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Emerging Patterns of Neuronal Responses in Supplementary
and Primary Motor Areas during Sensorimotor Adaptation
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Acquisition and retention of sensorimotor skills have been extensively investigated psychophysically, but little is known about the
underlying neuronal mechanisms. Here we examine the evolution of neural activity associated with adaptation to new kinematic tasks in
two cortical areas: the caudal supplementary motor area (SMA proper), and the primary motor cortex (MI). We investigate the hypothesis
that adaptation starts at premotor areas, i.e., higher in the hierarchy of computation, until a stable representation is formed in primary
areas. In accordance with previous studies, we found that adaptation can be characterized by two phases: an early phase that is accom-
panied by fastand substantial reduction of errors, followed by a late phase with slower and more moderate improvements in behavior. We
used unsupervised clustering to separate the activity of the single cells into groups of cells with similar response patterns, under the
assumption that each such subpopulation forms a functional unit. We specifically observed the number of clusters in each cortical area
during early and late phases of the adaptation and found that the number of clusters is higher in the SMA during early phases of
adaptation. In contrast, a higher number of clusters was observed in MI only during late phases. Our results suggest a new approach to
analyze responses of large populations of neurons and use it to show a hierarchy of dynamic reorganization of functional groups during

adaptation.
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Introduction

Motor adaptation and skill learning is characterized by an early
rapid phase that induces substantial improvement in behavior,
followed by a slower phase with more moderate improvements
(Karni et al., 1998). In several studies, the late phase, but not the
early, was accompanied by changes in primary motor cortex
(MI): imaging techniques revealed increased activity when hu-
mans learned new sequential finger movements (Ungerleider et
al., 2002), and motor map reorganization and synapse formation
have been observed when rats learned a novel multijoint reach-
and-grasp task (Kleim et al., 2004). These findings, together with
a diversity of findings showing learning-dependant plasticity in
MI (Sanes and Donoghue, 2000), suggest that a representation of
the newly acquired skill is formed in MI during the late stages of
learning, hence allowing for efficient generation and control
of well trained movements (Porter and Lemon, 1993; Scott,
2004). Lately, several studies have reported changes in MI within
a time scale of one session, i.e., dozens of trials (Laubach et al.,
2000; Li et al., 2001; Cohen and Nicolelis, 2004). We recently
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reported that adaptation to visuomotor rotational transforma-
tions induces specific modifications in the activity of MI neurons
(Paz et al., 2003). These changes evolved slowly within one ses-
sion and were prominent only when behavior reached a plateau.
The late occurrence of learning-related changes in MI suggests
that initial learning was mediated via other areas (Doyon et al.,
1997; Hikosaka et al., 2002; Ungerleider et al., 2002). One candi-
date for mediating learning and adaptation is the caudal supple-
mentary motor area (SMA proper), a premotor cortical area that
plays a major role in the planning and generation of simple and
complex movements (Tanji, 1994). It has direct corticospinal
projections (He et al., 1993, 1995) and interconnects with other
premotor areas (Luppino et al., 1993), and its activity is tightly
linked to the preparation for and execution of movement (Alex-
ander and Crutcher, 1990; Crutcher and Alexander, 1990; Padoa-
Schioppa et al., 2004). Recently, the SMA was shown to partici-
pate in learning of new sensorimotor skills (Nakamura et al.,
1998; Padoa-Schioppa et al., 2002; Lee and Quessy, 2003).
Neuronal responses are traditionally analyzed by comparing
the evoked activity after a certain behavioral event with the activ-
ity before this event, e.g., presentation of a sensory stimulus, ini-
tiation of movement. Many times, observing perievent time his-
tograms (PETHs) in a certain time window and identifying
different parameters of the response such as onset, duration, etc.,
serve to classify neurons according to indices such as phasic ver-
sus tonic, late versus early, and increase versus decrease. More-
over, neurons are screened for additional analysis based on their
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responses as regards these criteria. This
may result in failure to identify distinct
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populations of neurons with specific and
interesting relationships to behavior. At
the other extreme, advanced methods that
examine detailed temporal relationships
(Rieke et al., 1997) may lose the original
shape of the PETHs.

Here we use unsupervised clustering of
PETHs, hence obtaining an unbiased clas- b
sification of neuronal responses and delin-
eating subpopulations of neurons with
similar response shapes. We then com-
pared between responses in SMA and MI,
before, during, and after adaptation.

