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Cognitive processes depend on synchronization and propagation of electrical activity within and between neuronal assemblies. In vivo
measurements show that the size of individual assemblies depends on their function and varies considerably, but the timescale of
assembly activation is in the range of 0.1– 0.2 s and is primarily independent of assembly size. Here we use an in vitro experimental model
of cortical assemblies to characterize the process underlying the timescale of synchronization, its relationship to the effective topology of
connectivity within an assembly, and its impact on propagation of activity within and between assemblies. We show that the basic mode
of assembly activation, “network spike,” is a threshold-governed, synchronized population event of 0.1– 0.2 s duration and follows the
logistics of neuronal recruitment in an effectively scale-free connected network. Accordingly, the sequence of neuronal activation within
a network spike is nonrandom and hierarchical; a small subset of neurons is consistently recruited tens of milliseconds before others.
Theory predicts that scale-free topology allows for synchronization time that does not increase markedly with network size; our experi-
ments with networks of different densities support this prediction. The activity of early-to-fire neurons reliably forecasts an upcoming
network spike and provides means for expedited propagation between assemblies. We demonstrate this capacity by observing the
dynamics of two artificially coupled assemblies in vitro, using neuronal activity of one as a trigger for electrical stimulation of the other.
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Introduction
Behaviors, from simple to most complex, involve orchestrated
activation of neural cell assemblies. Functionally defined by
Hebb, neuronal assembly is a group of cells that share similar
static and dynamic response properties when activated through
specific receptors, constituting “. . . the simplest instance of a
representative process (image or idea)” (Hebb, 1949). In a series
of classical electrophysiological studies (for review, see Mount-
castle, 1998), as well as in later experiments in which large-scale
imaging technologies were applied (Slovin et al., 2002; Ohki et al.,
2005), the abstract notion of cell assembly was mapped to actual
neural entities. These studies show that, depending on the nature
and complexity of the stimulus, the numbers of neurons consti-
tuting an assembly range from hundreds to many hundreds of
thousands (Roland, 2002; Derdikman et al., 2003). Neurons con-
stituting an assembly synchronize during presentation of a
matching stimulus, as well as during “ongoing activity,” in the
absence of stimulation (Kenet et al., 2003). Regardless of the
stimulus modality, stimulus complexity, or cortical area in-
volved, the characteristic timescale of assembly activation is in the
order of 0.1– 0.2 s. This timescale emerges whether assembly ac-

tivation is measured in the sensory (Super et al., 2001; Slovin et
al., 2002), somatosensory (Derdikman et al., 2003), or motor
(Riehle et al., 1997) areas. The same timescale characterizes the
activation of “higher” cortical areas during categorization tasks
(Keysers et al., 2001) and during pure internal events (Riehle et
al., 1997). Thus, the 0.1– 0.2 s timescale of assembly activation is
a fundamental factor that might constrain the temporal aspects of
cognition.

Because the timescale of assembly activation seems common
to various cortical structures, it is conceivable that its biophysical
characteristics may be obtained by experimentally analyzing a
“generic” cortical neuronal assembly. A large set of experimental
data and theoretical analyses indicates that a network of sparsely
coupled cortical neurons developing in vitro might be useful as an
experimental model for a generic assembly, keeping in mind the
obvious constraints on extrapolations from in vitro to in vivo
conditions (for review, see Corner et al., 2002; Marom and Sha-
haf, 2002). When developing on arrays of microelectrodes
(Gross, 1979; Stenger and McKenna, 1994; Morin et al., 2005)
(see Fig. 1a), the networks can be sampled simultaneously at
many points and interrogated by site-specific stimuli with vary-
ing temporal and spatial structures, allowing a controlled bio-
physical examination.

In the present study, we use networks of cortical neurons de-
veloping in vitro on arrays of microelectrodes to describe the
biophysical process underlying assembly activation in terms of
population dynamics and topology. We show that assembly acti-
vation is a threshold-governed phenomenon. We denote the phe-
nomenon “network spike” (NS). We point at the origin of the
0.1– 0.2 s characteristic timescale and show that the underlying
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topology of effective connectivity is scale free. The impact of the
dynamics and topology at the single assembly level on the syn-
chronization and propagation of activity within and between as-
semblies is demonstrated experimentally.

Materials and Methods
Culturing the cortical neurons on multielectrode arrays. Cortical neurons
were obtained from newborn rats within 24 h after birth, following stan-
dard procedures (Shahaf and Marom, 2001; Marom and Shahaf, 2002;
Eytan et al., 2003, 2004). The neurons were plated directly onto a
substrate-integrated multielectrode array (MEA). The cultures were
bathed in MEM supplemented with heat-inactivated horse serum (5%),
glutamine (0.5 mM), glucose (20 mM), and gentamycin (10 �g/ml) and
were maintained in an atmosphere of 37°C, 5% CO2/95% air in a tissue
culture incubator as well as during the recording phases. Experiments
were performed during the third week after plating, thus allowing func-
tional and structural maturation of the neurons. MEAs of 60 Ti/Au/TiN
electrodes, 30 �m in diameter, and spaced 200 �m from each other
(Multi Channel Systems, Reutlingen, Germany) were used. The insula-
tion layer (silicon nitride) was pretreated with poly-D-lysine. Experi-
ments lasting �3 h were conducted using a slow perfusion system with
perfusion rates of �100 �l/h.

