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Correlation-Induced Synchronization of Oscillations in
Olfactory Bulb Neurons
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Oscillations are a common feature of odor-evoked and spontaneous activity in the olfactory system in vivo and in vitro and are thought to
play an important role in information processing and memory in a variety of brain areas. Theoretical and experimental studies have
described several mechanisms by which oscillations can be generated and synchronized. Here, we investigate the hypothesis that corre-
lated noisy inputs are able to generate synchronous oscillations in olfactory bulb mitral cells in vitro. We consider several alternative
mechanisms and conclude that olfactory bulb synchronous oscillations are likely to arise because of the response of uncoupled oscillating
neurons to aperiodic but correlated inputs. This mechanism has been described theoretically, but we provide the first experimental
evidence that such a mechanism may underlie synchronization in real neurons. In physiological experiments, we show that this mecha-
nism can generate gamma-band oscillations in populations of olfactory bulb mitral cells. This mechanism synchronizes oscillatory firing
by using shared fast fluctuations in stochastic inputs across neurons, without requiring any synaptic or electrical coupling. We discuss the
properties and limitations of synchronization by this mechanism and suggest that it may underlie fast oscillations in many brain areas.
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Introduction

Synchronized oscillatory activity in various frequency ranges is a
prominent feature of neural activity in many brain areas (Buzsaki
and Draguhn, 2004) including the olfactory bulb (Adrian, 1942).
In the olfactory system, gamma frequency oscillations (20—80
Hz) have been observed since the earliest recordings (Adrian,
1942) and are enhanced during certain states and olfactory be-
haviors (Kay and Laurent, 1999; Ravel et al., 2003). The mecha-
nisms by which olfactory bulb gamma oscillations are generated
and synchronized are not, however, well understood. Some fast
oscillations are intrinsic to the bulb circuitry (Neville and
Haberly, 2003) even being observed in slice preparations (Fried-
man and Strowbridge, 2003; Lagier et al., 2004), suggesting that
the intrinsic connectivity can give rise to synchronization. One
long-standing hypothesis has been that recurrent and lateral in-
hibition mediated by dendrodendritic mitral cell-granule cell
synapses (for review, see Schoppa and Urban, 2003) are critical
for the generation and synchronization, respectively, of high-
frequency oscillations in the olfactory bulb (Bressler and Free-
man, 1980; Mori et al., 1981a; Segev, 1999). According to this
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hypothesis, mitral cell activity leads to recurrent inhibition,
which in turn stops mitral cell firing for some period. Synchro-
nization is then achieved via lateral inhibition between mitral
cells. That is, when one mitral cell inhibits its own firing, it also
inhibits other mitral cells. Thus, the timing of the pauses in firing
will be similar across mitral cells (Desmaisons et al., 1999; Lagier
et al., 2004). Decaying inhibition then allows resumption of fir-
ing, which again evokes recurrent and lateral inhibition. Several
variants of this model have been proposed to explain olfactory
bulb fast field potential oscillations (Mori and Takagi, 1978; Kay
and Laurent, 1999; Powell et al., 1999; Segev, 1999; Neville and
Haberly, 2003; Lagier et al., 2004). However, little direct evidence
showing that this mechanism can account for synchronous fast
oscillations in the olfactory system has been provided. Alteration
of inhibition changes fast field potential oscillations in vivo and in
vitro (Nusser etal., 2001; Friedman and Strowbridge, 2003; Lagier
et al., 2004), but this is consistent with other mechanisms (see
below).

Here, we examine the kinetics of lateral inhibition in the ol-
factory bulb and find them inconsistent with this proposed
mechanism of gamma oscillations. We then use experimental
and computational approaches to investigate the possibility that
the olfactory bulb is using a different mechanism to generate
synchronous oscillations. Specifically, we propose that a mecha-
nism that has been described theoretically (Teramae and Tanaka,
2004; Nakao et al., 2005) generates oscillatory synchrony in ol-
factory bulb mitral cells. This mechanism, which involves noise-
induced synchronization, has been the subject of considerable
interest across biological physics (Springer and Paulsson, 2006)
but has not previously been applied to real oscillating neurons.
According to this mechanism, mitral cells firing in a roughly
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oscillatory pattern are synchronized by correlated, but aperiodic
inputs received from common granule cells. Such a mechanism
of generating synchronous oscillations has not been observed
experimentally in neural systems, although it may explain some
previously observed phenomena (Reyes, 2003; Hasenstaub et al.,
2005).

Materials and Methods

Physiological experiments

Slice preparation. Sagittal olfactory bulb slices (300—-350 wm thick) were
prepared from young mice [postnatal day 18 (P18) to P45, mostly be-
tween P21 and P35] as described previously (Urban and Sakmann, 2002).
Mice were given intraperitoneal injections of anesthetic (0.1% ketamine/
0.1% xylazine) until they were nonresponsive to foot pinch and then
decapitated. Olfactory bulbs were removed and cut on a vibratome while
submerged in ice-cold oxygenated Ringer’s solution containing the fol-
lowing (in mm): 125 NaCl, 2.5 KCl, 25 NaHCO;, 1.25 NaH,PO,, 1
MgCl,, 25 glucose, 2 CaCl,. After slicing, slices were transferred to a
warm (37°C) oxygenated incubating bath for 30—60 min and then al-
lowed to equilibrate to room temperature before being transferred to the
recording chamber.

