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Perceptual Learning Directs Auditory Cortical Map
Reorganization through Top-Down Influences
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The primary sensory cortex is positioned at a confluence of bottom-up dedicated sensory inputs and top-down inputs related to higher-
order sensory features, attentional state, and behavioral reinforcement. We tested whether topographic map plasticity in the adult
primary auditory cortex and a secondary auditory area, the suprarhinal auditory field, was controlled by the statistics of bottom-up
sensory inputs or by top-down task-dependent influences. Rats were trained to attend to independent parameters, either frequency or
intensity, within an identical set of auditory stimuli, allowing us to vary task demands while holding the bottom-up sensory inputs
constant. We observed a clear double-dissociation in map plasticity in both cortical fields. Rats trained to attend to frequency cues
exhibited an expanded representation of the target frequency range within the tonotopic map but no change in sound intensity encoding
compared with controls. Rats trained to attend to intensity cues expressed an increased proportion of nonmonotonic intensity response
profiles preferentially tuned to the target intensity range but no change in tonotopic map organization relative to controls. The degree of
topographic map plasticity within the task-relevant stimulus dimension was correlated with the degree of perceptual learning for rats in
both tasks. These data suggest that enduring receptive field plasticity in the adult auditory cortex may be shaped by task-specific
top-down inputs that interact with bottom-up sensory inputs and reinforcement-based neuromodulator release. Top-down inputs might
confer the selectivity necessary to modify a single feature representation without affecting other spatially organized feature representa-
tions embedded within the same neural circuitry.

Key words: cortex; attention; conditioning; reward; plasticity; topographic map

Introduction
The spatial distributions of sensory receptors in the skin, retina,
and cochlea are preserved in mosaics of topographically orga-
nized two-dimensional maps that tile the cerebral cortex. During
critical periods of development, cortical maps are dynamically
maintained to allocate larger representational areas to sensory
inputs with the greatest relative strengths. Thus, restricting sen-
sory inputs to a single eye or a limited region of the skin or cochlea
during an early period of postnatal life produces an expansion of
the territory of the region within the map (Wiesel and Hubel,
1963; Simons and Land, 1987; Zhang et al., 2001). In this regard,
cortical map plasticity observed in early development is domi-
nated by a “bottom-up” process in the sense that the representa-
tional area is dictated by the patterns of afferent sensory inputs
impinging on cortical neurons with minimal dependence on the
animal’s state of attention or motivation.

Topographic maps in the primary somatosensory and audi-

tory cortex remain plastic through adulthood (for review, see
Feldman and Brecht, 2005; Ohl and Scheich, 2005). Here we ask,
to what extent is plasticity in adult sensory maps controlled by
bottom-up sensory input statistics or, alternatively, by “top-
down” factors such as the animal’s attentional state or task de-
mands? Psychophysical studies have shown that perceptual im-
provements are specific to the stimulus features used in the task
(Karni and Sagi, 1991; Ahissar and Hochstein, 1997; Irvine et al.,
2000; Hawkey et al., 2004; Fitzgerald and Wright, 2005), but also
to stimulus features to which the subjects are asked to attend
(Ahissar and Hochstein, 1993). The neural correlates of top-
down control over perceptual learning have remained conten-
tious. Results from human imaging and psychophysical experi-
ments suggest that the effects of perceptual learning in early
sensory fields is primarily governed by bottom-up inputs (Wa-
tanabe et al., 2001, 2002; Petkov et al., 2004), whereas direct
physiological evidence from single-unit recordings in awake an-
imals suggests that task demands can influence neural responses
as early as the primary sensory cortex (Ahissar et al., 1992; Saku-
rai, 1994; Crist et al., 2001; Schoups et al., 2001; Li et al., 2004;
Fritz et al., 2005). Task-dependent influences on receptive fields
in the primary sensory cortex have only been observed in awake
animals and, even then, have only been observed to last for short
periods of time. Studies that investigate long-term effects of con-
ditioning on adult cortical map and/or their constituent receptive
field organization have generally claimed that receptive field plas-
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ticity reflects the pattern of bottom-up sensory inputs and their
relationship to reinforcement-based neuromodulator release (Ji
et al., 2001; Kilgard et al., 2001, 2002; Weinberger, 2004; Yan and
Zhang, 2005). Our understanding of the relative contribution of
bottom-up and top-down signals to adult cortical plasticity has
remained clouded, however, because nearly every conditioning
study has imposed varying attentional demands on subjects pre-
sented with varying sensory inputs.

The present study attempts to disambiguate the contribution
of these two signals to learning-induced plasticity of cortical
maps. Rats assigned to a frequency recognition (FR) or loudness
recognition (LR) task were presented with the same set of audi-
tory stimuli but learned that only one feature, frequency or in-
tensity, was relevant to the demands of the task. The arrangement
of sensory stimuli, behavioral reinforcement, and task demands
allowed us to formulate a set of mutually exclusive hypotheses: if
bottom-up factors direct cortical map plasticity, we predicted
that both groups would exhibit similar cortical map changes be-
cause the bottom-up inputs were identical. If top-down factors
guided cortical map plasticity, we predicted that cortical map
plasticity would be restricted to the stimulus domain that was
relevant to the task demands. We formulated a secondary hy-
pothesis based on a set of perceptual learning studies that found
top-down effects restricted to higher cortical areas and
bottom-up effects dominant in lower cortical areas (Watanabe et
al., 2002; Petkov et al., 2004). We recorded from the primary
auditory cortex (AI) and the suprarhinal auditory field (SRAF), a
secondary and putatively higher auditory field, with the expecta-
tion that reorganization in SRAF would be more strongly influ-
enced by task demands, whereas plasticity in AI would most likely
reflect the pattern of bottom-up sensory inputs.

Materials and Methods
Subjects. Nineteen adult female Sprague Dawley rats (age, 14 –18 weeks)
were used in the study. The rats were assigned to the FR (n � 6), LR (n �

6), or naive control (n � 7) groups. Recordings
were obtained from AI and SRAF in FR and LR
rats after improvements in task performance
reached asymptote and were compared with re-
cordings in age-matched naive control rats. In
the FR group, four rats yielded recordings from
both AI and SRAF; we recorded from AI only in
one rat and from SRAF only in one rat. In the
LR group, we recorded from both AI and SRAF
in five rats and AI only in one rat. In the control
group, we recorded from both AI and SRAF in
one rat, recorded from AI only in three rats, and
recorded from SRAF only in three rats.

Multiunit responses to tone pips and white-
noise bursts were obtained from a total of 1828
recording sites. We recorded a total of 892 ac-
ceptable tuning curve files from tone-pip stim-
uli in AI (FR, 278; LR, 349; control, 265) and a
total of 936 in SRAF (FR, 342; LR, 292; control,
302). We obtained a total of 809 acceptable
rate-level function (RLF) files in AI (FR, 215;
LR, 337; control, 257) and a total of 824 in
SRAF (FR, 269; LR, 274; control, 281).

Behavioral training. Rats assigned to the FR
and LR groups were trained to identify a target
auditory stimulus from a set of distracter audi-
tory stimuli. The auditory stimuli consisted of
150 ms tone pips (10 ms linear ramps) of vari-
able frequency and intensity. Rats assigned to
the FR task were rewarded for making a “Go”
response shortly after the presentation of a
4987 Hz tone at any intensity. Rats assigned to

the LR task were rewarded for making a Go response shortly after the
presentation of a 35 dB sound pressure level (SPL) tone at any frequency.
Training was performed in an acoustically transparent operant training
chamber (20 � 20 � 18 cm, length � width � height) contained within
a sound-attenuated chamber. Input and output devices (photobeam de-
tector, food dispenser, sound card, house light) and software were man-
ufactured by Med Associates (Georgia, VT). The frequency and intensity
values of all tones used in the FR and LR tasks were drawn from the same
set of possible values (Table 1). The rats were shaped in three phases.
During phase A, rats were trained to make a nose poke response to obtain
a food reward. During phase B, rats were trained to make a nose poke
only after presentation of an auditory stimulus (5 kHz at 35 dB SPL).
During phase C, rats were conditioned to make discriminative responses
to the target stimulus and not to a limited set of non-target stimuli. Rats
were advanced to the actual training program (levels 1– 6) once their
performance in phase C was clearly under stimulus control. Once rats
were working within the actual training program, they began each day on
level 1.

