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Two-Dimensional Time Coding in the Auditory Brainstem
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Avian nucleus magnocellularis (NM) spikes provide a temporal code representing sound arrival times to downstream neurons that
compute sound source location. NM cells act as high-pass filters by responding only to discrete synaptic events while ignoring temporally
summed EPSPs. This high degree of input selectivity insures that each output spike from NM unambiguously represents inputs that
contain precise temporal information. However, we lack a quantitative description of the computation performed by NM cells. A powerful
model for predicting output firing rate given an arbitrary current input is given by a linear/nonlinear cascade: the stimulus is compared
with a known relevant feature by linear filtering, and based on that comparison, a nonlinear function predicts the firing response.
Spike-triggered covariance analysis allows us to determine a generalization of this model in which firing depends on more than one
spike-triggering feature or stimulus dimension. We found two current features relevant for NM spike generation; the most important
simply smooths the current on short time scales, whereas the second confers sensitivity to rapid changes. A model based on these two
features captured more mutual information between current and spikes than a model based on a single feature. We used this analysis to
characterize the changes in the computation brought about by pharmacological manipulation of the biophysical properties of the
neurons. Blockage of low-threshold voltage-gated potassium channels selectively eliminated the requirement for the second stimulus
feature, generalizing our understanding of input selectivity by NM cells. This study demonstrates the power of covariance analysis for

investigating single neuron computation.
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Introduction

In avians, nucleus magnocellularis (NM) is a relay hub for infor-
mation from the auditory nerve used for sound localization in the
azimuthal plane. NM neurons have several specializations that
preserve the sub-millisecond time code present in the eighth
nerve input, including a calyceal synaptic input (Jhaveri and Mo-
rest, 1982), fast receptor kinetics (Zhang and Trussell, 1994), and
intrinsic membrane properties such as a large low-threshold
voltage-gated potassium conductance (Reyes et al., 1994;
Trussell, 1999). Preservation, and even sharpening (Joris et al.,
1994), of the eighth nerve time code is essential because NM cells
send their efferent signals to both ipsilateral and contralateral
nucleus laminaris, which computes sound localization by acting
as a coincidence detector of synaptic input arriving via delay lines
from ipsilateral and contralateral sides (Jeffress, 1948; Carr and
Konishi, 1990). Given the functional role of NM in the sound
localization circuit, it is important to ask what computation
NM neurons perform. Responses to simple stimuli such as
direct current (DC) steps and phase-locked EPSC trains show
that NM filters out constant current input but can reliably
follow realistic high-frequency input with sub-millisecond
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precision (Reyes et al., 1994). This ensures the preservation of
precise temporal structure while selectively filtering inputs
without such structure. Although these studies provide insight
into the intrinsic properties of NM cells, they are not general
and are difficult to quantify.

In a Hodgkin—Huxley-style conductance-based approach, ac-
curate dynamical models including a variety of channel types and
their kinetics are used to reproduce the response of the system to
simple stimuli. Here, rather than a detailed, deterministic dy-
namical model, we seek a functional model that provides a direct
insight into the computation that the neuron performs on its
inputs. By stimulating the system with a randomly varying input
and correlating spiking responses with stimulus fluctuations, one
can discover the features of the input that trigger spikes (Mar-
marelis and Marmarelis, 1978; Hunter and Korenberg, 1986).
One can then build a statistical model for the probability to gen-
erate a spike in response to an arbitrary stimulus that consists of a
set of features (the neural “receptive field”) and a threshold or
gain function over those features (Shapley and Victor, 1978,
1979a,b, 1980; de Ruyter van Steveninck and Bialek, 1988; Berry
et al., 1997; Brenner et al., 2000a; Chichilnisky, 2001). The form
of these features and the gain function are determined by the
biophysical properties of the neuron. In the simplest approxima-
tion, the feature is simply the spike-triggered average (STA). Co-
variance methods (de Ruyter van Steveninck and Bialek, 1988;
Brenner et al., 2000a) allow one to determine multiple features in
the stimulus that are relevant to spike generation, providing more
complete descriptions of the neural feature space (Agtieray Arcas
et al., 2000, 2003; Brenner et al., 2000a; Schwartz et al., 2001;
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Touryan et al., 2002; Fairhall et al., 2003; Petersen and Diamond,
2003; Horwitz et al., 2004; Rust et al., 2005). Although in studies
of sensory responses to external stimuli it is difficult to determine
the origins of neural feature selectivity in terms of biophysics or
circuitry, here the system is isolated to a single neuron with
current input. Thus, we combine this analysis with pharmaco-
logical manipulation of specific ion channels to understand
the biophysical determinants of the feature selectivity of NM.

Materials and Methods

Slice preparation. Details of the slicing procedure are outlined in the study
by Reyes et al. (1994). Briefly, chicks (embryonic days 20-21) were de-
capitated, and a 1.5 cm section of the skull containing the brainstem was
removed with a razor blade and quickly submerged in ice-cold cutting
solution containing the following (in mwm): 105 choline-Cl, 5 KCI, 5
MgCl,, 26 NaHCOs, 1.25 NaH,PO,, 20 TEA-CI, 20 sucrose, 10 dextrose,
1.3 Na-ascorbate, and 2.4 pyruvic acid. An 80 mm transverse section of
the brainstem containing NM was dissected and transferred to a Vi-
bratome tissue slicer (TPL, St. Louis, MO). Approximately six 200 wm
coronal slices were made and placed in separate compartments in a hold-
ing chamber filled with artificial CSF (ACSF), incubated at 34°C for 30
min, and cooled to room temperature. The ACSF composition was as
follows (in mm): 130 NaCl, 26 NaH,CO,, 3 KCl, 2 CaCl,, 2 MgCl,, 1.25
NaH,PO,, and 10 dextrose. The cutting solution and ACSF were gassed
with 95% O,/5% CO, to maintain pH at 7.4.

Whole-cell recordings. Individual slices were transferred to a recording
chamber (~0.5 ml volume) mounted on a microscope (Zeiss, Thorn-
wood, NY) with a fixed stage and perfused with warmed ACSF (34—
35°C) at a rate of ~1.5 ml/min. Individual neurons were viewed with a
CCD camera with a 40X water immersion lens using differential inter-
ference contrast optics and infrared illumination.

