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The Glutamate and Chloride Permeation Pathways
Are Colocalized in Individual Neuronal Glutamate
Transporter Subunits
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Glutamate transporters have a homotrimeric subunit structure with a large central water-filled cavity that extends partially into the plane
of the lipid bilayer (Yernool et al., 2004). In addition to uptake of glutamate, the transporters also mediate a chloride conductance that is
increased in the presence of substrate. Whether the chloride channel is located in the central pore of the trimer or within the individual
subunits has been controversial. We find that coexpression of wild-type neuronal glutamate transporter EAAT3 subunits with subunits
mutated at R447, a residue governing substrate selectivity (Bendahan et al., 2000), results in transport activity consistent with two distinct
noninteracting populations of transporters, in agreement with previous work suggesting that each subunit operates independently to
transport substrate (Awes et al., 2004; Grewer et al., 2005; Koch and Larsson, 2005). In wild-type homotrimeric transporters, the gluta-
mate concentration dependence of the anion conductance and the kinetics of glutamate flux were isolated and measured, and the anion
channel activation was fitted to analytical expressions corresponding to (1) a central pore gated by binding to one or more subunits and
(2) a channel pore in each subunit. The data indicate that glutamate-binding sites, transport pathways, and chloride channels reside in
individual subunits in a trimer and function independently.
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Introduction
In mammals including humans, high-affinity glutamate trans-
porters are encoded by a group of five genes (EAAT1–5; SLC1A1–
A5) that are members of the dicarboxylate/amino acid:cation
symporter family, which also includes the neutral amino acid
transporters ASCT1 and ASCT2. This gene family is distinct from
the family of genes encoding the transporters for neurotransmit-
ters such as GABA, serotonin, dopamine, norepinephrine, gly-
cine, and others. The excitatory amino acid transporters (EAATs)
are found throughout the CNS and peripheral tissues; they are the
major routes for cellular uptake of glutamate (Danbolt, 2001).

EAAT function is well described by a cyclical alternating ac-
cess transport model in which L-glutamate (L-Glu) is cotrans-
ported with three Na� ions and one H� ion, followed by coun-
tertransport of one K� ion, restoring the initial state (Zerangue
and Kavanaugh, 1996; Levy et al., 1998). In addition to mediating
coupled glutamate transport, EAATs also exhibit a thermody-
namically uncoupled chloride conductance that is increased in
the presence of glutamate (Fairman et al., 1995; Picaud et al.,
1995; Wadiche et al., 1995; Billups et al., 1996). The chloride
conductance varies relative to the glutamate transport rate

among different EAAT subtypes (EAAT5 � EAAT4 � EAAT1 �
EAAT3 � EAAT2). Whether the channel activity plays a physio-
logical role in each of them is presently unclear, but the chloride
conductance of the glutamate transporters on presynaptic termi-
nals of retinal bipolar cells has recently been shown to modulate
synaptic release by hyperpolarizing the terminal (Veruki et al.,
2006, Wersinger et al., 2006). The channel conductance has a
chaotropic selectivity sequence: SCN� � NO3

� � I� � Cl� �
F� (Wadiche et al., 1995; Eliasof and Jahr, 1996). The gating of
this anion conductance has been proposed to be linked to state
transitions in the glutamate transport cycle, but the small pre-
dicted unitary conductance for the channel and the transporter
has not allowed a direct test of this hypothesis (Picaud et al., 1995;
Larsson et al., 1996; Wadiche and Kavanaugh, 1998). The struc-
ture of a homologous archael transporter from Pyrococcus hori-
koshii was recently solved at 3.5 Å (Yernool et al., 2004), but the
structural nature of the chloride channel pore remains unclear.
The transporter is a trimer of identical subunits (Fig. 1A), and
each subunit appears to be able to independently transport glu-
tamate (Awes et al., 2004; Grewer et al., 2005; Koch and Larsson,
2005). In contrast, it is less clear whether chloride permeates
through each subunit or whether the chloride channel involves
interacting subunits (Eskandari et al., 2000; Torres-Salazar and
Fahlke, 2006), in analogy to ligand-gated channels, such as iono-
tropic glutamate receptors, which have a pore in the central axis
of the multimer. In this work, we analyzed and modeled the
isolated transport and channel conductance components and
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show that the channel gating is described by a simple model in
which each subunit in a trimer has a channel that is indepen-
dently gated by glutamate.

