not by microglial cells or astrocytes (data not shown).
Compared with the isotype control, treatment with anti-
B7-H1 mAb strongly augmented the production of IFN-y and
IL-2 by oligoclonally (SEB) stimulated naive T cells (Fig. 4A). In
cocultures with microglial cells, in the presence of anti-B7-H1
mAb, the mean amounts of IL-2 and IFN-vy increased from
1789 * 310 to 2816 * 776 pg/ml (IL-2) and from 1142 * 400 to
2110 % 196 pg/ml (IFN-1y), respectively. For cocultures with as-
trocytes, IL-2 and IFN-y were elevated from 1370 =+ 60 to 1469 =+
112 pg/ml and from 548 * 135 to 784 = 206 pg/ml, respectively,
and in the coculture system with splenocytes, IL-2 increased from
2953 * 324 to 3415 * 467 pg/ml and IFN-vy from 1285 * 117 to
1861 = 349 pg/ml. Albeit in principle, the inhibitory effect of
B7-H1 was observed with microglial cells as well as astrocytes and
splenocytes, B7-H1 neutralization had its greatest effects in mi-
croglial T-cell cocultures, with a mean increase of 57% for IL-2
and 85% for IFN-vy (compared with 7 and 43% in the astrocyte
coculture, and 16 and 45% in the splenocyte coculture setting). In
general, B7-H1 neutralization had more influence on IFN-+y pro-
duction than on IL-2 secretion (Fig. 4A). For IL-2 secretion,
B7-H1 neutralization only had a significant influence in micro-
glia T-cell cocultures. Together, these data comparing different
APC indicate that the inhibitory effect of B7-H1 on T-cell cyto-
kine production is most prominent in microglial T-cell cultures.

Functional role of B7-H1 on microglial cells: strong
inhibition of antigen-specific T-cell activation
Naive, oligoclonally (SEB-) activated T cells may differ consider-
ably from antigen-specific T cells both in their reactivity to TCR-
specific stimuli and in their dependence on secondary signals.
Therefore, we next assessed the functional significance of B7-H1
expression on the activation of antigen-specific T cells.
Coculture experiments were performed with PPD-specific
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Figure4.  Functional consequences of B7-H1 expression for cytokine expression and T-cell activa-

tion. 4, Polyclonal T cells were cocultured with microglial cells, astrocytes, or splenocytes under syn-
geneic conditions. T-cell activation was performed by the addition of SEB. To analyze the function of
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T-cell lines, and the modulation of T-cell cytokine production by
B7-H1 was assessed. As observed with naive T cells, blocking of
B7-H1 on microglial cells resulted in a significant increase in both
IFN-vy and IL-2 (for IFN-vy, 17.905 = 1435 vs 23.054 £ 2880
pg/ml, and for IL-2, 165 = 96 vs 550 * 91 pg/ml) (Fig. 4B).

The inhibitory effect of B7-H1 was also demonstrated by as-
sessing the expression pattern of T-cell activation markers fol-
lowing coculture in the presence or absence of a neutralizing
B7-H1 antibody. Neutralization of B7-H1 led to increased ex-
pression levels of ICOS on PPD-specific T cells, thus demonstrat-
ing the inhibitory role of microglia-related B7-H1 for T-cell ac-
tivation (Fig. 4C). The pooled relative mean fluorescence index
from three independent experiments showed an overall elevation
in ICOS expression of 39% after inhibition of the B7-H1 signal
(p < 0.05).

