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Interaural Phase and Level Difference Sensitivity in
Low-Frequency Neurons in the Lateral Superior Olive

Daniel J. Tollin and Tom C. T. Yin
Department of Physiology, University of Wisconsin-Madison, Madison, Wisconsin 53706

The lateral superior olive (LSO) is believed to encode differences in sound level at the two ears, a cue for azimuthal sound location. Most
high-frequency-sensitive LSO neurons are binaural, receiving inputs from both ears. An inhibitory input from the contralateral ear, via
the medial nucleus of the trapezoid body (MNTB), and excitatory input from the ipsilateral ear enable level differences to be encoded.
However, the classical descriptions of low-frequency-sensitive neurons report primarily monaural cells with no contralateral inhibition.
Anatomical and physiological evidence, however, shows that low-frequency LSO neurons receive low-frequency inhibitory input from
ipsilateral MNTB, which in turn receives excitatory input from the contralateral cochlear nucleus and low-frequency excitatory input
from the ipsilateral cochlear nucleus. Therefore, these neurons would be expected to be binaural with contralateral inhibition. Here, we
re-examined binaural interaction in low-frequency (less than ~3 kHz) LSO neurons and phase locking in the MNTB. Phase locking to
low-frequency tones in MNTB and ipsilaterally driven LSO neurons with frequency sensitivities <<1.2 kHz was enhanced relative to the
auditory nerve. Moreover, most low-frequency LSO neurons exhibited contralateral inhibition: ipsilaterally driven responses were sup-
pressed by raising the level of the contralateral stimulus; most neurons were sensitive to interaural time delays in pure tone and noise
stimuli such that inhibition was nearly maximal when the stimuli were presented to the ears in-phase. The data demonstrate that
low-frequency LSO neurons of cat are not monaural and can exhibit contralateral inhibition like their high-frequency counterparts.

Key words: lateral superior olive; medial nucleus of the trapezoid body; interaural time delay; interaural level difference; sound localiza-

tion; phase locking

Introduction

For ~100 years, the Duplex theory has posited that low- and
high-frequency sounds are localized using two different acousti-
cal cues, interaural time delays (ITDs) and interaural level differ-
ences (ILDs), respectively (Rayleigh, 1907). Psychophysical data
have generally supported the theory for pure tones (Stevens and
Newman, 1936; Mills, 1958). Anatomical and physiological stud-
ies have revealed two parallel brainstem pathways that appear to
encode I'TDs and ILDs separately (Yin, 2002). ITDs are extracted
by medial superior olive neurons in which ITD sensitivity results
from the coincident arrival of excitatory inputs from the two ears
[excitatory—excitatory (EE) binaural interaction], causing maxi-
mal responses when the ITD in the stimulus offsets differences in
neural conduction times from the ears. ILDs are extracted by
lateral superior olive (LSO) neurons via a subtraction-like pro-
cess resulting from inhibitory inputs from the contralateral and
excitatory inputs from the ipsilateral ear [inhibitory—excitatory
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(IE) binaural interaction]. The dual brainstem pathways provide
anatomical and physiological correlates of the Duplex theory.
LSO neurons encode ILDs for high-frequency sounds in
which the cues are physically available (Boudreau and Tsuchi-
tani, 1968; Tollin, 2003), but there are discrepancies regarding
low-frequency neurons. The classical descriptions of LSO report
that low-frequency neurons are not binaural but rather are mon-
aural in that they respond to stimuli presented to only one ear
(Boudreau and Tsuchitani, 1968; Guinan et al., 1972b; Tsuchi-
tani, 1977). Batra et al. (1997) were also unable to find low-
frequency IE neurons in the rabbit brainstem, although it appears
they only used monaural responses to assess the presence of in-
hibitory input via reductions in spontaneous activity. However,
anatomical and physiological evidence predicts that low-
frequency LSO neurons should exhibit IE interaction and thus
respond to ILDs. First, these neurons receive excitatory input
from neurons in the ipsilateral cochlear nucleus and frequency-
matched input from glycinergic, inhibitory cells of the ipsilateral
medial nucleus of the trapezoid body (MNTB), which in turn
receives excitatory input from neurons in the contralateral co-
chlear nucleus (Glendenning et al., 1985; Smith et al., 1993,
1998). Low-frequency LSO neurons would also be expected to be
sensitive to ITDs in the ongoing “fine structure” of low-
frequency sounds, because the afferents preserve temporal infor-
mation in the fine structure of the sounds from both ears: low-
frequency neurons of the ipsilateral cochlear nucleus (Joris et al.,
1994) and the MNTB exhibit phase-locked action potentials that
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occur at particular phases of low-frequency tones (Smith et al.,
1998; Kopp-Scheinpflug et al., 2003). We hypothesize that the
ITD that offsets the differences in neural conduction times from
the two ears should result in the coincident arrival of excitation
and inhibition from the ipsilateral and contralateral ears, respec-
tively. Consequently, LSO neurons will be maximally inhibited at
this delay. Low-frequency LSO neurons sensitive to ILDs have
been reported (Caird and Klinke, 1983; Finlayson and Caspary,
1991; Spitzer and Semple, 1995; Joris and Yin, 1995), but few
studies in the cat (Caird and Klinke, 1983; Joris and Yin, 1995)
have reported ITD-sensitive cells of the type just described nor
have they been studied in detail. Here, we report results from
low-characteristic-frequency (less than ~3 kHz) LSO and MNTB
neurons.