A single behavioral trial was defined as the length of time between the
onsets of two successive tones. The intertrial interval was selected at
random from a range of 3–9 s. A rat’s behavioral state at any point in time
could be classified as either Go or “NoGo.” Rats were in the Go state
when the photobeam was interrupted. All other states were considered
NoGo. For a given trial, the rat could elicit one of five reinforcement
states. The first four states were given by the combinations of responses
(Go or NoGo) and stimulus properties (target or non-target). Go re-
sponses within 3 s of a target were scored as a hit, and a failure to respond
within this time window was scored as a miss. A Go response within 3 s of
a non-target stimulus was scored as a false positive, and the absence of a
response was scored as a withhold. The fifth state, false alarm, was defined
as a Go response that occurs �3 s after stimulus presentation. A hit
triggered delivery of a food pellet (45 mg; BioServe, Frenchtown, NJ). A
miss, false positive, and a false alarm initiated a 5 s “time-out” period
during which time the house lights were turned off and no stimuli were
presented. A withhold did not produce a reward or a time out.

Trials were grouped into blocks of 50. At the conclusion of each block,
a target response ratio (number of hits/number of target trials), a non-

Table 1. Tone frequencies and intensities used in the auditory recognition task

Phase Aa

Phase B
Frequency 4987*
Loudness 35**

Phase C
Frequency 1600 4987* 15,542
Loudness 35** 55 75

Level 1
Frequency 1600 2825 4987* 8803 15,542 27,437
Loudness 35** 45 55 65 75 80

Level 2
Frequency 1950 3121 4987* 7981 12,771 20,435
Loudness 35** 43 51 59 67 75

Level 3
Frequency 2370 3438 4987* 7234 10,494 15,215
Loudness 35** 41 47 53 59 65

Level 4
Frequency 2885 3794 4987* 6557 8622 11,335
Loudness 35** 39 43 47 51 55

Level 5
Frequency 3515 4190 4987* 5944 7085 8440
Loudness 35** 37 39 41 43 45

Level 6
Frequency 4275 4619 4987* 5388 5821 6285
Loudness 35** 36 37 38 39 40

Frequency values are in hertz (Hz), and Loudness values are in decibel sound pressure level (dB SPL). For each trial, the tone frequency and intensity were
selected independently and randomly from the list corresponding to the current difficulty level. For any specific level, the probability that any of the six
frequencies and intensities will be selected is equal. The asterisks indicate target stimuli for the FR (*) and LR (**) tasks.
aGo response rewarded without auditory stimuli.
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target response ratio (number of false positives/number of non-target
trials), and a false alarm ratio (number of false alarms/number of trials)
were calculated. For the FR task, if the target response ratio was �90%
and the non-target response ratio was �20% the task difficulty was in-
creased by one level (unless the rat was working on stimulus level 6). The
stimulus level difficulty was reduced by one level if any of those criteria
were not met (unless the rat was working on stimulus level 1). For the LR
task, the target response ratio criterion was set to 80% and the non-target
response ratio was set to 30%. This difference in criteria adjusted for the
fact that the LR task was inherently more difficult and ensured that rats in
both tasks were moving through the levels (and therefore experiencing
equivalent stimuli) at comparable rates.

At the conclusion of training, each day of behavioral performance
underwent an additional quality control. If the rat was inattentive (target
response ratios �50%) or hyperactive (false alarm ratios �15%) over a
block of 50 trials, the block was discarded. The rats worked for an average
of 1200 acceptable trials per day. Less than 5% of the blocks met the
criteria set for inattentive or hyperactive behavior. Psychometric func-
tions and stimulus target recognition thresholds were calculated for each
training session by plotting the percentage of Go responses as a function
of the stimulus frequency and intensity. The frequency difference (FR
rats) or intensity difference (LR rats) at which a Go response was made
50% of the time was defined as the target recognition threshold. We
elected to use 50% Go probability as the recognition threshold because it
corresponded to the indecision point, the stimulus difference at which
the rat was equally likely to make a false positive response as it was to
make a withhold response.

Learning curves were reconstructed by plotting the change in recogni-
tion threshold over the course of training. Learning curves generally
exhibited an initial negative slope corresponding to periods of greater
perceptual learning, followed by a relatively flat period that indicated a
plateau in target recognition threshold. The behavioral asymptote was
defined as the transition point between these two phases of learning.
Because single animal learning curves are inherently noisy, we first de-
fined a set of “stable minimum” values that included only threshold
values that were preceded and followed by values that differed by �15%.
The minimum value from this set was defined as the minimum recogni-
tion threshold, and the earliest training session that was within 15% of
the minimum recognition threshold was defined as the behavioral as-
ymptote. This approach allowed us to distinguish stable improvements
in recognition threshold from ostensibly spurious threshold values (e.g.,
session 5 in Fig. 2C and session 8 in Fig. 2 D).

We elected to use 35 dB SPL as the target intensity rather than an
intermediate intensity that would have been more equivalent to the in-
termediate target frequency used in the FR task for two reasons. First, in
AI of the rat, unlike the cat or bat, the vast majority of neurons are
maximally responsive to sound intensities �70 dB SPL (Phillips and
Kelly, 1989; Doron et al., 2002; Polley et al., 2004). To test our hypothesis
that significantly more neurons would become maximally responsive to
the target intensity as a result of LR training, it seemed most reasonable to
choose a target intensity that was most different from the normally pre-
ferred intensity, yet still audible across all frequencies used in the task. We
concluded that 35 dB SPL met these opposing demands reasonably well.
Second, even with the distracter intensities made as different from the
target intensity as possible, performance on the LR task was still slightly
worse overall than performance on the FR task. Although we cannot be
absolutely certain why this difference occurred, it seems reasonable to
assume that (1) because the distance between the rat’s head and the
speaker was not fixed, the absolute sound level impinging on the ears for
a stimulus of fixed intensity was not constant and/or (2) even if the sound
level reaching the ear for a stimulus of fixed intensity was constant, the
subjective perception of loudness would vary between pure tones of dif-
ferent frequencies (Robinson and Dadson, 1956). Thus, we selected a 35
dB SPL target because it would have the greatest hypothesized effect on
the neural encoding of sound intensity relative to controls and because it
would be perceptually easier to recognize the highest or lowest absolute
sound level within a set, rather than an intermediate value.

Electrophysiological recording procedure. The rats were anesthetized
with sodium pentobarbital (50 mg/kg, followed by 10 –15 mg/kg supple-

ments as needed), the auditory cortex was surgically exposed, and mul-
tiunit activity was recorded with tungsten microelectrodes (1–2 M�;
FHC, Bowdoinham, ME). AI was defined based on short latency (8 –20
ms) evoked onset responses in the most dorsal auditory field containing
a complete tonotopic gradient running at �15° relative to the horizontal
plane. The center of SRAF is located in cortical area TE3 �2 mm ventral
to the center of AI and 0.5 mm dorsal to the rhinal fissure [the area named
VAAF in the study by Kalatsky et al. (2005)]. SRAF has a clearly organized
tonotopic gradient running approximately orthogonal to the horizontal
plane. SRAF is separated from AI by an intermediate field, VAF, which
abuts the dorsal border of SRAF and the ventral border of AI. Pure tone
tuning curves in SRAF are typically broader than those observed in AI at
sound intensities near threshold (e.g., Q14), and onset response latencies
are 4 ms longer, on average, than AI neurons (D. B. Polley, unpublished
observations).