Expression of B7-H1 in the CNS and in the course of EAE
Our in vitro human and murine experiments suggested that mi-
croglia and astrocytes are capable of expressing high levels of
inhibitory B7-H1 in the presence of inflammatory conditions.
Therefore, we next investigated the expression of B7-H1 during
CNSinflammation exemplified by MOG- and PLP-induced EAE.
Expression of B7 molecules was assessed by QRT-PCR as well as
immunohistochemistry at different time points after immuniza-
tion in brain specimens and in the spinal cord from animals at an
early stage of EAE (score 2) and a late stage of EAE (score 3—4).
Under control conditions, B7-H1 mRNA was virtually undetect-
able in the CNS (Fig. 5). In contrast, B7-H1 expression progres-
sively increased during the course of EAE and seemingly corre-
lated with the disease severity (Fig. 5C). mRNA transcripts for
PD-L2, the alternative splice variant of B7-H1, were found in late
EAE but to a much lesser extent than B7-H1 (Fig. 5D). Expression
levels of CD80 and CD86 mRNA in the brain and spinal cord in
principle paralleled this pattern (Fig. 5A,B). According to the
mRNA data, B7-H1 protein was virtually undetectable in control
animals. However, strong immunoreactivity of B7-H1 was de-
tectable in ongoing EAE, and intensity of staining correlated with
the severity of EAE as well as the presence of inflammatory infil-
trates in the lesions (Fig. 6). Histochemical analysis of the in-
flamed spinal cord and the CNS revealed B7-H1 coexpression
with MAC3 (microglia/macrophages) but not GFAP (astrocytes)
(Fig. 6). Interestingly, B7-H1 also costained with CD3 (T cells),
corresponding to the notion that T cells are capable of expressing
B7-H1 (Dongetal., 2002) (Fig. 6). Thus, our immunohistochem-
ical analysis suggests that B7-H1, although virtually undetectable
under physiological conditions, is strongly upregulated in the
CNS under inflammatory conditions. As main cellular sources,
we found microglia/macrophages as well as invading T cells.

To further substantiate our findings on B7-H1 expression and
regulation in vivo, we performed serial flow cytometric analysis of

<«

B7-H1, a neutralizing antibody was compared with an isotype control antibody. Supernatants
were taken 24 h after coculture, and cytokines released into the supernatant were measured.
Bars show the mean = SD from three independent experiments, each performed in triplicate.
B, PPD-specific T cells were cocultured with syngeneic microglial cells in the presence of PPD
with eitheraB7-H1 blocking antibody or an isotype control antibody. Bars show data from three
independent experiments, each performed in triplicate. ¢, PPD-specific T cells were cocultured
with syngeneic microglial as shown in B. After 24 h of coculture, cells were separated and
examined for expression of ICOS by flow cytometric analysis. The thick black curve refers to the
ICOS expression on PPD-specific T cells after B7-H1 neutralization, whereas the dotted gray
curve corresponds to the isotype control antibody setting. Results were reproduced three times;
a representative example is shown.
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mRNA expression of B7 family members in the course of EAE. QRT-PCR for B7.1 (CD80) (A), B7.2 (CD86) (B), B7-H1 (PD-L1) (€), and PD-L2 (D) mRNA expression was performed in brain

and spinal cord specimens from animals with EAE at different time points afterimmunization (early EAE, score 2; late EAE, score 3—4). Brain and spinal cord specimens from nonimmunized mice were
used as controls. Bars and numbers represent the mean == SEM of the relative gene expression of indicated molecules calculated in relation to the controls. Three animals of each group were pooled

for the analysis (*p << 0.05; **p < 0.01, compared with control).

B7-H1 on CNS cells during the course of PLP-induced EAE (Fig.
7). Using colabeling with CD45 and CD11b, this method also
allows  differentiation  between  (resident)  microglia
(CD45'“CD11b) and macrophages (CD45 hiehCD11b) as well as
lymphocytes (CD45highCD11b—negative) (Becher et al., 2002).
We found a significant increase in microglial B7-H1 expression
between baseline, day 14, and day 20 (Fig. 7). Importantly, ex-
pression of inhibitory B7-H1 on microglia and macrophages cor-
related well with the recovery phase of the animals, whereas at
maximum disease severity (day 14), 37% of microglia cells were
positive, and expression increased up to 84% at the time of re-
covery (day 20) (Fig. 7). Of note, corresponding to our histo-
chemical results, B7-H1 could also be detected on invading T cells
but at a much lower extent (data not shown).