Materials and Methods

General

All procedures used were approved by the University of Wisconsin Ani-
mal Care and Use Committee and also complied with the National Insti-
tutes of Health guidelines for animal use. Adult female cats were anes-
thetized initially with ketamine hydrochloride (20 mg/kg) along with
acepromazine (0.1 mg/kg). Atropine sulfate (0.05 mg/kg) was also ad-
ministered to reduce mucous secretions. A venous cannula was im-
planted in the femoral vein through which supplemental doses of sodium
pentobarbital (3—5 mg/kg) were administered as needed to maintain
areflexia. The cat’s temperature was monitored continuously with a rec-
tal thermometer and maintained with a heating pad at 37°C. A tracheal
cannula was inserted to facilitate respiration. Both pinnas were removed,
and tight-fitting hollow earpieces were fitted snugly into the external
auditory meati. Polyethylene tubing (PE-90; 30 cm; inner diameter, 0.9
mm; Clay Adams, New York, NY) was glued into a small hole made in
each bulla to maintain normal middle-ear pressure.

A ventral transpharyngeal approach was used, and the LSO was ac-
cessed by drilling small holes into the basioccipital bone. Small slits were
then made in the dura through which parylene-coated tungsten micro-
electrodes (1-2 M{); Microprobe, Clarksburg, MD) were advanced ven-
tromedial to dorsolateral at an angle of 26-30° into the brainstem by a
hydraulic microdrive affixed to a micromanipulator (Trent Wells,
Coulterville, CA) that could be advanced remotely from outside the
double-walled sound-attenuating recording chamber (Industrial Acous-
tics Company, Bronx, NY). Electrical activity was amplified and filtered
between 300 and 3000 Hz (model CR4; Princeton Applied Research, Oak
Ridge, TN). Unit responses were discriminated with an amplitude—time
window discriminator (model DIS-1; Bak Electronics, Mount Airy,
MD), and spike times were stored at a precision of 1 us via custom-built
equipment.

Histology

In most experiments, electrolytic DC lesions were made to differentiate
electrode tracks, mark locations of interest, and assist in estimating tissue
shrinkage after histological processing. At the conclusion of each exper-
iment, the brain was fixed in 10% formalin by immersion or perfusion
through the heart. The fixed tissue was cut into 50 uwm frozen sections
and stained with cresyl violet so that electrode tracts and lesions could be
seen. Figure 1 shows a section of brainstem from an experiment in which
two low-frequency LSO neurons were recorded from two parallel elec-
trode penetrations.

Stimuli

General. All stimuli were generated digitally at 16 bit resolution and
converted to analog at a rate of 100 kHz via the custom-built digital
stimulus system designed by Rhode (1976). Overall stimulus level was
controlled using programmable attenuators. The conditioned output of
the digital-to-analog converter was sent to an acoustic assembly (one for
each ear) comprising an electrodynamic speaker (40-1377; Realistic, Fort
Worth, TX), a calibrated probe-tube microphone (0.5 inch; Briiel &
Kjeer, Norcross, GA), and a hollow earpiece that was fit and sealed snugly
into the cut end of the auditory meatus. The hollow earpiece accommo-
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dated the small probe-tube microphone by which the sound delivery
system to each ear was calibrated for tones between 50 Hz and 40 kHz in
50 Hz steps. The calibration data were used to compute digital filters that
equalized the responses of the acoustical system and typically yielded flat
frequency responses within *2 dB for frequencies <25 kHz.

Tone bursts of varying frequency were used as search stimuli with the
sound pressure level of the tone to the ipsilateral ear being 5-10 dB higher
than the tone to the contralateral ear so that the IE cells of the LSO would
not be missed. Once a single unit was isolated and the excitatory ear
determined, its characteristic frequency and threshold level were mea-
sured using an automated tracking procedure based on that by Kiang et
al. (1970). Discharge rate was measured as a function of sound pressure
level by presenting 200 repetitions of a 50 ms duration tone (3.9 ms
rise/fall times) every 100 ms at the characteristic frequency at different
sound pressure levels in 5-10 dB steps. From these ratelevel functions,
the resulting poststimulus time and period histograms were examined.
Phase locking (or synchrony), which measures the tendency of a neuron
to fire action potentials that are synchronized to a particular phase of a
sinusoidal stimulus, was measured by computing the synchronization
coefficient (Goldberg and Brown, 1969). To determine the presence and
nature of any binaural interaction, a characteristic frequency tone or
broadband noise (300 ms duration presented every 500 ms with a rise/fall
time of 4 ms) was presented to the ipsilateral ear at 1020 dB above the
threshold level while the level of a corresponding characteristic frequency
tone or noise presented to the contralateral ear was varied. This proce-
dure reveals whether ipsilaterally evoked neural responses can be inhib-
ited by contralateral stimulation, a hallmark of LSO cells.

Binaural beat. Sensitivity to ITDs of low-frequency tones was assessed
in two ways. The first method used the binaural-beat stimulus (Kuwada
et al., 1979). To create binaural beats, tones of 5 s in duration were
presented to both ears ~20-30 dB above ipsilateral-ear threshold but
with a frequency difference of 1 Hz, usually with the tone to the ipsilateral
ear having the higher frequency. The binaural-beat stimulus results in a
dynamically changing difference in the phases of the tones presented to
the two ears, or interaural phase difference (IPD), over a 1 s period (see
Fig. 5C, inset, for example binaural beat). ITDs can be computed from
IPDs by simply dividing the IPD by the stimulus frequency. For example,
an IPD of 0.5 cycles with a 500 Hz stimulus is equivalent to an ITD of 1
ms, but the same IPD is equivalent to 0.5 ms for a 1000 Hz stimulus. As
discussed below, we use IPDs in the analysis of the data because it allows
the binaural sensitivity of a neuron to be classified in a common frame-
work, regardless of the absolute sensitivity to ITDs. If the neuron is
sensitive to IPD, then its response will be modulated systematically by the
variation in IPD present in the binaural beats, which can be converted to
an ITD.