Materials and Methods

The experimental setup, behavioral paradigm,
and detailed behavior were the same as de-
scribed in previous studies (Paz et al., 2003,
2005). Animal care and surgical procedures
complied with the National Institutes of Health
Guide for the Care and Use of Laboratory Ani-
mals (revised 1996) and with the Hebrew Uni-
versity guidelines supervised by the Institu-
tional Committee for Animal Care and Use.
Experimental design. Two rhesus (Macaca
mulatta, ~4.5 kg) monkeys were trained to
move a low-friction manipulandum to control
the movements of a cursor on a video screen
located 50 cm from their torso and eyes. The
manipulandum moved the cursor from the
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starting point at the center of the screen (ori- 1
gin) to a visual target in a delayed go-signal
paradigm. This required the monkeys to hold
(as verified by hand velocity and EMG) the cur-
sor in the origin circle for a random 750-1500
ms after target onset. The disappearance of the
origin was the go signal (Fig. 1a). In each ses-
sion (day), three consecutive periods took place
(Fig. 1b): (1) the preadaptation period, a stan-
dard, eight-target task in which the target direc-
tion was randomly chosen from eight possible
directions uniformly distributed over the cir-
cle; (2) the adaptation period, a transformed,
one-target task in which only one target (up-
wards, 90°) was presented and a rotational
transformation was introduced between the
cursor on the screen and the manipulandumy;
and (3) the postadaptation period, in which the default, eight-target task
was presented again. Rotations were 90, 45, —45, or —90° and were
chosen randomly for each session but fixed for the duration of the adap-
tation period in a session.

Physiological procedures. The monkeys were implanted with recording
chambers (27 X 27 mm) above both the right and left hemispheres. Each
day, the monkeys were seated in a dark chamber, and eight glass-coated
tungsten microelectrodes (impedance, 0.2—-1 M{) at 1 kHz) were inserted
into each hemisphere. The signals were amplified, filtered, and sorted
(MCP-PLUS; Alpha-Omega, Nazareth, Israel), and all spike shapes were
sampled at 24 kHz. We used a template-based method for real-time
isolation of spike shapes (MSD; Alpha-Omega).

Penetration locations and angles were verified by magnetic resonance
imaging (Biospec 4.7 Tesla; Bruker BioSpin, Ettlingen, Germany) before
and after recordings; 14 coronal slices, 2 mm wide, were made to help
locate the stereotactic coordinates of the central and arcuate sulci. Pene-
trations into the SMA proper were angled at 30° to the sagittal plane and
advanced from the point of insertion until they reached the medial cor-
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Experimental design and behavior. a, Trial flow, Left, The monkeys had to hold the cursor in the central circle (origin)
tolit one of eight targets (spaced by 45°, at 4 cm distance from the origin). Middle, The origin circle disappears 750 —1500 ms after
target onset; this is the go signal. Right, After the go signal, the monkey was required to move its hand to bring the cursor into the
targetin <<1500 ms. b, Session flow, Left, The monkey first performed a standard eight-direction task, in which the movement of
the hand was in 1:1 relation to the movement of the cursor. Middle, A rotational transformation was introduced, so that the
movement of the cursor was rotated by —90, —45, 45, or 90° to the movement of the hand. Only one of these four transforma-
tions was introduced in a session, and only one target (upwards) was introduced. Right, The standard task was performed again.
¢, Learning curve. Normalized deviation is the discrepancy between the visual target and the actual hand movement, normalized
by the transformation imposed in the session. Data are pooled from all sessions and four different transforms performed by both
monkeys and are presented as a function of trial number in the adaptation. The solid line represents the best exponent fit. d,
Average error, One minus the average (over sessions) of the normalized deviations presented in c. e, Error variance is the variance
(over sessions) of the normalized deviations presented in ¢.

tex. Generally, this meant that the electrodes were advanced through
cortex into white matter and through that white matter before reaching
SMA. The pattern “units—white matter—units” was used as an indicator
of recordinglocation. At the end of each session, we examined the activity
of neurons evoked by passive manipulation of the limbs and applied
intracortical microstimulation (ICMS) with trains of 200 us cathodal
pulses at 300 Hz with an intensity of 10—80 uA. Typical train durations
were 50 ms for MI and 100 ms for SMA. For MI, we examined penetra-
tions in which ICMS evoked arm movements around one joint with an
intensity of =40 uA.

Data analysis. A “normalized deviation” was calculated for each move-
ment: the direction (angle) of the visual target was subtracted from the
direction of the actual hand movement (taken at peak velocity), and the
result was divided by the rotational transformation imposed in the ses-
sion. Thus, when the movement is in the direction of the visual target,
this measure is close to zero, but, as adaptation progresses and the dis-
crepancy is closer to the required transformation, it approaches one.
Note that the measure uses both the sign and the amplitude of the trans-
formation and therefore reflects both aspects. “Average error” is taken to
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be one minus the average over sessions of the normalized deviation for
each movement in the adaptation period, and “error variance” is taken as
the variance over sessions.

For each cell, activity was calculated for two different epochs of a trial.
The first is termed “preparatory activity” (PA) because it covers activity
from 0 to 500 ms after the target onset, i.e., activity during a hold period.
The second is “movement-related activity”(MRA), so termed because it
was measured from —200 to +300 ms around initiation of movement, an
epoch that contains most of the beginning of muscle activity and neuro-
nal responses that generate the movement but contains fewer feedback
effects and sensory-driven movement corrections. Thus, it contains the
motor command that initializes the movement. Movement initiation
was calculated off-line by an onset algorithm based on the velocity
profile.