Discussion

Our study sheds new light on the immunobiological role of the
novel B7-family molecule B7-H1 in the CNS and during neuroin-
flammation. We found that murine and human microglial cells
express high amounts of B7-H1, especially when exposed to in-
flammatory conditions simulated by the addition of IFN-y or
Th1 supernatants in vitro (Figs. 1-3). B7-H1 acts as a strong
inhibitor of antigen-specific as well as nonspecific polyclonal
T-cell activation in that it reduces both the secretion of proin-
flammatory cytokines (IFN-vy and IL-2) and the expression of
T-cell activation markers (ICOS) (Fig. 4). As a “proof of con-
cept,” we provide data showing that B7-H1 is highly upregulated
on microglial cells/macrophages during the course of EAE, espe-
cially in regions with the strongest inflammatory response (Figs.
5-7). Thus, our data propose B7-H1, expressed by microglial
cells, as a strong immune inhibitory molecule downregulating
T-cell activation and thus contributing to the immune homeosta-
sis in the CNS.

The brain had long been considered an immunologically priv-
ileged site. This idea is based on the observation that tissue trans-
plants in the CNS are not commonly rejected by the immune
system (Medawar, 1948; Barker and Billingham, 1977). An anti-
inflammatory and, with regard to invading immune cells, pro-
apoptotic environment in the brain, the limited access of brain-
derived antigens to the lymphoid organs, the presence of the
blood—brain barrier, low MHC expression in the brain paren-
chyma, and the absence of dendritic cells were used to explain the

lack of an effective immune response to antigens in the brain.
However, numerous studies in infectious, autoimmune, and tu-
mor models have challenged this view by showing that potent
immune reactions can and do occur in the CNS (Hickey, 2001).

The CNS is constantly patrolled by activated T lymphocytes,
which may induce profound damage if they identify their specific
or a cross-recognized antigen in the context of appropriate MHC
restriction elements. The specialized anatomic barriers like the
blood-brain barrier (Fabry et al., 1994) and the peculiarities of
the lymphatic drainage do not necessarily guarantee the integrity
of this organ. However, limiting the local inflammatory response
is crucial for an organ as vulnerable as the CNS. For example,
inflammation induces a proapoptotic environment mediated by
astrocytes via the CD95 pathway (Bechmann et al., 1999). To-
gether, with the lack of costimulatory molecules (Pender, 1999),
this pathway is considered to induce high numbers of apoptotic
lymphocytes among infiltrating T cells in autoimmune inflam-
matory conditions (Gold et al., 1996). Another critical player in
the immune homeostasis of the CNS environment is the micro-
glia. Although the exact function of these resident immune cells
in the intact CNS remains elusive, early insights from studies of
peripheral APC suggest that microglia may have major homeo-
static and reparative functions in the normal as well as injured
CNS. Considering microglial cells to be the major APC in the
CNS, microglia—immune cell interactions may have critical im-
pact on the outcome of brain-derived or brain-directed immune
reactions. In this context, costimulatory signals provided by the
microglia are key elements in this interface. The lack of costimu-
latory molecules in the healthy brain changes during the course of
an inflammatory response (Aloisi, 2001). Therefore, it seems that
a good counterbalance is needed to keep inflammatory situations
under control.