Responses of LSO neurons to the 1 Hz binaural-beat stimuli were
obtained at several different frequencies near the characteristic frequency
of each neuron. At each frequency, the stimulus was repeated three times
with a 1 s interstimulus interval. To characterize the tendency of these
neurons to phase lock or fire action potentials at particular IPDs, period
histograms were constructed by binning (64 bins) the responses on the
period (1 s) of the binaural-beat frequency (1 Hz). Note that stimuli
presented in the configuration we used, with the ipsilateral ear having the
higher frequency, were equivalent to a “negative” binaural beat by our
convention (Kuwada et al., 1979; Yin and Kuwada, 1983). To be consis-
tent with previous studies, the interaural phase was “corrected” by flip-
ping the period histograms around the point of IPD of 0.5 cycles when
this stimulus configuration was used. From these corrected histograms,
the mean IPD and the interaural synchronization coefficient, a measure
of the precision of phase locking, were determined for each stimulating
frequency. Significance of interaural phase locking was evaluated with
the Rayleigh test (Mardia, 1972) at the p < 0.001 level. The characteristic
delay (CD) (Yin and Kuwada, 1983) and characteristic phase (CP) were
determined by fitting a line (least-squares procedure) to a plot of the
mean IPD of the response to different frequencies, with each IPD being
weighted by the product of the synchronization coefficient and the total
number of spikes (Batra et al., 1997). CD is given by the slope of the
phase—frequency plot and represents the relative difference in neural
conduction delays between the inputs to the neuron from the two ears.
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Figure 1.

Light micrograph of the left side of the superior olivary complex showing two
electrode penetrations through the LSO. An electrolytic DC lesion marks the locations of one of
the low-characteristic-frequency LSO neurons (arrow; 108-5, characteristic frequency, 1.35 kHz;
and 108-9, characteristic frequency, 1.75 kHz). The major nuclei and landmarks of the superior
olivary complex are denoted. MSO, Medial superior olive; TB, trapezoid body; Pyr, pyramidal
tract.

The CP is determined from the y-intercept value of the phase—frequency
plot at 0 Hz and indicates whether coincident arrival of inputs from the
two ears results in maximal or minimal responses. In our convention,
positive CDs (CD > 0) indicate a delay to the ipsilateral input, simulating
a stimulus in the contralateral sound field. A CP of 0.0 or 1.0 cycles
indicates that the CD results in a maximal response from the neuron,
which is consistent with EE neurons. A CP of 0.5 cycles indicates that the
CD results in a minimal response from the neuron, consistent with IE
neurons.

ITD sensitivity was also examined by presenting identical tokens of
broadband noise with equal amplitude to the two ears but systematically
varying the ITD. Here, ITDs were created by delaying the entire noise
waveform. The resulting plots of mean discharge rate as a function of the
ITD are called noise—delay functions. On occasion, we also assessed ITD
sensitivity to pure tones at or near the characteristic frequency by pre-
senting equal amplitude tones to the two ears but varying the ITD in the
whole waveform, rather than using binaural beats.

Neuron classification. The LSO and MNTB neurons reported in this
paper were classified based on two main factors: their physiological re-
sponses to tones and their anatomical location in the brainstem derived
from histology. Physiologically, LSO neurons were identified by excita-
tory responses to ipsilateral and inhibitory responses to contralateral
stimulation. Anatomically, these low-frequency LSO neurons were lo-
cated in the lateral limb of the LSO. The low-frequency LSO neurons
were invariably encountered deeper in the electrode penetration after
having encountered high- to mid-frequency-sensitive IE neurons that
were recorded in the medial and middle limbs, respectively, during the
same penetrations. Their depth relative to the mid- to high-frequency
neurons ranged from 441 to 1286 wm (mean, 731 wm). Given the angle
of electrode penetration used in these experiments (26-30°), the maxi-
mum distances separating the medial and the middle limbs of the LSO
from the lateral limb measured in a sample of our histological sections
(see Fig. 1) ranged from ~1300 to 750 wm, respectively. The depths of all
the low-frequency LSO neurons relative to high-frequency LSO neurons
recorded in the same penetration fell below these maximums. MNTB
neurons were identified by the shape of their extracellularly recorded
action potentials, which exhibit a prepotential that precedes the action
potential by ~500 ws (Guinan et al., 1972a; Guinan and Li, 1990; Smith
etal.,, 1998) and by responses only to monaural contralateral stimulation.
They were also invariably located early in the electrode track shortly after
encountering trapezoid body fibers (see Fig. 1)
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Figure 2.  Phase-locked responses of a low-characteristic-frequency MNTB neuron to pure-
tone stimuli. A, Frequency—threshold curve (characteristic frequency, 317 Hz). B, Both the
discharge rate (left ordinate; filled circles) and response synchrony (Syng; right ordinate; open
circles) increase with increasing level of a 50 ms duration characteristic frequency tone. Spon-
taneous rate isindicated by the dashed line (Spon; left ordinate). SPL, Sound pressure level. C, D,
Dot rasters to 200 presentations of a 50 ms duration characteristic frequency tone (€) and
associated period histograms (D) at three different stimulus levels. The responses are phase
locked to the stimulus frequency, as evidenced by the tendency of spike times to line up verti-
cally in the rasters (€) and for responses to occur at a particular phase angle resulting in peaked
period histograms (D). The synchronization coefficients (r) of the responses in D are indicated in
the inset. The time waveform of the characteristic frequency tone is shown below C.