Materials and Methods
Electrophysiology and flux assays. Human EAAT3 (hEAAT3) cRNA was
microinjected in stage V–VI oocytes, and transport and anion currents
and radiolabel fluxes were recorded 3–5 d later as described previously
(Wadiche et al., 1995). In coexpression experiments, equal amounts of
wild-type and mutant subunit plasmid DNA were mixed before linear-
ization and transcription. Recording solution (Cl–Ringer) contained the
following (in mM): 96 NaCl, 2 KCl, 1 MgCl2, 1.8 CaCl2, and 5 HEPES, pH
7.4. In chloride substitution experiments, 90 mM NaNO3 was used to
replace equimolar NaCl (NO3–Ringer). Microelectrodes were filled with
3 M KCl and had resistances from 1 to 3 MÙ. Two-electrode voltage-
clamp recordings were performed at 22°C with a Geneclamp 500 inter-
faced to an IBM-compatible personal computer using a Digidata 1320
controlled with the pCLAMP 6.0 program suite (Molecular Devices,
Sunnyvale, CA). The currents were low-pass filtered at 1 kHz and digi-
tized at 5 kHz. Currents induced by L-Glu or L-alanine (L-Ala) were
isolated by subtracting currents recorded in control solution. Data were
analyzed off-line, and modeling and fitting of substrate concentration
dependence of the currents were performed with Kaleidagraph software
(version 3.6).

Analytical modeling of the anion channel gating. Our models proceed
from the assumption that one transporter subunit binds and transports
glutamate independently of the others (Grewer et al., 2005; Koch and
Larsson 2005; present study). Then, the unidirectional transport of sub-
strate S to release product P (when [S]trans � 0) by each transporter
subunit T is described by the following:

T � S L|;
kf

kb

CO¡
kt

T � P,

where kf is the rate going forward, kb is the rate going backward, C is the
enzyme–substrate complex, and kt is the turnover number. If an inde-
pendent anion channel is contained in each subunit and its open proba-
bility is increased by the binding of substrate, then, at steady state, the

normalized current amplitude is given by the
Michaelis–Menton relationship:

I

Imax
�

C

C � T
�

S

S � K
,

where

K �
kb � kt

kf
.

If, in contrast, an anion channel is formed by
three subunits in a trimeric complex, then its
open probability is increased by binding of glu-
tamate to one, two, or three subunits. The set of
transporter reaction equations defining the
transporter states occupied by zero (T), one
(C1), two (C2), or three (C3) molecules of glu-
tamate is as follows:

T � S L|;
3kf

kb

C1O¡
kt

T � P

C1 � SL|;
2kf

2kb

C2O¡
2kt

C1 � P

C2 � SL|;
kf

3kb

C3O¡
3kt

C2 � P .

If occupancy of only one subunit is required to open the channel, we
assume that singly, doubly, and triply occupied trimers are all open; for
the case in which two subunits are required, then doubly or triply occu-
pied trimers are open; for the case in which three subunits are required,
then only triply occupied trimers are open. At steady state, the normal-
ized current amplitudes for each anion channel-gating model are as
follows:

single occupancy

I

Imax
�

C1 � C2 � C3

C1 � C2 � C3 � T
�

S3 � 3S2K � 3SK2

�K 3 � 3SK2 � 3S2K � S3�
,

double occupancy

I

Imax
�

C2 � C3

C1 � C2 � C3 � T
�

S3 � 3S2K

�K 3 � 3SK2 � 3S2K � S3�
,

triple occupancy

I

Imax
�

C3

C1 � C2 � C3 � T
�

S3

�K 3 � 3SK2 � 3S2K � S3�
.

Derivations of these equations are given in the supplemental material
(available at www.jneurosci.org).

Results
Each subunit in a trimer transports substrate independently
Wild-type hEAAT3 subunits were coexpressed with mutant
R447C subunits by injecting RNA transcribed from equal
amounts of each cDNA into Xenopus laevis oocytes. The R447C
mutation has been shown to induce an altered charge selectivity
for neutral amino acids such as L-Ala (Bendahan et al., 2000) (Fig.
2). L-Ala (1000 �M) did not activate currents in oocytes express-
ing wild-type hEAAT3 alone (n � 4), nor did L-Glu (1000 �M)
activate currents in oocytes expressing the R447C mutant alone
(n � 3) (Fig. 2A,B). This selectivity switch was confirmed by
radiolabeled uptake assays with either 30 �M [ 3H]D-Asp or
[ 3H]L-Ala (Fig. 2C). Coimmunoprecipitation evidence suggests