Recording sites (20 –35 per mm 2; 150 –250 �m separation between
recording sites) were evenly distributed across AI and SRAF while avoid-
ing blood vessels. A typical map of either field could be delineated from
60 to 100 individual penetrations, of which 45– 80 sites might be suffi-
ciently tuned to be included in the map and the remainder used to define
map borders or unresponsive regions. At every penetration site, the re-
cording microelectrode was lowered orthogonal to the pial surface to a
depth of 450 –550 �m (layers 3/4), where robust stimulus-driven re-
sponses were most readily recorded. Frequency–intensity response areas
were reconstructed by presenting 60 pure-tone frequencies (1–30 kHz,
20 ms duration, 5 ms raised cosine ramps) at 11 sound intensities (0 –70
dB SPL, 7 dB SPL increments) to the contralateral ear using a calibrated
sound delivery and recording system (Tucker-Davis Technologies, Ala-
chua, FL).

Analysis of electrophysiological responses. Characteristic frequency (CF)
was defined for each tuning curve as the frequency that evoked a response
at threshold. Cortical recruitment functions were calculated by deter-
mining the polygonal area associated with a single penetration within the
map and then calculating the range of sound frequencies that elicited a
response from that site at each of the 11 sound intensities. The area of all
polygons activated by a tone of a specific frequency and intensity was
then summed and expressed as a percentage of the total map area. Tuning
curve bandwidth was defined at 14 and 42 dB SPL above threshold and
was expressed as a Q-factor value (CF/bandwidth).

RLFs were constructed by presenting white-noise bursts (150 ms du-
ration, 5 ms raised cosine ramps) at 17 intensities ranging from 0 to 80 dB
SPL in 5 dB SPL increments. Each intensity was presented 20 times in a
pseudorandom order. At each site, the spontaneous firing rate collected
during the 100 ms before stimulus onset was subtracted from the stimu-
lus onset response (mean duration of the onset response � SD, 21.44 �
10.68 ms). Each RLF was normalized to its maximum firing rate, and the
following measures (defined below) were derived according to the
method outlined by Schreiner et al. (1992): (1) minimum response
threshold; (2) transition point; (3) best level; (4) slope of the RLF be-
tween the minimum response threshold and the transition point; and (5)
monotonicity. If the spike rate remained at zero for two consecutive
sound levels, all sound levels less than or equal to the greater of the two
levels were considered subthreshold. The minimum response threshold
was defined as the first sound level in the suprathreshold region of the
RLF (see Fig. 7B, arrow). In many cases, the RLF consisted of a fast-
growing low-intensity portion and a saturated or decreasing response
function at higher sound intensities. The transition point was defined as
the lowest suprathreshold intensity at which the firing rate failed to in-
crease by at least 10% (mean change in firing rate: pre-threshold, 38%;
post-threshold, �5.9%) (see Fig. 7B, diamond). The best level was de-
fined as the sound level that evoked the greatest magnitude response.
Monotonicity was defined as the slope of the RLF between the transition
point and the highest sound level estimated by a linear regression analy-
sis. In the event that the RLF increased linearly above the minimum
response threshold (e.g., type A in Fig. 7B) and a transition point could
not be determined, a linear regression analysis was performed on all
sound levels above threshold. In both cases, the slope of the regression
function was used as a quantitative measure of monotonicity, whereby a
negative slope corresponded to a nonmonotonic response and a slope of
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zero or greater corresponded to a monotonic response function. A min-
imum of five sound intensity values, including the transition point, had
to be included in the linear regression analysis or a monotonicity value
was not determined for that recording site. Less than 3% of recording
sites were excluded for this reason. RLFs were classified as type A, B, or C
(see Fig. 7C) according to the following criterion: functions without a
transition point (diamond) were considered type A, functions with fall-
ing slopes less than �0.5 were considered type C, and all other functions
were classified as type B. Tessellated maps were generated by defining the
Cartesian coordinates, CF, and best level for each penetration site and
applying the voronoi function in Matlab (Mathworks, Natick, MA). All
analyses were performed blind to experimental condition.

Results
Stimulus statistics in the auditory recognition task
Adult rats were trained to perform an auditory recognition task.
The rats were assigned to FR or LR tasks and were presented with
isolated tones of variable frequency and intensity. FR rats were
rewarded for breaking a photo beam with their snout (Go re-
sponse) after the presentation of a 5 kHz tone at any intensity
(Fig. 1A, solid magenta line). LR rats were rewarded for making a
Go response after presentation of a 35 dB SPL tone at any fre-
quency (Fig. 1A, dashed magenta line). The arrangement of stim-
ulus presentation and reinforcement scheduling highlights two

essential features of this experimental de-
sign. First, the FR and LR tasks used statis-
tically similar sets of sensory stimuli from
the first day of behavioral shaping until the
last day of training (Fig. 1A–D). The com-
plete set of tone frequencies and intensi-
ties used throughout behavioral training is
shown in Table 1. The rats were not cued
to attend to either frequency or intensity
but learned to attend to the task-relevant
acoustic feature solely through trial and
error. A statistical analysis confirmed that
tone frequency (Fig. 1C) and intensity
(Fig. 1D) distributions were statistically
inseparable between LR and FR rats
throughout all phases of training
(ANOVA; p � 0.09 for all comparisons).
Second, we used an adaptive tracking pro-
cedure to adjust task difficulty such that
rats in both groups would consistently
produce the correct behavioral responses
on 70 – 80% of the trials. Rats learned to
make a Go response for food reward
(phase A) within 1 d. In all subsequent
phases of training, rats were rewarded for
making a Go response after the target
stimulus only. The task became increas-
ingly difficult as rats became more profi-
cient. Task difficulty was increased either
by adding non-target distracter stimuli
(phase C) or making the distracter stimuli
more similar to the target stimuli (levels
1– 6). Thus, tone frequencies were initially
distributed across a broad range of fre-
quencies spanning 1.6 –28 kHz but be-
came significantly more focused around
the 5 kHz target frequency once behav-
ioral performance reached asymptote
(repeated-measures ANOVA interaction
term; p � 0.025 for FR and LR tone fre-
quency distributions) (Fig. 1C). Similarly,

tone intensities were initially distributed across a broad range
spanning 35– 80 dB SPL but became significantly more clustered
around 35 dB SPL throughout the post-asymptotic behavioral
period (repeated-measures ANOVA interaction term; p � 0.005
for FR and LR tone intensity distributions) (Fig. 1D). By the time
task improvement had reached a plateau, rats were typically
working on higher task levels (e.g., levels 3–5) but rarely per-
formed accurately enough to reach level 6. Consequently, the
distribution of tone frequencies illustrated in Figure 1C shifts
from flat to “M-shaped,” because the distribution of non-target
distracter frequencies have decreased in the frequency ranges fur-
thest from the target and are most commonly drawn from fre-
quency ranges flanking the target frequency range. Had rats been
able to consistently perform the task at level 6, the non-target
distracter intensities and frequencies would have been drawn al-
most entirely from the target frequency (5 kHz � 0.375 octaves)
and intensity (35– 44 dB SPL) category.

Based on psychometric functions, we were able to determine
that rats could selectively attend to either frequency or intensity.
Accordingly, the probability of making a Go response in the FR
task was strictly determined by tone frequency and was not influ-
enced by tone intensity (Fig. 1E). Conversely, the probability of

Figure 1. Stimulus statistics and behavioral performance for the auditory recognition task. A, B, Distribution of tone frequen-
cies and intensities presented in training days 1–2 and all post-asymptotic training sessions in FR (A) and LR (B) rats. Any tone
falling along the dashed horizontal line served as a target stimulus for the LR task. Any tone falling along the solid vertical line was
a target stimulus for the FR task. C, D, Frequencies (C) and intensities (D) presented in each behavioral trial are compared between
FR (red) and LR (black) rats on days 1–2 (squares) and post-asymptotic (PA) days (circles). Tone frequency categories (C) are
3⁄4-octave-wide bins centered on the frequency value shown. E, F, Behavioral performance as a function of tone frequency (E) and
tone intensity (F ) during the post-asymptotic training sessions for all rats trained in the FR (red) and LR (black) tasks. All values
shown are mean � SE.
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making a Go response in the LR task was
exclusively determined by tone intensity
and was independent of tone frequency
(Fig. 1F). The psychometric functions
shown in Figure 1, E and F, were recon-
structed from training sessions after be-
havioral performance had reached asymp-
tote. It is important to note, therefore, that
rats in both groups continued to attend
only to the task-relevant stimulus dimen-
sion even when the range of stimuli in the
task-irrelevant stimulus dimension be-
came increasingly restricted.