Results
Results are based on single-unit recordings of 16 LSO and 17
MNTB neurons, all with characteristic frequencies <3.2 kHz re-
corded from 15 cats. Within this sample, 11 of 16 LSO and 8 of 17
MNTB neurons had characteristic frequencies <1.5 kHz. All
low-frequency LSO neurons were recorded during electrode pen-
etrations that traversed the LSO (see Materials and Methods).
The locations of 12 of 16 LSO neurons were verified through
histology and electrode track reconstruction. Figure 1 shows an
example histological section with two well stained parallel pene-
trations from which recordings of two low-frequency LSO neu-
rons were obtained. The arrow indicates an electrolytic DC lesion
made at the location of one of the neurons (characteristic fre-
quency, 1.35 kHz), the responses of which are shown in Figure 7.
All MNTB neurons responded only to contralateral stimulation,
exhibited prepotentials in their action potential waveforms, and
were encountered in the dorsolateral portion of the MNTB nu-
cleus. Because of limited recording time, not all stimulus manip-
ulations were presented to each neuron.

The reason for the small number of neurons in our sample
deserves some explanation. Historically, LSO, and to a lesser de-
gree MNTB, neurons, which are located deep in the brainstem in
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Figure 3.  Phase-locked responses of a low-characteristic-frequency LSO neuron to pure-

tone stimuli. A-D, The same as in Figure 2, but, for alow-frequency LSO neuron stimulated with
characteristic frequency (440 Hz; A), tones were presented to the excitatory ipsilateral ear only.
The spontaneous rate for this neuron was 0 spikes/s. Note that because the response happened
to fall near a stimulus phase of 0 cycles, the phase axis has been plotted from —0.5t0 0.5 cycles
for ease of presentation. SPL, Sound pressure level; Sync, synchrony.

the cat, have proven to be difficult to access and record from with
microelectrodes. As a result of the over-representation of high-
frequency neurons in the LSO, the lateral limb where the low-
frequency neurons are located is relatively small. The difficulty in
recording from the low-characteristic frequency LSO neurons in
the lateral limb is evident in the classic large-scale survey studies
of the LSO. Of 432 neurons from all of the superior olivary com-
plex (SOC) nuclei, Guinan et al. (1972b) recorded from only 22
LSO neurons, despite its relatively large size compared with other
SOC nuclei (Fig. 1), and only a handful of these had low-
characteristic frequencies; and Tsuchitani (1977) recorded from
244 LSO neurons, but only 16 (7%) of those had characteristic
frequencies <2 kHz. As for low-frequency (<2 kHz) MNTB neu-
rons, Smith et al. (1998) and Kopp-Scheinpflug et al. (2003) re-
corded from only two and three cells, respectively. Clearly, there
is a need for additional studies of these neurons.

Low-frequency LSO and MNTB neurons exhibit highly
synchronized phase locking

In order for central neurons such as those in the medial superior
olive and the LSO to encode ITDs, the afferent inputs from both
ears to these neurons must accurately encode the temporal char-
acteristics of the stimuli. Here, we examine whether low-
characteristic-frequency LSO and MNTB neurons exhibit phase-
locked responses to pure-tone stimuli. Previous studies from our
laboratory have already demonstrated the excellent, and often
enhanced (relative to their auditory nerve inputs), phase-locking
abilities of globular and spherical bushy cells of the cochlear nu-
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Figure 4.  Low-frequency MNTB and LSO neurons exhibit phase locking to characteristic

frequency tones that is enhanced over that seen in ANFs. Maximum (Max) synchronization
coefficients are plotted as a function of the characteristic frequencies for MNTB (filled circles)
and ipsilaterally stimulated LSO (Ipsi LSO; filled triangles) neurons from this study and from the
population of ANF (small open circles) from the study by Johnson (1980). For characteristic
frequencies <<1.2kHz, LSO and MNTB neurons showed higher synchrony than ANFs with similar
characteristic frequencies but lower synchrony for characteristic frequencies >1.2 kHz. Note
that data points from three MNTB neurons overlap near 1 kHz, and two overlap near 2 kHz at a
synchronization coefficient of 0.6.

cleus that provide the inputs to the MNTB and the ipsilateral
inputs to the LSO (Joris et al., 1994). Figure 2 shows the phase-
locking ability of an MNTB neuron stimulated monaurally at the
contralateral ear. Figure 2 A shows the frequency tuning curve of
this neuron, which had a characteristic frequency of 317 Hz. The
frequency tuning curve shapes and bandwidths of these neurons
were similar to that seen in the auditory nerve and in cochlear
nucleus neurons of similar characteristic frequencies. Figure 2 B
shows that when presented with a 50 ms duration tone at the
characteristic frequency, the discharge rate (filled circles) and the
synchrony (open circles), which is a measure of the precision of
phase locking, increased monotonically with increasing stimulus
level. To illustrate how the synchronous firing of the neuron
increases with stimulus level, Figure 2, C and D, shows the dot
rasters and cycle histograms for 200 presentations of the charac-
teristic frequency tone at the three levels indicated. At high stim-
ulus levels (e.g., >35 dB), this neuron exhibits enhanced syn-
chrony [relative to auditory nerve fibers (ANFs) with similar
characteristic frequencies; see below] and entrainment, firing an
action potential on virtually every single cycle of the stimulus.
This is indicated by the discharge rate of the neuron, which as-
ymptotes to almost exactly 317 Hz at these higher stimulus levels.
Figure 3 shows in the same format the responses of a LSO neuron
with a low characteristic frequency of 440 Hz (Fig. 3A). Figure
3B-D shows that when stimulated with a characteristic frequency
tone presented to the ipsilateral, excitatory ear, this LSO neuron
also exhibits a high degree of phase locking, with synchronization
coefficients of 0.9 or greater. This LSO neuron exhibited a weakly
nonmonotonic rate—level function.

