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Robotic training paradigms that enforce a fixed kinematic control might be suboptimal for rehabilitative training because they abolish
variability, an intrinsic property of neuromuscular control (Jezernik et al., 2003). In the present study we introduce “assist-as-needed”
(AAN) robotic training paradigms for rehabilitation of spinal cord injury subjects. To test the efficacy of these robotic control strategies
to teach spinal mice to step, we divided 27 adult female Swiss–Webster mice randomly into three groups. Each group was trained
robotically by using one of three control strategies: a fixed training trajectory (Fixed group), an AAN training paradigm without interlimb
coordination (Band group), and an AAN training paradigm with bilateral hindlimb coordination (Window group). Beginning at 14 d after
a complete midthoracic spinal cord transection, the mice were trained daily (10 min/d, 5 d/week) to step on a treadmill 10 min after the
administration of quipazine (0.5 mg/kg), a serotonin agonist, for a period of 6 weeks. During weekly performance evaluations, the mice
trained with the AAN window paradigm generally showed the highest level of recovery as measured by the number, consistency, and
periodicity of steps during the testing sessions. In all three measurements there were no significant differences between the Band and the
Fixed training groups. These results indicate that the window training approach, which includes loose alternating interlimb coordination,
is more effective than a fixed trajectory paradigm with rigid alternating interlimb coordination or an AAN paradigm without any
interlimb constraints in promoting robust postinjury stepping behavior.
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Introduction
It has been shown that adult spinal mice can be trained to step on
a moving treadmill belt with the use of a robotic device (Fong et
al., 2005). In addition, there is a positive interaction effect be-
tween robotic training and the administration of quipazine, a
broad serotonin agonist. To date, the algorithms that have been
used for locomotor training with robotic devices have focused
primarily on repeated movements of the limbs via fixed kine-
matic trajectories. These types of training, however, abolish the
cycle-to-cycle variation in the kinematics and the sensorimotor
pathways, a fundamental feature of the neural control of repeti-
tive movements such as stepping (Hausdorff, 2005). Appropri-
ately recreating this feature of neural control may be critical to the
development of effective robotic control algorithms for assisting

the post-spinal cord injury (post-SCI) neuromuscular system to
learn a motor task. A robotic orthosis driven in a fixed pattern
effectively limits the degrees of freedom of the motion of the leg as
compared with naturally occurring muscle activation patterns
(Hidler and Wall, 2005). Thus fixed trajectory training may pro-
duce habituation to sensory input, resulting in markedly reduced
sensory responses associated with weight-bearing locomotion. As
a consequence, the training could become counterproductive,
resulting in a decrease in the activity of sensorimotor systems that
are normally highly active. In turn, this is likely to reduce the
activity of the spinal neural control circuits that control locomo-
tion (Wirz et al., 2005). Additionally, we believe that a rigid train-
ing paradigm may lead to “learned helplessness,” a condition in
which the lower spinal cord habituates to repetitive activation of
the same sensory pathways during a training session (Skinner,
1979; Wool et al., 1980).

In the present study we tested the hypothesis that the post-SCI
spinal cord can relearn to step more effectively if it is challenged
constantly during locomotor training by an adaptive training
pattern. Using complete spinal mice, we examined two para-
digms of assist-as-needed (AAN) hindlimb gait training. Similar
robotic control algorithms have been used for rehabilitative
training of stroke patients (Hogan and Krebs, 2004; Patton and
Mussa-Ivaldi, 2004; Emken and Reinkensmeyer, 2005; Patton et
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al., 2006). Our AAN algorithms mostly allowed the mice to con-
trol their own motions when they were performing well. These
approaches also facilitated variability in the trained stepping tra-
jectory, promoting stepping conditions comparable to normal
locomotion.

We compared the efficacy of two AAN robotic training algo-
rithms and a fixed trajectory robotic training paradigm on the
recovery of locomotor ability in complete spinalized adult mice
that were administered quipazine daily, immediately before each
training session. The results indicate that mice undergoing AAN
robotic training with loose control of interlimb coordination ex-
hibit faster and more pronounced recovery of stepping ability
than mice trained by using a fixed robotic paradigm or an AAN
robotic training paradigm without interlimb coordination
constraints.

Materials and Methods
Animals and animal care
Adult female Swiss–Webster mice (mean body weight of 25.3 � 1.3 g on
the day of spinal cord transection) obtained from Charles River Labora-
tories (Wilmington, MA) were used. The mice were housed individually,
had access to food and water ad libitum, and were kept on a 12 h light/
dark cycle for the duration of the study.