Electrophysiology. Whole-cell voltage recordings were obtained from
the somata of identified mitral cells using infrared differential interfer-
ence contrast microscopy (Stuart and Spruston, 1995). Slices were super-
fused continuously with oxygenated Ringer’s solution containing the
following (in mm): 125 NaCl, 2.5 KCl, 25 NaHCOs, 1.25 NaH,PO,, 1
MgCl,, 25 glucose, 2 CaCl,, warmed to 34—36°C. Whole-cell recordings
were established using pipettes (resistances of 2—8 M(Q) filled with a
solution containing the following (in mm): 120 potassium gluconate, 2
KCl, 10 HEPES, 10 sodium phosphocreatine, 4 MgATP, and 0.3
Na,;GTP, adjusted to pH 7.3 with KOH. Voltage measurements were
made in current-clamp mode with multiclamp 700A and 700B amplifiers
(Molecular Devices, Foster City, CA). Data were filtered (4 kHz) and
digitized at 10 kHz using an ITC-18 data acquisition board (Instrutech,
Mineola, NY) controlled by custom software written in Igor (Wavemet-
rics, Lake Oswego, OR). APV (50 um), CNQX (10 um), and gabazine (10
M) were added in some cases to block synaptic transmission. Drugs
were obtained from Sigma (St. Louis, MO) and Tocris (Bristol, UK)
(gabazine).

Data are reported as mean * SEM. Significance was assessed by paired
or unpaired Student’s ¢ tests, as appropriate. All animal care was per-
formed in accordance with the guidelines of the Institutional Animal
Care and Use Committee of Carnegie Mellon University.

Computational modeling: neural dynamics

All computer simulations were implemented in Matlab using the simple
neural model proposed recently by Izhikevich (2004), which produces
voltage traces reminiscent of many different CNS neurons:

v
i 0.04v* + 5v + 140 — u + I(t)

du

I a(bv — u)

threshold condition:

if v>30,thenv — ccu — u+d,

with v as the membrane potential and u as the recovery variable. In all
simulations shown, the parameters have the following values: a = 0.02,
b =0.2,c = —65,d = 2. This choice corresponds to a neuron showing
subthreshold resonance, and displaying class II excitability (Rinzel and
Ermentrout, 1989; Izhikevich, 2004). We chose this dynamical regime
because type II excitability accounts for four properties of mitral cells:
onset of repetitive firing at a finite frequency (Desmaisons et al., 1999),
postinhibitory spikes (Desmaisons et al., 1999), subthreshold oscillations
(Desmaisons et al., 1999; Galan et al., 2005), and partially negative phase-
resetting curves (Galdn et al., 2005). Nevertheless, stochastic synchrony
was also observed in this model for type I excitability. The simulated
mitral cells were not coupled to each other but rather received partially
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common inhibitory inputs from granule cells, which modeled granule-
cell-mediated inhibition.

The total input to the cells had three components: (1) steady-state
depolarizing current modeling input from olfactory receptor neurons,
the amplitude of which was varied between 3.6 and 6 (arbitrary units) in
different simulations to generate sustained firing at the desired fre-
quency, (2) the (correlated) inhibitory input from granule cells, which
typically had an amplitude of 1 or smaller, and (3) white noise uncorre-
lated inputs, the amplitude of which was varied between 0 and 20% of the
peak synaptic current, describing background noise.

Generation of stimulus currents

The inputs injected into mitral cells or used in simulations consisted of a
direct current step, the amplitude of which was chosen to elicit firing in
the 25 Hz range, plus either a Poisson train of IPSC-like currents (IPSC
noise) or white noise convolved with an « function. Individual IPSC
noise traces were generated as a Poisson process convolved with an «
function (7 = 3 ms) representing fast inhibitory synaptic response to
incoming presynaptic spikes. The correlation between IPSC noise sweeps
was produced in two steps: (1) for each correlation level (C,,), an inde-
pendent Poisson train was generated, plus an additional template Pois-
son train (P,). (2) For each input Poisson train (P,-P5), every event had
a probability C,, of being removed and every event of the template train
had the same probability of being inserted in the input train. By proceed-
ing this way, every input train shared on average a fraction C,,, of events
with the template. These Poisson trains were then convolved with an «
function (a(t) = (t/T)e ~Y7), where T = 3 ms to produce current traces
(Ty—Ts) that were used as input to mitral cells.

For continuous input noise (@-noise), the cross-correlations were pro-
duced in three steps. (1) Uncorrelated white noise inputs of unit variance
were generated. (2) These signals were linearly mixed by multiplying
them with the Cholesky factor of a symmetric, positive-definite matrix
with unitary diagonal elements. The off-diagonal elements of this matrix
were randomly chosen from a uniform distribution between C;; — 0.1
and C;, + 0.1, where C,, is the desired mean correlation value. The
matrix generated this way is an estimator of the correlation matrix of the
mixed signals. (3) The mixed (i.e., correlated) signals were convolved
with an « function (7 = 3 ms) that models synaptic filtering.

Data analysis

In vivo and in vitro synchronous activity of large numbers of neurons
generates local field potentials (LFPs), the amplitude of which varies with
both the level and synchrony of neuronal activity. To compare the rela-
tive synchrony resulting from various kinds of inputs delivered to small
numbers of real or modeled neurons, in some experiments, an estimate
of the local field potential was calculated. This estimated LFP was the
average of the low-pass filtered (6-pole Butterworth, 100 Hz cutoff)
membrane potentials recorded in multiple cells, or in some cases across
multiple responses in the same cell. The estimated LFP was inverted for
display purposes to match LFPs that are recorded extracellularly in vitro
and in vivo. Calculating the power spectrum of this estimated LFP gave us
a means by which to compare the fraction of neurons responding at a
given time to a particular stimulus and also allowed us to compare the
degree to which cells were activated at the same time by different stimuli.
Power spectra were calculated with the Welch method (i.e., averaging the
spectra estimated over smaller, overlapping windows; total signal length,
10,000 ms; window size, 1024 ms; overlap, 512 ms). The cross-
correlogram was computed to determine the degree to which responses
generated in different neurons or in the same neuron by different inputs
were synchronized in an oscillatory manner. Cross-spectra of signal pairs
were calculated by multiplying the fast Fourier transform (FFT) of one
signal with the complex conjugate of the FFT of the other signal over each
window and then averaging across windows. The same techniques to
quantify synchrony were used in the analysis of experimental data and
data from simulations. In some cases, we computed the power spectrum
of the cross-correlogram, which is the same as the cross-spectral density,
and in other cases we reported simply the degree to which the two re-
sponses were correlated by giving the value of the cross-correlogram for
zero time lag.
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Using data from simulations, two standard data-analysis techniques
(Matlab; signal processing toolbox) were applied to estimate the degree
of synchrony induced by correlated input fluctuations in simulations:
cross-correlation analysis and spectral analysis. The cross-correlations
between simulated spike-train responses were calculated by first extract-
ing a spike train from the simulated voltage traces to create a binary wave
and then convolving these spike trains with Gaussians of half-width o.
For o> 4 ms, the following calculations did not differ substantially, so we
concluded that setting o to 5 ms was a reasonable choice to allow toler-
ance for jitter without influencing the estimation of synchrony. In addi-
tion, we calculated the power spectrum of estimated local field potentials
(see above).