Electrophysiological recordings. A commercial 60-channel amplifier (B-
MEA-1060; Multi Channel Systems) with frequency limits of 1–5000 Hz
and a gain of 1024� was used. The B-MEA-1060 was connected to MCP-
Plus variable gain filter amplifiers (Alpha Omega, Nazareth, Israel) for
additional amplification. Current stimulation through the MEA was per-
formed using a dedicated eight-channel stimulus generator (Multi Chan-
nel Systems). The pair of electrodes for current passing were chosen
based on practical considerations; in particular, we use electrodes that are
not useful for recordings because of their noisy character. Stimulation
parameters are detailed in the legends of Figures 6, 7, and 11. Data was
digitized using two parallel 5200a/526 analog-to-digital boards (Mi-
crostar Laboratories, Bellevue, WA). Each channel was sampled at a fre-
quency of 24,000 Hz and prepared for analysis using the AlphaMap in-
terface (Alpha Omega). Thresholds (8� root mean square units;
typically in the range of 10 –20 �V) were defined separately for each of
the recording channels before the beginning of the experiment. The data
presented in the text is not spike sorted. The basic observation of non-
random recruitment is completely preserved also after spike sorting us-
ing principal component analysis (supplemental Fig. 3, available at
www.jneurosci.org as supplemental material). The supplemental figure
also shows that each electrode in our setup senses approximately one to
two neurons and rarely three neurons. The robustness of the main find-
ing to spike-sorting procedure and the small number of neurons sensed
by a single electrode led us to often interchange the terms “electrode
activity” and “neuronal activity.”

Detecting network spikes. Network spikes were detected using an activ-
ity threshold. A timestamp is defined when activity crosses a threshold of
N number of action potentials recorded throughout the electrode array
within a T millisecond time bin. In most cases (data of Figs. 1, 3a, 4b,c, 7,
9), N is equal to one-fourth of the (active) electrodes, and T � 3 ms. An
active electrode is defined as demonstrating an average firing rate of
�0.02 s �1 throughout the recording session. In several cases in which
analyses required deviation from the above definition, threshold param-
eters are specified. The data around each timestamp (�300 ms) are ex-
tracted and stored. Temporal overlap between NSs was not allowed.

In our data, obtained by MEA with dimensions 1.96 mm 2, no wave-
like directional propagation is observed. This is consistent with data
obtained by others that use that preparation (summarized by Marom and
Shahaf, 2002) and is similar to prestructured preparations (slices and
cultured slices) in which activity is not often wave like (Beggs and Plenz,
2004, their Fig. 2).

Results
Dynamics
Cortical networks in vitro are spontaneously active (Fig. 1b). The
basic firing rate of individual neurons is 0.1–5 Hz, similar to

figures obtained from cortical neurons in vivo. These values for
spontaneous firing rates hold under continuous perfusion in vitro
(see Materials and Methods); if perfusion is discontinued, the
network gradually converges to a synchronic mode of action,
with little (if any) activity between synchronizations. The spon-
taneous activity is completely abolished if excitatory synaptic
transmission is blocked, indicative of the fact that spontaneous
network activity is initiated by interactions at the population level
(sporadic synaptic activity) rather than driven by self-pacing
neurons (data not shown) (for review, see Marom and Shahaf,
2002). Over the past 20 years, physiologists repeatedly demon-
strated that, like in vivo neurons (Kenet et al., 2003), cortical
networks in vitro spontaneously synchronize once every 1–20 s
(Fig. 1b,c), generating assembly activity events (Habets et al.,
1987; Ramakers et al., 1990; Corner and Ramakers, 1991, 1992;
Muramoto et al., 1993; Maeda et al., 1995, 1998; Kamioka et al.,
1996; Nakanishi and Kukita, 1998; Ben-Ari, 2001; Corner et al.,
2002; Marom and Shahaf, 2002; Beggs and Plenz, 2003, 2004;
Wagenaar et al., 2005, 2006). Synchronizations with similar ki-
netics may also be evoked by site-specific electrical stimuli (Jimbo
et al., 1999; Eytan et al., 2003). These synchronous activities,
represented in terms of the number of action potentials recorded
in millisecond time bins, are here referred to as network spikes
(Fig. 1c,d). Results obtained by systematically varying the thresh-
old for network spike detection indicate that, in most cases, once
a network spike starts to assemble, the totality of active electrodes
in the preparation is eventually recruited. In this respect, and
based on the nature of responses to external stimulation (dem-
onstrated later in Fig. 6c, inset) (Jimbo et al., 1999; Eytan et al.,
2003), network spikes have the flavor of “all-or-none” phe-
nomena (Crain, 1976). Figure 2, a and b, demonstrates this
point, showing the number of different electrodes participat-
ing in network spikes (color coded) as a function of the thresh-
old for NS detection (the two panels summarize results from
two different networks). Note, however, that a closer exami-
nation of these histograms (Fig. 2b in particular) reveals the
existence of “aborted” network spikes, most readily detected
using reduced thresholds. To further clarify the picture, �900
network spikes that served for the construction of Figure 2b
are sorted and plotted in Figure 2c: each column depicts the
identity of the electrodes ( y-axis) that participated in a given
network spike (x-axis). The events are ordered such that the
group of aborted network spikes is clearly seen. Note that the
electrodes recruited by aborted spikes constitute a subpopu-
lation of those recruited by fully developed spikes; we will
return to this point later.