Figure 1. hEAAT3 structural homology model based on the P. horikoshii sodium-dependent glutamate transporter homolog
structure (Yernool et al., 2004). A, Trimeric structure comprising three identical subunits. B, A single subunit showing a possible
orientation of bound L-Glu. The R447 residue that was mutated in this study is shown in black. Homology models were constructed
using SYBYL (Tripos, St. Louis, MO) and PyMOL (DeLano Scientific, Palo Alto, CA).
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that wild-type and R447 mutants form
heteromultimers when coexpressed in the
same cells (Grewer et al., 2005). We there-
fore examined and compared the L-Ala
and L-Glu concentration dependence of
transport currents in oocytes expressing
heterotrimeric wild-type hEAAT3 and
R447C mutant subunits with the currents
activated in homotrimeric populations of
each subunit. Concentration–response
data for both L-Ala and L-Glu were deter-
mined in each oocyte, and the EC50 values
and Hill coefficients were measured at a
series of membrane potentials between
�100 and 60 mV. At �20 mV, the reversal
potential for Cl�, the current activated by
glutamate predominantly reflects coupled
transport (Wadiche et al. 1995) (Fig. 2A).
At all membrane potentials, the L-Glu and
L-Ala concentration dependence of cur-
rents in oocytes expressing heterotrimers
was the same as for oocytes expressing ho-
motrimeric wild-type and mutant trans-
porter subunits, respectively (Fig. 2A,B)
( p � 0.5). These data are consistent with
the conclusion that a glutamate trans-
porter resides in each subunit within the trimeric complex, be-
cause a binding site and translocation pathway formed by multi-
ple subunits would be expected to exhibit an altered apparent
affinity in the heterotrimers (Awes et al., 2004; Grewer et al.,
2005; Koch and Larsson, 2005). Furthermore, because the gluta-
mate concentration dependence of transport exhibited a Hill co-
efficient �1, each subunit of the trimer appears to function
independently.

Analytical modeling of anion channel gating
We considered two general classes of models for anion channel
gating in a trimeric molecule: (1) a channel within each subunit
that is activated by glutamate binding or (2) a single channel that
is gated by glutamate binding to one, two, or three subunits.
Using the intrinsic transport kinetic parameter K estimated from
measurement of the EC50 of glutamate transport in the absence of
anion flux (44 �M) (see Fig. 4A), we derived the predicted
concentration-dependent conductance of the anion channel for
each of the models. This estimated value was in good agreement
with previous microscopic rate measurements and modeling,
with a glutamate-binding rate of 6.8 � 10 6

M
�1 s�1, an unbind-

ing rate of 300 s�1, and a transport rate of 14.6 s�1 (Larsson et al.,
2004; Wadiche et al., 1995),

K �
kb � kt

kf
� 46 �M

(also see Materials and Methods and supplemental material,
available at www.jneurosci.org). This value was used to derive the
predicted glutamate concentration dependence of the channel
conductance for the one-channel/one-subunit model as well as for
the three models in which a central channel is gated by glutamate
binding to one, two, or three subunits. For a given transport constant
K, which reflects glutamate binding, unbinding, and transport rates,
each channel-gating model predicts a unique concentration depen-
dence of anion channel activation that can be experimentally tested
to identify the gating mechanism of the anion channel (Fig. 3).

The isolated anion current is best fit by the model of one
channel within each subunit
The four models represented in Figure 3 predict distinct differ-
ences in anion channel gating as a function of glutamate concen-
tration. Because the presence of the permeant anion NO3 does
not affect the rate of coupled transport (Wadiche and Ka-
vanaugh, 1998), the anion current was isolated by subtracting the
coupled transport current (recorded in Cl–Ringer at an ECl of
�20 mV) from the current recorded at the same potential after
switching the external solution to NO3–Ringer. Figure 4A shows
the L-Glu dependence of both the anion current and the coupled
transport current at �20 mV. The concentration dependence of
anion channel activation was compared with each model and
quantified by � 2 measurement (Fig. 4B). The data are best fit by
the model in which one anion channel within each subunit is
gated independently (�2 � 8.08). The next best fit was for the
model in which the anion conductance is gated by binding of
glutamate to at least two subunits (�2 � 202). There was no

Figure 2. Selectivity of currents and transport mediated by homotrimeric and heterotrimeric wild-type (WT) and R447C
mutant subunits. A, The L-Glu concentration response of transporter currents for homomultimeric WT (‚; EC50 � 85.7 �M 	 19;
nHill � 0.84 	 0.02; n � 7), R447C (Œ; n � 3), and heteromultimeric R447C�WT (E; EC50 � 70.4 	 12.5 �M; nHill � 0.89 	
0.07; n � 6) subunits. The extracellular solution contained Cl–Ringer with Vm � �20 mV. B, L-Ala concentration response of
transporter currents for the homomultimeric WT (Œ; n � 4), R447C (‚; EC50 � 30.8 	 9 �M; nHill � 0.85 	 0.05; n � 4), and
heteromultimeric R447C coexpressed with WT (E; EC50 � 20.8 	 6 �M; nHill � 0.91 	 0.05; n � 6) subunits. The extracellular
solutions contained NO3

�—Ringer with Vm � 20 mV. All currents were fitted to I/Imax � S n/(S n � EC50
n). Heterotrimer

experiments for A and B were performed in the same oocytes. C, Radiolabel uptake of 30 �M [ 3H]D-Asp or L-Ala verifies selectivity
switch caused by mutation of R447. Error bars indicate SEM.