20 mV
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100 ms
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Figure 1.  Properties of lateral IPSPs in the mouse olfactory bulb. a, Schematic showing two
mitral cells (red and blue) receiving input from unshared (red and blue) and shared (green)
granule cells. Spiking in green granule cells results in correlated IPSPs i the red and blue mitral
cells. Inputs from such shared granule cells are proposed to be responsible for the correlated
inputs that can give rise to the stochastic synchronization phenomenon described here. b,
Voltage traces recorded from a pair of mitral cells in vitro coupled by disynaptic, granule cell-
mediated inhibition. Spiking in one mitral cell (red trace) elicited by 100 ms current injection
(400 pA) results in asynchronous IPSPs recorded in a second mitral cell (6 example traces, black).
The average lateral IPSP (thick bottom trace) shows slow rise and slow decay times that are
typical for unitary lateral IPSPs.
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Results

Properties of lateral IPSPs

We measured the properties of recurrent and lateral IPSPs using
simultaneous whole-cell current-clamp recordings from mitral
cells of the mouse main olfactory bulb. Similar to previous results
(Urban and Sakmann, 2002 ), IPSPs in connected mitral cells con-
sisted of aperiodic barrages of presumed unitary IPSPs (Fig. 1).
Single unitary IPSPs had amplitudes of up to 7 mV and averaging
IPSPs across many sweeps showed that the decay of the inhibition
was slow (382 = 55 ms; n = 5 pairs). The number of identifiable
unitary IPSPs evoked per presynaptic stimulus was 12.2 * 6.1 for
presynaptic sweeps of 6.2 spikes per 100 ms square pulse (n = 5
pairs). The average decay time of these unitary events, which are
thought to represent release from single granule cells, is ~20 ms,
typical of GABA , receptor-mediated IPSCs (Isaacson and Strow-
bridge, 1998). The number of these events varied with the level of
presynaptic mitral cell activity and became difficult to determine
when the presynaptic cell fired at high rates because of overlap of
IPSPs. This suggests that the integrated lateral IPSPs received by a
mitral cell after activation of large numbers of mitral cells will
result in fluctuating hyperpolarization that decays slowly. This
sort of input is unlikely to generate or stabilize gamma-band
firing (Chow et al., 1998; Prinz et al., 2003).

Effect of noise on mitral cell oscillatory firing

Because the slow time course of lateral IPSPs makes it unlikely
that they cause global synchronization of mitral cells, we next
examined the modulation of firing patterns in single mitral cells
by inputs having properties similar to those of the barrages of
granule cell-mediated IPSCs. Mitral cells were depolarized by
constant current to elicit firing at frequencies in the gamma range
(Fig. 2a,c). In vivo, mitral cells fire at this frequency when
activated by receptor neuron input during odor stimulation
(Margrie and Schaefer, 2003), and single mitral cells fire prefer-
entially at approximately this frequency in vitro (Desmaisons et
al., 1999; Balu et al., 2004). When Poisson-distributed IPSC-like
currents (o functions with 7 = 3 ms and Poisson rate of 50 Hz)
were added to the steady-state input current, mitral cells still fired
in an oscillatory manner, as indicated by the peak in their power
spectra (Fig. 2b,c). We call this kind of input IPSC noise (see
Materials and Methods). The addition of IPSC noise had little
effect on average firing rates in mitral cells (27 * 4 Hz control vs
30 = 4 Hz with noise; n = 6 cells; p > 0.05) or on their power
spectra (Fig. 2¢). The power spectrum of the injected IPSC noise
is largest at low frequency and decreases monotonically with fre-
quency at a rate determined by the time constant of the « func-
tion (Fig. 2¢). Thus, we concluded that the firing rate and oscil-
latory firing pattern of mitral cells are little altered by IPSC noise.
Similar effects on the power spectrum were observed when in-
jecting white noise convolved with an « function (7= 3 ms; n =
4 cells; data not shown). Thus we conclude that during constant
current input, single mitral cells show oscillatory firing, the rate
of which is not significantly altered by the addition of barrages of
inhibitory synaptic inputs. We next examined whether this IPSC-
like input could influence the synchronous firing of pairs of mi-
tral cells.