Spatial sampling is limited in our experimental setup to 60
substrate-embedded microelectrodes; however, averaging en-
hances analysis of the kinetics underlying a network spike. Aver-
aging thousands of spontaneous network spikes from 21 experi-
ments reveals that the early phase of the spike, in which the
activity of the assembly just starts to increase, fits an exponential
population growth model (Fig. 3a). The rate of recruitment, �,
defined as the number of active electrodes at a given point in time
A(t), divided by the number of active electrodes at (t � �t), is
1.045 (range of 1.02–1.07; SD of 0.015; �t � 1 ms; 21 networks,
5796 NSs). Thus, the pool of active electrodes increases by �5%
with each millisecond. The rate of recruitment seems to be inde-
pendent of the network spike size; a Pearson’s correlation coeffi-
cient of r � �0.14 was calculated between � and spike size (rang-
ing from 7 to 17 active electrodes/ms; 21 experiments).
Furthermore, Figure 3b (top) shows a distribution of network
spike sizes for one given network, obtained using a detection
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threshold of four action potentials per 10 ms time bin; recruit-
ment rates calculated separately from the right and left sides of
the distribution are very similar (1.05 and 1.04, respectively). The
slight tendency for faster recruitment in larger network spike
sizes, manifested by both the negative Pearson’s coefficient and
the exponential functions of Figure 3b (bottom), is addressed
later.

We estimated the rates governing the kinetics of network
spikes by comparing recordings made in the presence and ab-
sence of bicuculline, a pharmacological agent that blocks fast

inhibitory synaptic transmission. Figure
4a shows that, in the presence of 5 �M

bicuculline, the number of aborted net-
work spikes dramatically decreases, and
the activity after the peak of an individual
network spike becomes more vigorous. In
Figure 4b, an average network spike in the
presence of bicuculline (depicted in
brown) is superposed on top of the control
average network spike, showing that the
inhibitory subnetwork is predominantly
affecting the late phase of relaxation from
an NS and has a characteristic timescale of
�30 ms (Fig. 4b, bottom right inset). In-
deed, in the absence of an inhibitory effect
(brown trace), the network spike does not
relax completely; the residual activity is
sustained for several hundred millisec-
onds. Figure 4b also shows that the initial
decline of activity from the peak of an NS
to baseline is dominated by cellular-level
processes: much of the force that restores
the level of activity after the peak of an NS
is insensitive to bicuculline, suggestive of
the role played by synaptic depression,
refractoriness, and cellular adaptation in
this phase of the NS. Analysis of the im-
pact of bicuculline on the rate of recruit-
ment, �, was enhanced by collecting re-
cruitment phases before and after
addition of 5 �M bicuculline to the bath
medium. This procedure, repeated in 16
different networks and summarized in
Figure 4c, reveals an acceleration in the
rate of recruitment when the inhibitory
subnetwork is pharmacologically neu-
tralized, leading to � values in the range
of 1.2/ms.

The kinetics of recovery from the ef-
fect of restoring forces (“refractory pe-
riod” of an NS) occurs on a seconds
timescale and is not markedly affected by
blockade of inhibitory synapses. These
recovery kinetics were estimated by ob-
serving indicators for network excitabil-
ity after a network spike. In particular,
we used electrodes that fire steadily at a
relatively high frequency between net-
work spikes (Fig. 5); immediately after a
network spike, they become silent (Fig.
5a,b) as a result of the effects of cellular-
and network-level restoring forces.
Thus, the kinetics of recovery to the “on-

going” firing rate in these electrodes, after a network spike
(Fig. 5b, arrows), represents the kinetics of recovery from the
effects of restoring force. Obtaining average recovery times in
the presence and absence of bicuculline (Fig. 5c) provides an
estimate of recovery kinetics of intrinsic (cellular adaptation,
refractory period, and synaptic depression) and extrinsic (in-
hibition) restoring forces. We find that, under both conditions
(with and without bicuculline), the recovery timescale is
within the range of several seconds (Corner and Crain, 1972):
the recovery timescale in the control experiment is 5 s (average

Figure 1. a, Cortical network on substrate-embedded multielectrode array. The dark circle is a 30-�m-diameter electrode.
Neurons are tagged using green fluorescent protein. b, Example of spontaneous activity simultaneously recorded from eight
different channels. Top, At 500 s. Bottom, Higher temporal resolution of 30 s from the top panel (extracted section is depicted by
a dark bar). A box marks a single event of synchronous activity. c, Top three traces show examples of individual synchronous events
in terms of number of spikes recorded in 60 electrodes (1 ms time bins). The average of 273 such events (NSs) is shown. d, Example
of average NSs recorded over 1 h from different networks (normalized amplitudes).
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of 96 recovery events). In three bicucul-
line experiments, the obtained recovery
timescales are 2, 2.6, and 8.6 s (1069, 828,
and 726 recovery events, respectively).