Spikes were recorded with 1 ms precision and counted in 10 ms bins
for each trial, averaged for each bin across all trials from a behavioral
period (always =10 trials), smoothed using a Gaussian window (with
variance equal to 30 ms), and z-score transformed to form the PETH.
Each PETH is therefore a vector of length 50 (500 ms in 10 ms bins); x;
denotes the activity of cell i at time bin j.

For clustering, we used the k-means algorithm (Hartigan, 1975),
which uses an iterative procedure to minimize the total of within-cluster
sums of distances from centroids:

E= E;{:l Eiede(xi’ X) s

ij

where X;is the center of cluster C; (the average vector of all cells associated
with the cluster), k is the number of clusters, and d is a distance measure
traditionally taken to be the Euclidean distance:

d(xy, x;) = \ Ejsil (xlj_xzj)2 .

To avoid and minimize convergence to local minima, each k-means pro-
cedure was repeated 50 times, each with a different set of randomly
generated centroids, and the run that produced the smallest error was
chosen.

Whereas many clustering procedures use k-means, different ap-
proaches apply different embedding of the original data points (i.e., a
representation of the data to be used as input to the clustering algorithm),
and this is of high importance to the success of the complete process. We
tested four different approaches of embedding space for the PETHs.

(1) “Activity matrix x” is composed of PETHs from different cells of
the same condition. Thus, each row is a PETH of a cell, a vector of firing
rates, where x;; is the activity of cell i at time bin j. In other words, no
additional embedding is performed and the original data points are used.

(2) In the “similarity (dissimilarity/affinity) matrix S,” we followed
and used the procedure as described by Schreiber et al. (2003) and Fellous
et al. (2004). Briefly, each row represents the vector of similarities be-
tween a PETH of one cell and PETHs of all other cells. This is therefore a
symmetric matrix with a size of N X N, where N is the number of cells in
the sample. Similarity was measured by taking the normalized dot prod-
uct between pairs of PETHs (i.e., the cosine between the two activity
vectors):

(3) The “principal component analysis (PCA) matrix p” was per-
formed separately for each case (cortical area + activity epoch + behav-
ioral period) (Fig. 2). The eigenvectors of the covariance matrix were
sorted according to their eigenvalues (explained variance), and the prin-
cipal components were calculated (the dot product between a data vector
and the eigenvectors, i.e., the projection of a data point on the eigenvec-
tors). Each cell was then represented by its ] first principal components,
i.e., the components corresponding to the J eigenvectors with the highest
explanatory power; hence, p;; is the component j for cell i. Because PCA
was used only for clustering purposes and is not the focus of this study, we
only further investigated its relationship to the quality of clustering. We
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therefore tested the use of 2, 3, 4, 6, 8, 10, and 20 coefficients for cluster-
ing, observed number of clusters (k values) for each number of coeffi-
cients, and verified that examples of the obtained clusters were also sim-
ilar in shape for different numbers of coefficients.

(4) In “spectral clustering,” spectral methods use selected eigenvectors
of the data similarity matrix to obtain a data representation that can be
embedded and clustered in a low-dimensional space. The simplest form
of these methods clusters the eigenvectors of the dot-product matrix of
the data and is equivalent to clustering the projection of the data points
on the eigenvectors of the covariance matrix. In other words, it is similar
to the PCA matrix approach discussed above. However, most versions of
these methods use Gaussian kernel to create the similarity matrix, and
this is equivalent to kernel PCA. Furthermore, some of these methods put
emphasis on different normalization procedures that improve the clus-
tering task. We used the algorithm suggested by Ng et al. (2001).

We used two measures to compare approaches and different number
of clusters (k values): “silhouette analysis” (Kaufman and Rousseeuw,
1990) and “gap analysis” (Tibshirani et al., 2001).

Silhouette analysis is a measure of how similar each point s to points in
its own cluster compared with points in other clusters. For each point, we
calculated a; = avg; . (d(x;, x;)), the average distance (dissimilarity) from
all the points in the same cluster. For each point and each cluster that the
point does not belong to, we calculated by, = avg;.c, (d(x;, x;)), the average
distance from all of the points in that cluster, and then took the minimum
over all clusters: b; = Min, (b;;). The silhouette is defined as

() = o
1) =1———F~.
Max(a;, b;)
This measure ranges from +1, indicating points that are very distant
from neighboring clusters, through 0, indicating points that are not dis-
tinctly in one cluster or another, to —1, indicating points that are prob-
ably assigned to the wrong cluster. Heuristically, the silhouette measures
how well a point is matched to the other points in its own cluster versus
how well it would be matched if it was moved to the next closest cluster.
The score for the clustering procedure is the average over all points, i.e.

§=%2118(i).

This measure is not monotonous in k, the number of clusters.