Correlated noise elicits synchronized oscillatory firing of
mitral cells

Because single mitral cells fire rhythmically even when receiving
noisy input, we examined whether noise that is partially corre-
lated across cells can synchronize oscillatory firing in different
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Figure 2.  Response of single mitral cell to IPSC noise input. a, Mitral cell spike train in

response to constant current input. b, Response of same cell to 400 pA current plus Poisson
distributed train of o functions that we refer to as “IPSC noise” (rate, 50/s; o = 3 ms; ampli-
tude, 60 pA). ¢, Power spectrum of IPSC noise input current from b (left) and average power
spectrum (right) of six mitral cells given steady-state (black) and IPSC noise current injections
(gray). Addition of IPSP noise resulted in a slightly broader power spectrum, mainly by enhanc-
ing the low frequency component, without affecting the frequency of the peak of the power
spectrum.

mitral cells. Sets of correlated IPSC noise-current traces (T,—Ts,
rate = 40 Hz; a functions, 7 = 3 ms; amplitude, 20—60 pA) were
generated by varying the probability (denoted as C,,,) that a given
trace would have IPSCs occurring at the same time as the first
trace in the set (T, the template trace; see Materials and Meth-
ods). In the olfactory bulb, pairs of mitral cells receive input from
overlapping populations of granule cells (1a). The value of C;,
corresponds roughly to the fraction of their total inhibitory input
that two mitral cells receive from the same granule cells. This
value can be thought of as representing both anatomical connec-
tivity and also the relative activity of shared versus independent
populations of granule cells. Moreover, C,,, is also the correlation
coefficient of the given trace with the template trace. Preliminary
simulations showed that in reduced models of spiking neurons
(see Materials and Methods), correlated IPSC noise led to syn-
chronous oscillatory firing (Fig. 3a,b). To test whether mitral cells
showed similar behavior, we examined firing in seventeen mitral
cells (seven under control conditions and ten in the presence of
blockers of synaptic transmission) that were injected with the
identical set of six correlated IPSC noise waveforms (T,—T5). The
analysis of synchronization was performed for pairs of mitral cells
recorded simultaneously and also at different times.

Mitral cells were injected with these identical IPSC noise cur-
rents added to a steady-state current to elicit spiking between 11
and 35 Hz [average, 22 = 7 Hz (SD); n = 17] (Fig. 3c¢). Injecting
the same currents into different cells allowed us to compare the
recorded spike trains across cells to determine whether popula-
tions of mitral cells like the ones recorded would synchronize
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Figure 3.  Increase of spike synchrony in response to correlated inputs. a, IPSC noise trains

(see Materials and Methods) for two different values of C;, (left, C;, = 0.0; right, G;, = 0.8). b,
Numerical simulations of two model cells in response to inputs in a. Spiking in response to
uncorrelated inputs appears uncorrelated, whereas spiking in response to correlated inputs is
correlated and appears periodic. ¢, Similar to b, but voltage traces are recorded during injection
of gray and black current waveforms into two different mitral cells. Note that uncorrelated
inputs (b, ¢, left) produce spike trains that are roughly periodic but totally uncorrelated. On the
contrary, the spikes evoked by highly correlated inputs (b, ¢, right) occur at similar times and still
appear periodic. This shows that the response of a single cell to a similar IPSC spike train can be
highly reliable, and that correlated Poisson trains of « functions are sufficient to synchronize
spiking across different mitral cells.

when receiving input having a specified degree of correlation.
Mitral cells injected with IPSC noise showed spiking that was
increasingly correlated as C;,, was increased (correlation coeffi-
cient, 0.01 for C;,, = 0 vs 0.34 for C;,, = 0.8) (Fig. 3¢). Moreover,
this correlated spiking appeared to be periodic. To analyze this
apparently synchronous oscillatory firing, we computed the
cross-correlograms of the filtered voltage traces recorded from
each mitral cell generated by the template current (T;)) with those
generated in every other cell by the same inputs (T,—T5) (Fig. 4a).
For C;, = 0, the cross-correlogram averaged across all pairs was
flat, but for C;, > 0.2 it had a clear central peak, indicating some
synchronous events (Fig. 4a). Clear secondary peaks were present
for C;, values >0.4 (Fig. 4a), indicating that the input correla-
tions synchronized the oscillatory firing across mitral cells. This
observation was confirmed by computing the cross-spectral den-
sity (i.e., the power spectrum of the cross-correlogram), which
showed a clear peak overlapping the gamma frequency band. The
degree of synchrony (height of the cross-correlogram) and of the
synchronous oscillation (peak of cross-spectral density) de-
pended in a linear manner (r* = 0.90) on the degree to which
inputs were correlated (C;,).

To confirm that the correlated oscillatory firing was not in-
duced by some unexpected periodic variation of the input, we
calculated the average cross-correlogram and cross-power spec-
tra of the injected traces (T,—T5) (Fig. 4d—f). As expected, the
cross-correlogram showed a single central peak that scaled with
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Figure4. IPSCnoiseinputs produce synchronized oscillatory firing in mitral cells. a, Average
cross-correlograms of mitral cell spike trains computed from data similar to those shown in
Figure 3. Cross-correlograms were calculated for spike trains recorded from different cells in
which IPSCnoise inputs with indicated degrees of correlation were injected. Level of correlation
between input currents ranged from completely uncorrelated (C;, = 0) to completely corre-
lated (C,, = 1.0) in steps of 0.2. Data were collected from 17 mitral cells, with 66 total pair-wise
comparisons made. b, From this same data set, we computed the average cross-power spec-
trum (power spectrum of the cross-correlogram) of the recorded sweeps elicited by IPSC noise
inputs with varying degrees of correlation. These cross-power spectra showed a clear increase
with the degree of input correlation in the gamma band, indicating that increased input corre-
lation causes an increase in the tendency of mitral cells to fire in a synchronous oscillatory
manner. ¢, The fraction of the integrated power (from the plots in b, above) in the 1540 Hz
frequency range increases with increasing input correlation, indicating that the increase in
output correlation is selective for this frequency band. d—f, Correlated events in the input have
no oscillatory patterns but occur randomly in time. d, Red and black traces are responses to IPSC
noise trains with C;, = 0.4. The blue traces show IPSC events common to both black and red
input currents. e, Autocorrelograms of traces in d. Black and red autocorrelograms are identical,
indicating that both inputs have the same statistical properties. The autocorrelogram of the
correlated events (blue) is a scaled version of black and red because of the lower number of
eventsin the blue tracesin a. Note that there is no oscillatory pattern in these autocorrelograms.
f, Power spectra (red and black) and cross-power spectrum (blue) of the input currents in a.
These decrease monotonically without showing a peak, indicating an oscillatory component in
either the whole traces (black and red) or in the correlated part (blue).

the value of C, (Fig. 4e) and the cross-power spectrum is domi-
nated by low frequencies (Fig. 4f), exactly as the power spectrum
of IPSC noise itself (Fig. 2¢). Thus, correlated IPSC noise is itself
aperiodic and yet it produces correlated firing that is periodic,
resulting in synchronized oscillations across mitral cells.