Figure 4 summarizes the synchronization coefficients of 17
MNTB and 10 LSO neurons as a function of the characteristic
frequency of the neurons. For reference, also plotted are the syn-
chronization coefficients from the population of auditory nerve
fibers from the work by Johnson (1980). LSO (t(,45 = 5.7; p <
0.0001) and MNTB (,46, = 5.4; p < 0.0001) neurons with char-
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characteristic frequency tones. ILD (bottom abscissa) was varied by fixing the level at the ipsilateral ear at 30 dB and changing the level of a simultaneously presented characteristic frequency tone
to the contralateral ear (top abscissa). Consistent with |E binaural interaction, increases in the level of the contralateral tone inhibited ipsilaterally driven responses resulting in a sigmoidally shaped
rate—ILD function. Error bars indicate =1 SEM. B, Poststimulus time histograms (PSTHs; left column) to binaural beat stimuli created by presenting a tone at the stimulating frequency (top right,
left column) to the ipsilateral ear and a tone at a frequency 1 Hz less to the contralateral ear. An example binaural beat (C, inset) is shown. IPD sensitivity is evidenced by the response modulation
at 1 Hz. Period histograms (right column) were constructed from the PSTHs by binning the responses on the period of the beat frequency (1 s). As described in Materials and Methods, the period
histograms were corrected by flipping them around the point of IPD of 0.5 cycles. Using this representation, responses were low when the tones to the two ears were in-phase (0.0 cycles) and
increased when the tones were out-of-phase (0.5 cycles). Vector averaging of the period histograms for each stimulating frequency yields a mean interaural phase (¢b; top left of panels in right
column) and synchronization coefficient (r). Asterisks indicate significant ( p << 0.001) phase locking to the 1 Hz beat frequency. €, Mean interaural phase (cb,) from the binaural-beat stimuli (B)
as a function of frequency. The (D and CP are estimated from the slope and y-intercept of the best-fitting line to the phase—frequency data (solid line) and are indicated in the top left of the panel.
D, The IPD sensitivity of the neuron as expressed in the binaural-beat period histograms (B) can be converted to an equivalent ITD sensitivity by dividing the IPD by the stimulus frequency and
reorganizing the abscissa, as indicated by the drop lines. Stimulus frequency was 400 Hz. The location of the (D is indicated with an arrow. The solid line in bottom panel shows a smoothed version

of the data. IPSI or Ipsi, Ipsilateral; CONTRA or Contra, contralateral.

acteristic frequencies <1.2 kHz exhibited significantly enhanced
synchronization to pure-tone stimuli. The synchronization is
greater than that observed in auditory nerve fibers over the same
ranges of characteristic frequencies. This enhanced synchrony is
similar to the synchrony observed in low-characteristic frequency
spherical and globular bushy cells (Joris et al., 1994), suggesting
that the enhanced phase locking at those peripheral levels is pre-
served at the MNTB when stimulated contralaterally and at the
LSO when stimulated ipsilaterally. For neurons with characteris-
tic frequencies greater than ~1.2 kHz, phase locking was clearly
poorer than that exhibited by ANFs. This finding also mirrors the
poorer phase locking observed in bushy cells at higher
frequencies.

Low-frequency LSO neurons can be sensitive to both ILDs
and IPDs

The excellent phase locking exhibited by low-characteristic-
frequency LSO and MNTB neurons suggests that individual low-
frequency LSO neurons that exhibit IE binaural interaction
might indeed be sensitive to IPDs in addition to ILDs. In Figure 5,
we show that the same LSO neuron as shown in Figure 3 exhibits
sensitivity to both ILDs and IPDs, and it illustrates how these
neurons were studied. This neuron showed highly phase-locked
responses to characteristic frequency tones (440 Hz) presented to
the ipsilateral ear (Fig. 3). The function relating discharge rate to
ILD, the rate—ILD function, for this neuron was studied by hold-

ing the level of a characteristic frequency tone presented to the
ipsilateral excitatory ear constant at 30 dB (~20 dB with respect
to threshold), while increasing the level of a characteristic fre-
quency tone simultaneously presented in-phase to the contralat-
eral inhibitory ear (Fig. 5A, top abscissa). Consistent with IE
binaural interaction, increases in sound level at the contralateral
ear progressively inhibited the ipsilaterally driven responses re-
sulting in a classical sigmoidally shaped rate-ILD function that is
characteristic of LSO neurons. Figure 5B shows that the neuron
was also sensitive to the dynamically changing IPDs in binaural
beat stimuli (Fig. 5C, inset) in that the responses were clearly
modulated by the 1 Hz binaural beat frequency. As indicated by
the period histograms on the right (the asterisks indicate signifi-
cant phase locking at the p < 0.001 level to the 1 Hz beat fre-
quency), the response was minimal when the stimuli were nearly
in-phase (at the IPD of 0 cycles) at the two ears and nearly max-
imal when the stimuli were nearly out-of-phase (at 0.5 cycles).
Recall that the period histograms were created by flipping the
histograms created from the responses in Figure 5B (left column)
around 0.5 cycles (see Materials and Methods). Observing these
corrected period histograms for this neuron, it is clear that inhi-
bition tended to occur over the first half of the cycle where the
binaural beat stimulus was such that the stimulus delivered to the
contralateral ear (the input to LSO of which is inhibitory) was
leading that to the ipsilateral ear (i.e., ipsilateral delay). Minimal
inhibition occurred over the last half of the cycle, in which the
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must be reorganized for this procedure.
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ting the mean discharge rate of the neuron
as a function of the ITD between identical
broadband noise bursts of equal ampli-
tude presented to the two ears (Fig. 6E).
Based on the CP and CD of this neuron, we
hypothesize that the response as a function
of ITD should exhibit a minimum, or
trough, at an ITD that just offsets the CD,
thatis, ~235 us (indicated by an arrow). Ac-
cordingly, there is a rate minimum at 200 s,