Perceptual learning in the auditory
recognition task
The rate of progression to more difficult
levels of training and final recognition
threshold values varied between individ-
ual rats. Examples of an FR-trained rat
that learned the task rapidly and an LR-
trained rat that learned the task more
slowly are shown in Figure 2A–D to illus-
trate the range of learning aptitudes. Both
rats progressed to advanced levels of the
task, albeit at different rates (Fig. 2A). An
example of all stimulus sets presented on a
single day of training is shown for both
rats in Figure 2B. Once individual rats
completed shaping phase C, they began
each day of training thereafter on level 1
and were advanced to higher training lev-
els based on their response accuracy. The
target recognition threshold (stimulus dif-
ference at which the correct response was
made 50% of the time) decreased over the
course of training for each rat (Fig. 2C–F).
Target recognition thresholds typically
decreased to an asymptotic level 2– 6
weeks after completing shaping phase C
(Fig. 2C,D). The change in recognition
threshold from the first day of training on
difficulty level 1 up to the point of asymp-
totic performance was fit with a linear re-
gression (Fig. 2C,D, thick gray line). The
slope of the linear fit was used to indicate
the overall degree of perceptual learning
and is compared with the extent of physi-
ological plasticity described below (Fig. 6).
We observed a significant decrease in target recognition thresh-
olds over the first 4 weeks of training measured for all rats in the
FR task (one-way, repeated-measures ANOVA; F � 3.17, p �
0.0005) (Fig. 2E) and LR task (one-way, repeated-measures
ANOVA; F � 2.86, p � 0.001) (Fig. 2F).

Cortical map plasticity in the frequency domain
Topographically ordered maps for sound frequency in field AI
and SRAF are shown in Figure 3, A and B. The centers and selec-
tivity of sound frequency tuning curves were defined for each
recording site as the CF and as bandwidths of the tuning curve at
various sound levels above threshold. Note that the CF gradient
in AI progresses from high to low along an anteroposterior axis,

whereas the CF gradient in SRAF runs from high to low along a
dorsoventral gradient.

Rats trained in the FR, but not LR, task displayed a pro-
nounced expansion of cortical sites with CFs at or near the 5 kHz
(5 kHz � 0.375 octaves) target frequency compared with controls
(Fig. 3A,B, gray shaded polygons). The distribution of CF values
over the entire population of recording sites in each group was
quantified by categorizing CF values into seven 3⁄4-octave-wide
bins (Fig. 3C,D). The percentage of AI recording sites with CF
values in the trained frequency range (5 kHz � 0.375 octaves)
(Fig. 3C, dotted lines) doubled in FR rats compared with controls
(15.5 vs 7.5%; � 2 � 8.3; p � 0.005) (Fig. 3C) but was essentially
unchanged in LR rats compared with controls (6.3%; � 2 � 0.37;
p � 0.55). Similarly, the percentage of SRAF recording sites with

Figure 2. Documentation of perceptual learning in the auditory recognition task. A, The highest training phase reached on an
individual day of training is shown across the entire training period for one rat in the FR task categorized as a rapid learner (dashed
gray line) and one rat in the LR task classified as a slow learner (solid black line). The description of auditory stimuli used in each
phase is provided in Table 1. B, Task performance for the same rats shown in A obtained from a single day of training (indicated by
black and gray arrows in A) is shown to illustrate the adaptive tracking protocol. C, D, Fifty percent recognition thresholds plotted
across each training day for the same rapid learning rat (C) and slow learning rat (D). Changes in the recognition threshold between
the first day of training until performance reached an asymptotic level were fit with a linear regression (thick gray line), and the
slope of the regression line was defined as the slope of the learning curve. Dashed lines indicate post-asymptotic training days that
were not included in the slope calculation. E, F, Target recognition threshold values (mean � SE) across the first 28 d of training
for all rats in the FR (E) and LR (F ) tasks.
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CF values within the trained frequency range was 2.5 times
greater in rats trained in the FR task than in control rats (20.2 vs
8.3%; � 2 � 18.2; p � 5 � 10�5) (Fig. 3D) but was not signifi-
cantly changed in LR rats compared with controls (5.5%; � 2 �
1.8; p � 0.18). Plotting the same data as difference functions
demonstrates that FR training induced a specific increase in CF
values at the trained frequency range in both AI and SRAF,
whereas LR training did not change the CF distribution in any
consistent manner compared with controls (Fig. 3E). Alterna-
tively, one can measure tonotopic map plasticity by calculating
the map area tuned to the trained frequency range and expressing
that value as a percentage of the total map area. The relative area

of the map tuned to the trained frequency
range in AI was significantly increased af-
ter FR, but not LR, training compared
with control (15.1 � 1.4% vs 7.1 � 1.7%;
t � 3.58; p � 0.01) (Fig. 3F). We also ob-
served an expansion of the relative area of
SRAF tuned to the trained frequency in FR
rats compared with control (16.2 � 2.8%
vs 7.8 � 2.6%), but this trend did not
reach statistical significance (Mann–
Whitney U test; p � 0.05) (Fig. 3F).

Cortical map plasticity in the
intensity domain
Although the spatial distribution of best
level, the sound level that evoked the high-
est firing rate, was not arranged into a to-
pographically organized gradient, record-
ing sites with similar best-level values
tended to cluster in contiguous areas of
the map (Fig. 4A,B). A qualitative com-
parison of the same representative maps
shown in Figure 3, A and B, demonstrates
a strikingly different trend when exam-
ined for the best level rather than CF. Rats
trained in the LR task exhibited a pro-
nounced increase in cortical sites with
best-level values in the trained intensity
range (35 � 5 dB SPL, blue sites), whereas
AI maps for sound intensity in FR and
control rats are dominated by sites that
preferred sound intensities close to 80 dB
SPL (Fig. 4A). We also observed a prepon-
derance of sites in SRAF of LR rats tuned
to the trained intensity range, although
the difference was not as striking as AI be-
cause there was an overall increase in the
number of cortical sites that preferred low
to intermediate sound levels in both FR
and control rats in this field (Fig. 4B).

The distributions of best-level values in
AI are strongly skewed toward high sound
intensities in control and FR-trained rats
and are not different from one another
[Kolmogorov–Smirnov (KS) test; p �
0.59], whereas the best-level distribution
in LR-trained rats was clearly bimodal
with a second peak centered within the
trained intensity range (KS test; LR vs con-
trol, p � 1 � 10�6) (Fig. 4C). Similarly,
best-level distributions in SRAF were sim-

ilar between control and FR-trained rats (KS test; p � 0.26) but
were significantly shifted toward lower sound intensities in LR-
trained rats (KS test; LR vs control, p � 1 � 10�6) (Fig. 4D).
Difference functions were calculated for LR and FR-trained rats
relative to controls. The slopes of the linear regression lines ap-
plied to the LR– control function (AI, �1.5; SRAF, �1.07) were
substantially more negative than the regression line slopes in the
FR– control function (AI, �0.2; SRAF, �0.16), indicating that
LR, but not FR, training decreased the percentage of sites tuned to
60 – 80 dB SPL and increased the percentage of sites tuned to
20 – 40 dB SPL (Fig. 4E). Accordingly, the relative area of the AI
map tuned to the trained intensity range nearly tripled in LR-

