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The role of irregular cortical firing in neuronal computation is still debated, and it is unclear how signals carried by fluctuating synaptic
potentials are decoded by downstream neurons. We examined in vitro frequency versus current ( f–I) relationships of layer 5 (L5)
pyramidal cells of the rat medial prefrontal cortex (mPFC) using fluctuating stimuli. Studies in the somatosensory cortex show that L5
neurons become insensitive to input fluctuations as input mean increases and that their f–I response becomes linear. In contrast, our
results show that mPFC L5 pyramidal neurons retain an increased sensitivity to input fluctuations, whereas their sensitivity to the input
mean diminishes to near zero. This implies that the discharge properties of L5 mPFC neurons are well suited to encode input fluctuations
rather than input mean in their firing rates, with important consequences for information processing and stability of persistent activity
at the network level.
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Introduction
Cortical neurons discharge spontaneously in vivo, contributing
to irregular background synaptic inputs to other cells (Shadlen
and Newsome, 1994). This induces fluctuations in the postsyn-
aptic membrane voltage (Parè et al., 1998) and strongly affects the
neuronal frequency versus current ( f–I) relationship and input
integration (Destexhe et al., 2003). However, it remains unclear
whether irregular firing and membrane fluctuations encode rel-
evant information and take active part in signal processing, and
whether a neuron can propagate such information to down-
stream neurons. Associative areas, as the prefrontal cortex (PFC),
might be specifically sensitive to input fluctuations to stabilize
persistent activity for working memory. In fact, local circuit mod-
els of working memory in associative cortices require noisy back-
ground environments, weak firing rate accommodation, and sat-
urating synapses [e.g., NMDAR-mediated (Wang, 2001)]. Do
prefrontal cortical neurons support specifically the requirements

of persistent activity networks, beyond known differences in re-
current connectivity (Elston, 2003)? Is there anything peculiar in
the way these neurons respond to input signals?

To address these fundamental issues, we studied in vitro in-
put– output discharge properties of layer 5 (L5) pyramidal cells in
the rat medial PFC (mPFC). These cells are the main output stage
of the cortical columnar organization. We explicitly recreated an
in vivo-like fluctuating current input with independently varying
mean and variance. Under similar conditions, it was shown pre-
viously that sustained neuronal responses increase monotoni-
cally (Ahmed et al., 1998) and become progressively insensitive to
the amplitude of input fluctuations in pyramidal cells and fast-
spiking interneurons of the somatosensory cortex (SSC) (Rauch
et al., 2003; La Camera et al., 2006) as well as in cultured neurons
dissociated from the neocortex (Giugliano et al., 2004). This oc-
curs for increasing input offset and results in repetitive and rela-
tively regular firing, mostly independent of the amplitude fluctu-
ations around the offset.

Here, we demonstrate that the predominant discharge re-
sponse properties of mPFC pyramidal neurons in L5 have an
unexpectedly large sensitivity to input fluctuations throughout
the range of firing rates sustained by the cell. Moreover, neurons
have a sigmoidal f–I response that saturates at relatively low fre-
quencies. To quantify and assess the statistical significance of this
single-cell property, we identified the parameters of an extended
integrate-and-fire (IF) model, which fit experimental data with
high accuracy. In addition, we examined possible candidate sub-
cellular mechanisms underlying this extra sensitivity to input
fluctuations by spike-train analysis and additional biophysical

Received Nov. 14, 2006; revised Jan. 23, 2007; accepted Feb. 6, 2007.
This work was supported by Swiss National Science Foundation Grant 31-61335.00 (H.-R.L.), the Silva Casa

Foundation, and Human Frontier Science Program Grant LT00561/2001-B (M.G.). B.N.L. was also supported by the
Medical Scientist Training Program, a fellowship from the National Institute of General Medical Sciences (T32
07266), and an Achievement Rewards for College Scientists Foundation fellowship. We declare no conflict of inter-
est. We thank Drs. S. Fusi, G. La Camera, A. Rauch, W. Senn, A. Fairhall, M. H. Higgs, and W. Spain for helpful
discussions and Drs. A. Compte, N. Brunel, and K. Tseng for comments on this manuscript. B.N.L. and M.G. also thank
Dr. K. Doya and the Okinawa Institute of Science and Technology for facilitating this collaboration.

Correspondence should be addressed to Dr. Michele Giugliano, Ecole Polytechnique Fédérale de Lausanne, School
of Life Sciences Brain Mind Institute Laboratory of Neural Microcircuitry, Station 15, CH-1015 Lausanne, Switzerland.
E-mail: michele.giugliano@epfl.ch.

DOI:10.1523/JNEUROSCI.4937-06.2007
Copyright © 2007 Society for Neuroscience 0270-6474/07/273274-11$15.00/0

3274 • The Journal of Neuroscience, March 21, 2007 • 27(12):3274 –3284



modeling. We suggest that a slow component in voltage-
dependent inactivation of the Na� conductance is sufficient to
explain the observed sensitivity to fluctuations.

Because persistent firing during delayed-match-to-sample
tasks is frequently observed in associative cortical areas rather
than in primary sensory areas (Brody et al., 2003), we discuss the
impact of the extra sensitivity to the amplitude fluctuations on
the stability of persistent activity states in recurrent networks of
IF neurons. By using analytical methods, we predict that excita-
tory networks of mPFC neurons are indeed likely to reproduce
more robust persistent states. Finally, we discuss the implication
of our results for a novel activity-dependent filtering of informa-
tion in populations of IF neurons.