To test whether this phenomenon was influenced by our par-
ticular choice of noise input, we performed similar experiments
and simulations for cells injected with correlated currents con-
sisting of white noise filtered by « functions (7 = 3 ms) (Fig. 5)
and also (in simulations only) for white noise conductance injec-
tions (Fig. 6) and EPSP-like Poisson-distributed current injec-
tions (data not shown). Because it contains fluctuations in all
frequencies, white noise is the most generic kind of input that can
be used for these sorts of experiments. We observed that all of
these input types resulted in synchronized oscillatory firing. Neu-
rons injected with filtered white noise showed enhanced synchro-
nization as the correlation in the injected noise was increased
(Fig. 5a,b). This synchronization was oscillatory, as indicated by
the calculation of the cross-correlogram (Fig. 5¢) and the cross-
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Figure 5. Filtered white noise inputs produce synchronized oscillatory firing in mitral cells.

a, Uncorrelated (left) and partially correlated (right) filtered white noise current injections
delivered to mitral cell pairs. b, Spike trains resulting from injection of noise traces shown
above. Similar to data from Figure 3 in which cells were injected with IPSC noise, cells fire in a
somewhat rhythmic manner and show correlated oscillatory firing when injected with corre-
lated noise. ¢, Left, Average cross-correlograms of mitral cell spike trains computed from data
similar to those shown in b. Cross-correlograms were calculated for spike trains recorded from
different cells in which filtered white noise inputs with indicated degrees of correlation were
injected. The level of correlation between input currents ranged from completely uncorrelated
(G, = 0) to completely correlated (C;, = 1.0) in steps of 0.2. (right). From this same data set,
we computed cross-power spectra of the recorded sweeps elicited by IPSC noise inputs with
varying degrees of correlation. These cross-power spectra showed a clear increase with the
degree of input correlation in the gamma band, indicating that increased input correlation
causes an increase in the tendency of mitral cells to fire in a synchronous, oscillatory manner.

power spectrum (Fig. 5d), as in the case of IPSC noise above.
Conductance noise injection (E,., = —75 mV) also generated
synchronized oscillatory firing, consistent with the observation
(Szucs et al., 2004) that neurons fire more reliably to conductance
injections than to current injections. Thus, these data indicate
that the effect that we observe is not caused by some unusual
property of the stimuli that we chose, but rather that it is a general
property of oscillatory systems receiving correlated fluctuating
inputs.

Increasing noise amplitude reveals a trade-off between
synchronization and oscillation

We next determined how synchrony of mitral cell output was
influenced by the amplitude of the correlated input noise. We
reasoned that in the limit of low-amplitude noise, the noise-
induced fluctuations would be unable to influence firing times
and, thus, unable to synchronize the oscillatory firing. In con-
trast, with high amplitude noise, the timing of most spikes would
be determined by the occurrence of large positive fluctuations in
the input, which should occur randomly in time. In this condi-
tion, correlations in spiking should be maximized, but firing
would be nonoscillatory. Thus, there should be a noise amplitude
that results in the optimal trade-off between synchronous and
oscillatory firing. To perform this analysis, we switched our input
currents from IPSC noise to white noise filtered by convolution
with an « function (7 = 3 ms) as described above. This change
allowed us to vary the amplitude of the input fluctuations by
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Figure 6.  Conductance noise inputs produce synchronized oscillatory firing in simulated

mitral cells. a, Weakly (G;, = 0.1, left) and strongly (G;, = 0.8, right) correlated filtered white
noise conductance (£,,, = —75mV) injections delivered to simulated mitral cells. The scale is
in arbitrary conductance units. b, Current injected because of the conductance changes shown
above. ¢, Spike trains resulting from injection of noise traces shown above. Similar to data from
Figures 3 in which simulated neurons were injected with IPSC noise, cells fire in a somewhat
rhythmic manner and show correlated oscillatory firing when injected with correlated conduc-
tance noise. d, Left, average cross-correlograms of mitral cell spike trains computed from data
similar to those shown in ¢. Cross-correlograms were calculated for spike trains from different
simulated cells in which filtered white noise conductance inputs with indicated degrees of
correlation were injected. Level of correlation between input currents ranged from completely
uncorrelated (G;, = 0) to completely correlated (C,, = 1.0) in steps of 0.2. (right). From this
same data set, we computed cross-power spectra of the recorded sweeps elicited by IPSC noise
inputs with varying degrees of correlation. These cross-power spectra showed a clear increase
with the degree of input correlation in the gamma band, indicating that increased input corre-
lation causes an increase in the tendency of mitral cells to fire in a synchronous oscillatory
manner.

changing a single parameter (the variance of the noise) without
changing the spectral properties of the input. In both simulations
and in experiments on mitral cells, increasing the SD of the noise
input (from 10—60 pA in experiments) resulted in a clear, non-

J. Neurosci., April 5, 2006 - 26(14):3646—3655 * 3651

linear, increase in the correlation coefficient of spike trains gen-
erated by correlated (C;,, = 1.0) but not uncorrelated (C;, = 0)
inputs (n = 6 cells) (Fig. 7a). Thus, cells that are highly noise
driven synchronize to common fluctuations in the noise. As pre-
dicted, higher levels of noise reduced the degree to which neurons
fired in a periodic manner, as determined by measuring the co-
herence in firing of pairs of neurons (Fig. 7b). A similar result was
seen using simulated neurons (Fig. 7c). Thus, there is a trade-off
between correlation and oscillatory synchronization implying
that there is an optimal level of noise for generating synchronized
oscillatory firing by this mechanism. The amplitude of the noise
required to elicit stochastic synchrony was quite comparable to
the levels of voltage fluctuations (2-5 mV) (Fig. 7a,b) observed
during periods of strong inhibition recorded in vivo (Margrie et
al., 2001).