Figure 3. Task-specific reorganization of cortical maps in the frequency domain. A, B, Representative tonotopic maps from AI
(A) and SRAF (B) were delineated with fine-grain microelectrode mapping. The color of each polygon in the tessellated map
represents the CF associated with neurons located in the middle cortical layers at that position in the map. Gray shaded polygons
indicate recording sites with CF values within the trained frequency range (5 kHz � 0.375 octaves). Filled circles indicate unre-
sponsive sites. Open circles represent sites with sound-driven responses that did not meet the criteria for inclusion in AI or SRAF.
Scale bar, 1 mm. The arrows indicate dorsal (D) and anterior (A) orientations. C, D, Distribution of CF values in AI (C) and SRAF (D)
for all recordings obtained in control (green), FR-trained (red), and LR-trained (black) rats. Dashed lines indicate the trained
frequency range. E, Difference functions were calculated by subtracting the CF distribution in control rats from FR-trained (solid
red) and LR-trained (dashed black) CF distributions. Zero values (solid black line) indicate no difference relative to controls. Tone
frequency categories (C–E) are 3⁄4-octave-wide bins centered on the frequency value shown. F, Mean � SE percentage of map
area with CF values in the trained frequency range (TFR). The asterisk indicates a statistically significant difference obtained with
an unpaired t test ( p � 0.05).
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trained rats compared with control rats
(25.6 � 1.3% vs 8.8 � 1.8%; t � 7.72; p �
0.0001) (Fig. 4F) but was unchanged in
FR-trained rats (9.7 � 3.3%). There was a
similar trend in SRAF, but the difference
between LR-trained rats and control was
not significant (t � 1.14; p � 0.32).

Best-level measurements were ob-
tained with white-noise bursts rather than
pure tones presented at the CF for each
recording site because of the extensive
amount of time required to delineate the
complete maps of AI and/or SRAF (map-
ping both fields in a single rat typically re-
quired �30 h). It is possible, however, to
obtain a rough estimate for changes in the
cortical representation of tone intensity by
analyzing the multiunit responses to the
tonal stimuli used to generate the tuning
curves. Although the best level was argu-
ably a more sensitive assay for training ef-
fects in the intensity domain because it
was defined by spike rate (analog) rather
than by categorizing a recording site as re-
sponsive or not responsive to a specific
tone frequency/intensity combination
(binary), analysis of cortical recruitment
functions allowed us to determine
whether plasticity in the intensity domain
was differentially expressed between dif-
ferent frequency ranges in LR rats. Corti-
cal recruitment functions are essentially
the converse of tuning curve bandwidth
measurements; rather than measure the
range of frequencies to which the neu-
ron(s) was responsive, we measured the
percentage of total map area activated by a
pure tone at a specific frequency and in-
tensity. Cortical recruitment functions for
each tone frequency were grouped into the
same seven 3⁄4-octave-wide categories and
compared between LR and control rats in
AI and SRAF.

For the majority of tone frequency cat-
egories, we observed a group-by-intensity
interaction such that low-intensity tones
activated a greater area of the map and
higher intensity tones activated a smaller
area of the map in LR rats compared with
controls in both cortical fields (Fig. 5). A
significant group-by-intensity interaction
term was observed with a mixed-design
ANOVA for 1.8, 3.0, 5.0, 14.1, and 23.7
kHz frequency categories in AI (F � 2.4 and p � 0.02 for each
comparison) (Fig. 5A,B) and for 1.0, 1.8, 3.0, and 5.0 kHz fre-
quency categories in SRAF (F � 3.5 and p � 0.005 for each
comparison) (Fig. 5C,D). This relationship was effectively cap-
tured by subtracting the values obtained in control rats from LR
rats and plotting the difference function (Fig. 5E,F). This effect
was consistent with best-level measurements obtained with
white-noise bursts; LR rats exhibited fewer recording sites that
were preferentially responsive to high-intensity stimuli and a
greater number of sites that were most responsive to low-

intensity stimuli (Fig. 4C–E) and extends on this observation by
demonstrating that this effect was primarily frequency
independent.

The relationship between cortical map changes and
behavioral threshold
To further underscore the specific relationship between topo-
graphic map plasticity and perceptual learning, we also found
that the degree of topographic map plasticity within the task-
relevant stimulus dimension for an individual rat was correlated
with the extent of that rat’s improvement in the perceptual learn-

Figure 4. Task-specific reorganization of cortical maps in the intensity domain. A, B, Representation of sound intensity in AI (A)
and SRAF (B) are created using the same conventions as in Figure 2, except that the color within each polygon indicates the best
level for neurons at that recording site, rather than CF. Empty polygons indicate recording sites where a best level could not be
determined because responses were poorly driven by white-noise bursts. Blue shaded polygons indicate recording sites with
best-level values in the trained intensity rage (35 � 5 dB SPL). The arrows indicate dorsal (D) and anterior (A) orientations. C, D,
Distribution of best-level values in AI (C) and SRAF (D). The dotted line indicates the trained intensity range. Each distribution is fit
with a fourth-degree polynomial function (colored lines) to illustrate the shape of the distribution. E, Difference functions were
calculated by subtracting the best-level distribution values in control rats from the best-level distribution values in LR-trained (left)
and FR-trained (right) rats. Solid and dashed lines represent linear fits of the difference values for AI (solid black) and SRAF (dashed
gray). Flat slopes indicate no difference relative to control. F, Mean � SE percentage of map area tuned to the trained intensity
range (TIR) in control (green), FR-trained (red), and LR-trained (black) rats. The asterisk indicates a statistically significant differ-
ence obtained with an unpaired t test (p � 0.05).
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ing task (Fig. 6). Perceptual learning was quantified by fitting the
decrease in target recognition threshold with a linear regression
(as illustrated in Fig. 2C,D). The negativity of the regression
slope, essentially a combined indicator of the learning rate and
the degree of threshold change, was used as a single metric for task
improvement. In FR rats, the slope of the learning curve was
significantly correlated with the percentage of AI and SRAF sites
with CF values in the trained frequency range (r � �0.81; p �
0.05) (Fig. 6A) but was not correlated with the percentage of sites
with best-level values in the trained intensity range (r � 0.45; p �
0.44). Conversely, the slope of the learning curve in LR rats was
significantly correlated with the percentage of AI and SRAF sites
with best-level values within the trained intensity range (r �
�0.89; p � 0.05) (Fig. 6B) but was not correlated with the per-
centage of sites with CF values in the trained frequency range (r �
�0.02; p � 0.96). In the event that maps of both AI and SRAF
were obtained in a single rat (n � 5 LR; n � 4 FR), the percentage
of sites with values in the trained frequency or intensity range
were averaged so that a single value could be calculated for each
rat. The learning curve slope values in LR rats were greater than
FR rats by �1 order of magnitude, but this does not indicate that
LR rats showed significantly greater learning overall. This differ-
ence is strictly attributable to the fact that decibel and frequency

are different units of measurement and
comparing the slope values between them
is meaningless. As shown in Figure 2, E and
F, target recognition threshold decreased
to �66% of its original value for both
groups. It is also worth noting that signif-
icant correlations were only observed for
either group using the specific combina-
tion of learning curve slope relative to the
percentage of recording sites with CF or
best-level values in the trained frequency
or trained intensity range. Significant cor-
relations were not observed using any
other combination of behavioral learning
index or physiological plasticity measure
or when comparisons were restricted to AI
or SRAF only.

A straightforward test for the
bottom-up versus top-down hypothesis is
to determine whether cortical sites co-
opted into the expanded representation of
the attended target dimension also be-
longed to the representation of the unat-
tended target dimension (in other words,
whether the gray shaded sites in Fig. 3, A
and B, are also the blue shaded sites in Fig,
4, A and B). Because the FR and LR tasks
used identical sets of tone pips that became
increasingly focused around the target fre-
quency and trained intensity, the
bottom-up model would predict that cor-
tical sites preferentially responsive to one
target stimulus would be plastically modi-
fied to be preferentially responsive to the
other. The top-down model, in contrast,
would predict that individual sites within
the map could become incorporated into
the attended target stimulus representa-
tion without being incorporated into the
unattended target stimulus representa-

tion. Our data strongly support a top-down model. Rats trained
in the FR task exhibited approximately twice the number of AI
and SRAF sites tuned to the trained frequency range compared
with controls. Of these sites, however, only 1% was also tuned to
the trained intensity range. Similarly, rats trained in the LR task
had more than twice the number of AI and SRAF sites tuned to
the trained intensity range compared with controls, but only 2%
of these sites were also tuned to the trained frequency range.
Receptive fields tuned to both target dimensions were equally
rare in control rats, amounting to �1%.