The electrodes were drawn from 75 ul borosilicate hematocrit tubing
(VWR, San Francisco, CA) and filled with 5 mm EGTA, 27 mMm KCl, 103
mum K-gluconate, 2 mm MgCl,, 10 mm HEPES, 4 mm Na,-ATP, 10 mm
phosphocreatine, and 0.5-1% biocytin. The pH was adjusted to 7.2 with
KOH, and the osmolarity was ~285 mOsm. The voltage traces and plots
shown in all figures were corrected for a calculated liquid junction po-
tential of —3.6 mV (JPCalc; Molecular Devices, Union City, CA).

Current-clamp recordings were performed with an Axoclamp 2A am-
plifier (Molecular Devices) in continuous bridge mode. Voltage traces
were low-pass filtered at 5 kHz and digitized at 10 kHz with an Instrutech
(New York, NY) ITC-16 analog-to-digital converter and stored on a
Power Macintosh.

Gaussian-distributed current stimulation. The current stimulus was
created by passing Gaussian white noise through a digital Chebyshev
filter with a corner frequency of 2 kHz. In most experiments, the noise
stimulus had a zero mean and fixed SD (0.5 or 1 nA). In a few experi-
ments, a constant, positive DC offset was added to the noise. For the
covariance analysis, a continuous noise stimulus was presented to the
neuron for 500 s, typically eliciting 10,000—30,000 spikes (20—60 spikes/s).
In some experiments, this noise stimulus was interleaved with 100 re-
peats of a 10 s noise stimulus to calculate the peristimulus time histo-
grams (PSTHs) necessary for information measures (see below, Informa-
tion calculations). Only cells with stable and healthy resting potentials
(below —55 mV) and relatively stable firing rates were accepted for anal-
ysis (<20% change in mean rate across the experiment). In the
a-dendrotoxin (DTX) experiments, the white noise was filtered with a
physiological EPSC waveform with rise and decay time constants of 0.2
and 0.4 ms, respectively (Zhang and Trussell, 1994). This provided the
filtered noise with relatively high power at low frequencies compared
with the standard stimulus (see Discussion).

Covariance analysis. During the noise stimulus, denoted by s(z), we
recorded the occurrence time of every spike, {t,}, and selected the
stimulus histories preceding every spike, S;(1) = S(t; — 7), where 7
denotes the time index. We used 100 stimulus values preceding a
spike. Thus, for stimuli presented at a digitization rate of 10 kHz, 7
extended back to 10 ms before a spike. The mean, 5;(7), is the STA. The
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covariance matrix is formed from the outer product of the stimulus
histories averaged across all spikes:

Cjk = <(5i("'j) - gi(Tj))(si(Tk) = 5(mi > (1)

where the average (. . . ) is over all spike occurrences {1;}.

We were interested in learning what features in the stimulus are rele-
vant to spiking. One can find this by searching for features for which the
variance is altered from that of the distribution of stimuli uncorrelated
with spikes (the “prior”). Because the stimulus is Gaussian white noise,
the prior is a 100-dimensional multivariate Gaussian distribution. Thus,
we subtracted the covariance matrix of the prior, C? 1or to obtain a
matrix representing the covariance differences (Brenner et al., 2000a):

Cik = C)k - Cﬁ:ior . (2)

To find the relevant features, C was diagonalized to find its eigenmodes
and corresponding eigenvalues. Each eigenmode can be thought of as a
current “feature” that may drive NM cell spiking. Its corresponding eig-
envalue indicates the change in variance of spike-triggering stimuli with
respect to the prior, measured along the stimulus direction defined by
that feature. Because the prior stimulus distribution was subtracted from
the covariance matrix, an eigenvector with an eigenvalue of zero corre-
sponds to a stimulus feature for which the variance is unaltered from the
total stimulus variance and is therefore not relevant to NM cell spiking.
The number of significant eigenvalues gives an estimate for the dimen-
sionality of the relevant stimulus space, and the corresponding eigen-
modes span that space. To the extent that these features capture all stim-
ulus parameters that are relevant for modulating firing in the cell, the
response function of the neuron may be completely determined by sam-
pling in this subspace.

STA-based and covariance models of NM. We constructed predictive
one- and two-dimensional models of NM based on the STA and the first
two covariance modes. We wanted to determine the nonlinear threshold
function P(spike|stimulus) relating probability of spiking to stimulus,
based on the similarity of the stimulus to the identified features. The
similarity measure is linear projection. From Bayes’ law, it follows that:

P(spike|stimulus) = P(stimulus|spike) P(spike)/P(stimulus).
(3)

Thus, our task is simply to sample the spike-triggered stimulus distri-
bution, P(stimulus|spike), multiply by P(spike), the average firing rate
over the experiment, and divide by the prior stimulus distribution
P(stimulus). For the one-dimensional model, we replaced the stimulus
with its projection onto the STA, s,. We computed P(s,|spike) from a
histogram sampled from the spike-triggered ensemble (STE) projections
onto the STA using a bin width of 0.1 SDs of the prior. In the two-
dimensional model, the stimulus is replaced by a two-component de-
scription, (s, s,), and we computed P(s,, s,|spike) as a two-dimensional
histogram of the projections of STE onto modes 1 and 2, using bin sizes
0.1 SDs of the prior on each side. We found the one- and two-
dimensional priors, P(s,) and P(s}, s,), by binning the projections of the
full stimulus onto the STA and covariance modes. Finally, from Equation
3, the one-dimensional threshold function is P(spike|s,) = P(sy|spike)
P(spike)/P(s,) and the two-dimensional threshold function is P(spike]s,,
s,) = P(sy, s,|spike) P(spike)/P(s;, s,). To calculate model responses to
simulated EPSC (sEPSC) trains and DC steps, we first upsampled the stimuli
and features at 100 kHz. This high sampling rate was necessary to capture the
structure in the EPSC waveform. We projected the stimuli onto the features
and used the threshold functions to predict the firing rate.

Information calculations. The information in the spike train can be
evaluated directly using methods introduced by Strong et al. (1998) and
Brenner et al. (2000b). Because we are evaluating how much information
the observation of each spike gives about the stimulus ensemble, here we
used the method of Brenner et al. (2000b), which measures the informa-
tion that the time of occurrence of a single spike conveys about the
current stimulus (Agiiera y Arcas et al., 2000, 2003; Adelman et al., 2003).
To do this, we randomly generated a stimulus segment, s(), of length T'
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from the ensemble of uniform current noise, S. We repeated the same
pseudo-random sequence many times to find r(¢), the time-varying fir-
ing rate of a NM cell responding to s(t). We then computed the following:

T

1 () ()
Ione spike TJ dt710g27 N (4)

mean

0

where 7, .., is the mean firing rate in response to the stimulus segment
s(), and 7 is the mean firing rate of the neuron over the entire stimulus
ensemble, S. Values were corrected for bias caused by the finite number
of stimulus repeats by dividing the data into halves and repeating the
calculation (Strong et al., 1998). This procedure also provided an esti-
mate of the error in the information.