Figure 3. Analytical modeling of anion channel gating. Shown are models depicting anion
channel schemes for the following: (1) independent gating in each subunit of the trimer (black
line; EC50 � 45 �M; nHill � 1), (2) central pore gated by noncooperative binding to one or more
subunits (red line; EC50 � 11.90; nHill � 1.48), (3) central pore gated by occupancy of two or
more subunits (blue line; EC50 � 46.33; nHill � 1.57), and (4) central pore gated by occupancy
of three subunits (green line; EC50 � 180.50; nHill � 1.18).
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increase in apparent glutamate cooperativity at potentials up to
�60 mV (n � 1.08 	 0.03; n � 9).

Discussion
Data from several laboratories obtained by coexpression of wild-
type and mutant subunits is consistent with the conclusion that
glutamate binds and translocates through each of the single sub-
units in a trimeric complex (Awes et al., 2004; Grewer et al., 2005;
Koch and Larsson, 2005). In agreement with Grewer et al. (2005),
we found that when wild-type subunits are coexpressed with mu-
tant subunits, two independent populations of transporters are
observed. Assuming that a fraction of the trimers are heteromers
(Grewer et al., 2005), this result suggests that each subunit trans-
ports substrate independently. Important caveats arise when
making quantitative inferences using this experimental approach
because of untested assumptions of random translation and in-
teraction of wild-type and mutant subunits expressed at the
plasma membrane as well as uncertainties about the microscopic
conductance properties of the various homotrimers and hetero-
trimers. To circumvent these caveats, we applied Michaelis–
Menten analysis to homotrimeric wild-type transporters and de-
rived equations that predict the distribution of singly, doubly,
and triply occupied trimeric complexes as a function of glutamate
concentration. These derivations depend only on the assumption
that each subunit transports glutamate independently (Awes et
al., 2004; Grewer et al., 2005; Koch and Larsson, 2005; Leary et al.,
2006).

We find that the glutamate concentration dependence of the
fractional anion conductance is the same as the fraction of total
subunits occupied by glutamate, consistent with the presence of a
channel in each subunit that is gated by glutamate binding. This is
in contrast to the predictions for gating of a central channel con-
trolled by occupancy of one, two, or three subunits. A conse-
quence of the one-subunit/one-channel gating scheme is that the
concentration dependencies of transport and anion conductance
are expected to be identical, which is indeed observed (Fig. 4A).
This result conflicts with that of Torres-Salazar et al. (2006), who
found evidence of subunit cooperativity in a recent study of chan-

nel gating of the related EAAT4 glutamate transporter. Aside
from the difference in transporter subtype, it is presently unclear
why these results differ. It is possible that in the recording condi-
tions of Torres-Salazar et al. (2006), which used intracellular Na�

and involved activation of transient anion currents by voltage
jumps, additional conductances could be reflected in the
presteady-state currents, which are not monitored in the steady-
state conditions studied here.

The detailed molecular mechanisms controlling the chloride
channel functions of glutamate transporters are still unclear. A
cluster of residues in the second transmembrane domain
(TMD2) that affects anion permeation has been identified by
Ryan et al. (2004). These residues are in a helix that is adjacent to
the likely glutamate- binding site (Fig. 1B). TMD8, where R447
lies, and TMD7, where other residues implicated in alkali cation
coupling lie (Kavanaugh et al., 1997), are also close to the likely
glutamate-binding site. The identity of the coupled alkali cation
also strongly influences the anion conductance (Borre and Kan-
ner, 2001), suggesting that these helices could potentially be in-
volved in forming a permeation path that could be shared by
L-Glu, the coupled cations, and Cl� ions. Examples of stochastic
gating and high substrate flux rates in other transporters support
the idea that a transporter pore may be subject to channel-like
gating modes that are incongruous with conventional alternating
access gating (DeFelice and Goswami, 2006).

An additional unresolved question concerns the reason for the
trimeric nature of the transporter given that the subunits func-
tion independently. It is unknown whether dissociated mono-
meric subunits are functional, but it is possible that a multimeric
structure has evolved to play a functional role (e.g., a large aque-
ous bowl projecting partially through the plane of the membrane
might facilitate transport of charged substrates across the mem-
brane dielectric). Analysis of the quaternary structure and chan-
nel properties of other members of this transporter superfamily
may shed additional light on these issues.
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