Materials and Methods
Slice preparation and electrophysiology. Tissue preparation was as de-
scribed by Hempel et al. (2000). Briefly, coronal slices (300 �m) of the
prefrontal cortex were prepared from 13- to 50-d-old Wistar rats that
were killed by decapitation, following the guidelines of the veterinary
office of canton Bern. Whole-cell patch-clamp recordings were made at
32°C from the soma (10 –20 M� access resistance) using a BVC-700A
bridge amplifier (Dagan, Minneapolis, MN). Bridge balance and capac-
itance neutralization were applied. Hyperpolarizing and depolarizing
current steps were also used to obtain estimates of the passive properties
of patched neurons (Iansek and Redman, 1973), such as the total mem-
brane capacitance Cm and apparent input resistance Rin.

Chemicals and solutions. Slices were continuously perfused with artifi-
cial CSF (ACSF) containing the following (in mM): 125 NaCl, 25
NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, and 25 glucose;
solutions were balanced with 95% O2 and 5% CO2. The pipette solution
contained the following (in mM): 115 K-gluconate, 20 KCl, 10 HEPES, 4
ATP-Mg, 0.3 Na2-GTP, and 10 Na2-Phosphocreatine with pH adjusted
to 7.3 via KOH. Other pipette solutions were reported not to significantly
alter the response properties of the cells under similar experimental con-
ditions and for the same current-clamp protocol (Rauch et al., 2003). In
some experiments, synaptic inputs were blocked by adding selective an-
tagonists of ligand-gated channels to the bath (i.e., APV, 50 �M; CNQX,
10 �M; GABAzine, 3 �M). This did not affect the input– output response
properties of the cells investigated in this work. All of the chemicals were
obtained from Sigma (St. Louis, MO) or Merck (Geneva, Switzerland).

Noisy stimulation protocol. In all of our experiments, we used a current-
clamp stimulation protocol. It consisted of a repeated injection into the
soma of pyramidal neurons of independent fluctuating current wave-
forms I(t), each lasting 10 s and interleaved by 30 – 60 s of recovery time
(Mainen and Sejnowski, 1995; Poliakov et al., 1997; Destexhe et al., 2001;
Protopapas and Bower, 2001; Fuhrmann et al., 2002; Chance et al., 2002;
Shu et al., 2003; Silberberg et al., 2004). When a neuron embedded in
large neocortical networks receives a barrage of synaptic inputs through
synapses with small efficacies compared with the firing threshold, the
resulting currents can be well approximated by an input current with
random Gaussian fluctuations of variance, s 2, around the mean, m
(Tuckwell, 1988; Renart et al., 2003). Therefore, I(t) was synthesized as
Gaussian noise. If postsynaptic currents are instantaneous, I(t) is white
noise, whereas for exponentially decaying synaptic currents, I(t) is col-
ored noise with a correlation time length equal to the synaptic decay time
constant. The following iterative expression was used to synthesize I(t), a
realization of an Ornstein–Uhlenbeck process (Cox and Miller, 1965), as
follows:

I�t � dt� � I�t� � �m � I�t��dt/�I � s�2dt/�I�t , (1)

which represents the exponential filtering of a Gaussian white noise.
In Equation 1, �t represents a random variable from a normal distri-

bution (Press et al., 1992), and it was updated at a rate of 5–10 kHz (i.e.,
dt � 0.1– 0.2 ms). �1 represents the correlation time length of the noise,
and it accounts for the effective decay time constant of individual EPSCs/
IPSCs. Restricting our interests to the contribution of AMPA- and
GABAA-mediated fast synaptic currents, �1 was fixed to 3–5 ms (Des-

texhe et al., 1994). The exploration of the stimulus space (m, s) was
performed interactively in a shuffled order, randomly repeating some of
the pairs (m, s), and independently varying m and s across subsequent
stimulation trials (see Fig. 1). The entire procedure typically required
30 – 60 min of recording time to be completed. The reproducibility of the
neuronal discharge rate to the same input statistics (m, s) was regularly
tested. In addition, the stability of the resting membrane potential Em and
of the cell input resistance Rin were continuously monitored. The proto-
col was stopped in the case of drifts in any of these observables.

Analysis of the evoked discharge response. Intracellular voltage re-
sponses to each current stimulus, characterized by the pair (m, s), were
collected. Individual spike times and shapes were extracted from raw
traces and processed by custom software in MatLab (MathWorks,
Natick, MA).

The discharge frequency of the neuron ( f ) was calculated by counting
spikes in two consecutive and nonoverlapping time windows, thereby
characterizing transient and steady state responses. The transient re-
sponse was evaluated by measuring the mean firing rate during the first
2–2.5 s of stimulation, whereas the steady state response refers to the last
5– 8 s of stimulation; corresponding temporal windows were averaged
across the available repetitions. Experimental curves [fh � fh(mh, sh),
h � 1, 2, . . . , M] were obtained for two to four distinct values of s and
M � 20. These curves were plotted and compared with the theoretical
responses of IF model neurons (Tuckwell, 1988) driven by the same
fluctuating currents. Recordings were further compared with available
data for pyramidal L5 neurons in the somatosensory cortex (Rauch et al.,
2003) and for dissociated cortical neurons in culture (Giugliano et al.,
2004).