This information measure makes no assumptions about the relation-
ship between stimulus and response and is an upper bound for the infor-
mation captured by any particular low-dimensional model of this re-
sponse function (Adelman et al., 2003; Agiiera y Arcas et al., 2003).
Because NM cell spike trains are very precise, each spike carried a great
deal of information: 6.7 * 0.3 bits (SD).

Reverse information. Next, we estimated the information captured by
specific models. For a K-dimensional model defined by the filters {f,,. . . ,
i}, we denoted the projection of the stimulus onto a given filter f; as s;.
The information is related to the difference between the prior distribu-
tion of projections, P(s,. .. ,s), and the spike-triggered distribution,
P(sy,. . . »5,|spike at 1):

Igr{l)espikc(fl:ﬁ, e >f1<)

P(sy, . . ., sglspike at £
= j d%s P(sy, . . ., s¢|spike at 1) logz[ G P, .]T|.I,)5K) )] . (5
For one-dimensional models, we computed this information for the
STA. For two-dimensional models, we computed the information for the
combination of the first two significant eigenmodes. The filters were
normalized to a length of unity. We used the experimentally measured
Gaussian prior for both P(s,) and P(sy, s,).
To compare the model with the directly computed information con-
tent of the spike train, we followed the argument of Agiiera y Arcas et al.
(2003). Starting with Equation 4, we noted the following:

r(t) B P(spike at ¢[5) B P(3spike at ) .
P T P(spikeats) — PG (©)

The first step follows from the definition of (), and the second step
follows from Bayes’ rule (Cover and Thomas, 1991). In forming our
model, we replaced the stimulus § with its reduced, lower-dimensional
description:

P(3|spike at t) P(s,, . .., s|spike at £)
= — .
P(3) P(s;, ...y 80

(7)

The corresponding information in the reduced K-dimensional model is
therefore given by I'X/ spike (firfo - - 5hi) from above. By the data process-
ing inequality (Cover and Thomas, 1991), the information in the reduced
description must be bounded from above by that in the full description as
follows:

I(()]r(l)e spike = Ionespike . (8)
To sample these distributions, we used a range of bin sizes and evaluated
the resulting information as a function of bin size &s. For one-
dimensional distributions, the value was very stable as a function of 6s,
but the two-dimensional models depended more strongly on the bin size.
We corrected our information calculation for finite sampling bias by
considering the information carried by the eigenmode with an eigen-
value closest to zero (A. L. Fairhall, A. Burlingame, R. Narasimhan, R.
Harris, J. Puchalla, and M. J. Berry II, unpublished observations); this
current feature should be least relevant to the firing of the neuron. By

Slee et al. @ Two-Dimensional Auditory Time Coding

itself, this eigenmode should carry no information. Instead, its informa-
tion was measured to be between 0.01 and 0.05 bits, depending on the
number of spikes recorded for that NM cell. Therefore, this information,
as a function of 8s, was subtracted from the values for all other informa-
tion calculations for one-dimensional models.

To determine the bias for two-dimensional models, we performed our
calculation for the STA combined with the least significant eigenmode.
Similarly, the information in this two-dimensional model should be the
same as the information in the STA alone but was larger because of finite
sampling. We took the sampling bias to be equal to the difference be-
tween the information in this two-dimensional model and the informa-
tion about the STA alone, as a function of &s. This bias was subtracted
from all of our calculated information values in two-dimensional mod-
els, giving values that were nearly constant as a function of the bin size 6s.
For the final value, we averaged over bin sizes in the range of 0.1-0.4
(normalized units); the SD was taken as an estimate of the random error.

In all of our calculations and analyses, we made comparisons at the
same time resolution, determined by the digitization rate of the stimulus,
10 kHz.

Results

Here, we stimulated NM neurons with a Gaussian broadband
stimulus. From the resulting spike trains, we determined the
stimulus features that trigger a spike: the STA alone and the set of
features derived from covariance analysis. From these features,
we constructed two predictive models for the firing rate given an
arbitrary stimulus, one using the STA alone and one using the
multiple covariance features. We compared the predicted firing
rate generated by the two models in response to a novel Gaussian
broadband stimulus. We quantified the performance of the mod-
els using information theory. We also examined the performance
of the two models in response to more standard neurophysiolog-
ical stimuli, steps and pulse trains, to compare with known be-
havior. Finally, we altered the biophysics of the neurons using
a-dentrotoxin. We recomputed the model and compared the
structure of the new model with the control case.

Determining the STA current

To identify general features of the current waveform that elicit
action potentials in NM neurons, we applied a randomly fluctu-
ating, Gaussian-distributed noise current (see Materials and
Methods). The spike train recorded while injecting this waveform
was used to construct the STE of current waveforms that drove
each spike (Fig. 1 A).

The STA current (computed from the STE) (Fig. 1B) shows a
very brief dependence of action potential occurrence on current his-
tory, returning to zero at approximately —5 ms with respect to the
spike time. The sharpness of the STA reflects the short membrane
time constant of NM neurons (Reyes etal., 1994; Zhang and Trussell,
1994). The STA waveform is characterized by a brief negative fluc-
tuation lasting ~2 ms, followed by a rapid rise immediately before
spike initiation. It has been shown in a model that the negative phase
of the STA is, on average, associated with partial removal of Na ™
channel inactivation as well as a partial reduction of low-threshold
K* conductance (Svirskis et al., 2004). However, it is difficult to
draw a clear correspondence between the shape of the STA and bio-
physical mechanisms. In motoneurons, such a negative phase has
been shown to arise simply from the statistics of spike intervals
(Powers et al., 2005). Furthermore, in a filter-and-fire model, thres-
hold crossing adds in a component proportional to the derivative of
the filter (deWeese, 1995; Agiiera y Arcas and Fairhall, 2003).