CD=235ps

0 1000 2000 3000 4000 5000 6000 00 02 04 06 08 1.0

Time (ms) IPD (cycles) Contra Delay

Figure 6.

ipsilateral; CONTRA or Contra, contralateral.

stimulus configuration was reversed (Contra delay). In addition
to the ILD sensitivity, this type of response to IPDs is wholly
consistent with IE binaural interaction as well.

From the binaural-beat data at several different frequencies,
the CP and CD were computed (Fig. 5C). The slope of the best-
fitting line to the phase—frequency data indicates the CD, and the
intercept indicates the CP. Indicative of IE binaural interaction,
the CP was near 0.5 (0.61 cycles). The positive CD (+187 us)
indicates that the inhibitory input from the contralateral ear lags
the excitatory input from the ipsilateral ear by 187 ws. The IPDs
that occur over one cycle of the binaural-beat stimulus (Fig. 5C,
inset) can be converted to equivalent ITDs by dividing the IPD
axis of the period histograms by the stimulus frequency (see Ma-
terials and Methods). The period histograms can then be replot-
ted as a function of this equivalent ITD. Figure 5D (top) shows an
example period histogram created from the binaural-beat stim-
ulus for a frequency of 400 Hz, which is replotted in terms of
equivalent ITD (bottom). The drop lines show how the abscissa

-800 -600 -400 -200 0 200 400 600 800

Example of a low-characteristic-frequency LSO neuron that is sensitive to ILDs and IPDs. A, Frequency—threshold
curve (characteristic frequency, 566 Hz). B-D, The same asin Figure 5. ¢b, Mean interaural phase; ¢, mean interaural phase from
binaural-beat stimuli; *p << 0.001. E, Noise— delay function created by plotting the mean discharge rate as a function of the [TD
of abroadband noise presented to the two ears with equal amplitude. Negative delays indicate that the contralateral stimulus lags
theipsilateral stimulus. Consistent with the CD (235 pus) and the CP (0.47 cycles) obtained from the binaural-beat stimulus for this
neuron (C, D), the response minimum in the noise— delay function occurs at an ipsilateral delay of 200 s, which is near the delay
of 235 s predicted from the CD. At the (D, the ipsilateral excitation and the contralateral inhibition arrive coincidentally at the
LSO neuron, resulting in maximal inhibition. Error bars in B and E represent =1 SEM. SPL, Sound pressure level; IPSI or Ipsi,

the nearest I'TD tested.

Figure 7 shows yet another example
(the histological location of this neuron is
shown by the arrow in Fig. 1). This neuron
had a characteristic frequency of 1345 Hz
(Fig. 7A) and was determined audiovisu-
ally to be ILD sensitive, as expected of LSO
cells. The neuron was also clearly IPD sen-
sitive yieldinga CD of —299 us and a CP of
0.66 cycles (Fig. 7B,C). A CD <0 indicates
that the excitatory input from the ipsilat-
eral ear lags the inhibitory input from the
contralateral ear. Figure 7D shows the
noise—delay function for this neuron, which has a clear response
minimum at a delay of 0 s, along with the predicted location of the
response minimum at —299 us.

Figure 8 shows a summary of the IPD and ILD sensitivity of
low-characteristic frequency LSO neurons. To the extent to
which the inputs to these neurons were phase locked (Fig. 4), we
expected these neurons to be IPD sensitive. All neurons tested (10
of 10) with binaural beats were modulated with changes in IPD
for at least one carrier frequency. Two additional neurons were
not tested with binaural beats, but their responses were system-
atically modulated by ITDs in characteristic frequency tones. Fig-
ure 8 A shows the phase—frequency plots for the eight neurons
that were tested most extensively with binaural beats. Note that
for two neurons, 110-47 and 023-14, the phase—frequency func-
tions are based on only two points. Each point, however, pro-
duced significant phase locking to the binaural beats. All neurons
yielded CPs that were nearer to 0.5 cycles (mean CP, 0.52 cycles;
SD, 0.12 cycles; n = 8) than they were to 0.0 or 1.0 cycles, and CDs

ITD (us) Ipsi Delay
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that ranged from —299 to 1065 ws (mean A
CD, 186 us; SD, 451 us; n = 8). Eleven of 100
13 neurons exhibited IE binaural interac- zz b
tion as evidenced by their ILD sensitivity; 70l
three were documented audiovisually, and 6o
the eight neurons tested with ILD func- so0 [
tions showed the characteristic sigmoi-

dally shaped rate-ILD functions illus-
trated in Figure 8 B. Of the 11 units that
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aural unit. Finally, one neuron was
monaural, with no ILD or IPD sensitivity,

and could only be stimulated ipsilaterally. Figure 7

Discussion

Previous evidence for low-frequency
IPD and ILD sensitivity in LSO neurons
Reports of low-frequency LSO neurons
with IPD sensitivity are sparse (Caird and
Klinke, 1983; Finlayson and Caspary, 1991; Joris and Yin, 1995;
Batra et al., 1997). In the most comprehensive study, Finlayson
and Caspary (1991) recorded from 96 LSO neurons with charac-
teristic frequencies <1.2 kHz in chinchilla. These neurons were
sensitive to ILDs, and their responses could be modulated by
IPDs. However, 31 of 61 neurons tested with both in-phase and
out-of-phase stimuli showed maximum inhibition to stimuli
180° out-of-phase, rather than in-phase as would be predicted
from IE binaural interaction. Thirty-two additional cells in their
study that were only tested with in-phase stimuli had strong in-
hibition to in-phase tones consistent with our data.