In gap analysis, k-means minimizes the sum of within-cluster dis-
tances from centroids ( E). However, comparing this across different k
values will not do because E(k) is by construction monotone non-
increasing in k (more clusters always means smaller within-cluster dis-
tances). An alternative is to look at the relative improvement from k to k
+ 1, based on the intuition that the relative improvement becomes in-
significant when k increases above the “true” k, because this is when we
start to assign natural groups to separate clusters. To formalize this, gap
analysis is based on simulating samples by drawing from a uniform dis-
tribution over the space spanned by the real data, calculating E_simulat-
ed(k) and comparing log(E_simulated(k)) with log(E(k)). The criterion
is then as follows (Tibshirani et al., 2001): K = arg min ,{k|G(k) = G(k +
1) — std(k + 1)}, where G(k) is the gap curve taken as log(E_simulat-
ed(k)) — log(E(k)) and std(k) is the SD of log(E_simulated(k)). We
performed 25 simulations to obtain the SDs.

All analyses were performed in Matlab (MathWorks, Natick, MA),
with custom software.

Results

The adaptation period was divided into two stages based on the
animals’ behavior (Fig. 1c—e). The initial fast improvement in
behavior was considered as the “early period” (trials 1-10), and
the slower improvement, which includes a behavioral plateau,
was considered as the “late period” (trials 11-20). Trials were
therefore divided into four groups: “preadaptation” (during per-
formance of standard movements), “early adaptation,” “late ad-
aptation,” and “postadaptation,” the latter being a second set of
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Figure2.  Clustering of neuronal responses. MRA from 125 most responsive (Mann—Whitney

test, p << 0.02) cells in Ml during performance of the standard task (preadaptation) is used to
demonstrate the clustering procedure. For each cell, spike count was averaged over trials in 10
ms bins, smoothed with a Gaussian window, and z-score transformed to produce activity vec-
tors (PETHs, overlaid in a, gray thick line is the average of all cells, zero time is the beginning of
movement as calculated off-line with a slope algorithm). A subset of 500 ms (from —200 to
300, a vector of length 50) from each cell was used for the PCA. b, Cumulative explained variance
as a function of the first (largest) 25 eigenvalues; in general, <<8 eigenvectors accounted for
>80% of the variance for all conditions, and this spectrum did not differ significantly across
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standard trials performed after adaptation. We further differen-
tiated activity involved in planning and preparing for the upcom-
ing movement (PA) from activity that supports the actual gener-
ation of movement (MRA). A “case” in this report refers to a
combination of cortical area, behavioral period, and epoch of
neuronal activity, e.g., PA in MI during early adaptation.

Clustering of neuronal responses

For each case, we constructed PETHs for all cells that were reli-
ably recorded and fired at least one spike in all behavioral periods.
We used k-means algorithm for unsupervised clustering of the
PETHs of cells within each case and tested four different ap-
proaches for embedding the data (see Materials and Methods):
(1) using the PETHs themselves; (2) using the similarity matrix
between the PETHs; (3) using a more compact representation of
the PETHs. For that, we chose PCA to reduce dimensionality,
representing each PETH by the first principal components and
(4) spectral clustering. In general, all four approaches performed
equally well and produced very similar results (indistinguishable
centers of the clusters). The PCA approach was slightly superior
quantitatively as measured by silhouette analysis, suitable for
clustering high-dimensional data and less expensive computa-
tionally; we therefore present here the results using this approach.
Figure 2 illustrates the clustering procedure for a subset of cells
recorded in MI and their MRA. We stress that, although cluster-
ing was performed on the principal components, all comparisons
were performed on the PETHs, and all figures show the original
PETHs. The response pattern or shape of a cluster refers to the
PETH averaged across all cells associated with the cluster (i.e., the
center of the cluster).

First, we analyzed PA in MI. Figure 3 draws PETHs of all cells
as a matrix in which each row represents one cell, and the activity
in consecutive time bins (x-axis) is represented in grayscale. Dur-
ing preadaptation (Fig. 3a), activity consisted of two major active
clusters: an early phasic response to the visual cue and a late tonic
response. These response patterns are consistent with previous
studies (Crammond and Kalaska, 2000) and confirm that, for
standard (well trained) movements, the clustering method repro-
duces ad hoc observations. Also presented are the actual PETHs
from 35 cells (Fig. 3a3), superimposed separately for each cluster.
For presentation, we took the 35 cells with average distance from
the center of the cluster (i.e., we sorted cells according to their
distance from the center of the cluster and took the 35 middle
ones).

Clusters change during adaptation

In contrast to the three typical response patterns during pread-
aptation, clustering of responses during late adaptation revealed a
larger number of different subpopulations of cells (Fig. 3b). These
subpopulations differed mainly in their temporal profile of acti-
vation; more specifically, the separation into more clusters re-

<«

cases. Fortheillustration here, we use only the first two. ¢7, Principal components (PC, columns)
for all cells (rows) in a random order; the values of the first principal component (PC1, left
column) and the second (PC2, right column) are represented in grayscale. d, PCs of all cells. The
different shapes (x symbols, circles, and squares) correspond to the different clusters formed by
k-means. Also shown are the shapes of the first two eigenvectors (EV1, EV2). ¢2, Same as ¢7, but
rows are rearranged according to the association of the cells to the clusters. e, PETHs from all
cells shown in a. Each row is a PETH of one cell, grayscaled by the (z-transformed) firing rate
intensity in 10 ms bins. The rows are randomly ordered. e2, Same data, but rows are rearranged
according to the association of the cells to the clusters. f1—f3, Response patterns, average PETH
from all cells within one cluster, for the three clusters separately.
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a3 were in close agreement with the peak
time of the shapes of the clusters. Finally,
sorting the groups according to their
mean peak time and comparing each
group with the group preceding it revealed
that all pairs of clusters differed signifi-
cantly in their mean peak time [Fig. 3¢,
asterisks (one-tailed f test, p < 0.05 for
all)].