Measuring the threshold function for the STA
The projection (vector dot product) of the stimulus waveform
preceding each time point onto the STA provides a single time-
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ever, in our case, the correlation time is
<5 ms, on the order of the refractory pe-
riod, so that every superthreshold event
results in on the order of one spike (data
not shown). A similarly shaped threshold
curve was observed for the Hodgkin—
Huxley neuron (Gilboa et al., 2005). The
nonmonotonicity of the threshold func-

5ms 2ms tion helps the model to preserve the spike-
timing precision observed in the real
B 1.0 STA C 1.0 D 2.0 system.
08+ Z 08 Plsil spike) N
2 06 g, E] o7 Spike-triggered covariance analysis
£ 04 z | Pls) g ol Spike-triggered covariance analysis pro-
5 02 S 04+ é vides a more general method to uncover
© 8 0, = 05+ spike-triggering features in a Gaussian
7 * stimulus. In spike-triggered covariance
o [0S S S R S A o0 3 v 5 007 T3 1 |  analysis, onecalculates the covariance ma-
Time from spike, ms Projection value, SD of prior Projection value, SD of prior  trix of the stimuli preceding a spike
(Agiieray Arcas et al., 2000, 2003; Brenner
Figure 1.  Experimental and computational methods for describing NM neurons as detectors of a single STA feature. 4, Left, A et al., 2000a; Simoncelli et al., 2004). The

schematic diagram of the methods for making whole-cell recordings from NM neurons. NL, Nucleus laminaris. The middle panel
shows an example of the Gaussian noise current we injected and the spike response. The right panel shows the STE of current
waveforms that elicited spikes. B, The STA current versus time relative to each spike. C, The probability density of the STE elements
projected onto the STA, P(s,|spike) (solid line), and of all stimulus elements projected onto the STA, P(s,) (dashed line). D, The
nonlinear relationship between the value of a stimulus projection onto the STA feature and the measured firing rate.

varying scalar parameter, s,(t), quantifying the presence of the
preferred input feature of the cell in the time before t. For every
stimulus that drove spiking, we calculated its projection onto the
STA. In Figure 1C, we plot the distribution of the values of s, that
precede spikes, P(s,|spike). We also plot the distribution of values
generated from projecting random samples of the stimulus onto
the STA, termed the prior distribution, P(s,). These are current
stimuli that are not conditioned on spiking.

We next calculated the nonlinear relationship or threshold
function between s, and the instantaneous firing rate of the NM
neuron, P(spikesy), from P(sy|spike) and P(s,) using Bayes’ law:
P(spike|s,) = P(so|spike) P(spike)/P(s,). Figure 1D shows the
threshold function in input units normalized to the stimulus SD.
The threshold function describes the sensitivity of the neuron to
the STA feature, relating the strength of this feature in the stim-
ulus to the spike probability of the neuron.

The derived threshold curve is zero for negative and small,
positive projection values, reflecting the positive spike threshold
of the cell. As projection values increase, the function gives a very
high probability of firing, followed by a decrease. This shape of
the threshold function is an inevitable result of the continuity
of the stimulus and the firing precision of the neuron. In the case
of a filter-and-fire neuron (Keat et al., 2001) that filters the stim-
ulus through a given filter and fires when the filtered stimulus
crosses a strict threshold, s, = T, the derived threshold function
should approach a 6 function, 8(s, — T), only taking on a value at
so = T. The filtered stimulus generally crosses threshold and re-
mains above it for a time determined by the correlation time of
the filtered stimulus, which in turn is determined by the smooth-
ing time scale imposed by the filter itself (here, the STA). To
obtain a monotonically increasing threshold, the correlation time
imposed by the filter would have to be much larger than that of
the refractory period of the neuron, so that the neuron recovers
the ability to fire during the superthreshold values of s,. This is
typically the case for, for example, visual neurons that have filters
with time scales on the order of hundreds of milliseconds. How-

power of the covariance method is that the
significant eigenvectors of the matrix, af-
ter subtraction of full stimulus covariance,
define the stimulus dimensions along
which the stimulus variance is changed
with respect to the prior. The correspond-
ing eigenvalues measure the variance difference and are thus an
indication of the importance of each relevant dimension.

Figure 2 B shows the eigenvalues of the covariance matrix (Fig.
2A) measured from the NM responses; there are at least two
eigenvalues above the sampling noise. Figure 2C shows the lead-
ing three eigenmodes. Mode 1 is similar to the STA but has very
little negative fluctuation before the spike time. Considering this
feature as a filter of the stimulus, its effect is to locally smooth the
input. Thus, one can consider this mode to be a local integrator of
current over a short time window. Mode 2 is biphasic, fluctuating
from a large, negative component to a small, sharp, positive com-
ponent. A filter that differentiates the signal is similarly biphasic,
but with equal weight in the positive and negative lobes. Although
the positive and negative lobes of mode 2 do not precisely sum to
zero, it is dominated by a differentiating function. We therefore
identify the two eigenvectors as approximately describing an in-
tegrating and a differentiating filter on the input. These two
modes have a nonzero history of ~5 ms, consistent with the STA.
We note that the width of the positive portion of the STA is less
than that of mode 1. The STA is close to a linear combination of
the spike-triggering modes and is sharpened with respect to mode
1 by the addition of mode 2 (Agiiera y Arcas and Fairhall, 2003).
In contrast, mode 3 is noisier, as suggested by its small eigenvalue.

In eight NM neurons analyzed as in Figure 2, the first two
modes were highly reproducible, whereas the third mode was
variable. Reproducibility among different cells was quantified by
projecting the modes from individual neurons onto the average
modes of the population. Mode 1 had an average projection
(=SEM) 0f0.980 = 0.001 onto the population mean, mode 2 had
an average projection of 0.970 * 0.003, and mode 3 had an aver-
age projection of 0.590 = 0.043 (n = 8).

In two neurons, we added a DC offset (0.25 nA) to the noise
stimuli (SD, 1 nA) to produce higher firing rates (98 and 183 Hz).
We performed covariance analysis on the data obtained with the
DC offset. As in the experiments described above, we found two
or three significant spike-triggering modes. The time courses of
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Figure2. Covariance analysis of spike-triggering currentsin an NM neuron. 4, Spike-triggered covariance matrix. This matrix represents the average change in covariance of the current stimulus

preceding a spike. The covariance difference (color coded) from the prior is plotted versus the times of two stimulus points relative to the spike. B, The eigenvalues of the covariance matrixin A. These
values measure the difference in variance along each stimulus dimension between the STE and the entire stimulus ensemble. C, Plots of the first three eigenmodes. Left, Mode 1, the stimulus feature
with the largest negative eigenvalue and thus the feature most strongly associated with spiking. Middle and right, Modes 2 and 3, respectively, the second and third mostimportant stimulus features
affecting spike probability. D, Probability density of the STE projections onto the STA [P(s,|spike), black] and onto the first three covariance modes [P(s,|spike), red; P(s,|spike), blue; P(s;|spike),
purple]. The prior probability density for the STA and all of the modes, P(s,), is plotted with a dashed line. The original stimulus and therefore s, s,, 5, and s; are in units of its SD.

the modes were not noticeably different from those obtained in
other cells at lower rates (range, 20-75 Hz) with no DC offset
(data not shown). This suggests that similar features are detected
by NM neurons over a wide range of firing rates and mean stim-
ulus levels.