When approximating the membrane voltage distributions that result
from incoming synaptic noise, a current-based model that neglects con-
ductance fluctuations gives similar results to conductance-based models,
under the effective membrane time constant approximation (Richard-
son, 2004; Richardson and Gerstner, 2005). However, significant differ-
ences between the irregularity of the spike trains evoked under the two
conditions were reported (Rudolph and Destexhe, 2003a), together with
distinct capabilities of resolving temporal inputs (Hô and Destexhe,
2000; Rudolph and Destexhe, 2003b). Nevertheless, the parameters of
current-driven and conductance-driven stimulations can be selected to
result in overlapping f–I transfer functions as long as the mean firing rate
is the relevant observable (Rauch et al., 2003; La Camera et al., 2004b), as
in our study.

Models response function. Analytical expressions of the current-to-rate
response function f � 	IF(m, s) for the leaky IF (LIF) neuron (Tuckwell,
1988), as well as for our extension of it (sLIF), were used to optimally fit
these models to the experimental data of each cell. The analytical expres-
sion for the models f–I stationary response is given by the following
(Ricciardi, 1977):

f � 	IF �m,s� � ��� � ����
�H
����/�	 ����

�

����/�	 ����

ex2
�1 � erf�x��dx�
1

,

	 � �s�2�I�/C , (2)

where C indicates the membrane capacitance, � � m/C, and � is the
membrane time constant. �� represents the absolute refractory period
and, for conventional IF models, it is usually assumed to be constant. For
our extended model (sLIF), an additional dependence of f on the ampli-
tude of the noise s was considered, making the absolute refractory period
inversely depend on s:

���s) � �arp � �/s . (3)

In Equation 3, both �arp and � are positive constants, with � quanti-
fying the degree of divergence between f–I relationships, whereas �arp


1

acts as an upper bound for the firing rate (see Figs. 3, 5). Because LIF and
sLIF differ exclusively in the convergence or divergence of the f–I curves
for distinct values of s, for � � 0 ms pA, the models are equivalent.
Therefore, the high statistical significance of model fits by one model but
not by the other allowed us to test the significance of the divergence of the
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f–I curves found in the experiments, as well as to
quantify it by the best-fit values of �.

Finally, a minimal model of spike-frequency
adaptation (La Camera et al., 2004) was in-
cluded at the steady state to capture the effect of
sodium- or calcium-activated potassium cur-
rents. Analytically, it results in an implicit de-
pendence of � on the firing rate f � 	IF,
weighted by a positive constant � that quanti-
fies the amount of spike-frequency adaptation:

� � �m 
 �	IF(m,s)]/C. (4)

In the model, the resting membrane potential was 0 mV, and the
constant threshold 
 was fixed 20 mV above rest (i.e., E � 0 mV and 
 �
E � 20 mV). The reset voltage H after each spike was a free parameter.
Thus, the model was characterized by five independent parameters (or
six when adaptation was included and thus � � 0).

An alternative IF model with constant leak and spike refractory period
similar to the LIF model [i.e., CLIFF (Fusi and Mattia, 1999)] was also
considered and performed similarly to the LIF model (data not shown).

Statistics. For each cell, the � 2 test was applied as a quantitative indi-
cation of the goodness-of-fit of the IF models (i.e., LIF and sLIF) (Press et
al., 1992). � 2 and its minimum � min

2 are random variables approximately
distributed according to a � 2 distribution. This makes p� � Prob(� 2 �
� min

2 ) a standard indicator of the significance and quality of the fit. In
addition, a measure of the narrowest confidence interval for each data
point corresponding to a successful � 2 test with p� � 0.1, was chosen as
a quantitative analog of the quality of the fit [i.e., K (see Eq. S2, available
at www.jneurosci.org as supplemental material)] and was used to com-
pare the performance of distinct IF models (i.e., LIF and sLIF) in describ-
ing the entire data set (see Fig. 4).

For the evaluation of p�, the degrees of freedom (DoF) of the � 2

distribution were selected according to the model in use. In each exper-
iment, the DoF corresponded to the difference between the number of
free parameters of the model to be identified and the number M of
available experimental observations for a given cell. A model incorporat-
ing more parameters will pass the statistical test with increased difficulty
compared with a model with fewer parameters, for a given data set (Press
et al., 1992). With the aim of directly comparing our findings to previous
work and explicitly challenging our new sLIF model, we chose the strict-
est criteria discussed by Rauch et al. (2003). Therefore, the fits were
accepted only when p� � 0.1. When p� was smaller, the discrepancies
between the data and the model predictions were assumed unlikely to be
chance fluctuations (within the confidence intervals), and the fit was
rejected.

Finally, the Pearson correlation coefficient and the Kendall’s Tau non-
parametric (rank-order) test were used to assess statistical correlations
(Press et al., 1992). The latter provides a correlation measure rK together
with an estimated significance level pK, which represents the false positive
probability (i.e., the probability of obtaining the same value for rK from
statistically independent samples).