Effects of training on receptive field bandwidth
We also analyzed receptive field tuning specificity as a neural
correlate of perceptual learning and determined that sharpening
of the receptive fields for sound intensity and sound frequency
were related to the demands of the LR, but not FR, task. Intensity
receptive fields were determined at each recording site by mea-
suring the firing rate evoked by the presentation of a white-noise
burst played across a range of sound levels spanning 0 – 80 dB
SPL. These functions, commonly called RLFs, could be classified
as monotonically increasing (Fig. 7A, left), saturating (Fig. 7A,
middle), or nonmonotonic (Fig. 7A, right). The shapes of the RLF
corresponding to each response type are a first approximation of

Figure 5. Plasticity in cortical recruitment functions. A–D, Mean � SE percentage of the cortical map area activated by tones
grouped into seven frequency categories in control (A, C) and LR (B, D) rats for AI (A, B) and SRAF (C, D). E, F, Difference functions
(LR minus control) for all frequencies in AI (E) and SRAF (F ). Zero values (solid black lines) indicate no difference relative to
controls.
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the filter function of that site, or receptive field, for sound inten-
sity (Fig. 7B). RLFs recorded in AI of control and FR-trained rats
were most commonly monotonically increasing (type A) or sat-
urating high-pass (type B) filters with only 10 –15% exhibiting
nonmonotonic (type C) RLFs. There was a more equal distribu-
tion of each response type in SRAF of FR and control rats (Fig.
7C). In contrast, approximately one-half of the RLFs recorded
from rats trained in the LR task were nonmonotonic (47 and 56%
for AI and SRAF, respectively) (Fig. 7C). Receptive field selectiv-
ity for sound intensity was quantified by measuring the slopes of
the rising and falling phases of the RLFs. For both AI and SRAF,
the initial increase in firing rate between the threshold and tran-
sition point (RLF slope between the arrow and diamond in Fig.
7B) occurred more rapidly in LR-trained rats compared with
controls (AI: t � 2.03, p � 0.05; SRAF: t � 2.36, p � 0.05) but was
unchanged between FR-trained rats and controls (Fig. 7D). The
percentage of sites that decreased their firing rate across higher
sound intensities (RLF slope between the diamond and square in
Fig. 7B) was significantly greater in LR-trained rats compared
with controls (KS tests; p � 1 � 10�6 for AI and SRAF), but the
distributions were unchanged between FR-trained rats and con-
trols (KS tests; p � 0.95 and p � 0.32 for AI and SRAF, respec-
tively) (Fig. 7E). Collectively, the rising and falling slopes of the
RLFs were significantly steeper in LR rats compared with FR rats
and controls, demonstrating that in addition to becoming pref-
erentially responsive to the trained intensity range, receptive
fields in LR rats became more narrowly tuned to a restricted range
of sound intensities.

Tuning curve bandwidth, measured as Q-factor, was used to
assay breadth of tuning in the frequency domain. We did not find
any significant differences in tuning curve bandwidth measured
14 dB SPL above threshold in FR versus control rats (t � 1.54; p �
0.13) or LR versus control rats (t � 1.28; p � 0.2). We did,
however, observe that tuning curves were significantly narrower
42 dB SPL above threshold in LR versus control rats (Q42 �
2.69 � 0.17 vs 1.69 � 0.1 for LR and control, respectively; t � 5.0;
p � 5 � 10�6) but not between FR and control rats (Q42 �
1.52 � 0.09 for FR rats; t � 1.28; p � 0.2). Q42 was then measured
as a function of cortical field and CF category to better determine
where these effects were most strongly expressed (Fig. 8). We
found that tuning curves were significantly narrower for CF cat-
egories 4 –7 in AI (t � 2.43 and p � 0.025 for all comparisons) but

were not significantly different in SRAF for any CF category (Fig.
8A,D). An increase in Q42 value in LR rats could be a predictable
consequence of the aforementioned observation that unit dis-
charge rate became increasingly nonmonotonic to stimuli of in-
creasing intensity. To affirm that the narrowing of tuning curve
bandwidth in LR rats is essentially an epiphenomena of plasticity
in the intensity domain, we made independent comparisons of
Q42 values in AI of control rats to Q42 values from nonmono-
tonic recording sites in AI of LR rats (type C) and to the mono-
tonic recording sites in AI of LR rats (types A and B). We found
that Q42 values were significantly higher in CF categories 5–7
when the sample of AI recording sites in LR rats was restricted to
nonmonotonic responses (t � 2.5 and p � 0.025 for all compar-
isons). Q42 values in the trained frequency range were also
greater in LR rats compared with controls, but this difference was
not statistically significant after the Bonferroni correction (t �
2.7; p � 0.04). Importantly, we did not observe any significant
differences in Q42 for CF category 4, 5, 6, or 7 when the compar-
ison was made with AI recording sites with monotonic RLFs (t �
1.8 and p � 0.08 for all comparisons).

Comparing Q42 values in FR rats with controls revealed a
trend for narrower tuning within the trained frequency range in
AI (Q42 � 2.06 � 0.52 vs 1.09 � 0.13 for FR and control, respec-
tively) (Fig. 8A,C), but this difference was not close to reaching
statistical significance after the Bonferroni adjustment for multi-
ple comparisons (t � 1.8; p � 0.08). The only difference in Q42
observed between FR rats and controls was a significant increase
in tuning curve bandwidth among neurons with the highest-
frequency CFs in SRAF (t � 3.17; p � 0.005) (Fig. 8B,C). It
should be noted that Q42 could not be calculated for any record-
ing site with a minimum response threshold �28 dB SPL because
of the fact that tone pips were presented at a maximum of 70 dB
SPL. This excluded all recording sites with CF values falling
within category 1 in AI and all category 1 and 2 recording sites in
SRAF, amounting to 11% of recording sites overall.

Comparison of three descriptive models for cortical
map plasticity
In the present study, the terms “bottom-up” and “top-down”
refer to two ends of a theoretical continuum that describes the
relative weight of environmental sensory signals versus internal
cognitive signals for driving adult cortical map changes. The ex-
treme position of the bottom-up model holds that adult cortical
plasticity is exclusively determined by the sensory stimulus statis-
tics; internal factors such as arousal and attention have no bearing
on plastic changes. Numerous studies have disproved this hy-
pothesis by demonstrating that adult animals passively exposed
to auditory stimuli that have no behavioral significance do not
exhibit enduring auditory receptive field plasticity (Recanzone et
al., 1993; Bao et al., 2004; Polley et al., 2004; Rutkowski and
Weinberger, 2005). Conversely, altering the levels of internal sig-
nals alone via electrical stimulation of neuromodulatory nuclei
without temporally paired auditory stimuli does not induce any
measurable receptive field plasticity (Bakin and Weinberger,
1996). Plasticity in adult cortical maps therefore must arise from
an interaction between internal cognitive variables and external
sensory signals.