Batra et al. (1997) were surprised not to find any low-
frequency neurons with IE interaction in the brainstem of the
awake rabbit. It is not clear whether they tested for ILD sensitivity
by stimulating the ipsilateral ear and looking for inhibitory input
from stimulation of the contralateral ear, as we have done. Low-
frequency LSO neurons showing ILD sensitivity have been re-
ported occasionally (Caird and Klinke, 1983; Finlayson and
Caspary, 1991; Joris and Yin, 1995; Spitzer and Semple, 1995). In
general, these studies examined either IPD or ILD sensitivity but
rarely both. All of these reports, in addition to our data, differ
from the classical descriptions of the low-frequency region of the

600 Hz

$=041 r=038 *

Spikes/sec

P T AN B UTE T B
-3000 -2000 -1000 0 1000 2000 3000
Contra Delay ITD (HS) Ipsi Delay

00 02 04 06 08 1.0
IPD (cycles)

Another example of a low-characteristic-frequency LSO neuron that is sensitive to IPDs and [TDs in broadband noise
stimuli. A, Frequency—threshold curve (characteristic frequency, 1.35 kHz). B-D, Same as in Figure 6, C and D. Here, the noise
delay function has a response minimum for an ITD of 0 s, compared with the delay predicted from the (D of —299 s computed
from Band C. ¢, Mean interaural phase; ¢b,, mean interaural phase from binaural-beat stimuli; *p << 0.001. Error bars represent
=1 SEM. SPL, Sound pressure level; Contra, contralateral; Ipsi, ipsilateral.
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Figure 8. Phase—frequency (4) and ILD (B) functions for the population of low-
characteristic-frequency LSO neurons. In support of the hypothesis that low-characteristic-
frequency LSO neurons can be sensitive to IPDs and ILDs in manner consistent with IE binaural
interaction, the phase—frequency functions of these neurons yield CPs near 0.5 cycles (A), and
all neurons tested were sensitive to ILD (B). ¢, Mean interaural phase from binaural-beat
stimuli. Error bars represent =1 SEM. Ipsi, Ipsilateral; Contra, contralateral.

LSO where neurons were reported to be predominantly monau-
ral (Boudreau and Tsuchitani, 1968; Guinan et al., 1972a,b; Tsu-
chitani, 1977). Only 1 of 16 neurons in our sample was monaural.
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The average CD of our LSO neurons was +186 us and is in
agreement with delay measurements made in high-frequency
LSO neurons. The high-frequency data were obtained using
amplitude-modulated stimuli, because high-frequency neurons
phase lock to the low-frequency envelope of amplitude-modulated
stimuli with high-frequency carriers but not to pure tones. For 15
high-frequency LSO neurons, the delay was calculated from the re-
sponse to monaural amplitude modulated stimuli from the slope of
the phase—frequency plot. The difference in the slopes for ipsilateral
and contralateral stimulation averaged +182 us with the contralat-
eral response delayed (Joris and Yin, 1998). For binaural stimulation
of high-frequency LSO neurons with amplitude-modulated tones,
Joris (1996) found that the mean CD was 200 us. These three studies
show that although the contralateral inhibitory input to LSO has a
longer overall path length through the brainstem and an additional
synapse in the MNTB, the inhibition lags the ipsilateral excitation by
only ~190 us in both the high- and low-frequency limbs of the LSO.
This remarkable finding is likely caused by the fast synapse through
the calyx of Held from the contralateral globular bushy cells to the
MNTB (Joris and Yin, 1998) and the large caliber axons of the glob-
ular bushy cells (Spangler et al., 1985). In fact, three of eight of our
neurons and 7 of 21 of the high-frequency LSO cells in the study by
Joris (1996) had CDs <0, indicating that the contralateral inhibition
led the ipsilateral excitation.

The reports by Boudreau and Tsuchitani (1968) and Guinan
et al. (1972a,b) of predominantly monaural responses in low-
frequency LSO neurons were followed by anatomical studies that
tended to support those findings. The projections from MNTB to
the lateral limb of the LSO were less dense (Glendenning et al.,
1985, 1991; Spangler et al., 1985; Sanes et al., 1987; Saint Marie et
al,, 1989), and the gradient of glycine receptors was less dense in
the lateral than the more medial limbs (Sanes and Wooten, 1987).