Biophysical modeling. Experimental results were compared with qual-
itative predictions of two single-compartmental conductance-based
model neurons: a Hodgkin–Huxley (HH) and a neocortical model neu-
ron. The HH model neuron (Hodgkin and Huxley, 1952) included a slow
sodium inactivation gate i with rate functions described by Miles et al.
(2005): �i( V) � 0.0077/[1 � exp(
2 � V/9)] and 
i( V) � 0.0077 [1 �
exp(2 
 V/9)]. Similar results were also obtained with rate functions for
the slow sodium inactivation gate i as described by Fleidervish et al.
(1996). Other equations and parameters were as typically defined for the
HH neuron (Hodgkin and Huxley, 1952; Koch, 1999; Dayan and Abbott,
2001; Gerstner and Kistler, 2002): the capacity of the membrane was 1
�F/cm 2; leak, sodium, and potassium currents had maximal conduc-
tances of 0.3, 120, and 36 mS/cm 2, respectively, whereas their reversal
potentials were 
54, 50, and 
77 mV, respectively. Neuronal surface
area was assumed to be 0.004 mm 2. The neocortical model neuron was
based on one described by Gerstner and Kistler (2002), which is a slightly
modified version of the model presented by Erisir et al. (1999); this

model includes fast and slow potassium currents, a fast sodium current,
and a leak current. For this model, leak, sodium, fast potassium, and slow
potassium currents had maximal conductances of 0.25, 50 – 60, 225, and
0.225 mS/cm 2, respectively, whereas their reversal potentials were 
70,
74, 
90, and 
90 mV, respectively. The capacity of the membrane and
the neuronal surface area were chosen as for the HH model.

To this model, as with the HH model, we added a slow sodium inac-
tivation gate i with rate functions based on neocortical neurons as de-
scribed by Fleidervish et al. (1996), �i( V) � 0.001 exp[(
85 
 V )/30]
and 
i( V) � 0.0034/(1 � exp[(
17 
 V )/10]).

Equations were solved numerically by MatLab and compiled C code
using fourth-order Runge–Kutta integration with a fixed time step of
0.05 and 0.005 ms for the HH and neocortical models, respectively. In-
jected current stimuli were computed by Equation 2 with �I � 1 ms.

Spike times were identified as the upward crossing of the voltage trace
at 
20 mV with resting potentials of 
65 and 
70 mV for the HH and
neocortical models, respectively. Firing rates for a given input current
were measured at steady state.

Simulation code is available for the NEURON simulation environ-
ment (Carnevale and Hines, 2006) on the SenseLab ModelDB database
(http://senselab.med.yale.edu/senselab/modeldb, n. 83590).

Analysis of recurrent networks of IF neurons. By the extended mean-
field theory (Amit and Brunel, 1997a; Brunel, 2000; Mattia and Del Giu-
dice, 2002), which allows one to investigate the collective activity of
randomly interconnected population of neurons from the knowledge of
their f–I curves, we analytically studied and compared populations of IF
neurons characterized by the divergent f–I curves (sLIF) to populations
of conventional leaky IF neurons (LIF). We considered homogeneous
networks of Ne excitatory neurons, using Equations 2 and 3 as the single-
neuron f–I curve with the effective parameters identified in our experi-
ments (Table 1) or in a previous report (Rauch et al., 2003). We neglected
network heterogeneities to keep the interpretation of the results as simple
as possible (but see Amit and Brunel, 1997b). We chose an unstructured
connection topology with random probability of synaptic connection
between any two neurons Cee � 0.1. The total synaptic current (i.e., the
mean field) experienced by a generic neuron results from recurrent and
background contributions, and its statistics is assumed to be Gaussian
distributed, described by mean m( f ) and variance s 2( f ) (Amit and
Brunel, 1997a; Rauch et al., 2003):

m( f ) � NeCeeJf�e � m0 s 2( f ) � 0.5NeCeeJ
2f�e � s0

2, (5)

where f indicates the network mean firing rate. J is the effective peak
amplitude for the individual EPSCs, which decay with time constant �e.
Both J and �e were assumed to be uniform across all of the synapses of the
network, and �e was set to the same values of �I (Eq. 1). m0 and s0

2 are two
fixed parameters, corresponding to the effect of background synaptic
activity and feedforward inputs, independent of f.

In Figure 8, persistent activity states were investigated by studying the
solutions f * of the implicit equation

f * � 	IF[m( f *),s( f *)] (6)

that satisfy the stability condition d	IF/df 
 1.
In Figure 9, input– output network transformations were approxi-

mated by examining slow modulations �f(t) around two working points
f * [i.e., f � f * � �f(t)], f * � fup and f * � fdown, assumed to be persistent
states of an appropriate (unmodeled) larger network. Output modula-

Table 1. Numerical values of the best-fit parameters for the sLIF model

� (pA/s) � (ms) C (pF) H (mV) �arp (ms) � (ms/pA) e (Hz)

T 0 � 0 46.9 � 30.7 437.4 � 209.4 
4.2 � 2.5 12.6 � 3.9 15.2 � 20.3 1.1 � 0.4
SS 3.9 � 2.5 30.1 � 11.3 285.1 � 111.2 1.3 � 4.3 12.5 � 4.2 14.3 � 19.7 0.9 � 0.4