Thus far, existing studies have elucidated the relevance of
stimulatory second signals on microglial cells (such as CD80,
CD86, and CD40), including their contribution to modulate or
amplify acute or chronic neuroinflammation (Becher and Antel,
1996; Aloisi et al., 1999; Matyszak et al., 1999; Zehntner et al.,
2003). Our study is the first to show the importance of a B7
molecule on microglial cells exerting strong coinhibitory proper-
ties, thereby providing novel insights into the complex immuno-
biology of these CNS APC.
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B7-H1, or PD-L1, isa type I transmem-
brane protein with 20% amino acid iden-
tity to B7.1 and 15% amino acid identity to
B7.2. Ligation of the B7-H1 leads to di-
minished proliferation and IL-2 produc-
tion and induction of cell cycle arrest
whereby CD8-T cells appear to be more
sensitive to this effect than CD4 cells
(Carter et al., 2002). B7-HI interacts with
PD-1 and a yet unidentified non-PD-1 re-
ceptor on T cells. B7-H1 is expressed not
only on hematopoietic APCs but also on
parenchymal cells such as muscle cells, mi-
crovascular endothelial cells, renal tubular
cells, and cancer cell lines (Dong et al.,
1999; Latchman et al., 2001; Eppihimer et
al., 2002; Wiendl et al., 2003; Wintterle et
al., 2003). In contrast, PD-L2 has a more
limited expression, predominantly on
cytokine-activated macrophages and den-
dritic cells (Latchman et al., 2001;
Yamazaki et al., 2002). These patterns of
(parenchymal) expression may allow for
the termination of an immune response in
inflamed tissues, limiting organ damage
(Wiendl et al., 2003), or in tumors allow-
ing for immune evasion (Dong et al., 2002;
Wintterle et al., 2003) (for review, see
Chen, 2004). B7-H1 expressed on periph-
eral professional APC has recently been
proposed as a candidate contributing to
the maintenance of peripheral tolerance.
“Weak” APC, such as monocytes, imma-
ture or semimature dendritic cells exhibit
tolerogenic rather than immunogenic
functions, which negatively control spon-
taneous autoreactive T-cell activation
(Lutz and Schuler, 2002). Accordingly,
B7-H1 exerts potent negative regulatory
functions for T-cell activation while ex-
pressed on these “weak APC” (Brown et
al., 2003; Selenko-Gebauer et al., 2003;
Schreiner et al., 2004). Following this con-
cept, it is interesting to note that B7-H1
plays a major role in microglial cells (and
astrocytes), which are considered to be
comparably weak APC in the CNS. In our
hands, neither unstimulated microglial cells nor astrocytes were
able to induce proliferation in antigen-specific or superantigen-
stimulated oligoclonal T cells (data not shown). However, they
influence cytokine production and T-cell activation, both fea-
tures critically influenced by inhibitory B7-H1.

Our data further suggest an involvement of the B7-H1 path-
way in the immune regulatory mechanisms controlling autoreac-
tive T-cell responses relevant for the pathogenesis of CNS auto-
immunity. This assumption has recently been fueled by the
demonstration of the critical role of B7-H1-PD1 interactions in
the regulatory mechanisms of experimental autoimmune en-
cephalomyelitis, in which therapeutic interference had critical
impact on the onset and severity of the disease (Salama et al.,
2003). Similar to our findings in vivo, B7-H1 was found upregu-
lated in the inflamed CNS. Salama et al. (2003) suggested that the
B7-H1-PD-1 pathway is particularly important in the induction

Figure 6.

Magnus et al. « B7-H1 on Microglial Cells

Expression of B7-H1 in the CNS. Fluorescent single or multicolor labeling (top) or enzymatic labeling immunohisto-
chemistry (bottom) in CNS specimens of mice with EAE versus control immunized mice is shown, using antibodies for B7-H1, (D3,
MAG3, and GFAP, visualized with secondary fluorochrome reagents (top) or peroxidase (bottom). A-C, B7-H1 (red) is strongly
expressed in inflammatory infiltrates (overview in 4; higher magpnification of a single infiltrate in €) but is absent in the control CNS
(no expression in E). B and D show DAPI for staining nuclei. F-1, Triple labeling of one section for DAPI (blue, F), (D3 (G, green),
and B7-H1 (1, red) shows partial colocalization of (D3 with B7-H1 (H, yellow). Triple labeling of another section for DAPI (K, blue),
GFAP (L, green), and B7-H1 (N, red) shows basically no colocalization of B7-H1 with GFAP-positive astrocytes (M, overlay). Serial
cerebellar cryostat sections from EAE mice were stained with antibodies for B7-H1 (0, @) and MAG3 (P, R). Strong but not
completely overlapping staining patterns for B7-H1 and MAC3 were observed. 0 and P show an overview (10X); Qand R show a
higher magnification focusing on one infiltrate.