Surgical procedures and postsurgical care
Surgeries were performed at approximately postnatal day 60 (P60). Sur-
gical procedure was the same as in Fong et al. (2005). Briefly, the mice
were maintained in a deep anesthetic state throughout the surgery with
isoflurane gas (2–5% isoflurane mixed with 0.4% O2 via face mask). All
procedures were performed under aseptic conditions. The mice were
placed on a heating pad to maintain body temperature. A skin incision
was made along the dorsal midline from �T6 to T9 to expose the mus-
culature overlying the vertebrae. The paravertebral musculature was re-
tracted to expose the vertebral column, and a laminectomy was per-
formed from �T7 to T8. Gelfoam then was inserted into the gap to
ensure complete separation of the proximal and distal stumps (de la
Torre and Goldsmith, 1990). The musculature and fascia were reposi-
tioned, and the wound was closed by using 5-0 Dexon internal and 5-0
Ethilon external sutures (Fong et al., 2005). All animal procedures used
in this study were conducted in accordance with the Animal Care Guide-
lines of the American Physiological Society and were reviewed and ap-
proved by the Animal Research Committee at the University of Califor-
nia, Los Angeles.

The mice were placed in an incubator maintained at �29 � 1°C and
observed until fully recovered from anesthesia after surgery. The mice
were returned to their cages and given Baytril (40 �g/g body weight), a
broad spectrum antibiotic, via drinking water for 14 d. Postsurgical care
and maintenance procedures were similar to those described previously
for SCI rats and cats (Roy et al., 1992; Ellegala et al., 1996). The bladders
of the spinal mice were expressed manually twice daily to minimize the
risk of bladder infection and related complications. After bladder expres-
sion the hindlimbs of the mice were stretched lightly once through a full
range of motion to help sustain joint mobility. Food rewards were given
to stimulate positive interaction between the mouse and handler.

Quipazine administration
Serotonin agonists are shown to modulate and/or induce locomotion in
rats (Antri et al., 2003) and mice (Landry and Guertin, 2004). In this
study quipazine, a broad spectrum serotonin agonist, was used to facili-
tate stepping in all mice. Based on our own dose–response tests, as well as
dose–response studies reported for rats (Orsal et al., 2002; Fong et al.,
2005), a dose of 0.5 mg/kg body weight was administered intraperitone-
ally 10 min before each training or testing session.

Robotic step training and measurement system
A four-axis robotic system (stepper) was developed for both active train-
ing and data acquisition (see schematic drawing at http://robotics-
.caltech.edu/jneurosci) of mouse limb movements. The mice were placed

into the stepper by using a cone-shaped cloth harness. Once in the har-
ness, the mouse was secured with a binder clip, which was attached
magnetically to a body weight support system. The legs of the mouse were
connected to the robotic arm by using a drawstring loop attachment.
During training the speed of the treadmill was adjusted to match the
speed of the robotic device. Typically, this speed was �3 cm/s. A detailed
description of the robot and mouse attachment has been published pre-
viously (Fong et al., 2005).

So that the AAN algorithms could be implemented, precise control of
the robotic linkages was required. Therefore, a four-axis dedicated con-
troller board (DMC-2240, Galil Motion Control, Rocklin, CA) was used.
The control output was sent to the motors via an interconnection mod-
ule with an integrated amplifier (ICM/AMP 1900; Galil Motion Con-
trol). The control algorithms were written with LabVIEW (National In-
struments, Austin, TX), and their output commands were sent to the
controller board via an Ethernet connection. The feedback commands
were updated at 200 Hz.

Robotic training algorithms
The mice were divided randomly and equally into three groups (n �
9/group). Each group received a different robotic training algorithm, i.e.,
a repetitive training algorithm with a fixed and tightly controlled trajec-
tory or one of two AAN training algorithms. The two AAN algorithms
differed in the amount of interlimb coordination that was imposed dur-
ing training. The AAN training algorithms were implemented by using a
velocity field approach in which the velocity of the distal tip of the linkage
was commanded to a specific speed defined by a velocity field. Each
mouse was trained for 10 min/d, 5 d/week, for 6 weeks.

Mice in the Fixed group received a rigid robotic training algorithm. A
proportional–integral– derivative (PID) controller was used continu-
ously to track the desired training pattern. When attached to the mice,
the robotic arms actively moved the ankles along this fixed trajectory,
which enforced alternating interlimb coordination. Because neonatally
transected mice spontaneously can recover functional stepping without
pharmacological or mechanical assistance (Fong et al., 2005), the im-
posed trajectory of each ankle in the sagittal plane was obtained from a
neonatally transected mouse that recovered and stepped well at approx-
imately the same age and weight as the adult mice used in the present
study.