The above kinetic analyses provide
much of what is required to heuristically
model the network spike phenomenon
in terms of standard population dynam-
ics. We start by pointing out that the 0.1–
0.2 s timescale of assembly activation re-
emerges when the recruitment rate, � �
1.04 ms �1, is embedded into a normal-
ized logistic growth equation, dA/dt �
(� � 1) A (1 � A), that describes the
fraction of active electrodes ( A) as a
function of time. The term (1 � A) con-
strains the model to a finite population
size. The logistic equation is widely used
in population models in which the rate
of growth is limited by the carrying ca-
pacity (i.e., maximum size) of the popu-
lation; thus, it can only account for the
rising phase of the network spike. To ac-
count for the entire shape of a network
spike, including its relaxation, the im-
pact of restoring forces at both the cellu-
lar level (e.g., adaptation, refractoriness,
and synaptic depression) and the net-
work level (activation of inhibitory sub-
network) need be considered. To that
end, we describe the population growth
by a modified version of the logistic
equation dA/dt � (s( A, t) � � 1) i( A, t) A
(1 � A). s( A, t) and i( A, t) are kinetic
variables ranging from 0 to 1, embody-
ing cellular and network-level restoring
forces, respectively. The assumed kinetic
schemes for s( A, t) and i( A, t) are similar to the form used by
Hodgkin and Huxley (1952) in their description of a neuronal
action potential; that is, (1 � i) N i and (1 � s) N s, with
transition rates being exponential functions of A(t). The un-
derlying assumption is that the recruitment of inhibition and
the processes of cellular and synaptic adaptation are nonlin-
early dependent on activity. To avoid discontinuities in the
model, we used exponential terms; attempts to physically in-
terpret these exponential terms will be presumptuous, at
present. Figure 6 summarizes our kinetic analyses in the form
of a numeric solution. In Figure 6a, the time constants used for
simulating i( A) and s( A) are shown. The rate equations for i
and s were devised to approximately match the timescales of
activation and recovery of the restoring forces at the extremes
of A � 1 and A � 0, based on data shown in Figures 3–5. Figure
6, b and c, shows spontaneous and evoked network spikes,
respectively, generated by the model with Gaussian noise
added. The inset to Figure 6c shows data from an experiment
in which a network was excited by applying short biphasic
current pulses between a pair of electrodes. Taken as a whole,
the modified continuous version of the logistic equation faith-
fully reconstructs key features of the experimental records,
yielding a network spike with a 0.1– 0.2 s characteristic time-
scale, which is fairly insensitive to inhibition in its present
form.

Effective topology
Measurements in vitro (Ikegaya et al., 2004; van Pelt et al.,
2004) as well as in vivo (Abeles, 1991; Tsodyks et al., 1999;
Buzsaki et al., 2004) indicate that the sequence of neuronal
activation within a synchronization event is nonrandom and
strongly constrained by the pattern of population activity. Fig-
ure 7 shows that, indeed, the recruitment of neuronal activity
within the NS is hierarchically structured; there exists a stable
subset of privileged neurons that reliably increase their firing
rates tens of milliseconds before the peak of the network spike.
The two plots of Figure 7a summarize data collected over 1 h
each (averages of �200 NSs in each). Note that the pattern of
activity obtained by averaging NSs during the first hour of
recording is very similar to the pattern obtained over the sev-
enth hour; such stability is in agreement with data published
by van Pelt et al. (2004). Particularly relevant for the subject
matter of the present study is the fact that the same privileged
neurons appear in both recording sessions. As shown in Figure
7b, the privileged neurons within a given assembly predict an
upcoming network spike regardless of its activation source:
whether the network spike starts spontaneously (left panel) or
is evoked externally by applied electrical stimuli at different
sites (right panel), the same privileged neurons are the first
ones to be activated. Furthermore, as suggested by the results
of Figure 8, the same privileged neurons are the first ones to be
active whether the synchrony evolves to a fully developed net-

Figure 2. a, b, Color-coded representations of the number of different electrodes participating in a network spike
(x-axis) as a function of threshold for detection of network spikes ( y-axis). Colored scale bar (on the right) depicts number
of occurrences. The two panels show distributions obtained over a 2 h period in two different networks that faithfully
represent the behavior of the entire set of �40 networks served for this study. Threshold is expressed in terms of the
number of electrodes that are required to be active (within a 3 ms time bin) for time-stamping an NS. Time bin width was
also subjected to systematic variations (from 3 to 30 ms) with no qualitative effect (data not shown). c, Approximately 900
NSs obtained over 1 h of recording from the network shown in b, using a very low threshold (4 action potentials in 10 ms
time bin). The identity of the electrodes participating in each NS is shown (black). Although in the majority of the NSs all
active electrodes appear, there exists a subpopulation of aborted NSs in which only a subset of the active electrodes
participate. Note that the NSs are not depicted according to the chronology of their appearance; rather, for purposes of
clarity, they are sorted using a hierarchical clustering algorithm.
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work spike or an aborted one. The activity of privileged neu-
rons reliably predicts an upcoming network spike as early as
100 ms before the peak of the spike. Figure 9a demonstrates
this point by showing the cumulative number of spikes

emitted by six neurons in a given network, some of which are
privileged.