The distributions of projections of the STE onto the covari-
ance modes are an indication of their ability to drive spiking. We
are looking for differences in the distributions from the Gaussian
prior, P(s) = P(s,) = P(s;) = P(s,). The distribution of the STE
projections onto modes 1-3, P(s,|spike), P(s,|spike), and
P(s5]spike), respectively, as well as that onto the STA, P(sy|spike),
are shown along with the prior in Figure 2D. P(s|spike) has a
large, positive mean and reduced SD compared with the prior
(mean, 1.92 * 0.09; SD, 0.27 = 0.02; n = 8). P(s,|spike) has a
smaller mean and larger SD than P(s,|spike), but mode 2 is also
clearly significant for spike generation (mean, 0.77 * 0.08; SD,
0.55 = 0.02; n = 8). P(s;|spike) has a small mean and slightly
reduced SD compared with the prior (mean, 0.30 = 0.05; SD,
0.92 * 0.04; n = 8). This shows that mode 3 is only weakly
associated with spike generation in NM, so we have limited the
covariance-based model to the first two modes.

Construction of one and two feature-based models of NM
We first constructed a model, based on the single STA feature,
that takes in an arbitrary stimulus current and outputs instanta-
neous probability of firing (Fig. 3A) (see Materials and Methods).
To implement this model, we first project the stimulus onto the
STA. We constructed the threshold function corresponding to
this feature by calculating how often a given value of s, generates
a spike (see Materials and Methods). We then took the time-
dependent sequence of projection values, s,(t), and at every time
t, the instantaneous firing rate was predicted from the corre-
sponding value of the threshold function.

We also constructed a two-dimensional model analogous to
the one-dimensional model. In this case, the stimulus is filtered
by two features, and so at each time ¢, the stimulus is described by

two projections, s, (¢) and s,(¢). The nonlinear threshold function
is computed from the two-dimensional histograms of the spike-
triggered previous and projections, and the firing rate at ¢ is gen-
erated by looking up the appropriate value corresponding to
[5,(1), s,(1)] (Fig. 3A).

Comparison of the covariance-based, two-dimensional model
to the STA-based, one-dimensional model

Figure 3B compares the predicted responses to a Gaussian noise
stimulus with the PSTH measured from a neuron by repeated
presentation of the stimulus. From a representative 100 ms of
experimental data, it is evident that there is very high spike-
timing precision. Indeed, the spike-timing jitter was less than
could be resolved by the sampling rate of the experiment (10
kHz). Both the one- and two-dimensional models predicted a
high firing rate in the vicinity of real spiking in the PSTH, but
both models gave broader distributions than the real data (Fig.
3B, right). Neither model totally misses events (“false negatives”),
but both models predict some false positives, or firing events not
corresponding to the time of real spikes. We quantified the ability
of the models to predict spiking by projecting the predicted firing
rate onto the true firing rate (PSTH) at different time resolutions.
Figure 3C shows these projections versus time resolution. It is
evident that both models accurately predict firing, but the two-
dimensional model outperformed the one-dimensional model at
all time resolutions tested. Neither model was able to predict
firing perfectly at very fine time resolution. This limitation may
result from the influences of intrinsic noise, nonstationarity, re-
cent spike history, and local adaptation (see Discussion).

Evaluation of the one- and two-dimensional models with
information theory

We used information theory to quantify our one- and two-
dimensional descriptions of NM neurons. One can use the spikes
generated in response to a repeated noise stimulus to compute
the mutual information between the stimulus and the occurrence
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Figure 3. Comparison of the one- and two-dimensional model predictions with measured firing rates during Gaussian noise  \;5ed to characterize the intrinsic proper-
stimulation. 4, Top, One-dimensional model of an NM neuron based on the single STA feature. Input current is projected onto the ties of NM neurons: DC steps and sEPSCs.

STA. The resulting projection value, s,(t), is mapped into an instantaneous firing rate, r(t), using the measured threshold function.
Bottom, Two-dimensional model of an NM neuron based on the first two covariance features. Input current is projected onto
modes 1and2, and the resulting projection values, s, () ands,(t), are mapped into an instantaneous firing rate using the measured
2D threshold function. B, Predictions of the one- and two-dimensional models and the experimentally measured firing rate. The

These stimuli are both highly non-
Gaussian. We compared these model re-
sponses to those obtained in the real neu-

right panels compare these responses on a finer time scale (data from shaded area of the left panels). , The projection of the ~ TOT1 from which the models were derived.
one-dimensional model firing rate (gray) and two-dimensional model firing rate (black) onto the measured firing rate from the

PSTH versus time resolution. 1D, One-dimensional; 2D, two-dimensional.

of a single spike. This provides a benchmark with which to com-
pare the performance of the one- and two-dimensional models
(Agtieray Arcas et al., 2000). In these experiments, the coefficient
of variation of the interspike intervals (0.80 = 0.02; n = 8) and
their approximately exponential distribution (data not shown)
are both consistent with nearly independent spiking. Because of
the short integration time scales of NM and the relatively mod-
erate firing rates generated under our experimental conditions,
we are likely to be very close to the case of truly independent
spikes in a real neuron, and the single spike information of Bren-
ner et al. (2000b) is likely to be close to the full information in the
spike train computed from finite length “words” (Strong et al.,
1998). In this method, we computed the response entropy from
the mean rate and the noise entropy from the instantaneous fir-
ing rate generated by repeated presentations of the same white
noise stimulus (Brenner et al., 2000b). The spike raster plots and
the PSTH in Figure 4A indicate that there is very little uncer-
tainty, either in spike-timing jitter or spike number, in NM spike
generation at this experimental resolution (0.1 ms). Figure 4B
shows an example of the mutual information as a function of
time resolution. It indicates that a large percentage of the infor-
mation is dependent on high time resolution and that the spike
train approaches the noiseless limit for information transmission

DC filtering and temporal precision in

NM neurons

NM neurons fire an action potential only

to the onset of somatic current steps (Fig.
5A), whereas trains of SEPSCs evoke one-for-one spiking up to
200-300 Hz (Fig. 5B). At 500 Hz, the neuron only fires on 20% of
the cycles at steady state (Fig. 5B). Action potentials start to miss
cycles in response to higher-frequency sEPSC trains that cause
temporal summation of the membrane voltage response (Fig. 5B)
(Reyes et al., 1994). This DC or low-frequency filtering is depen-
dent on a large, low-threshold potassium conductance (Reyes et
al., 1994; Brew and Forsythe, 1995; Rathouz and Trussell, 1998;
Rothman and Manis, 2003). During high-frequency firing, NM
neurons show very little spike-timing jitter relative to the onset of
each sEPSP (Fig. 5C) (Reyes et al., 1994; Zhang and Trussell,
1994). As the stimulation frequency increases, the average spike
latency also increases (Fig. 5C).