Number of clusters

To further explore the nature of changes
in PETHs during learning, we used two
measures for selecting the appropriate
number of clusters (k): silhouette analysis
and gap analysis. Figure 4 shows the cho-
sen k for each behavioral period and the
matching gap curve. In accordance with
the aforementioned observations, divid-
ing the neuronal responses during late ad-
aptation to four and five different clusters
continued to improve the separation sig-
nificantly (Fig. 4c), as tested by comparing
with surrogate data, randomly generated
from a uniform distribution over the same
range of values (see Materials and Meth-
ods). In all other periods, preadaptation,
early adaptation, and postadaptation, us-
ing more than two to three clusters did not
improve the separation significantly.

The same procedure was used for all
other cases, and we clustered cells in each
case according to the chosen k. Figures 5
and 6 show the shapes of the clusters for
i each case. Single-unit responses in MI
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Figure3. Clustersduring preadaptation versus late-adaptation. a, Normalized PETHs of preparatory activity of all neuronsin M|

of monkey 1 during the preadaptation period (standard task). Each row is a PETH of one cell, grayscaled by the (z-transformed)
firing rate intensity in 10 ms bins. In a1, cells are presented in a random order; in a2, cells are rearranged according to their
association to three clusters (borders between clusters are marked in thick black lines). In a3, PETHs of typical cells are superim-
posed separately for each cluster; cells within each cluster are sorted according to their distance from the center of the cluster, and
the 35 middle ones are taken for presentation. b, Same presentation as in a but for preparatory activity in MI during the late-
adaptation period. Cells are clustered into five different clusters and reveal different peaks and onsets of activation. ¢, Response
patterns of preparatory activity in Ml during late adaptation. Each response pattern is the average PETH (in z-score) from all cells
within one cluster, with gray-shaded 0.95 confidence intervals. Vertical lines depict the average peak time of all cells within a
cluster (note the close agreement with the peak time of the response pattern), and asterisks represent that the mean peak time
was significantly different than the mean peak time of the preceding cluster (one-tailed ¢ test, p << 0.05).

sulted in multiple consecutive phasic peaks of activity (Fig.
3b2,b3). This is shown more clearly in Figure 3¢, in which the
shapes of all clusters are overlaid. To test this directly, we calcu-
lated the time-to-peak activity for each cell individually and per-
formed various analyses. First, we found that the variance of
times-to-peak activity across the whole population of cells in the
late-adaptation period was significantly higher than that of cells
during preadaptation (F test, p < 0.001). In contrast, the variance
of the peak amplitudes did not change significantly (F test,
p > 0.1). Second, when separated into five different groups
corresponding to the different clusters, the means of the groups
were significantly different (ANOVA, p < 0.01). Third, when
averaged within each cluster (Fig. 3¢, vertical lines), the means

500 during preparation for movement (n =
621, 362 from monkey 1 and 259 from
monkey 2) (Fig. 5al-a4) consisted of
three major clusters. This was the case in
the preadaptation period (Fig. 5al) (see
also Fig. 3a) as well as in early adaptation
(Fig. 5a2) and postadaptation (Fig. 5a4).
Furthermore, the distribution of cells be-
tween the three clusters was similar in all
these periods (x2, p = 0.2). In contrast and
as aforementioned, during late adaptation
(Fig. 5a3) (see also Fig. 3b,c), patterns of
preparatory activity were more diverse
and segregated into more clusters. For
movement-related activity (n = 598, 359
from monkey 1 and 239 from monkey 2) (Fig. 5b1-b4), MI ex-
hibited the same pattern of responses during all periods, and the
distribution of cells between clusters was also similar in all four
periods (x? p = 0.65). Note that MRA reflects best the motor
command that initializes and generates the movement, before
any sensory feedback kicks in, and the finding therefore sug-
gests that it remained the same. However, more clusters were
observed in MI in early adaptation when analyzing neuronal
responses further into the movement (+300 to +1000 ms;
data not shown), reflecting the changes in movement kine-
matics that occur during adaptation.

A very different behavior was observed for SMA cells (Fig. 6):
a complex pattern of activity was observed during early adapta-
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tion in both preparatory activity (n = 149
from monkey 1) (Fig. 6a2) and
movement-related activity (n = 146 from
monkey 1) (Fig. 6b2). In all other peri-
ods, the number of clusters was smaller
(three), the response patterns remained
quite similar and typical, and the distri-
bution of cells between clusters was also
similar (x2, p = 0.45 for PAand p = 0.43
for MRA).