The Band group of mice received an AAN strategy that implements
two fixed boundaries, an inner bound and an outer bound, forming a
band surrounding the desired trajectory. When the mouse moves its
ankle to sagittal plane regions exterior to the band, an outward-spiraling
(or inward-spiraling) convergent velocity field drives the ankle back into
the band region (Fig. 1a). Within the band the ankle is guided by a small
constant velocity field tangent to the desired trajectory. Thus the robot
provides gentle guidance at a constant rate but does not enforce specific
timing of leg movements, nor does it force the ankle to be at a specific
location (soft control). In this way the mouse mostly dictates its own
motions inside the band, with only a small bias provided by the robot.
Note that this particular instantiation of the AAN paradigm does not
impose an interlimb coordination constraint.

The last group of mice (the Window group) received an AAN training
paradigm analogous to the second group but based on a moving window
geometry. In this approach a circular window moves along the desired
trajectory with a predetermined speed (Fig. 1b). The 4-mm-diameter
window size, which was fixed throughout the experiment, was chosen
because it was close to the maximum variation observed during the step-
ping of a neonatally transected mouse at an early stage of recovery (Fig.
2). Within the window, a small constant velocity field tangent to the
desired trajectory biases the robot’s motion but without spatial or tem-
poral enforcement of specific ankle position. Outside the window
boundary, the robotic movement is guided by a radial velocity field that
points inward with a magnitude proportional to the distance from the
center of the circle as follows: v � k (d � r), where v is the velocity field
magnitude, d is the distance between the ankle and the center of the
moving window, r is the window radius, and k is a constant. Hence when
the ankle of the mouse deviates from the window, it is returned quickly to
the window. Within the window, the ankle is guided gently in the direc-
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tion of the trajectory, providing loose timing control. The same strategy
was used on both hindlimbs, and the control systems for each leg were
timed to provide alternating gait coordination that is consistent with
weight-bearing stepping.

Data analysis and evaluation methods
Testing was performed on the fifth day of each training week. The mice
were given a 2 min “warm-up” period before each testing session, using
the same training algorithm associated with that particular group. The
mouse stepper was used in a passive recording mode to track the ankle
position of each leg for 2 min at a treadmill speed of 3 cm/s. Position data
were recorded at 200 Hz, using a custom acquisition program written in
LabVIEW (National Instruments). In addition to the robot data, video
footage of both the left and right sides of each mouse was captured during
testing, and a log of qualitative observations was maintained. Using these
data, we assessed the quality of stepping in terms of (1) the number of
steps performed; (2) the periodicity of the steps, i.e., the ability to main-
tain a regular stepping frequency; and (3) the shape regularity of the
stepping patterns. The following analyses were used for these assessments
of stepping ability.

Number of steps. Video footage and plots of ankle position data were
used to identify steps and the number of steps performed by each mouse
during the 2 min testing period. Steps were identified on the basis of
predetermined criteria for step length (minimum 5 mm), height (mini-
mum 5 mm), duration (minimum 0.5 s/maximum 1.5 s), and degree of
interlimb coordination (Fong et al., 2005). On each testing day the 12 s
stepping interval containing the most steps was recorded for subsequent
analyses.

Step periodicity. Fast Fourier transform (FFT) analysis was applied to
the horizontal component of the stepping trajectories to quantify step
periodicity (Fong et al., 2005). Mice that stepped rhythmically exhibited
a sharp and distinct fundamental peak in the FFT spectrum of their ankle
trajectories. The location of the predominant peak corresponds to the
fundamental stepping frequency. Conversely, mice with poor stepping
periodicity either exhibited a very broad fundamental peak in the FFT
spectrum or, in extreme cases, failed to demonstrate a fundamental peak.
To quantify these observations, we measured the full width at half-
maximum (FWHM) of the fundamental peak. A low FWHM value cor-
responds to temporally consistent, rhythmic stepping, whereas a high
value typically indicates erratic stepping, consistent with stumbling and
foot dragging.

Spatial consistency. To measure consistency of stepping systematically,
principal components analysis (PCA) was used. The principal compo-
nents (PC) of the data set were calculated as well as the percentage of the
total variance captured by the first PC. The first PC can be interpreted as
the “nominal” trajectory from the test data set, and the PCA percentage
score measures the consistency of the trajectories. A high PCA percentage
score corresponds to a consistent execution of the same stepping trajec-
tory. A minimum PCA percentage of 45% was assigned to all mice that
could not step on the test day, because this was the lowest PCA score that
was encountered (Fong et al., 2005).