phase of a MOG-EAE, an assumption that further emphasizes the
strong negative regulatory of B7-H1-PD-1 in the periphery.
What might be the role of B7-H1 in the CNS in the regulation
of CNS inflammation, respectively, the effector phase of the host
immune response? From our data, it could be argued that the
proinflammatory activity of T cells might be regulated via a neg-
ative feedback loop by IFN-+y-induced B7-H1 expression on mi-
croglia (and possibly invading peripheral monocytes/macro-
phages). This expression of B7-H1 on local APC could force
activated Th1 T cells to reduce their cytokine levels, thus dimin-
ishing local levels of inflammatory activity. Because microglia
cells are capable of quickly migrating to the site of inflammation
or injury (Kreutzberg, 1996), they could participate in very early
modulation of inflammation. This scenario is strongly supported
by a recent report demonstrating the negative regulatory role of
B7-H1 (PD-L1) on antigen-presenting cells, T cells, and host
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tissues by studying PD-L1 knock-out mice (Latchman et al.,
2004); experiments using the MOG-EAE model showed that
PD-LI in host tissues and T cells limits responses of self-reactive
CDA4 T cells in vivo. Importantly, the transfer of encephalitogenic
T cells from wild-type mice into PD-L1 /™ recipients led to ex-
acerbated disease, demonstrating the importance of host-tissue
B7-HI in negatively regulating the CNS inflammation (Latch-
man et al., 2004). Because we identified microglial cells as the
main cellular source of B7-H1 among the resident CNS cells
(Figs. 1, 2, 6, 7), they can be considered key players in mediating
the negative regulatory signals in the host tissue, notwithstanding
the putative importance of B7-HI on invading cells (macro-
phages or T cells). In this view, it is interesting to note that disease
was even more severe in PD-L1 /" recipients of PD-L1 '~ T
cells, therefore suggesting an important negative regulatory role
of B7-H1 expressed on invading T cells (Latchman et al., 2004)
(Fig. 6). Of note, although we use IFN-+y as a marker of the “Th1
environment,” it is clear that IFN-v is not the only molecule
present within the Th1 milieu that contributes to the observed
coinhibitory molecule induction on monocyte/microglia differ-
entiation. It is likely that multiple molecules in the Th1 environ-
ment (including but not limited to IFN-v) are likely to contribute
to the modulation of the human monocyte/microglia (Kim et al.,
2004).

The idea of local immunosuppression by B7-H1 possibly af-
fecting disease activity and progression is appealing, from both an
immunopathogenic and a therapeutic view. Although purely
speculative at present, it is possible that B7-H1 could play arole in
direct tolerization of autoreactive cells; a recent study reported
tolerance induction within the CNS itself rather than within
draining lymphoid tissues. Naive MBP-specific T cells of MBP
T-cell receptor transgenic mice readily migrated into the CNS
without previous activation but were tolerized within the CNS in
situ (Brabb et al., 2000). In a model of autoimmune hepatitis,

Upregulation of B7-H1 expression by CNS-infiltrating macrophages and CNS resident microglia of mice with EAE. 4,
EAE was induced by subcutaneous immunization with 50 nmol of PLP139—151 in CFA and intravenous injection of 300 ng of
pertussis toxin, and disease score was determined as described in Materials and Methods. Clinical disease symptoms peaked at day
14 and subsequently declined until day 20 after disease induction. B, CNS cells were isolated from diseased animals at the peak of
dlinical disease (day 14) and during remission (day 20). B7-H1 expression by (D45 "9"/(D11b * macrophages (R1) and (D45'**/
(R2) microglia was determined by flow cytometry. Data are representative of sixindividual mice. Error bars indicate SEM.
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B7-H1 was critical for determining the ac-
cumulation and deletion of intrahepatic
CD8+ T lymphocytes as shown in B7-H1
knock-out mice (Dong et al., 2004). It re-
mains to be shown in multiple sclerosis
(MS) whether an increase in B7-H1 (on
APC or T cells), and a parallel decrease in
number or function of pathogenic T cells,
could possibly account for the phases of
relapses and remissions in MS.

Our demonstration of the expression
of B7-H1 in areas of strongest inflamma-
tion in EAE further emphasizes our as-
4 sumption on the importance of this regu-

latory principle in vivo. This negative

regulatory feedback loop should be impor-

tant for keeping the “anti-inflammatory
0. milieu” in the CNS.
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