Time-dependence of stochastic synchrony

Olfactory discrimination in rodents can be accomplished rapidly
(Uchida and Mainen, 2003; Abraham et al., 2004) even in the
time course of a single sniff (<300 ms). Thus, if the noise-
induced synchronization that we have described is to play a role
in olfactory coding, then synchronization of spiking needs to
occur rapidly after an increase in correlation. Thus, we next in-
vestigated, in both simulations and experiments, how rapidly the
increase in correlated spiking induced by stochastic synchroniza-
tion occurs after a step change in the input correlation. To per-
form this analysis, we first generated a set of IPSC noise input
currents of 2 s duration that had a step change in correlation (at
t = 1), with no change in rate or amplitude of events (Fig. 8a,
top). During the first second of the sweep, these ten inputs were
completely uncorrelated (C;,, = 0). During the second half of the
train, the input currents were identical (C;, = 1), as can be seen
from the average of these ten traces (Fig. 84, bottom). This set of
ten inputs was injected in an interleaved manner into eight real
mitral cells and the oscillatory synchronization of the action po-
tentials of these cells was calculated (Fig. 8b,¢, black traces). In
parallel, these same current traces were used as the inputs to a
network of 10 simulated mitral cells (Fig. 8b,¢, red traces). During
the first second of the sweep, the real and simulated mitral cells
fired in an oscillatory, but uncorrelated manner and, thus, the
power spectrum of the estimated field potential generated by
averaging the response to the 10 traces in any one cell was roughly
flat (Fig. 8¢, left). In contrast, during the second half of the trace
(when the inputs were perfectly correlated), the power spectrum
of the estimated field potential showed a large peak (average in-
crease in peak amplitude of power spectrum for experimental
data, 725 * 85%) (Fig. 8, right). To determine how rapidly the
response of the mitral cell synchronized after this change in input
correlation, we examined the magnitude of the fluctuations of the
estimated LFP (i.e., the filtered averaged membrane potential)
(Fig. 8b, bottom) for the population of cells to which we delivered
these input currents. The LFP during the first second, when input
currents were uncorrelated, showed little time-dependent fluctu-
ation and no evidence of oscillation, indicating that the spike
times across the different cells were uncorrelated. During the
second half of the trace, when inputs were correlated, the esti-
mated LFP showed large fluctuations that began within the first
50 ms after the increase in correlation, indicating that this mech-
anism can induce rapid synchronization.

Effect of input spectra on oscillatory synchronization
We next used simulations to test how this noise-induced oscilla-
tory synchronization depends on the characteristics of the in-
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jected current. In particular, we asked how
oscillatory synchronization varied as high-
frequency components of the noise were
eliminated. This was done both for IPSC
noise and for filtered white noise by con-
volving the original signal (Poisson train
or white noise) with « functions of differ-
ent time constants while preserving the in-
tegrated power of the noise input. Based
on previous work, we predicted that the
synchronization of neurons at high fre-
quencies would be reduced as fast fluctua-
tions were eliminated (Chow et al., 1998;
Prinz et al., 2003). Eliminating these fast
fluctuations is the equivalent of changing
the time constant of inhibition and, thus,
we would predict that synchronization of
gamma-like oscillations will become more
difficult as the time constant of the « func-
tion is increased. Indeed, the degree of os-
cillatory synchronization (as determined
by computing the power spectrum of the
estimated local field potential) with either
IPSC noise or filtered white noise inputs
peaked when the « function has a time to

peak of ~20 ms (Fig. 9a,b). Moreover, increasing the time-to-
peak of the o function also decreased the peak frequency of the
oscillation, indicating that fast fluctuations are needed for fast

synchronization.

We also hypothesized that for input fluctuations to produce
synchronization, common fluctuations must occur at a rate sim-
ilar to or greater than the frequency of the oscillation. Thus, we
used simulations to test how changing the Poisson rate of IPSC
noise inputs influenced oscillatory synchronization, while again
preserving the integrated power of the noisy input current. We
observed that the degree of oscillatory synchronization (as deter-
mined by computing the power spectrum of the estimated local
field potential) is maximal when the average interevent interval of
the Poisson train is ~20 ms (Fig. 9¢). Changing the interval had
no effect on the frequency of the oscillation, in agreement with
phase oscillator models of mitral cells (Galan et al., 2005). Thus,
these results indicate that the noise-induced synchronization that
we describe is strongest when correlated fluctuations occur on a
time scale that is similar to the frequency of the oscillations.

Discussion

Summary

Here, we show that lateral inhibition has slow average kinetics
that are incompatible with generating fast oscillations in the ol-
factory bulb and we describe a new mechanism (stochastic syn-
chrony) for generating synchronous oscillations in brain net-
works based on correlated but aperiodic fluctuations in their
input. Using both experimental and computational approaches,
we show that the key requirements for this mechanism are that
(1) neurons receive partially correlated fast (relative to the period
of the oscillation) inputs and (2) that neurons fire at a roughly
constant rate. We demonstrate that this mechanism can cause
synchronous firing of olfactory bulb mitral cells recorded in vitro,
and we propose that this mechanism may resolve the apparent
paradox of how lateral inhibition (which has, on average, a slow
decay time) can lead to the synchronization of fast gamma oscil-