Locomotor performance scores are reported as the mean � SEM.
One-way ANOVA analysis was used to compare the three training
groups within each training day. A p value less than 0.05 was used to
define statistical significance, which corresponded to a critical F value of
3.44. To measure statistical difference between groups, we calculated the
least significant difference (LSD).

Results
All groups showed improvement over the 6 week training period,
based on the average number of steps taken in the best 12 s inter-
val during each testing session (Fig. 3a). The mice in the Window
group, however, had a faster rate of recovery than the other two
groups. The average number of steps taken by the Window group
was greater than in the Fixed group from weeks 1 through 3 and
higher than in the Band group at weeks 1 and 3. There were no
significant differences between the Band and Fixed groups at any
time point, and the average number of steps was similar in the
three groups after 6 weeks of training.

Figure 2. The stepping trajectories of the ankle of a neonatally spinal cord transected mouse
at �3 months of age. The diagonal line through the trajectories shows where the most devia-
tion (�4 mm) occurs. The arrows represent the direction of travel.

Figure 1. a, AAN training paradigm I (Band). The solid thick line shows the desired training
trajectory of the animal’s ankle position in the sagittal plane. The dashed thin lines represent the
boundaries within which “soft control” (see Materials and Methods) is applied to the limbs. The
arrows outside the boundaries correspond to the convergent velocity fields that drive the legs to
the band region. Modified from Cai et al. (2005). b, AAN training paradigm II (Window). The
solid line represents the desired training trajectory of the animal’s ankle position in the sagittal
plane, and the moving window is outlined by the dotted circle within which soft control is
applied to the limbs. The arrows outside the circle correspond to the radial force fields. Modified
from Cai et al. (2005).
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Inverse FWHM scores for the mice in the Window group were
significantly higher than in the Band and Fixed groups after 4, 5,
and 6 weeks of training (Fig. 3b). There were no significant dif-
ferences between the Band and Fixed groups at any time point.
The maximum level of step rhythmicity was achieved after 6
weeks of training, with the Window group (8.3) exhibiting better
step rhythm than the Band (6.4) and Fixed (6.3) groups.

All three groups showed progressive improvement in step
shape consistency, based on PCA analyses, throughout the first 5
weeks of training and then a slight decrease at 6 weeks (Fig. 3c).
There were no significant differences among the three groups at
any time point.

Discussion
All step training algorithms improved stepping beyond the
level that is achieved without any step training
We have demonstrated previously that a combination of quip-
azine administration and robotic training can improve the loco-
motor performance of adult spinal mice significantly. Without
pharmacological and/or mechanical intervention the average
number of steps performed in a full 2 min interval was 16.0 � 5.1,
and no mouse was able to perform the minimum of three con-
secutive steps in a 12 s interval that were required for FFT and
PCA analysis (Fong et al., 2005). All of the mice in the current
experiment received quipazine treatment and robotic training.
Consequently, all training paradigms improved stepping, and the
level of improvement was greater in this study than the initial test
at week 0 and the level of performance reported previously (Fong
et al., 2005). Even after only 1 week of training, the lowest average
number of steps for the best 12 s interval among the three groups
was 3.7 � 0.7 steps. These results demonstrate the effectiveness of
robotic systems in enhancing locomotor training after a SCI, even
when suboptimal training algorithms are used.

Permitting an intrinsic network solution facilitates stepping
more effectively after a SCI than imposing an extrinsic
motor solution
A key objective of this study was to ascertain whether permitting
variability during step training enhances stepping recovery after a
complete spinal cord transection in adult mice. We hypothesized
that a fixed trajectory training strategy would drive the spinal
circuitry toward a state of learned helplessness (Wool et al., 1980;
Grau et al., 1998). This occurs when the spinal cord is not per-
mitted to explore potential solutions to stepping patterns and
defers to the fixed training pattern, causing the relevant neural
circuits to habituate. Figure 3b shows that, although the fixed
training paradigm is one in which the periodicity of stepping is

controlled most tightly, the animal failed to produce a consistent
stepping rhythm during testing. In contrast, when the training
paradigm allowed the stepping period to vary, the mice were able
to adapt to a consistent stepping period. These results, combined
with the number of steps performed, suggest that the window
training paradigm significantly improved the stepping ability of
the mice as compared with the band and the fixed training
paradigms.