Model responses to standard stimuli

We constructed an STA-based, one-dimensional model of the
neuron in Figure 5 to predict the instantaneous firing rate of the
neuron to the same current stimuli. Figure 6, A and B, display
the responses of the model to the same current step and trains of
sEPSCs, respectively, used for Figure 5 in the real neuron. The
predicted firing rate increases rapidly at the onset of a constant
current step but then decreases during the steady-state current.
This partly recovers the correct response. However, the model
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Figure 4.  Evaluation of the one- and two-dimensional models using information. 4, Top,

Gaussian noise stimulus. Middle, Spike raster from an NM neuron during repeated presentations
of the stimulus. Bottom, PSTH formed from the raster. B, The mutual information between the
spike train and current stimulus versus time resolution (data points). The solid line represents
how the information transmitted varies with resolution for a noiseless neuron (Rieke et al.,
1997). €, The mutual information between the spike train and the reduced stimulus, in one
dimension (thin) and two dimensions (thick), at the 0.1 ms time resolution. The information is
plotted versus the bin width used for the projection values. The dashed lines indicate the stable
bin sizes used to calculate the average value. D, The mutual information between the stimulus
and the spike train compared with information captured by the one- and two-dimensional
descriptions. Error bars show SE. 1D, One-dimensional; 2D, two-dimensional.

fails to predict the zero firing rate of the real neuron during steady
state (DC filtering) (Fig. 6A, right). Furthermore, although the
model predicts repetitive firing to phase-locked sEPSC trains, the
jitter in spike timing is greater than actually observed (compare
Figs. 5C, 6C). For example, when stimulated at 100 Hz, the SD of
the experimentally measured response latency curve is <50 us
compared with the one-dimensional model prediction of 190 us.
Unlike in the experiment, the average latency of the model re-
sponse is relatively constant at all of the frequencies shown (Fig.
6C, dotted lines). The right axis on Figure 6C plots the cumulative
probability of spiking for each sEPSP. The model predicts ap-
proximately one spike per cycle at 100 Hz but less for higher
frequencies. Thus, the first-order description fails to predict
some of the correct responses in the real cell.

We next constructed the two-dimensional, covariance-based
model for the same neuron. In Figure 7, A—C, we demonstrate
that some of the model predictions are closer to the neural data
than those of the one-dimensional description. The two-
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Figure 5.  Intrinsic firing properties of NM neurons. A, Membrane potential responses (top

trace) of an NM neuron to an injected DC step (bottom trace). B, Membrane potential responses
(V) to sEPSC trains (1) of increasing frequency (100, 300, and 500 Hz, from top to bottom). The
calibration bars in A also apply to B. C, Average response latency to each sEPSC at steady state
(50 ms after stimulus onset) for the neuron in B. The firing rate, in 0.1 ms bins, is plotted against
the time from sEPSC onset. The dotted lines indicate the mean latencies 0.65, 0.75,and 1.13 ms
for the 100, 300, and 500 Hz sEPSC trains, respectively. The SD of the response latencies was
<50 s for the 100 and 300 Hz sEPSC trains and 70 s for 500 Hz sEPSC train. V, Membrane
potential responses; I, SEPSC trains.

dimensional model successfully predicts DC filtering, showing a
zero firing rate during steady-state current. This phasic response
is the outcome of a negative stimulus projection onto mode 2
during steady state, which causes DC filtering even for large cur-
rent steps (data not shown). Furthermore, the model follows
high-frequency sEPSC trains with greater temporal fidelity (Fig.
7B, C). The response of the two-dimensional model to the 100 Hz
sEPSC train has a greater maximum firing rate and narrower
firing rate distribution relative to the SEPSC onset (SD, 150 ws)
(Fig. 7C) compared with the STA model (SD, 190 us) (Fig. 6C),
although not as narrow as the experimental responses (SD, <50
ws) (Fig. 5C). The average response latencies also increase at
higher stimulus frequencies (Fig. 5D, dotted lines). However, the
firing rates to the 300 and 500 Hz trains are lower than those of
the real neuron or the one-dimensional model. This is attribut-
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Figure6.  One-dimensional model responses to DC steps and SEPSCs. A, Model response, r(t),

evoked by a DCstep, /(t). The right panel shows the response on an expanded time and firing
rate axis. The dashed line indicates 0 kHz. B, Model responses, r(t), to SEPSC trains, /(t), of
increasing frequency (100, 300, and 500 Hz, from top to bottom). The left scale bars in A also
apply to B. C, Average response latency to the sEPSP at steady state (50 ms after stimulus onset)
forthe model responses in B. The instantaneous firing rate is plotted on the left versus time from
the onset of each sEPSC (thick line). The dotted line indicates the mean of the latency distribu-
tion (0.81, 0.81, and 0.79 ms for 100, 300, and 500 Hz, respectively). The right axis plots the
cumulative frequency (thin line), which measures how many spikes are predicted per stimulus
cycle. The sEPSCs have the same amplitude and time course as those in Figure 5. The model was
derived from data obtained from the same neuron as that in Figure 5.

able to the interaction of predictions for closely spaced sEPSCs;
the projection values from adjacent sEPSCs overlap and sum
linearly. This model treats spikes independently and does not
explicitly account for interspike interactions, which are presum-
ably starting to play a role at these stimulus frequencies. We will
return to this issue in the Discussion. In addition, the cumulative
frequencies in Figure 7C reveal that the two-dimensional model
is less responsive than the real neuron, predicting less than one
spike per cycle at all frequencies shown.

The two-dimensional model qualitatively outperformed the
one-dimensional model for DC steps, sEPSC trains up to 100 Hz,
and Gaussian noise. This two-feature model was more selective
for its inputs; it filtered steady-state current and had a narrower
temporal distribution of firing rate around sEPSC stimuli.