Values have been indicated as mean � SD and estimated during the transient (T) or steady state (SS), respectively. Model parameters should be neither
regarded as estimates of the biophysical variables underlying passive and active membrane properties nor their values expected to be in physiological ranges.
Although correlated to their biophysical correlates, they only represent effective parameters of a phenomenological (integrate-and-fire) description of
neuronal f–I response properties. Description of model parameters (Eqs. 2– 4) is as follows: �, spike adaptation factor; �, membrane time constant; C,
membrane capacitance; H, reset voltage; �arp, effective absolute refractory period; �, f–I divergence factor; e, mean absolute error between model prediction
and experimental data (not necessarily correlated with goodness-of-fit test).
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tions were assumed to result from a slow and weak modulation in
the feedforward input component around fixed values [i.e., m0(t) �
m

up/down
� �m(t) and s0

2(t) � sup/down
2 � �s 2(t)] and computed by f �

	IF[m( f *), s( f *)] without solving the self-consistency. Therefore, we
assumed that �m(t) and �s 2(t) were weak enough to allow the network
to persist in its equilibria states.

Results
To explore the impact of irregular cortical synaptic inputs on the
single-neuron response properties in the rat mPFC, we intro-
duced current-clamp fluctuating stimuli in single neurons in
vitro, and we observed the evoked firing response. Such a stimu-
lation protocol approximates the barrage from in vivo firing pop-
ulations of excitatory and inhibitory presynaptic neurons (Des-
texhe et al., 2001; Rauch et al., 2003; La Camera et al., 2006). In
brief, the firing of excitatory and inhibitory afferent populations
is replicated by a filtered Gaussian current (Tuckwell, 1988) that
was injected somatically. Both mean m and variance s 2 of such
current stimuli relate to each other, both depending on the num-
ber, activation rate, and synaptic current amplitudes at the soma
of many simulated afferents, which fire as independent random
Poisson processes (Renart et al., 2003). Because we aimed to
study how varying the level of input fluctuations affects neuronal
responses at low and high mean currents, stimulus mean m and
variance s 2 were varied independently while measuring the mean
firing rate (Figs. 1, 2).

The results described below are based
on whole-cell somatic recordings ob-
tained from 113 pyramidal cells in mPFC
slices. Large L5 regular spiking pyramidal
neurons with a thick apical dendrite were
identified by their morphology and elec-
trophysiological response properties
(Zhang, 2004) and selected for recording.
In some experiments, biocytin histochem-
istry was used to confirm the cortical layer
and cell type as well as to check whether
the entire neuronal apical dendrite was in
the plane of the slice and whether this
had any impact on our results (see
supplemental material, available at
www.jneurosci.org).

Our observations are based on the
analysis of both steady-state and transient
neuronal response properties, which
showed very similar trends.

The resting membrane potential, total
membrane capacitance, and apparent
input resistance were estimated as
(mean � SD) Em � 
69.87 � 5.46 mV,
Cm � 222.84 � 95.66 pF, and
Rin � 107.36 � 60.77 M� (i.e., RinCm �
23.33 � 7.67 ms), respectively. All cells
had action potentials characterized by
overshoot and maximal upstroke and
downstroke velocities of 26.1 � 10.6 mV,
127.5 � 53.1 mV/ms, and 
43.3 � 22.5
mV/ms, respectively, averaged across all
stimulation trials from all experiments.

mPFC pyramidal cells display increased
sensitivity to noise
Transient and steady-state firing f–I rela-
tionships were evaluated using noisy cur-

rent steps of 10 s duration while sweeping the input current mean
m and variance s 2 independently (Figs. 1, 2). Figure 1 reports the
results of a typical experiment where raw voltage traces and
steady-state analyzed f–I curves are shown. When the input cur-
rent mean m was larger than the minimal DC step amplitude
needed to evoke a spike (i.e., the rheobase current; m � mrhe; s �
0), cells fired more regularly than for lower means m (Fig. 1B,C).
Firing rate was also increasing with m. Under the same experi-
mental conditions, previous studies reported that the mean firing
rate of SSC pyramidal cells and fast-spiking interneurons become
generally insensitive to input fluctuations s while linearly increas-
ing for increasing current mean m (Rauch et al., 2003; La Camera
et al., 2006) (Fig. 3).

L5 mPFC pyramidal neurons instead showed a prominent
sigmoidal saturation of the mean firing rate with maximal firing
frequency �40 – 60 Hz, for increasing values of m. In addition,
individual f–I curves obtained in the same neuron for distinct
values of s showed an unexpected divergence. mPFC neurons
thus retain a high sensitivity to fluctuations of the input current
(Figs. 2, 3) throughout the range of input mean for which a firing
response can be sustained (i.e., 
200 pA to 1200 pA). This has
been summarized in Figure 2 for a population of 80 different cells
where the transient f–I responses have been studied. In contrast,
neuronal sensitivity to the input mean is reduced for values of m
above saturation (i.e., � 0.2– 0.5 nA) as curves plateau.