Recall that none of the neurons in the network fires unless
it is driven by other neurons. This means that the firing rate of
an individual neuron in general, and during the recruitment
phase in particular, reflects its sensitivity to the activity of
other neurons in the network. Note that this sensitivity is
mediated by a combination of factors, including, for instance,
the number of synaptic inputs that the neuron receives, the
distribution of synaptic weights in its dendritic tree, resting
potential, firing threshold, dendritic conductances, and dy-
namics of cellular adaptation. Thus we use the term effective
connectivity (rather than simply “connectivity”) to designate
the sensitivity of a neuron to network activity as reflected in its
firing rate. Histograms of firing rates obtained from 1200 ac-
tive electrodes (20 networks) throughout 600 ms that sur-
round an NS, as well as within the time window of �100 to
�75 ms before its peak are shown in Figure 9b (gray and black
circles, respectively). Both distributions are broad, and the
latter is fitted by a power law over �2 orders of firing rate
magnitudes (covering the physiological range of firing rates).
The power-law distribution shown in Figure 9 does not artifi-
cially result from the variance in average firing rates of the
networks from which neuronal activities were pooled. To es-
tablish this point, we looked at firing rate distributions ob-
tained from two subgroups of networks. In one subgroup (six
networks), the average electrode firing rate was 9.9 –13.7 Hz
during a 600 ms time window surrounding the network spike.
In the other subgroup (seven networks), the average firing rate
was lower (3.4 –5.2 Hz). One-way ANOVA suggests that the
networks, within each of the two subgroups, do not signifi-
cantly differ in the firing rate distributions (all 60 electrodes
from each network were taken into account, including those
that did not show any activity; F ratio � 1.25, p � 0.28 and F
ratio � 1.01, p � 0.41, for the high- and low-firing-rate net-
works, respectively). Supplemental Figure 1 (available at
www.jneurosci.org as supplemental material) shows that the
firing rate distributions of electrodes from both low- and
high-firing-rate subgroups are broad and described by a
power-law function (d � �1.85, R 2 � 0.87 and d � �2.01,
R 2 � 0.91, respectively). Analysis of firing rate fluctuations
(Fig. 9b, inset) indicates that the coefficient of variance for
strongly active electrodes is reduced compared with active
electrodes that fire less during the recruitment phase. Assum-
ing that the dynamics of individual synapses as well as the
membrane properties of neurons that fire more are not differ-
ent from those that fire less, the inset of Figure 9b implies that
neurons that fire more integrate over more synaptic input
compared with neurons that fire less.

Broadly distributed connectivity in general, and power-law
distributed connectivity in particular, are usually associated
with random graphs in which the average topological distance
between nodes increases very slowly with the number of
nodes, despite a large local interconnectedness (Strogatz,
2001). In accordance, under certain conditions that seem ap-
plicable to neuronal networks (Nishikawa et al., 2003; Motter
et al., 2005), compared with Erdös-Rényi type of connectivity,
dynamic systems coupled in this way display enhanced signal
propagation speed that increases very slowly (Strogatz, 2001;
Newman, 2003) or even decreases (Barthelemy et al., 2004) as
the network size gets bigger. To test this prediction, we pre-
pared networks at two different neuronal densities (0.1� and
2� the standard density). The difference between the densities

Figure 3. a, Inset, Grand average network spike, calculated by averaging 21 average NSs
similar to those shown in Figure 1d (total of 5796 NSs). Marked in brown is the initial segment,
enlarged (brown dots) in the main figure. An exponential growth equation, A(t) � a � b �
e ( � �1)t, was fitted to this initial segment; the resulting function (a � 0.05, b � 0.01, � �
1.045) is depicted by a continuous black line. b, Top, Distribution of NS peak activity for one
network that demonstrated a relatively broad spectrum of NS amplitudes. A very low threshold
for NS detection was used here (4 action potentials in 10 ms bin). Bottom, Early recruitment
phases for 207 low-amplitude NSs (�6 action potentials/ms; depicted in black) and 208 high-
amplitude NSs (�10 action potentials/ms; depicted in gray), fitted with exponential growth
equations, yielding � values of 1.04 and 1.05, respectively.
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of the two groups as they matured (third week in vitro) did not
remain as large as was when the networks were plated, proba-
bly because of compensatory mechanisms that are beyond the
scope of the present study. However, there was still a very clear
difference between the neuronal densities of the two groups,
observed structurally (Fig. 10a) and functionally (Fig. 10b).
Figure 10c shows that indeed the time it takes for the network

Figure 4. a, Network spikes recorded over a period of 2 h in the absence (left) and presence
(right) of 5 �M bicuculline. These NSs were obtained using a threshold of three action potentials
within a 10 ms time bin. Each black dot marks an action potential detected in any of the
electrodes during the �250 ms surrounding the NS threshold. NSs are ordered using a cluster-
ing algorithm to enhance visualization of bicuculline effects: a reduced number of aborted NSs
and a more vigorous activity within each NS. b, An average NS obtained in the presence of 5 �M

bicuculline (brown). Average NS in control solution is shown in black. Top right inset, Fitted fast
declining phase in the presence of bicuculline, representing the timescale of cellular-level (in-
trinsic) restoring forces. Bottom right inset, Fitted slow declining phase of the control NS, rep-
resenting the timescale of restoring force acting through the inhibitory subnetwork. Note the
timescale separation between the two types of restoring forces involved (6.5 ms for the effect of
cellular-level forces; 33.7 ms for the effect of the inhibitory subnetwork). c, Averaged phases of
recruitments extracted from 16 experiments before (black) and after (brown) the addition of 5
�M bicuculline to the bathing solution. Each recording episode lasted 1–2 h. Broken lines depict
1 SD (one-sided for clarity). Thick lines depict segments for which a single-exponential recruit-
ment function could be reliably fitted for both conditions; � values obtained were 1.06 and 1.22
for control and bicuculline conditions, respectively.