Pharmacological manipulation of computation in NM

Given the clear qualitative and quantitative picture of the com-
putation of the neuron provided by covariance analysis, we next
applied the method to characterize the changes in this computa-
tion brought about by pharmacologically induced changes in the
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Figure7. Two-dimensional model responses to DCsteps and sEPSCs. A, Model response, (t),
evoked by a DCstep, /(t). The right panel shows the response on an expanded time and firing
rate axis. The dashed line indicates 0 kHz. B, Model responses, r(t), to SEPSC trains of increasing
frequency (100, 300, and 500 Hz, from top to bottom). The left scale bars in A also apply to B. C,
Average response latency to the SEPSCat steady state (50 ms after stimulus onset) for the model
responses in B. The instantaneous firing rate is plotted on the left versus time from the onset of
each sEPSC (thick line). The dotted line indicates the mean of the latency distribution (0.70,
0.76,and 0.82 ms for the 100, 300, and 500 Hz, respectively). The right axis plots the cumulative
frequency (thin line) as in Figure 3. The SEPSCs have the same amplitude and time course as
those in Figure 5. The model was derived from data obtained from the neuron in Figure 5.
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intrinsic membrane properties of the neuron. We bath applied
DTX, known to block Kv1.1, Kv1.2, and Kv1.6 ion channels
(Harvey and Robertson, 2004), to NM neurons. DTX is known to
eliminate DC filtering in NM neurons (Brew and Forsythe, 1995;
Rathouz and Trussell, 1998). Thus, NM cells treated with DTX
have repetitive action potential firing in response to a long con-
stant current stimulus (Fig. 8 A, right). The STA in the presence of
DTX is decreased in amplitude, slightly longer in duration, and
does not have a negative dip preceding the positive going current
(Fig. 8 B, top and inset). These changes in the STA feature have
been interpreted as resulting from an increase in the membrane time
constant and a lowering of spike threshold (Svirskis et al., 2004).
Furthermore, the nonlinear threshold function obtained during
DTX application (Fig. 8C, top) shows a lower threshold than the
control. This reflects a decrease in selectivity for the STA feature and
an increase in firing rate (9 Hz in control and 75 Hz in DTX).

The two-dimensional description more clearly resolves the
change in computation caused by DTX. The first two covariance
modes are quite similar before and during DTX application (Fig.
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Figure 8.  Pharmacological manipulation of computation in an NM neuron. A, Membrane
voltage response of an NM neuron (top traces) before (left) and during (right) bath application
of DTX to a DC step (bottom traces). B, The STA (top), mode 1 (middle), and mode 2 (bottom)
before (gray) and during (black) DTX application. The inset above the STAs plots them normal-
ized to equal peaks and on a finer time scale to demonstrate the broadening of the STA during
DTX application. The dotted line indicates time of spike. , The nonlinear relationship between
thefiring rate and the projection of a current stimulus onto the STA (top), mode 1 (middle), and
mode 2 (bottom) before (gray) and during (black) DTX application. D, Prediction of the two-
dimensional models (top) evoked by a DC step (bottom) from data obtained before (left) and
during (right) DTX application. The insets show the model responses on finer time scale and
firing rate axes. The dashed line indicates 0 kHz.

8 B, middle and bottom), indicating that the intrinsic temporal
filtering properties of the neuron are not significantly altered.
What has changed, however, is the threshold function for mode 2
(Fig. 8C, bottom). Recall that because of its monophasic nature,
mode 1 operates as a smoothing or integrating filter, whereas
mode 2 is biphasic, enacting a differentiating operation. Our re-
sults clearly show that the neuron has lost selectivity for the “dif-
ferentiating” feature that provides the DC filtering property,
whereas the selectivity for the integrating feature was only slightly
altered (Fig. 8C, middle). This change came about from a shift in
the mean of P(s,|spike) in DTX to less than half of that in the
control solution (in this cell, 2.03 in control and 0.85 in DTX;

Slee et al. @ Two-Dimensional Auditory Time Coding

56 £ 5% of control in five cells). The responses of the two-
dimensional models (Fig. 8 D, top panels) reproduced the change
in computation of the real neuron by DC filtering in control (left)
and predicting a nonzero firing rate throughout the current step
(bottom panels) during DTX application (right). The steady-
state response of the two-dimensional, DTX-applied model rose
with increasing DC amplitude and began to DC filter at high
values of input current (data not shown). This matched qualita-
tively with the firing responses in the real neuron during DTX
application (data not shown). The model responses at onset were
also broadened during DTX (Fig. 8, see insets). From covariance
analysis, we have resolved the changes in the shape of the STA
during DTX application into an unchanged contribution from
the integrating mode and a reduced contribution of the differen-
tiating mode.

Discussion

A goal of single-neuron modeling is to obtain a general quantita-
tive description of the mapping between stimulus and spike out-
put. A complete description should reproduce experimentally
measured responses and predict responses to novel stimuli. Even
in a single neuron, this is a daunting task; neurons are nonlinear,
stochastic, and adapt on many different time scales, making re-
sponses both history and context dependent (Shapley and Victor,
1979a; Clague et al., 1997; Sanchez-Vives et al., 2000; Fairhall et
al., 2001; Kim and Rieke, 2001; Baccus and Meister, 2002; Truc-
colo etal., 2005). What makes the problem potentially tractable is
that not all possible stimulus fluctuations are relevant for the
response of a neuron. Indeed, in the framework we present here,
a core component of the computation of a neural system is pre-
cisely this reduction of the stimulus to its relevant features. Thus,
our task was to find these relevant stimulus features and measure
how the neuron computes with them. Ultimately, we aimed to
determine how these features and the decision of the neuron to
fire depend on the detailed biophysics of the system.

Additional features improve model fidelity

The limitations of a simple single feature (STA) description of
spike generation have been demonstrated in the literature in
models of single neurons (Agiiera y Arcas et al., 2000, 2003;
Agiiera y Arcas and Fairhall, 2003; Pillow and Simoncelli, 2003)
as well as in other systems (Touryan et al., 2002; Fairhall et al.,
2003; Petersen and Diamond, 2003; Rust et al., 2005). It has been
shown that the assumption of one spike-triggering feature may
fail to reproduce measured responses. Covariance analysis was
used to systematically determine the significant features of the
system, resulting in improved models. For the biophysically real-
istic Hodgkin—Huxley model, covariance analysis led to a signif-
icant improvement over the STA (Agiiera y Arcas et al., 2003). In
the present study, we have shown this to be the case for a real
neuron. NM neurons are selective for at least two features in the
input current; a model based on two covariance-derived features
captured a significantly higher fraction of the measured mutual
information between the noise stimulus and the spike train than
the single STA feature. This model more accurately reproduced
experimentally measured firing to a noise stimulus. We also
tested more traditional stimuli on the model. In contrast to the
one-dimensional model, the two-dimensional model correctly
DC filtered steps to a steady-state current and responded to a 100
Hz sEPSC train with a higher and more precisely timed firing
probability. However, for 300 and 500 Hz sEPSC trains, the STA
model predicted the firing rate more accurately than the two-
dimensional model. This was a result of a narrower time course of
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the STA compared with the covariance modes, which reduced
interaction between adjacent sEPSCs.