The clustering results are summarized
in Figure 7a, showing the average number
of clusters that best explained the data for
SMA and MI and during all periods. A
higher number of clusters was observed in
SMA during early adaptation for both pre-
paratory activity and movement-related

0.28

0.26

k (number of clusters)
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Figure 4.
Cluster membership of individual cells
and response patterns of the clusters
All shown clusters had a significant mod-
ulation (Mann—Whitney U test, compar-
ing activity in the 500 ms postevent with
the 500 ms preevent, p < 0.05). We also
tested each cell individually for a significant modulation in activ-
ity (paired ¢ test over single trials, p << 0.05) and compared the
number of cells with significant modulation in each cluster sep-
arately with that expected from chance (Fisher’s exact test, p <
0.05); Figure 7b shows that most clusters had a significantly high
number of cells with significant modulation.

We then explored the cluster membership of single cells in MI
in different periods. To do so, we constructed N X M matrices to
compare between a given behavioral period with the preadapta-
tion period. In such matrix, Nand M are the number of clusters in
the two periods, respectively, and each entry holds the number of
cells that were assigned to cluster n during one period and to
cluster m during the other. Thus, we could observe both stability
of membership across periods with similar clustering and shifts in
membership during adaptation. Figure 8 shows the log ratio of
the observed-to-expected probabilities grayscale coded in the
main three matrices (a—c), the response patterns of the matching
clusters, and the actual number of cells in the right vertical bar
graph. For MRA in MI during postadaptation versus preadapta-
tion (Fig. 8a) and for PA in MI (Fig. 8b), the matrices had a clear
positive main diagonal, which means that cells tended to keep
their cluster membership (see matching response patterns as
well); similar results were obtained for other pairs of periods with
similar number of clusters. For PA in MI during late adaptation
versus preadaptation (Fig. 8¢), it seems that the phasic cluster
separated into three clusters with different peaks (bright top three
right entries), and some cells became positively active from a
previous decreasing cluster; however, these are qualitative obser-
vations. All matrices were significantly different from homoge-
nous (x test, p < 0.01 for all).

Finally, to quantify the similarity between the response pat-
terns in different behavioral periods, we calculated pairwise cor-
relations (Pearson’s correlation coefficient) between the shapes
of the clusters. For each combination of two behavioral periods,
Figure 9 depicts the average of correlations between the shapes of
the clusters in the two periods. This similarity matrix (Fig. 9)

Early Late Post

Determining the number of clusters. Gap analysis for preparatory activity in Ml during all four behavioral periods.
Shown s the chosen number of clusters ( k), with the matching gap curve. Gap curves are based on the difference between the total
within-cluster distances for the real data to that for a simulated data (uniformly spanning the same range of values). Notice that
for preadaptation, early adaptation, and postadaptation (a, b, d) the curve is peaked at two to three clusters and drops right after,
whereas in late adaptation (c), the curve drops only above five to six clusters. This indicates that, in this case, there is benefit in
separating the data into more clusters (for formalization of criterion, see Materials and Methods).

quantifies and confirms the aforementioned observation: the re-
sponse patterns were more similar across conditions that had
similar number of clusters and less similar to the patterns seen
when the number of clusters was higher.

Discussion

This study adapted unsupervised clustering for analysis of neu-
ronal responses, allowing for a “natural” classification of evoked
responses of single-unit activity. We found that the response pat-
terns in MI and SMA show typical three response patterns (three
clusters) during performance of standard, well trained center-out
task; however, during adaptation to visuomotor rotations, the
response patterns become more variable, and more clusters are
needed to represent the different groups. Together with the as-
sumption that cells with similar response patterns (i.e., cells in
one cluster) are functionally closer to each other, these findings
are consistent with the notion that clusters of cells represent func-
tional groups and that the functional groups are dynamic in na-
ture. Specifically, our results suggest that dynamic reorganization
of functional groups takes place during adaptation and that the
reorganization is distinct and different in the two cortical areas.
In the SMA, the number of clusters increases only during the
early stage of adaptation, suggesting that SMA mediates this
stage; however, as adaptation proceeds, an increased number of
clusters is observed in MI. This reinforces the notion that skill
proficiency relies on a representation within low levels of process-
ing (Karni et al., 1998), a suggestion that brings together ideas
from the motor and sensory systems (Paz et al., 2004). Further-
more, the changes in MI occurred during preparation for move-
ment rather than during its execution, reflecting the idea that well
trained behaviors can be prepared in advance.