We defined three hypothetical models to describe how sen-
sory inputs and internal signals could have interacted to shape the
specific features of cortical map reorganization observed in the
present study. Figure 9 presents difference functions for CF (Fig.
9A) and best-level distributions in LR- and FR-trained rats rela-
tive to controls for each of the three models and for the actual

Figure 6. The percentage of recording sites tuned to the task-relevant stimulus feature is
correlated with the degree of perceptual learning. A, Percentage of AI and SRAF recording sites
tuned to the trained frequency range (TFR) in each FR-trained rat. B, Percentage of AI and SRAF
recording sites tuned to the trained intensity range (TIR) in each LR-trained rat. The linear fit for
each data set is represented by the dashed line. The upward triangle data point (A) and down-
ward triangle data point (B) correspond to the rapid-learning FR rat and slow-learning LR rat,
respectively, in Figure 2 A–D. Solid gray lines represents the mean percentage of recording sites
tuned to the TFR (A) and TIR (B) in control rats.
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data. The maximum change values indi-
cate CF or best-level ranges that would be
over-represented relative to controls, the
minimum values indicate CF or best-level
values that would be under-represented
relative to controls, and a value of zero in-
dicates no difference relative to controls.
The stimulus statistics model holds that
changes in CF and best-level distributions
should change to reflect the sensory stim-
ulus statistics encountered throughout a
period of elevated arousal or attention. Ac-
cording to the stimulus statistics model
(Fig. 9A,B, top row), CF and best-level
distributions should mirror the statistical
distribution of tone frequencies and inten-
sities experienced throughout the post-
asymptotic behavioral period. The
reward-based model predicts that CF and
best-level distributions will shift to prefer-
entially represent the intensity and fre-
quency of tones that precede rewarded tri-
als, regardless of which property is relevant
to the task demands. We calculated the rel-
ative probability that each tone frequency
and intensity was presented during a re-
warded trial throughout the post-
asymptotic training sessions for each rat
and estimated the cortical map changes
that would preferentially represent those
stimuli (Fig. 9A,B, second row). The task-
relevant model also states that cortical
map changes will be specific to the stimuli
encountered in rewarded trials but adds
the stipulation that these changes will be

expressed in the task-relevant stimulus dimension only (Fig.
9A,B, third row).

The actual data for CF and best-level distributions were
pooled for all recording sites in AI and SRAF and compared with
the predictions of each of the three models (Fig. 9A,B, bottom
row). As described in Figures 3 and 4, rats trained in the FR task
exhibited a specific over-representation of CF values near 5 kHz
but no consistent change in best-level values relative to controls.
Conversely, rats trained in the LR task exhibited an over-
representation of best-level values near 35 dB SPL but no consis-
tent change in CF values relative to controls. The stimulus statis-
tics model failed to predict this double dissociation and
incorrectly predicted that CF values flanking the trained fre-
quency range would be most over-represented relative to con-
trols. The reward-based model correctly predicted the plasticity
observed in the attended stimulus dimension but incorrectly pre-
dicted that the covariance introduced in the irrelevant stimulus
domain (i.e., the increased percentage of soft tones for FR rats
and the increased percentage of mid-frequency tones for LR rats)
would also affect CF and best-level distributions (Fig. 9A,B, sec-
ond row). Of the three models, the task-relevant model most
closely predicted the observed physiological plasticity. It correctly
predicted that rats trained in the FR task will have an over-
representation of the CF values near 5 kHz and LR rats will have
an over-representation of best level values close to 35 dB SPL.
Although the physiological data in the task-irrelevant domain
(Fig. 9A, third row, dashed line, 9B, third row, solid line) were not
as flat as the task-relevant model predicted, the actual values were

Figure 7. Task-specific restructuring of receptive fields for sound intensity. A, Example raster plots illustrate three represen-
tative types of neural responses to white-noise bursts of varying intensity: monotonically increasing (type A), saturating (type B),
and nonmonotonic (type C). Each dot represents the occurrence of an action potential. B, RLFs correspond to the raster plots shown
in A. The minimum response threshold, transition point, and response at highest intensity are indicated by the arrows, diamonds,
and squares, respectively. C, Frequency of occurrence for type A, B, and C RLFs in AI and SRAF for control (green), FR (red), and LR
(black) rats. The color scheme applies for all subsequent panels. D, Mean � SE slope of RLF rising phase (between the arrow and
diamond in B). The asterisks indicate statistically significant differences obtained with an unpaired t test ( p � 0.05). E, Cumu-
lative percentage plots illustrate shifts in the distribution of monotonicity values (slope of the RLF between the diamond and
square in B) in AI (left) and SRAF (right).

Figure 8. Task-specific changes in tuning curve bandwidth. A, B, Q-factor (mean � SE)
measured 42 dB above threshold for recording sites in control (open bars), FR (diagonal hatched
bars), and LR (crosshatched bars) rats for AI (A) and SRAF (B). Higher Q42 values represent
narrower tuning curve bandwidths. The asterisks indicate statistically significant differences
compared with control values ( p � 0.025). C, D, The same data are represented as difference
functions (trained rat values minus control values) to highlight changes between FR versus
control (C) rats and LR versus control (D) rats in AI (solid black lines) and SRAF (dashed gray
lines). Zero values (solid black lines in C and D) indicate no difference relative to controls. Tone
frequency categories are 3⁄4-octave-wide bins centered on the frequency value shown.
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either at zero (and therefore equivalent to control) or close to
zero, and of the three models, the task-relevant model clearly
came closest to predicting the actual data in the unattended stim-
ulus domain.

Discussion
Rats were trained to selectively attend to either the frequency or
intensity of auditory stimuli that varied in both dimensions. Rats
in both groups progressively improved in their ability to correctly
recognize the target frequency or intensity amid sets of increas-
ingly similar distracter stimuli. Electrophysiological recordings
performed at the conclusion of training revealed plasticity in AI
and SRAF expressed in the task-relevant stimulus dimension
only. Rats trained in the FR task exhibited a significantly greater
proportion of recording sites with CF values in the trained fre-

quency range and an expansion of the relative AI map area tuned
to the trained frequency range compared with LR rats and con-
trols. Rats trained in the LR task had an increased proportion of
recording sites in AI and SRAF with best-level values in the
trained intensity range and an expansion of the relative AI map
area preferentially tuned to the trained intensity range compared
with FR rats and controls. LR training also increased the steepness
of the rising and falling RLF slopes, creating a substantially in-
creased percentage of recording sites that were tuned to a re-
stricted range of sound intensities compared with the monotonic
high-pass RLFs observed most commonly in FR rats and con-
trols. Significantly enhanced responses for sound intensities
below the trained intensity range (i.e., 7–28 dB SPL) were also
observed in cortical recruitment function and best-level mea-
surements in LR-trained rats compared with FR-trained and con-
trol rats. The 35 dB SPL target intensity was measured with a
calibrated microphone positioned beneath the speaker at a dis-
tance approximating the rat’s typical head position. As such, 35
dB SPL represents the idealized sound level that would reach the
ear for the target intensity, but depending on the exact distance
and position of the rat’s ear relative to the speaker, the actual
sound level impinging on the ear could be slightly less, but not
likely more, than 35 dB SPL. We speculate that enhanced re-
sponses to lower sound intensity stimuli therefore reflects the fact
that the actual sound level reaching the ear for rewarded trials
could be skewed toward lower intensities.

The complete functional architecture of a single auditory cor-
tical field arises from a “lattice” of independent maps that code
for sound frequency, bandwidth, intensity, and bianaural inter-
action type (for review, see Schreiner, 1998). Receptive field re-
organization in the auditory cortex resulting from associative
learning protocols is similarly multifaceted; animals conditioned
to make discriminations in pitch-modulated stimuli demon-
strate receptive field plasticity in the spectral domain (Recanzone
et al., 1993; Blake et al., 2002; Fritz et al., 2003; Rutkowski and
Weinberger, 2005; Witte and Kipke, 2005), animals trained to
discriminate changes in envelope modulation rate exhibit plas-
ticity in the temporal domain (Beitel et al., 2003; Bao et al., 2004),
and animals trained to discriminate changes in intensity-
modulated stimuli express plasticity in the intensity domain
(Polley et al., 2004). The present results extend on these studies by
demonstrating that the domain of receptive field reorganization
(spectral, temporal, or intensive) is not necessarily reflective of
the type of stimuli that animals are presented with in the learning
task. Rather, plasticity of maps and constituent receptive fields
may represent the functional state that allowed the animal to best
solve the challenges of the sensory discrimination task regardless
of the specific properties of the bottom-up sensory inputs. The
results of this study also demonstrate that maps embedded within
the same neural circuits can reorganize independently without
disturbing one another. In this framework, top-down control
mechanisms might enable the cortical network to operate selec-
tively on one component of a complex sensory signal in which
basic sensory attributes (e.g., sound location and sound intensity)
covary.