Figure 5. a, b, Firing rate of a relatively active neuron; the rate increases during an NS,
decreases dramatically after the NS, and then gradually recovers (arrows in b). These kinetics
are used for estimation of recovery from a network spike. c, Fitted recoveries, such as those
depicted by arrows in b, in control (black) and bicuculline (brown) solutions. [Note that the
inter-NS intervals in bicuculline solution are short; points at which the average firing rate during
recovery was “contaminated” by the presence of NSs were omitted (bins 7–9, 11, 14 s)].
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to synchronize does not increase as the number of active elec-
trodes participating in the synchrony increases; if anything,
the denser the network is, more active electrodes participate in
the synchrony and synchronization becomes faster.

Figure 6. Numerical solution of the modified logistic equation dA/dt � (s( A, t) � � 1)
i( A, t) A (1 � A) for spontaneous and evoked NSs. a, Time constants of i( A) and s( A). Exponen-
tial rate equations for i and s were devised to approximately match the timescales of activation
and recovery of the restoring forces at the extremes of A � 1 and A � 0, based on data shown in
Figures 3–5. The equations used the following (time in millisecond units): �s � 30e �20(A (t ) � 0.5);
�s � 0.00001e 10 A (t ); �i � 10e �20(A (t ) � 0.5); �i � 0.000001e 10 A (t ). 0 � A(t) � 1; � was
set to 1 below a threshold of A(t) � 0.05. Once the threshold is crossed, � is set to a value
ranging from 1.04 to 1.06. Noise was generated using normal (Gaussian) distribution around
mean A(t), with SD of 0.001 and 0.0002 for b and c, respectively. For the case of evoked network
spikes (c), a fraction of the population is excited (i.e., stimulated) from around threshold and
higher in discrete steps. Inset in c shows data from an experiment in which a network was
excited by applying short (0.4 ms) biphasic current pulses between a pair of electrodes [step-
ping from 10 �A (bottom trace) to 80 �A (top trace)]. Average evoked responses to 15 presen-
tations of stimuli at each amplitude are shown (each trace is 300 ms long). Missed responses
were not included except for the case of 10 �A stimulation amplitude. We observed 15 of 15
missed responses for 10 �A stimuli, 5 of 15 for 20 �A, 4 of 15 for 30 �A, and 2 of 15 for 40 �A;
beyond 40 �A stimulation, no missed responses were observed.

Figure 7. a, Firing probability of neurons as a function of time surrounding an NS. Color scale
ranges from 0 to 1 spike per 5 ms (the few cases in which �1 spike occurred during a 5 ms bin
are represented as 1 spike/bin). b, In a given network, the early-to-fire neurons are similar for
spontaneous (left) and evoked (right; 3 different stimulation sources) NSs. For the case of
spontaneous NS, arrows point to times for which firing probabilities are presented. Probabilities
of firing 0 –5 and 25–75 ms after stimulation are shown for three different stimulation sites (S1,
S2, S3). Short (0.4 ms) biphasic 30 �A current pulses between each of three different pairs of
electrodes were applied. Average responses to 60 presentations of stimuli for each stimulation
point are shown. Horizontal lines depict four examples of early-to-fire neurons. Poststimuli time
histograms for the three stimulation sites are shown at the bottom right.
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Hierarchical recruitment within an assembly provides a
powerful mechanism for modulation of time delays between
coupled assemblies. To demonstrate this feature, we electrically
coupled a pair of assemblies, X3 Y, using a stimulus generator.
Obviously, under such artificial conditions the “actual” time de-
lays are arbitrarily dictated by setting the coupling stimulus pa-
rameters. It would be expected that “ranking” the capacity of
different neurons from assembly X to speed up the synchroniza-
tion between X and Y is independent of the artificial stimulation
parameters. Figure 11, a and b, shows that, by clamping the
amplitude and locus of the input stimulus to Y, while changing
the identity of the triggering neuron (in X), the time delays
between network spikes in X and Y may be strongly affected;
different neurons, by virtue of their effective connectivity, may

consistently yield different time delays. When assembly Y “reads”
the activity of assembly X through poorly connected neurons, the
time delay between the network spikes in X and Y is large.
However, when highly connected neurons are read, the network

Figure 8. A network with a relatively large number of aborted network spikes is subjected to
analyses aimed at comparing early-to-fire neurons in aborted versus full-blown NSs. a, All 1087
NSs detected over 1 h of recording are shown in a raster plot, � 250 ms surrounding a detection
threshold of four action potential in 10 ms time bin. A black dot depicts an action potential
recorded in any of the electrodes during the NS. Responses were reordered using a clustering
algorithm to enhance visual separation between full-blown and aborted network spikes. b, The
distribution of peak number of action potentials in each NS (1 ms time bin; same procedure as in
Fig. 3b). Distributions around threshold for 537 NSs with a peak of �5 action potentials (c) and
437 NSs with a peak of �10 action potentials (d) are shown using color scale ranges from 0 to
0.33 action potentials per 5 ms (the cases in which �0.33 action potentials occurred during a 5
ms bin are represented as 0.33 action potentials per bin). Note that the same early-to-fire
neurons are active for both subsets of NSs. The correlation between firing rates of the electrodes
of both subsets at times ranging from �300 to �50 ms before NS threshold is 0.98. Figure 9. a, Cumulative number of spikes emitted by six neurons in a network, as a function