What could be the functional role of the increased number of
clusters? In our experiment, the animals were overtrained in the
standard task, before and after adaptation, in which the direction
of the hand is coupled with that of the visual target. The adapta-
tion to visuomotor rotations required dissociation between these
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Figure 5. Response patternsin MI. Averaged PETHs from all neurons associated with a cluster, for all clusters. Columns show (from left to right) responses during performance of a standard task

before adaptation (preadaptation a1, b7), early adaptation to visuomotor rotational task (a2, b2), late adaptation to the visuomotor task (a3, b3), and performance of standard task after
adaptation (postadaptation, a4, b4). Rows show responses for preparatory activity (a7—-a4) and movement-related activity (b7— b4 ). For presentation purposes, the PETHs are shown in a time
window from —500 to +750 ms around a behavioral event: target appearance (top row, preparatory activity) and movement onset (bottom row, movement-related activity). The clustering itself
was performed using a smaller window of 500 ms from 0 to 500 ms around the target appearance and from —200 to +300 ms around the movement onset. Clusters are sorted according to the
number of neurons that are associated with them and presented in a matching grayscale. Insets show the clusters when analyzing separately neurons from the first monkey (left) and from the second
(right). Note that typical response patterns with a small number of clusters (3) were observed in most cases, but a higher number (5) was observed for preparatory activity during late adaptation (a3).
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observed for preparatory activity and for movement-related activity during early adaptation (a2, b2).
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two directions and therefore the learning
of a new kinematics-to-dynamics trans-
formation (the transformation from a de-
sired target location in visual coordinates
to a desired hand trajectory and then to
the required muscle activations). This
could be performed by several mecha-
nisms (Lurito et al., 1991; Shen and Alex-
ander, 1997a; Cisek and Scott, 1999;
Padoa-Schioppa et al., 2002), all demand-
ing recruitment of different populations
of cells at different times during the prep-
aration for and/or execution of move-
ment. In accordance, during adaptation,
we found higher variability of the time-to-
peak activation, and the multiple clusters
that emerged during adaptation differed
mainly in the time of their peak. Thus, it is
possible that the different clusters reflect
different stages of computation and pro-
cessing within the cortical network.

A recent study of force-field adaptation
observed gradual and continuous shifts in
preferred direction of cells in the SMA
during their preparatory activity and
concluded that it reflects the movement
dynamics gradually, starting from a kine-
matics-related signal (Padoa-Schioppaetal,,
2002). If the underlying transformation is a
continuous computation, then the actual
number of clusters reported here is arbitrary
and only reflects the increased variability of
peak times rather than specific separate sub-
populations with clear distinctive functions.
Alternatively, we recently suggested that a
directional-specific elevation of activity ob-
served in MI can serve to “win over” the de-
fault natural behavior and produce the cor-
rect movement under the visuomotor
transformation (Paz et al., 2003). This result,
together with a more rigid view of the num-
ber of clusters reported here, is more in line
with the “response substitution” view (Cisek
and Scott, 1999), in which the default input
to motor areas s in the direction of the visual
target (perhaps because it is the natural and
the well trained response) but is then
aborted and replaced by inputs that signify
the newly learned direction. Differences in
the two underlying mechanisms could also
result from differences in dynamic versus ki-
nematic adaptations.

The changes in MI were observed at
late stages of adaptation when the direc-
tional errors were reduced almost to the
plateau level and adaptation seems to be
complete. This is in agreement with previ-
ous studies that have examined learning

on alonger time scale (i.e., across sessions and days) (Karni et al.,
1998; Cohen and Nicolelis, 2004; Kleim et al., 2004). There are
several possibilities that could explain the similar finding even
within a single session. First, because the visuomotor task in-
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to bootstrap statistics. A significant increase in the number of clusters was observed in Ml for preparatory activity during late
adaptation and in SMA during early adaptation for both preparatory activity and movement-related activity. b, Filled rectangles
represent clusters with a significant number of cells with significant modulation. Each cell was tested individually for a significant
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tested against the chance ratio of 5% (Fisher's exact test, p << 0.05). b, PAin MI; b2, MRA in MI; b3, PAin SMA; b4, MRA in SMA.
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shown by the bar graph to the right. @, MRA in Ml during preadaptation versus postadaptation. A clear diagonal means that cells

tend to keep their cluster membership (see the matching response patterns). b, PA in Ml during preadaptation versus postadap-
tation. ¢, PA in Ml during prelearning versus late adaptation.

duced visual directional errors, the monkeys might have used a
strategy that minimizes errors in this relevant dimension
(Todorov, 2004), but improvement of other less relevant move-
ment parameters emerges naturally and occurs more slowly. Sec-
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(average over correlations between the shapes of the clusters in the two periods). For prepara-
tory activity in Ml (top left), the matrix shows that the patterns during the late adaptation phase
were the most dissimilar to others (darker strips). For movement-related activity in Mi
(top right), high correlations (>0.6) were observed between all periods. The preparatory
activity in SMA (bottom left) in early adaptation was the most dissimilar to all other
periods. Movement-related activity in SMA (bottom right) during early adaptation also
differs from all other periods.