Our experiments required the use of lengthy fine-grained mi-
croelectode mapping procedures. Plasticity in the resultant maps
therefore reflects accumulated physiological changes induced by
training that can be assayed under anesthesia. Although our study
speaks most strongly to more enduring modifications of cortical
networks that result from extensive perceptual training, it would
be valuable to understand whether auditory cortical plasticity
that results from rapid conditioning protocols such as fear con-

Figure 9. Cortical map reorganization best explained by a model limited to task-relevant
stimulus features. Line plots depict differences in the CF distributions (A) and best-level distri-
butions (B) in FR-trained rats (solid lines) and LR-trained rats (dashed lines) relative to controls
(value� trained� control). The first three rows present predicted changes in CF and best-level
distributions based on overall stimulus statistics encountered in the task (top row), the stimulus
statistics that precede rewarded trials only (second row), and stimulus statistics limited to the
attended stimulus dimension (third row). The predicted changes for the FR and LR groups are
compared with the actual changes in CF and best-level distributions in the bottom row. The CF
and best-level categories are identical to those used in Figure 1. The actual data shown in the
bottom reflect mean values pooled from AI and SRAF (shown individually in Figs. 3c– e, 4c– e).
Max, Maximum; Min, minimum.
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ditioning or neuromodulatory pairing might also be influenced
by top-down mechanisms (for review, see Kilgard et al., 2002;
Suga and Ma, 2003; Weinberger, 2004). Ultimately, procedures
that characterize plasticity using real-time awake recording
methods might reveal top-down mechanisms that allow the cor-
tex to switch between different flexible states of information pro-
cessing according to rapidly changing environmental demands
(Edeline et al., 1993; Ohl and Scheich, 1997; Ohl et al., 2001; Fritz
et al., 2003, 2005).

Our interest in mapping SRAF, a secondary and putatively
higher auditory field, to supplement recordings from AI was in-
spired by a set of perceptual learning studies in the visual (Wa-
tanabe et al., 2002) and auditory (Petkov et al., 2004) systems that
describe task-related modulations restricted to higher cortical
fields. Based on these studies, we reasoned that task-dependent
plasticity might be expressed most strongly in SRAF, whereas
plasticity in AI, if observed at all, might predominantly reflect
bottom-up influences. We were surprised to find that plasticity in
AI was equally pronounced and, for some response properties,
even more pronounced than that seen in SRAF. Expansion of the
relative map area dedicated to the trained frequency range (Fig.
3F) and trained intensity range (Fig. 4F) was observed in AI but
not in SRAF. Similarly, differences in tuning curve bandwidth
changes and cortical recruitment functions were observed in AI
of LR-trained rats but not in SRAF. In summary, task-dependent
reorganization was observed in both fields, but plasticity in AI
was equivalent to or more pronounced than what was observed in
SRAF. These observations suggest that task-dependent plasticity
may be expressed at lower levels of the cortical hierarchy with
more extensive periods of perceptual training and/or the hierar-
chical organization of auditory cortical fields in the rat is far less
elaborated than the hierarchical organization in the human cor-
tex and therefore may be less susceptible to differential expres-
sion of task-dependent modulations.

Seitz and Watanabe (2005) have recently proposed that early
cortical fields may contribute to perceptual learning by improv-
ing processing of sensory stimuli that bear a consistent temporal
relationship to reinforcement signals. According to this view, the
cortical network is agnostic to whether a particular stimulus fea-
ture is relevant to the task; receptive fields for all stimulus features
that are consistently paired with reinforcement (i.e., inputs from
neuromodulatory nuclei) will undergo reorganization. Our ex-
periments attempted to address this issue by introducing covari-
ance between the task-relevant and task-irrelevant sensory fea-
tures. Despite the fact that the stimuli paired with reward in both
the FR and LR tasks became increasingly focused on soft mid-
frequency tones, plasticity was only observed in the task-relevant
stimulus domain. This observation suggests that models for cor-
tical plasticity based solely on temporally paired inputs from neu-
romodulatory nuclei and sensory inputs might be incomplete
and that top-down inputs from sources such as the prefrontal
cortex, parietal cortex, or higher auditory areas might also play an
important role.

This conclusion must be tempered, however, by two caveats.
First, the stimulus properties in the task-irrelevant domain did
not exactly covary with the stimulus properties in the task-
relevant domain. The frequencies or intensities associated with
reward in the task-irrelevant domain were substantially restricted
by the time behavior reached asymptote but were not constant.
Second, the covariance became progressively more pronounced
as performance improved. The predicted plasticity for each
model was derived from stimuli presented once the rats had
reached an asymptotic level of task performance. We reasoned

that the stimuli presented during this period of training would
have the greatest impact on the physiological plasticity recorded
at the conclusion of training. It is possible, however, that the
plasticity documented at the end of training might also have been
shaped by earlier phases of training when the distributions of
frequencies and intensities used for the training stimuli were still
broad (Fig. 1C,D, dashed lines). It will be worthwhile, in future
studies, to identify the relative contribution of early versus late
stages of training.

Nevertheless, these data propose a testable alternative to the
model put forth by Seitz and Watanabe (2005). Rather than ex-
plain perceptual enhancement and/or physiological plasticity
solely as a temporal interaction between sensory and reinforce-
ment signals, we propose that plasticity is restricted to the task-
relevant domain only if stimuli in the task-irrelevant domain
interfere with the ability to solve the task. In our study and several
others that find physiological plasticity restricted to the task-
relevant stimulus dimension (Schoups et al., 2001; Li et al., 2004),
the task-irrelevant stimulus inputs must be actively suppressed to
best solve the task, whereas the task-irrelevant stimuli do not
necessarily compromise the subject’s ability to solve the task in
the studies by Petkov et al. (2004) or Watanabe et al. (2001, 2002).
The same is true of a recent study published by Rutkowski and
Weinberger (2005) that describes an expansion in the relative
area of the AI tonotopic map preferentially responsive to the
target frequency but also to low-frequency sounds emitted by the
reward delivery mechanism. In this case, as with the studies by
Watanabe et al. (2001, 2002), the sounds emitted by the reward
delivery system were temporally paired with reward and irrele-
vant to the task demands but did not interfere with the rat’s
ability to recognize the target stimulus. In the event that non-
target stimuli are both irrelevant and competitive, top-down in-
puts may limit receptive field reorganization only to the stimuli
that contribute the most information about the occurrence of
upcoming unconditioned stimuli. A reorganizational scheme
that increases the neural resources (e.g., map area or receptive
field bandwidth) allocated to the conditioned stimuli that most
effectively predict unconditioned stimuli and limits neural re-
sources that represent redundant or irrelevant stimuli would be
optimized from the standpoint of information processing (Gal-
listel, 2003).

Although some questions remain concerning the role of atten-
tion and task-relevant inputs, it is abundantly clear from the
present data, psychophysical data (Seitz and Watanabe, 2003),
and previous studies investigating the neural correlates of condi-
tioned responses (Diamond and Weinberger, 1986; Edeline et al.,
1993; Recanzone et al., 1993; Rutkowski and Weinberger, 2005)
that the neural plasticity accompanying perceptual learning is
specific to sensory inputs that reliably predict behaviorally rein-
forcing events. Engaging animals in challenging behavioral tasks
is known to increase levels of dopamine, acetylcholine, and nor-
epinephrine in the cerebral cortex (Usher et al., 1999; Himmel-
heber et al., 2000; Schultz, 2000; Dalley et al., 2001). It is impor-
tant to note that the increased presence of these neuromodulators
does not temporarily reinstate a critical period-like process in
which the functional organization of the adult sensory cortex can
once again be shaped by the overall sensory input statistics. Plas-
ticity in adult cortical networks that accompanies perceptual
learning is likely to be shaped by an interaction between sensory
inputs, neuromodulator release, and top-down influences from
higher sensory areas or association cortices.
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