20

40

60

f  
[H

z]

2
3

1

0 400 800 1200

0.5

1

m [pA]

C
V

0

A

B

C

3

2

0.2 s0.
1 

V

1

6 ms0.
1 

V

Figure 1. The neuronal discharge response retains sensitivity to input fluctuations as demonstrated by diverging f–I curves for
distinct levels. A, B, The discharge response of a typical layer 5 pyramidal neuron of rat medial prefrontal cortex was quantified in
terms of the mean firing rate f (A) and the coefficient of variation (CV) of the interspike intervals (B) as a function of the input
current mean m. Different colors and marker shapes represent different values of the amplitude fluctuations in the input current,
where SD s is 50, 150, and 300 pA (see inset in top left panel). Curves remain well separated from each other (i.e., divergent)
throughout the range of m. C, For each combination (m, s), the evoked spike trains were studied at the steady state while carefully
monitoring the stationarity of the spike shape at the beginning and at the end of the trace (boxes).
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Firing rate saturation and increased sensitivity to input fluc-
tuations were accompanied to a positive shift of the apparent
voltage spike-threshold Vth. This was defined as the average of the
values of the membrane potential V, corresponding to a rate of
change dV/dt of 10 mV/ms during each action potential. Figure 4
reports and compares the f–I curves and the dependence on m
and s of the spike threshold Vth in two typical examples. The spike
threshold increases with m regardless of s as the f–I curves satu-
rate. This suggests that the cellular mechanisms underlying spike
generation might be responsible for the divergence of these f–I
curves (see Materials and Methods, Biophysical modeling).

mPFC pyramidal cells respond as integrate-and-fire neurons
To assess the statistical significance of the f–I curve divergence
observed in mPFC pyramidal neurons, we considered IF neu-
rons. These models have been found to approximate very well
the response properties of cortical neurons (Rauch et al., 2003;
Giugliano et al., 2004; Jolivet et al., 2006; La Camera et al., 2006)
and more biophysically detailed model neurons (Fourcaud-
Trocmé et al., 2003; Jolivet and Gerstner, 2004; Brette and Gerst-
ner, 2005). IF models generally include a fixed absolute refractory
period Tarp after spike emission. This results in a maximal firing
frequency of 1/Tarp, irrespectively of s and thus leading to con-
verging f–I curves. Here, we considered two IF models with dif-
ferent forms of refractoriness and fit these two models to data
from each cell (see Eqs. 2, 3). We found that only the IF model
incorporating a fluctuation-dependent refractory period fit the
data well (Figs. 5, 6).

For most of the cells, the performance for f � 	IF(m, s) of an
IF model (Eq. 2) fitting the experimental data were high and
statistically significant only if the model was extended to include
an extra sensitivity to s (Eq. 3).

Across all of the experiments, no cell was better fit by the
conventional LIF. Of 80 cells recorded without synaptic blockers
in the ACSF, the transient discharge response in 73 (91%) could
be fit (i.e., p� � 0.1, by the � 2 test with K � 1) (see supplemental
material, available at www.jneurosci.org) when the extended
model (sLIF) was used; spike-frequency adaptation (Eq. 4) was
unnecessary for successful fits during the transient period (i.e.,
� � 0). Twenty-seven of 80 cells (33%) could be fit by both the
new model (sLIF) and the conventional leaky IF (LIF). Similarly,
considering the steady-state response, 51 of 80 (64%) cells could
be fit only by the extended model, whereas 13 of 80 (16%) were fit
equally well by both models. A comparably strong difference be-
tween the performance of the two models holds for cells recorded
under pharmacological blockade of synaptic receptors (n � 9)
[for transient, 9 of 9 (100%) fit by extended model, 1 of 9 (11%)
fit by both models; for steady state, 4 of 9 (44%) fit by extended
model, 1 of 9 (11%) fit by both models].
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Figure 3. Summary of the observed f–I curve divergence and comparison with previous
results from L5 somatosensory cortex. Firing f–I curves from pyramidal neurons have been
summarized by a parameter that quantifies their shape: the divergence parameter � (see
Materials and Methods). L5 cells of the somatosensory cortex generally showed no divergence
(� � 0) and were previously reported to become insensitive to s for increasing input current
means m (Rauch et al., 2003; La Camera et al., 2006). Conversely, mPFC L5 pyramidal cells
display a heterogeneous degree of divergence, as shown in the distribution histogram. Sketches
for the cases � � 8 and � � 50 were reported for the sake of comparison.
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Figure 4. Sensitivity to input fluctuations correlates with a modulation of the spike thresh-
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state spike threshold Vth as a function of the input current mean m (C, D) (marker shapes and
colors are as in Fig. 1). This was defined as the value of the membrane voltage V that corresponds
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saturation for the f–I curves, allowing the firing of the neuron to become sensitive to s rather
than to m.
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In Figure 5, the fit performance of the two models to the f–I
curves of four typical cells was compared. It is apparent that only
the response functions of the sLIF model (Fig. 5, left column)
show divergence and thus capture the extra sensitivity to input
current fluctuations that are evident in the data, whereas for the
conventional LIF model, the response functions converge to a
common trajectory (Fig. 5, right column) regardless of s.

In addition, Figure 6 summarizes the overall fit performance
by an analog indicator of goodness-of-fit, related to the narrowest
confidence interval for each data point corresponding to a suc-
cessful � 2 test ( p� � 0.1) (see Materials and Methods). The value
K � 1 (K � 2) gives a confidence level of �68% (95%), which
describes the variance allowed for the data as calculated via �h

�

(Eq. S2) (Rauch et al., 2003; La Camera et al., 2006). Therefore, a

fit passing the test with K � 0.5 captures the data with better
accuracy, because the data variance is smaller than one with K � 0.9.