of time relative to the occurrence of an NS (for definition of NS timestamp, see Materials and
Methods). Inset, Distribution of intervals between spontaneously occurring NSs (491 synchro-
nous events recorded from this network). b, Firing rate distribution 100 –75 ms before the NS
(black) and throughout the NS (gray; 1200 neurons from 20 networks; 9400 NSs). The distribu-
tion is fitted by a power-law function with a scaling power d 	 �2. Inset, A total of 387
different neurons (12 different networks) that were active as early as �100 to �50 ms before
an NS threshold crossing point were selected. For these neurons, the coefficient of variance (CV)
of instantaneous frequency (manifested by interspike interval) during 50 ms after threshold
crossing was calculated and plotted as a function of their firing rate �300 ms surrounding the
NS detection threshold. Note that the coefficient of variance is negatively correlated to the
neuronal firing rate (r � �0.22; p 
 0.0001).
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spike in Y can appear simultaneously with that of X or even
precede it.

Discussion
Using a substrate-integrated multielectrode array, we mea-
sured and characterized the kinetics of neuronal assembly ac-
tivation in vitro. Expressed in terms of population firing rate,
assembly activation is an all-or-none-like threshold-governed
phenomenon that is very reminiscent of an action potential in

a single neuron, hence the term network spike. The recruit-
ment of neurons during the early phases of a network spike
follows a single-rate exponential process that amounts to a
characteristic timescale of 0.1– 0.2 s for achieving synchroni-
zation. The measured recruitment rate (�) is close to unity.
Beggs and Plenz (2003, 2004) used a related measure to de-
scribe the propagation of local field potentials in cortical
slices. Basing their elegant analyses on equations that govern

Figure 10. Effect of neuronal densities on synchronization time. a, Photographs of exemplar
mature networks (3rd week in vitro) plated at 0.1� (left) and 2� (right) the standard density.
Exemplars of the resulting network spike amplitudes are shown in b and normalized in the inset
in c, demonstrating that the time it takes for the network to synchronize does not increase as the
number of neurons participating in the synchrony increases. To allow analyses under conditions
of low density, a 10 ms time bin for threshold detection was used for both (high and low)
densities. c, A summary of 13 different networks, showing that the time-to-peak of the average
network spike decreases as the network becomes more dense. Time-to-peak was calculated
from 10% activity to peak activity.

Figure 11. a, NSs of artificially coupled assemblies. Activity of different neurons in assembly
X (brown) is used to trigger the delivery of a fixed current amplitude stimulus (0.4 ms, biphasic
50 �A) to Y assembly (black). Different traces represent the impact of using different triggering
neurons from X. b, Summary of results from four artificially coupled pairs of networks (4 differ-
ent symbols). Time delays between average NSs in X and Y are shown as a function of the
triggering neuron effective connectivity. As an index for the effective connectivity in this figure,
we used the average number of action potentials emitted by a neuron over the time period from
�300 to �15 ms relative (i.e., before) to an NS timestamp. Note that values 
1 indicate that
a triggering neuron does not emit action potentials before each network spike during the
designated period, in which case, it is its participation in the NS at later stages that causes
assembly Y to be ignited.
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avalanches, they also report a branching parameter close to
unity, a value that optimizes information transmission in
feedforward networks but prevents runaway network excita-
tion. Although the fit of a single-exponential recruitment to
the average data does seem tight (Fig. 3), small variations
around the value of � (SD of 0.015) are not negligible, as one
might be tempted to assume. Incorporating � values ranging
from 1.025 to 1.055 (�1 SD around � � 1.04 ms �1) into a
logistic growth equation yields a range of �80 to �180 ms in
the time to half-maximum activation, respectively. Indeed,
examination of the traces shown in Figure 1d suggest that such
a range is realistic.

The all-or-none nature of network spikes reported here
seems incongruent with Beggs and Plenz (2003) power-law
size distribution of avalanches (i.e., bursts of activities). More-
over, analysis of our data using the procedure of Beggs and
Plenz results in bimodal distributions for both avalanche size
(number of participating electrodes) and avalanche duration
(supplemental Fig. 2, available at www.jneurosci.org as sup-
plemental material). Our bimodal distributions are very sim-
ilar to the bimodal avalanche size distributions seen in the
presence of picrotoxin, a fast inhibition blocker (Plenz, 2005).
We believe that the difference between the two observations is
attributable to the fact that Beggs and Plenz were using a prep-
aration cut out from a prestructured network with conserved
layer organization; we, conversely, use an ex vivo spontane-
ously developing preparation. Indeed, a recent abstract of
Plenz’s group (Stewart et al., 2005) indicates that the ava-
lanches they observe originate in superficial layers and are also
confined to these layers most of the time.

The relative impact of cellular- and network-level restoring
forces was estimated using pharmacological manipulations. Al-
though later phases of the network spike are affected to some
extent by activation of the inhibitory subnetwork, the major re-
storing force that operates throughout a network spike arises
from cellular processes [most probably synaptic depression
(Eytan et al., 2003)]. A logistic equation with kinetic variables
that represent the various restoring forces accounts for the 0.1–
0.2 s time-amplitude trajectory of a network spike and is offered
as a framework for mathematical modeling of assembly synchro-
nization events.