lations in olfactory bulb mitral cells.
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Figure7.  Varying noise amplitude resultsin trade-off between synchrony and periodicity. a, The degree of output correlation
increases with the amplitude of the input noise for correlated (G, = 1.0, closed circles) but not uncorrelated (C;, = 0, open circles)
filtered white noise inputs. Here, we plot the degree of input noise in terms of the SD of the membrane potential rather than of the
input current to compensate for differences in membrane properties across neurons. Simulations (open and closed diamonds)
show similar effects of noise amplitude when the magnitude of uncorrelated noise is ~20% of the magnitude of the correlated
noise. b, ¢, Experimental data (b) and simulations (c) and show the effect of the amplitude of correlated noise on the coherence of
spike trains. For smaller noise amplitude (10 -30 pA fluctuations) in b, the cross-power spectrum of neuronal output is not altered
by the noisy correlated inputs, which shift only the relative timing of their action potentials. Therefore, the cross-power spectrum
hasa clear peak near the average firing rate of the neurons. In other words, the neurons filter the correlations on their intrinsic time
scale. For larger noise amplitudes (40— 60 pA in b), the periodicity of the neural firing is reduced and, as a consequence, the
coherence peak broadens. Regardless of noise amplitude, the coherence rapidly decreases >40 Hz, which indicates that the
neurons only take advantage of the input correlations that have a time scale is similar to or less than their intrinsic firing rate. ¢, A
similar trade-off was seen in simulations. Values of input noise are as described in Materials and Methods.

Can stochastic synchrony explain olfactory bulb

gamma oscillations?

Gamma oscillations are a prominent feature of olfactory bulb
activity in vivo (Adrian, 1942; Kay and Laurent, 1999; Neville and
Haberly, 2003) and are generated by intrinsic bulbar circuitry
(Friedman and Strowbridge, 2003; Lagier et al., 2004). However,
the current view (Mori et al., 1981b; Kay, 2003; Neville and
Haberly, 2003) that generation of these oscillations is caused by
recurrent and lateral inhibition is incompatible with the proper-
ties of these phenomena (Isaacson and Strowbridge, 1998;
Schoppa et al., 1998; Margrie and Schaefer, 2003). Noise-induced
oscillatory synchrony provides an explanation of why persistent
excitation and fluctuating inhibition are required for gamma os-
cillations and this explanation is compatible with the known
physiological properties and anatomical bases of these phenom-
ena (Friedman and Strowbridge, 2003; Lagier et al., 2004). We
have demonstrated stochastic synchrony in mitral cells by deliv-
ering artificial inputs consisting of partially correlated signals of a
variety of forms. Although the average frequency of our synchro-
nous oscillations (~22 Hz) is closer to the typical 8 frequency
(~10-20 Hz) than the typical frequency for gamma oscillations
(~30-80 Hz), B oscillations may require cortical feedback not
present in our experiments, which gamma frequency oscillations
do not (Friedman and Strowbridge, 2003; Neville and Haberly,
2003; Lagier et al., 2004). Moreover, the mechanism that we de-
scribed should apply across a wide range of frequencies, provided
that the requirements (discussed below) are met. This leads to the
question of whether the IPSCs received by mitral cells in vivo are
likely to elicit such correlation-induced synchrony? IPSC noise
synchronizes mitral cell firing when events occur across a range of
input frequencies (Fig. 9) and when the individual IPSCs are as
small as 10 pA. These are similar to the properties of individual
IPSCs recorded in mitral cells (Isaacson and Strowbridge, 1998;
Desmaisons et al., 1999; Schoppa, 2006). Moreover, because
granule cells make highly divergent projections onto mitral cells,
a spike in a single granule cell will evoke correlated inhibition in
hundreds of nearby mitral cells. Thus, active granule cells may
lead to strong synchronous input to nearby mitral cells. Estimat-
ing the expected degree of correlation is difficult, but synchro-
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Figure 8.  Stochastic synchronization occurs rapidly in response to a step change in input

correlation. a, Top, Example single trace (of 10 similar traces) showing IPSC noise that was
injected into a mitral cell. The rate and amplitude of the simulated IPSCs are constant across the
two second traces. Bottom, Average across all 10 IPSC noise traces injected into mitral cells.
Because of the step change in correlation across traces at t = 0, the average trace goes from
nearly flatbefore t = 0to having large fluctuationsaftert = 0. b, Top, Two example spike trains
(one from a mitral cell and one from simulation) evoked by the inputs shown above in a. Firing
pattern and rate are not obviously different for times before and after t = 0. Bottom, Estimated
LFP calculated from all 10 cells injected with the IPSC noise having time-varying correlation
shown above (black) and from a simulation of 10 neurons receiving the same inputs as were
injected into the mitral cells. The amplitude of the estimated LFP increases rapidly after the step
change in correlation. ¢, The average power spectra of the estimated LFPs of the mitral cell
voltages (black) and from the simulated neurons (gray) recorded during the uncorrelated (left)
or correlated (right) IPSCnoise inputs show that the real and simulated mitral cells show strong
oscillations after, but not before, the increase in input correlation.

nous events occurring at a rate of 10 Hz, as required by our
mechanism, are compatible with in vivo recordings (Margrie et
al., 2001; Margrie and Schaefer, 2003).

The IPSC noise we injected is itself insensitive to actual gran-
ule cell-mediated inhibition in that real inhibition is tied to the
output across many mitral cells. Thus, correlations in mitral cell
output that are generated through stochastic synchrony will
cause additional granule-cell firing which will in turn provide
additional correlated input to the mitral cells. In this way, the
correlation received by mitral cells will be a dynamic variable, the
value of which will be evolving as a function of mitral and granule
cell activity. Our experiments and simulations, which do not have
such feedback, are a simplification of this phenomenon, which
we are actively investigating.