Sensory information is critical to motor learning. The pattern
and timing of assistance provided during step training seems to
play a critical role in specific sensorimotor pathways that become
reinforced after a SCI (de Leon et al., 1998). Regardless of the level
of practice of a task, some variability in the patterns and levels of
activation of motor units within a motor pool persists even dur-
ing the simplest repetitive actions. Thus there also must be vari-
ation in the efficacy of the ensemble patterns of sensory input to
the spinal circuitry from step to step. Given this intrinsic variabil-
ity, the subsequent motor output resulting from sensory inputs is
highly unlikely to match the imposed mechanically fixed pattern.
From this perspective it appears that a continuous incongruity
between the input and output signals will occur when a fixed
trajectory is imposed. Thus a training algorithm that is incom-
patible with this basic feature of variability during stepping ulti-
mately seems likely to hinder the ability of the spinal cord to learn
to step after a SCI.

Conversely, a training algorithm that “permits” the intrinsic
variability in the activation of motor pools may allow the spinal
circuitries to explore multiple patterns of activation and thereby
optimize training effectiveness. In this experiment, we tested only
two such algorithms. Spinal mice recovered stepping ability more
effectively with the window AAN algorithm than the band AAN
or fixed training paradigms. Even the window algorithm, how-
ever, is unlikely to be the optimum solution, as demonstrated by
the peak in locomotor performance reached after 4 weeks of
training in the current study. One can imagine many variations of
the AAN training algorithm, but it will be difficult to test exper-
imentally all of these variations in attempts to find an optimum
rehabilitative training strategy. One approach will be to develop a
learning model for the plasticity within the spinal cord derived
from machine learning theories. Having such a model will allow
us to explore many more parameters, such as window size and
shape, than otherwise would be feasible experimentally. Once
candidate training algorithms are identified analytically, these
algorithms can be validated experimentally by using an experi-
mental paradigm as in the present study.

Figure 3. Locomotor performance of the best 12 s interval by each of the three groups during the weekly tests as measured by (a) average number of steps performed, (b) step rhythmicity as
depicted by the plot of the inverse FWHM, and (c) step shape consistency as measured by PCA. On average, the Window group performed better when compared with the other two groups. �,
Denotes significant difference between the Window and the Fixed groups; #, denotes significant difference between the Window and Band groups.
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An imposed interlimb coordination pattern facilitates
learning to step
Another observation from this study is that control of interlimb
coordination can improve locomotor recovery. Although it had
been shown that spinal cats can adapt to different walking speeds
on a split treadmill (Barbeau and Rossignol, 1987), in examining
the cause of failure to continue stepping in chronic spinal cats
that had been trained to step, de Leon and colleagues (de Leon et
al., 1999) found that the most consistent contributing factor was
a gradual loss of appropriate interlimb coordination. Rarely was
failure attributable to poor intralimb kinematics. Similarly, the
current experiment suggests that maintaining interlimb coordi-
nation plays an important role in training adult spinal mice to
step. In mice trained with the band algorithm, the steps were
typically arrhythmic and frequently interrupted by dragging,
which is emphasized by their low inverse FWHM values (Fig. 3b).
In contrast, stepping executed by the mice in the Window group
was rhythmic and of appropriate duration. In many cases, the
mice were able to step throughout the entire 2 min testing period.
This was reflected by the average number of steps taken in the best
12 s interval by the mice, which showed that stepping in the
Window group converged to a frequency near 1 Hz as the study
progressed, and is consistent with constant speed treadmill loco-
motion at 3 cm/s (Fig. 3a, week 4).

Distinction between shape consistency and quality
of stepping
There were no significant differences in step shape consistency
among the three groups throughout the study, based on PCA
scores (Fig. 3c). Even after 1 week of training the average PCA
scores of the Band and Window groups were �70%. By week 3
the average PCA score of all three groups was �80%, indicating
that all of the mice could perform consecutive rhythmic move-
ments that were similar in shape within that animal. Therefore,
the PCA results reflected consistency in cyclic movements but did
not differentiate the quality of stepping among the different
training groups. Combined with previous results, which reported
an average PCA score of 77 � 4% with quipazine administration
alone (Fong et al., 2005), one reasonable hypothesis from these
results is that quipazine may have a greater effect on the shape
consistency of the stepping than robotic training, especially when
the training itself is not rigid.

Summary
The present results provide strong evidence that a fundamental
strategy of the neural control of a given motor task (stepping) is
to incorporate a degree of variability in the sensorimotor path-
ways. These data suggest that when the intrinsic variability is
overridden, e.g., when a “fixed” pattern is imposed, learning of a
task is suboptimal relative to the condition when the training is
assist-as-needed. Beyond the insight provided by these results on
the strategy for neural control of movement, the practical impli-
cations may be highly significant for future efforts to develop
robotic devices that can be used to facilitate recovery from neu-
romotor impairments.
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