The contribution of different neurons to the various phases
of the network spike is not random. The phase of the network
spike within which a neuron fires is strongly constrained;
some neurons consistently fire at the very early phase of the
network spike, whereas others start to fire at later phases of the
spike. Nonrandom, sequenced activation of neurons that is
strongly constrained by the pattern of population activity was
demonstrated in vitro (Ikegaya et al., 2004; van Pelt et al.,
2004), as well as in vivo (Abeles, 1991; Tsodyks et al., 1999;
Buzsaki et al., 2004). Grinstein and Linsker (2005) addressed
the role played by network topology in determining the nature
of synchronous neural activity. They show that, in contrast to
random Erdös-Rényi networks, networks having a power-law
connectivity distribution generate large synchronous firing
peaks dominated by a small subset of nodes. Here we used the
firing rates of individual neurons during the early recruitment
phase as indicators for their effective connectivity. We justify
our approach by having observed that neurons in our prepa-
ration fire only in response to synaptic input, not spontane-
ously; hence, firing that starts earlier means more sensitivity to
network activity, that is, more effective convergence. Firing
that starts earlier also probably means more effective divergent

connectivity in the sense that the more a neuron fires, the
higher its impact on the propagation of activity and assembly
synchronizability. We show that the distribution of firing rates
during the early phases of the network spike is broad and
described by a power law, which would be consistent with an
essentially scale-free topology of connectivity.

It is tempting to think of the above results in the context of
observations in vivo. The time to reach synchronization in our
in vitro preparation (that contains �100,000 neurons) is 0.1–
0.2 s. This is also the time it takes for a single cortical column
to reach synchronization (Derdikman et al., 2003), as well as
for whole brain areas such as primary visual area V1 and sec-
ondary visual area V2 (Slovin et al., 2002), and in fact for the
entire brain; indeed, 0.1– 0.2 s is also the accepted figure for
simple behavioral reaction times. To a large extent, it seems
that the time to reach neural synchrony is size invariant. In
recent years, the relationships between network size and time
to synchronize is intensively studied as part of the growing
interest in the field of complex random graphs (for review, see
Newman, 2003). A wide range of biological and social net-
works (graphs) has very broad connectivity distributions;
these graphs are often referred to as “scale-free” networks,
designating the power-law distribution of connectivity that is
characteristic of some of them. In such cases, the average to-
pological distance between nodes increases slowly with the
network size, despite a large local interconnectedness (Stro-
gatz, 2001). In the neurobiological context, scale-free topol-
ogy within neuronal networks was suggested to provide an
economical means for global synchrony and oscillations at
multiple timescales (Buzsaki et al., 2004; Sporns et al., 2004;
Grinstein and Linsker, 2005). As explained above, under cer-
tain conditions that might be applicable to neuronal networks
(Nishikawa et al., 2003; Motter et al., 2005), dynamic systems
coupled in this way display enhanced signal propagation speed
that is invariant or even decreases with network size (Strogatz,
2001; Newman, 2003; Barthelemy et al., 2004). We suggest
thinking in such terms on the mechanism of size invariance in
the time it takes to synchronize networks in the brain. Our
contribution to this line of thought is to show that increasing
the number of neurons that participate in a network spike
causes a decrease in time to reach synchrony.

Hierarchical recruitment of neurons during synchrony
provides a means for modulation of time delays between se-
quential activations of coupled assemblies. The reliability of
forecasting a network spike tens of milliseconds before its peak
based on the activity of early-to-fire neurons, together with
the slow integration toward a network spike, allows a wide
temporal range for such modulation. Assembly coupling, pre-
sented in Figure 11, although limited by the artificiality of the
stimulus, demonstrates such temporal modulation: the time
delays between the activities of two coupled assemblies may be
dramatically reduced. This scheme provides a possible expla-
nation for the enigmatic rapidity of processing in pipelines of
neuronal assemblies. Consider, for instance, the case of visual
categorization experiments. Electrophysiological and psycho-
physical analyses show that the visual system recognizes a cat-
egory in less than 1⁄10 of a second (Keysers et al., 2001; Van-
Rullen and Koch, 2003). Taking into account the number of
neural cell assemblies through which the signal travels, such
rapid processing implies 0.01 s of activity within each assem-
bly before it is forwarded to the next one. This number is
difficult to reconcile with the 10 times slower process (0.1– 0.2
s) required for a full-blown activation of an individual assem-
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bly in response to a stimulus. Figure 11 shows that, in princi-
ple, when relying on the activity of early-to-fire neurons in the
hierarchy of recruitment within an assembly, such short re-
sponse times are accounted for (Thorpe and Fabre-Thorpe,
2001; Thorpe, 2002). Figure 11 also suggests that, in principle,
a driven (next-in-line) assembly may synchronize simulta-
neously with, or even before, its driving (forerunner) assem-
bly. This possibility surfaces a potential methodological diffi-
culty in the interpretations of functional macroscopic neural
data (e.g., electroencephalogram, magnetoencephalography,
and functional magnetic resonance imaging) that rely on time
delays between activation of assemblies. For instance, when
two assemblies (X and Y ) seem to be active together, the pos-
sibility of X driving Y or vice versa would be ruled out; it goes
without saying that, when macroscopic activity from assembly
X precedes that of Y, concluding that the latter being a cause of
the former would seem unreasonable. The results of Figure 11
imply that, in constructing schemes of activation paths, much
care should be exercised when relying on macroscopic time
delays.
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