Relation to other mechanisms of synchronization

Synchronous oscillations in brain networks are generally thought
to be generated by periodic input or by intrinsic network dynam-
ics (Buzsaki and Draguhn, 2004). In contrast, in stochastic syn-
chrony, firing of individual neurons that is roughly oscillatory is
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Figure9.  Dependence of oscillatory synchrony on spectral properties of the inputs. , Left,

Degree of synchronous oscillations as measured by the averaged cross-power spectrum (power
spectrum of the cross-correlogram) is shown for simulated mitral cells (similar to Fig. 6¢) when
given IPSCnoise consisting of « functions having 7s ranging from 1to 32 ms. Right, Plot of the
peak of the cross-power spectra shown on the left of this figure versus the 7 of the « function.
The maximal cross-power spectrum peak was observed for « functions having times to peak
~12ms. Slower « functions (higher 7s) reduced the peak and lowered the peak frequency. b,
Similar to a except, instead of IPSC noise, the same effect was observed when white noise
convolved with an « function with the indicated T used as stimulus. ¢, Similar to a except the
expected waiting time (average rate ) of the Poisson process is varied for a fixed T (2.5 ms).
The peak is seen when there are, on average, several events per cycle. Altering the Poisson rate
did not alter the peak frequency of the synchronized oscillations.

synchronized by the influence of partially correlated but aperi-
odic transient inputs; neither synaptic coupling nor oscillatory
input is required. Stochastic synchrony works for many input
types, including low-pass filtered white noise inputs, suggesting
that any kind of common fluctuation can drive cells to synchro-
nize. Thus, stochastic synchrony may provide an answer to the
question of how brain neuronal networks generate widespread
synchronous population activity, when the behavior of any single
neuron (and thus, any single input) is often well described as an
aperiodic Poisson train (Buzsaki and Draguhn, 2004).

Several other examples of noise-induced synchrony have been
reported in the theoretical and experimental literature, but this is
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the first experimental evidence for oscillatory synchronization of
neurons based on such a mechanism in the absence of oscillatory
input. In theoretical work, noise-induced synchronization simi-
lar to what we describe has been observed in response to white
noise inputs or to Poisson trains (Teramae and Tanaka, 2004;
Nakao et al., 2005). In experimental systems, stochastic reso-
nance has been used to explain the noise-dependent entrainment
of neuronal firing to a subthreshold oscillatory input in a variety
of systems (Wiesenfeld and Moss, 1995), including crayfish
mechanoreceptors (Douglass et al., 1993; Moss and Pei, 1995).
Similarly, in simulations of uncoupled Hodgkin—Huxley-type
neurons, noise can cause synchronization, provided that neurons
also receive a common subthreshold oscillatory signal (Wang et
al., 2004). However, in our case, mitral cells receive no periodic
input. Noisy inputs to weakly coupled neural networks have been
shown to generate synchronous oscillations (Pikovsky, 1992) and
this phenomenon has been argued to explain synchronization of
neurons in the electrosensory organ of weakly electric fish (Doi-
ron et al., 2004). In this system, correlated noise from multiple
sources causes synchronous oscillations of pyramidal neurons in
vivo. In contrast, stochastic synchrony does not require coupling
of any kind. Finally, stochastic synchrony differs from, but is
related to noise-induced reliable firing (Bryant and Segundo,
1976; Mainen and Sejnowski, 1995). In stochastic synchrony, fir-
ing need not and, in fact, must not be driven reliably by the noise,
because if noise drives firing then the firing will be aperiodic
rather than oscillatory. That is, very high-amplitude noise will
result in perfectly correlated firing, but the cross-spectral density,
our measure of oscillatory synchronization, will be flat. More-
over, our description of stochastic synchrony emphasizes similar
spiking patterns across different neurons that receive similar, but
nonidentical inputs. In contrast, reliability is measured across
trials in which the same neuron receives identical inputs. Our
results can be interpreted as indicating that reliability of firing is
robust to differences in the noise and in the properties of the
neurons. Stochastic synchrony is similar to synchronization of
integrate-and-fire neurons activated by balanced excitatory and
inhibitory synaptic conductances when the spike trains of indi-
vidual neurons have low coefficients of variation (Stroeve and
Gielen, 2001).

Synchronization outside the olfactory system

Here, we consider stochastic synchrony as a mechanism for gen-
erating oscillations in the olfactory bulb. However, its general
requirements suggest that it might be a more general mechanism
for generating synchronization. Stochastic synchrony requires
that neurons receive partially correlated input, either excitatory
or inhibitory. This is likely to be a common feature of brain areas
in which there is dense local connectivity or a strong topographic
input.

A second key requirement of stochastic synchrony is that dif-
ferent neurons fire at approximately the same rate and that this
firing be roughly oscillatory. This is required because the average
firing rate of individual neurons is not modified by changing the
degree of correlation across the inputs and, thus, neurons cannot
equalize their firing rates in response to changes in correlation.
This similarity of firing rates in the network can be achieved
either if all of the neurons receive similar levels of input, or if the
firing rates of the neurons are relatively insensitive to changes in
input current. Interestingly, in vivo recordings from mouse olfac-
tory bulbs have shown that mitral cell frequency versus current
(FI) curves are rather flat, maintaining firing rates of ~40 Hz for
a wide range of steady-state input currents (Margrie and
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Schaefer, 2003). Moreover, mitral cells (Galan et al., 2005) show
class IT membrane excitability. This kind of excitability is associ-
ated with relatively flat, logarithmic FI curves (Tateno et al.,
2004). Finally, stochastic synchrony requires that neurons fire
repeatedly for periods of at least several times the duration of the
oscillation frequency. Cortical up states, which can last for sec-
onds, would certainly provide a sufficiently long period of ele-
vated firing and may be periods in which correlated inputs to
multiple firing cells would be expected (Hasenstaub et al., 2005).
Thus, we would predict that stochastic synchrony may play a role
in synchronizing cortical neurons during up states, consistent
with recent reports (Hasenstaub et al., 2005).
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