A complete description of the transfer function for a given
neuron could be achieved by a quantitative description of the
spatial and kinetic properties of the entire membrane. Given such
a set of equations, it is possible to determine how the voltage
response to a simple input (e.g., a constant current step) depends
on the kinetic parameters and the density of ion channels. How-
ever, even with such a complete biophysical description, it is very
difficult to isolate the role that a given membrane property plays
in determining the response of a neuron to a broad set of input
statistics. This is a key area in which the covariance method pro-
vides not only a simplified description but also insight into neu-
ronal function. Here, we found that pharmacological manipula-
tion of computation in NM had a remarkably simple effect on a
two-feature description. Application of DTX decreased the DC
filtering property of NM neurons. The two-dimensional model
revealed a dramatic change in selectivity for the differentiating
feature while the shape of the features stayed similar. The two-
dimensional model calculated from data obtained in the presence
of DTX reproduced the responses of the manipulated neuron by
similarly ceasing to DC filter. More significantly, the two-
dimensional description generalizes the DC filtering concept to
describe the selectivity of the cell among stimuli other than pure
DC steps.

Model limitations

Although covariance analysis provides a significant improvement
over the STA-based description, it does not provide a complete
solution to input/output properties of neurons. Previous spike
history can alter the effect of the stimulus on spike generation
(Agiiera y Arcas and Fairhall, 2003; Agiiera y Arcas et al., 2003;
Pillow and Simoncelli, 2003; Paninski et al., 2004; Truccolo et al.,
2005). In our example, the NM neuron is unable to fire on every
cycle at a 500 Hz stimulation rate (Fig. 5B). Presumably, this is
because of refractoriness in spike generation attributable to inac-
tivation of sodium channels. Although the nonmonotonic
threshold function enacts some of the effects of refractoriness by
enforcing high temporal precision at threshold crossing and sup-
pressing subsequent spikes within a single stimulus fluctuation,
we have not dealt explicitly here with spike interactions. In pre-
vious work, we have separated stimulus-driven from spike-
history-driven effects by analyzing only isolated spikes, those sep-
arated by a sufficient interval such that they are statistically
independent. Here, our analysis shows that NM neurons com-
pute with current waveforms within a window of ~5 ms. This
limits the effects of spike history in these cells compared with
other types of neurons in that most spikes are effectively isolated.
However, for high-frequency sEPSC trains, we found that the
filter window overlaps with more than one sEPSC, modifying the
predicted firing rate without accounting for spike-dependent
biophysical changes in membrane potential and conductance.
This results in the inability of the two-dimensional model to
reproduce the complicated firing pattern of the neuron to a 500
Hz sEPSC train. The present models of neural computation
would be improved (but complicated) by explicitly accounting
for spike history.

A more subtle issue arises when attempting to predict re-
sponses to stimuli that do not occur within the ensemble of stim-
uli used to derive the model. One would like the model to gener-
ate correct responses to arbitrary stimuli, including traditional
quasi-static stimuli such as current steps. Although in principle
these stimuli are contained within the Gaussian ensemble, in
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practice they are extreme outliers. In our example, noise with a
relatively flat power spectrum out to frequencies of 2 kHz did not
efficiently probe the computational changes brought about by
DTX. Block of low voltage-activated potassium channels with
DTX affects the ability of NM to fire to DC steps, stimuli with
relatively high power at low frequencies. Therefore, we used a
slower EPSC-filtered noise (see Materials and Methods) to probe
the neuron in experiments in which DTX was applied. As a result,
the covariance modes were slightly broadened compared with
those measured with a faster stimulus. This may have limited our
ability to find changes in the time course of the covariance modes
brought about by pharmacology. Furthermore, many studies
have found that basic neural characterizations in terms of fea-
tures and static nonlinearity depend on the statistical parameters
of the stimulus (Shapley and Victor, 1978, 1979a,b, 1980; Fairhall
et al., 2001; Kim and Rieke, 2001; Baccus and Meister, 2002;
Serruya et al., 2002; Agiiera y Arcas and Fairhall, 2003; Jolivet et
al., 2004). Stimuli such as current steps may induce rapid forms
of adaptation whereby the filter and threshold function change.
Although here we recomputed the model at three other values of
mean and SD and found little change, in general such changes can
be considered as adaptations and may have information process-
ing benefits for the system. A systematic generalization of covari-
ance methods to arbitrary stimulus ensembles is yet to be
determined.

Relevance for auditory processing

Previous work in auditory processing has emphasized the impor-
tance of the intrinsic membrane properties of auditory neurons
for the preservation and processing of the extremely precise time
code present in their input (Reyes et al., 1994; Oertel, 1997;
Rathouz and Trussell, 1998; Dodson et al., 2002; Macica et al.,
2003; Rothman and Manis, 2003; Svirskis et al., 2004). As noted
by several investigators, NM neurons DC filter low-frequency
stimuli but have fast channel kinetics to follow high-frequency
transient inputs. The combination of these properties allows NM
neurons to reliably fire a single action potential to an EPSC,
thereby preserving the phase-locked signal in their input while
ignoring input patterns that contain little temporal information.
Covariance analysis provides quantitative insight into these qual-
itative aspects of computation. Here, the computation of NM
cells is clearly understood as selectivity for an integrating and a
differentiating feature in synaptic current. The time course of the
features provides a functional measure of the processing time
window, whereas the nonlinear threshold function quantifies the
selectivity for each feature. The brief duration of these features
gives the neuron the ability to compute with high temporal pre-
cision. The high selectivity for the differentiating feature gives
this cell its DC-filtering property, which only allows firing to
transient inputs. This property can be removed by blocking a
small subset of ion channels. We expect that future analysis of
single neurons using covariance methods will yield fruitful in-
sights about the functional roles of other channel subtypes in
neural computation.
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