On the other hand, there was also substantial physiological
(discussed previously) and anatomical evidence predicting the
existence of IPD- and ILD-sensitive LSO neurons in the lateral
limb. First, these neurons receive excitatory input from low-
frequency neurons in the ipsilateral cochlear nucleus and
frequency-matched inhibitory input from the ipsilateral MNTB,
which receives excitatory input from low-frequency neurons in
the contralateral cochlear nucleus (Glendenning et al., 1985;
Smith etal., 1993, 1998). Second, low-frequency cochlear nucleus
neurons (Lavine, 1971; Bourk, 1976; Palmer et al., 1986; Black-
burn and Sachs, 1989; Joris et al., 1994) exhibit highly phase-
locked responses to low-frequency tones. We demonstrated here
that this enhanced phase locking is preserved at the LSO when
stimulated ipsilaterally (Figs. 3, 4). Moreover, we demonstrated
enhanced phase locking to low-frequency tones in MNTB neu-
rons (Figs. 2, 4), confirming previous reports from a few cells [cat
(Smith et al., 1998) and gerbil (Kopp-Scheinpflug et al., 2003)].
Finally, the existence of low-frequency IPD-sensitive LSO neu-
rons has been predicted from studies of low-frequency IPD-
sensitive neurons in the inferior colliculus. Inferior colliculus
neurons with CPs near 0.5 have been reported in the cat, rabbit,
and guinea pig. However, the proportion of neurons exhibiting
CPs in the range consistent with IE binaural interaction (~0.25—
0.75 cycles) was relatively small with only ~20 and ~25% in cat
[for characteristic frequencies <1 kHz (Yin and Kuwada, 1983)]
and rabbit (Kuwada et al., 1987) inferior colliculus, respectively,
the rest being distributed around 0.0 cycles, consistent with EE
interaction. Only ~10% of 520 low-frequency inferior colliculus
neurons in the guinea pig (McAlpine et al., 2001) had noise—
delay functions (Fig. 6E) that exhibited a trough, as would be
expected from IE interaction. The predominance of EE IPD sen-
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sitivity in low-frequency inferior colliculus neurons is consistent
with the under-representation and over-representation of low-
frequency neurons in LSO and medial superior olive, respectively
(Guinan et al., 1972b). Some inferior colliculus neurons exhibit
nonlinear phase—frequency functions when studied with binau-
ral beats (Stanford et al., 1992; McAlpine et al., 1998). The shapes
of these functions could be explained by converging inputs from
medial superior olive-like neurons and LSO-like neurons (Shack-
leton et al., 2000) that exhibited IPD sensitivity like that demon-
strated here.

Functional considerations

According to the duplex theory, localization of high-frequency
sounds is based on ILDs. What is the function, then, of low-
frequency LSO neurons that are sensitive to ILDs and IPDs? First,
acoustic measurements of ILD cues in cats reveal moderately
sized ILDs of =5-10 dB, even for frequencies <2.0 kHz (Wiener
etal., 1966; Tollin, 2004). The LSO neurons in our sample could
encode these ILDs (Fig. 8B). It is unknown whether cats use
low-frequency ILDs for localization. The IE mechanisms of low-
frequency LSO neurons could allow for other binaural computa-
tions. For example, the classical model of binaural hearing based
on ITDs is the Jeffress coincidence detection model (Jeffress,
1948). The anatomical correlate of the Jeffress model is usually
based on EE binaural interaction occurring at the medial superior
olive (Yin and Chan, 1990). However, inhibitory mechanisms
may shape the ITD selectivity of medial superior olive neurons
(Brand et al., 2002; Grothe, 2003). Anatomical evidence suggests
that inhibitory input to medial superior olive derives in part from
the MNTB (Kuwabara and Zook, 1991, 1992; Banks and Smith,
1992; Smith, 1995; Smith et al., 1998). The enhanced phase lock-
ing by MNTB neurons to low-frequency stimuli may play an
important role in the encoding of ITD by medial superior olive
neurons.

Our data suggest that it might also be possible that excitatory
inputs to LSO from the contralateral cochlear nucleus (Glenden-
ning et al., 1985) shaped the IPD selectivity observed here. For
example, although pure IE-type IPD sensitivity would produce
CPs of exactly 0.5 cycles and linear phase—frequency plots, our
data exhibited a range of CPs around 0.5 (Fig. 8A), and some
neurons (Fig. 8 A, 232-15) exhibited nonlinear phase—frequency
plots. Such alterations in CP and phase—frequency linearity are
consistent with the model by Batra et al. (1997), which is based on
the anatomical observations that some LSO neurons can also
receive excitatory inputs from the contralateral ear. Finally, low-
frequency neurons in the lateral limb of LSO project predomi-
nantly to the ipsilateral inferior colliculus and often stain posi-
tively for the inhibitory neurotransmitter glycine (Saint Marie et
al,, 1989; Glendenning et al., 1992). These inhibitory inputs con-
verge in inferior colliculus with the excitatory projections from
the ipsilateral medial superior olive neurons (Loftus et al., 2004).
It is conceivable that EE and IE ITD processing by the medial
superior olive and LSO, respectively, could interact at the inferior
colliculus to produce neurons with novel ITD sensitivities with a
larger range of CPs and CDs than the medial superior olive and
LSO produce independently (previous section).

In contrast to the Jeffress model, many models of low-
frequency binaural psychophysical phenomena require IE binau-
ral mechanisms rather than EE. These models assume neurons
that respond to ITDs and/or ILDs like the LSO neurons demon-
strated here. For example, models of the binaural-masking-level
difference assume a subtractive process, including the equaliza-
tion—cancellation model (Durlach, 1963; Green, 1966; Breebaart
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etal., 2001). Models of binaural speech segregation (Culling and
Summerfield, 1995) and the illusory binaural pitches (Huggin’s,
binaural edge, and Fourcin) require subtractive mechanisms
(Fourcin, 1970; Culling et al., 1998a,b; Akeroyd and Summer-
field, 2000). Models incorporating subtraction from the two ears
have been able to account for phenomena not easily explained by
Jeftress-like EE interaction (de Cheveigne, 1993; Hartmann and
Zhang, 2003). These models require fast inhibitory interaction of
temporally structured or phase-locked inputs. This is precisely
the type of interaction that we found here in low-frequency LSO
and MNTB.
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