Quantification of the sensitivity to fluctuations
We could quantify the sensitivity of the cells to input fluctuations
by examining the best-fit model parameter � from the sLIF
model and assess the heterogeneity of cells with regard to the
degree of this sensitivity (Fig. 3). Table 1 summarizes the best-fit
sLIF model parameters across all of the cells, reporting the en-
semble mean and SD of each parameter. From Equation 3, it is
apparent that two parameters, �arp and �, primarily determine
the shape of the f–I curve and its sensitivity to the input fluctua-
tions; �arp sets the maximal firing rate, and � is related to the
divergence of the f–I curves in response to different levels of input
fluctuations s. Interestingly, the coefficient of variation of �arp was
quite low (i.e., �30% for both transient and steady state),
whereas the coefficient of variability of � was almost five times
higher (i.e., �140% for both transient and steady state). Because
�arp and � were only weakly correlated to each other [Kendall’s
tau rank order test, rK � 0.14, pK � 0.03 (transient); rK � 0.1,
pK � 0.15 (steady state)] (see supplemental material, available at
www.jneurosci.org), the large variability of � suggests that L5
pyramidal cells show differing degrees of sensitivity to noise, and
this explains why a fraction of the cells could be fit equally well by
both LIF and sLIF models. The best-fit parameter � was weakly
correlated with respect to the direct estimates of the input resis-
tances of the cells (Kendall’s tau test, rK � 0.25, pK 
 0.001)
and to their membrane time constants �m (Kendall’s tau test,
rK � 0.19, pK 
 0.1); it was not significantly correlated to
membrane capacitances Cm.

As expected, the correlation between the model parameters
identified in the transient and those identified in steady state was
very strong. In addition, the linear correlation coefficient be-
tween the membrane time constant �m, which was directly esti-
mated in each experiment, and the corresponding sLIF effective
parameter � was 0.33 (Kendall’s tau test, rK � 0.31 with pK �
0.003). The correlation coefficient between the membrane capac-
itance and the corresponding sLIF effective parameter C was 0.55
(Kendall’s tau test, rK � 0.43 with pK 
 0.0001).

Slow sodium inactivation and sensitivity to fluctuations
Divergent f–I relationships demonstrate the increased sensitivity
to input fluctuations of these cells. Whereas the underlying
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Figure 5. Divergent f–I curves are captured by a novel integrate-and-fire model used to
quantify the statistical significance of the discharge sensitivity to input fluctuations. Panels
report results from four different cells as in Figure 1, two under control ACSF and two under
pharmacological blockade of synaptic receptors, from top to bottom, respectively. Discharge
responses were evaluated over the first 2 s of stimulation as a function of the input current mean
m and variance s 2; marker shapes and colors are as in Figure 1 (50, 150, and 300 pA). Transient
and steady-state f–I revealed the same degree of divergence. The f–I curves corresponding to
distinct levels of input fluctuations s are well approximated by the extended (sLIF) integrate-
and-fire dynamics but not by the conventional LIF model. Responses were compared with the
best-fit predictions (lines) provided by the novel (left) and the conventional IF (right) model.
Whereas the �2 test was always well above significance for the sLIF (i.e., p� � 0.1), the LIF
model gave f–I curves that differed from experimental data, as apparent from the increased
mean absolute error e and by inspection.

Figure 6. The significance of f–I curve divergence was quantified by the superior fit perfor-
mance of the model incorporating the extrasensitivity to input fluctuations. This plot displays
the goodness of model fits between the extended (sLIF) and conventional (LIF) leaky integrate-
and-fire models and data from 80 cells recorded over the first 2 s of stimulation without phar-
macological blockers. For each cell, the performance was related to the narrowest confidence
interval, corresponding to a successful �2 test with p� � 0.1 (see Results and Eq. S2). K is the
number of SDs used to compute statistical confidence for each data point. K � 1 was chosen as
the condition for significance (dashed line) to facilitate comparison with previous reports in the
literature.
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mechanism is unknown, this sensitivity implies that these neu-
rons adapt to the offset of the input (i.e., the mean), without
adapting to rapid changes in the input (i.e., the variance).

Biophysically, we expect that this adaptation depends on mul-
tiple channels, and there is some evidence, for example, that slow
afterhyperpolarizations are indirectly involved (Higgs et al.,
2006). However, using simple biophysical models such as the
Connor–Stevens, Traub–Miles, and Hodgkin–Huxley model
neurons, we find that steady-state divergent f–I curves, in general,
do not result directly from additional slow voltage- or calcium-
dependent potassium channels (data not shown). These currents
can indeed encourage a neuron to respond to high-frequency
fluctuations while preventing a response to DC offsets, but their
effect is only transient. These currents linearize the stationary f–I
curves (Ermentrout, 1998) and decrease their slopes regardless of
the input fluctuations (La Camera et al., 2004a). Some authors
suggest that spike-frequency adaptation resulting from these cur-
rents is weaker in the presence of noise and irregular neuronal
discharge (Tang et al., 1997; Destexhe and Paré, 1999). Stronger
noise might therefore evoke weaker adaptation currents, produc-
ing divergent f–I curves. However, this occurs in the noise-
dominated regime (m 
 mrhe). We studied models similar to
those by Tang et al. (1997) but failed to observe divergence of f–I
curves in the drift-dominated regimes (i.e., m � mrhe). Further-
more, introducing in a LIF model several adaptation currents
acting on multiple time scales (Descalzo et al., 2005; Drew and
Abbott, 2006; La Camera et al., 2006) could not replicate the f–I
divergence observed in the experiments (data not shown).