ond, it is likely that dynamic changes that generate the same
trajectory more efficiently follow the kinematic changes that we
observed. For example, it has been demonstrated that high vis-
coelastic forces are used to stabilize and generate the correct
movement at early stages of adaptation but decrease when a
new internal model for the learned skill is formed (Osu et al.,
2002; Paz et al., 2003). In accordance with these suggestions,
the error variance was still improving during late adaptation
(Fig. le). Finally, the late activation in MI could reflect the
shift of the newly acquired skill from working memory to
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The number of clusters that best describes the data are robust to the number of trials and sensitivity of the cells to
direction. Distributions of k values for 50 repetitions of random samplings with replacement from neuronal data during preadap-
tation and postadaptation periods. For each repetition, we calculated the k value (number of clusters best describing the data)
using silhouette analysis. Al distributions are clearly centered on three clusters, showing that the increased number of clusters
found during adaptation does not result from a larger number of trials that was used for the standard task (a, based on samplings
of 10 trials from preadaptation and postadaptation periods in both areas and activity periods) or from pooling the eight directions
used during the standard task [b, based on analysis of preadaptation in Ml using only movements to the preferred direction of the
cells and the two adjacent directions (45°)]. ¢, d, Response patterns for MRA in MI during the preadaptation period using only
movements to the preferred direction of the cells (c) and the direction opposite to it (d). Whereas slight and expected differences
can be observed, the responses of the clusters show similar temporal patterns to those found using all movement directions pooled
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long-term memory (Shadmehr and Holcomb, 1997; Muell-
bacher et al., 2002).

This late involvement of a primary area could account for the
locality of adaptation in our task. The monkeys were trained for
only one target in space and showed poor generalization to other
directions (Paz et al., 2003, 2005), as observed previously in hu-
mans (Krakauer et al., 2000). This is consistent with the hypoth-
esis that learning starts at areas “higher in the hierarchy” (SMA in
the present case) and only later forms in primary areas (MI).
Because the representation in a primary area is less abstract, then
as learning progresses, transfer (generalization) reduces and
specificity (locality) increases (Hochstein and Ahissar, 2002; Kor-
man et al., 2003). In the current paradigm, it is possible that the
spatial specificity is determined by the shape of the primitives of
representation (Donchin et al., 2003), namely, directional tuning
curves of MI cells (Georgopoulos et al., 1982), and adaptation is
therefore directionally confined. Indeed, the width of neuronal
tuning curves of MI cells, the improvement in the information
content conveyed by the neurons, and the width of the behavioral
generalization function match quite closely (Paz and Vaadia,
2004).

What is the relationship between the adaptation-dependant
changes in SMA and MI? One intriguing possibility is that SMA
instructs MI during adaptation; another is that SMA merely gen-
erates the new complex movement, whereas MI either “learns” by
itself or is instructed by other areas. Supporting both hypotheses,
Aizawaetal. (1991) found thatactivity in SMA is less pronounced
for well trained motor tasks but becomes more abundant after
lesions to MI. Unfortunately, we cannot dissociate between the
two hypotheses as well, because the dual role of SMA as a premo-
tor area and as an area intimately related to the generation of
movement is in line with both suggestions. Other premotor areas
that we did not examine could also take part in the process: the
presupplementary SMA (preSMA), the dorsal premotor area,
and the ventral premotor area all code for the visual aspects of the
task, complex aspects of the motor behavior, and learning of
complex skills (Alexander and Crutcher, 1990; Mitz et al., 1991;
Matsuzaka et al., 1992; Matsuzaka and Tanji, 1996; Shen and
Alexander, 1997b; Brasted and Wise, 2004). Only one study has
examined brain activations during adaptation to rotational
transformations (Krakauer et al., 2004).
This study used imaging (positron emis-
sion tomography) techniques and found
activations in preSMA during the rapid
phase of adaptation but did not observe
any difference in activation in the SMA
proper during that phase. However, our
analysis focused on changes in diversity of
patterns and subpopulations of neurons
over a few hundreds of milliseconds; these
changes could be low-pass filtered by the
imaging technique and remain undetec-
ted. Finally, it is important to note that this
study attempts to detect changes in corti-
cal processing using one type of analysis.
Other analyses methods might reveal ad-
ditional changes, and we cannot preclude
the possibility that MI also participates in
early stages of adaptation (Cohen and
Nicolelis, 2004) and that SMA may also
contribute to later stages (Padoa-
Schioppa et al., 2002).

Our interpretations rely on differences
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that occur when the monkey switched from performance of a
standard task to the adaptation task. One could argue that the
higher number of clusters observed is not related to adaptation
but to other task differences: the higher number of trials and the
eight directions used in the standard task. However, this is highly
unlikely. First, there were cases of adaptation-dependant activity
that did not result in a higher number of clusters (Figs. 5, MI
during early phases, and 6, SMA during late phases). Second, we
tested and found that the increase in number of clusters was only
slightly, if at all, sensitive to the number of trials (Fig. 10a) and to
the eight different directions (Fig. 10b—d).

To conclude, we suggest that the clustering exposed subpopu-
lations that emerge at different stages and levels of the computa-
tion in the neural network during adaptation to visuomotor ro-
tations. In our study, these subpopulations first emerge in the
supplementary motor area and only later in the primary motor
area. Future studies should expand and focus on identifying func-
tionally different roles for the different classes of cells.
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