Divergence occurs when the neuron adapts preferentially to
slow rather than fast components of the input. We demonstrate
this point by incorporating slow voltage-dependent sodium in-
activation into the Hodgkin–Huxley model as well as into a “non-
adapting” neocortical point neuron model (see Materials and
Methods) and showing that this addition changes the f–I curves
from convergent to divergent (Fig. 7).

By including a description of slow sodium inactivation and its
recovery process, the model neuron effectively modulates its fir-
ing threshold in response to slow components of the input cur-
rent (i.e., the DC component), because sodium inactivation is
voltage dependent with a time constant slower than sodium ac-
tivation. Thus, in its adapted state, the initiation of an action
potential becomes relatively more sensitive to input fluctuations
and the statistical distribution of the fluctuations and less sensi-
tive to slow components of the input current. The critical factor

underlying divergent f–I curves evidently relates to the spike-
generating mechanism, where low sodium conductance is a
mechanism of spike frequency adaptation (Melnick et al., 2004)
and slow sodium inactivation is one way of modulating the so-
dium conductance (Fleidervish et al., 1996).

Indeed, by arbitrarily defining the spike threshold as the volt-
age Vth corresponding to a rate of change dV/dt exceeding 10
mV/ms, our experimental recordings revealed a monotonic in-
crease of Vth as a function of m (Fig. 4C,D). As expected, the
steepest increase of Vth on m occurs in the range of divergence for
the f–I curves (Fig. 4A,B). Together with a very slow component
of spike frequency adaptation and with the progressive decrease
of the maximal upstroke velocity of each action potential as a
function of time (data not shown), this suggests the presence of a
slow inactivation of sodium currents. That slow inactivation of
sodium currents might prevent high-frequency responses to slow
depolarizations has been suggested previously (Fleidervish et al.,
1996), and here we indicate this as a putative mechanism for
divergent f–I curves with high values of mean current m. To a first
approximation, this slow inactivation mechanism allows the fir-
ing threshold to adapt to m and thus extends the dynamical range
of the sodium fast inactivation component and its fast voltage-
dependent recovery, which is by definition sensitive to fast input
fluctuations (i.e., s). Under these conditions, the resulting firing
refractoriness is mostly dependent on s, rather than m, even in the
drift-dominated regime (i.e., m � mrhe). We thus speculate that
slow sodium inactivation is functionally similar to the
fluctuation-dependent refractory period that was explicitly in-
cluded in the sLIF model as a phenomenological parameter.

Finally, dendritic calcium electrogenesis was deemed unlikely
to contribute to the increased sensitivity to fluctuations (see sup-
plemental material, available at www.jneurosci.org), suggesting
that somatic mechanisms alone suffice. In fact, we examined a
posteriori those experiments where the apical dendrite was cut
during the slicing procedure and systematically analyzed spike
trains, where we looked for, but failed to find, conditions neces-
sary for supralinear dendritic calcium spikes (Larkum et al., 1999,
2004).

Implications for persistent activity in recurrent
mPFC networks
We studied the stability of dynamical states in homogeneous re-
current networks of IF model neurons with divergent and con-
vergent f–I curves using the best-fit parameters identified in the
experiments and mean-field analysis (Renart et al., 2003). Ran-
dom networks of recurrently connected excitatory model neu-
rons are known to show a bistable regime for a limited range of
the effective synaptic coupling J (Fusi and Mattia, 1999). This
kind of persistent activity emerges as a population effect, and it
can coexist with a global spontaneous activity state (Amit and
Brunel, 1997a). This appears as a consequence of the appropriate
balance between the strength of background and recurrent in-
puts. In fact, recurrent inputs can consistently maintain the over-
all input to a neuron (Amit and Brunel, 1997a), thereby resulting
in a self-sustained network state. Similar synaptic reverberations
are considered as a candidate underlying mechanism for mne-
monic persistent neuronal firing observed in associative cortical
areas during delayed-match-to-sample tasks (Wang, 2001; Ren-
art et al., 2007).

By mean-field analysis, persistent activity states can be
searched as stable solutions f* of a self-consistent equation (Eqs.
2– 6). Parameters such as the strength of synaptic coupling J and
of the background (i.e., feedforward) inputs m0 and s0 (Eq. 5) can

m [pA]

f [
H

z]

-80 0 80 160 240 320

m [pA]

20

40

60

80A B

-400 0 400 800

20

40

60

80

Figure 7. Slow sodium inactivation is sufficient to account for f–I curve divergence in bio-
physical models of action potential generation. A, B, Introducing slow sodium inactivation and
its recovery process (Fleidervish et al., 1996; Miles et al., 2005) in the standard Hodking–Huxley
model (A) and in a neocortical point neuron (see Materials and Methods) (B) causes the neuron
to effectively modulate its firing threshold in response to slow components of the input current.
The plots replicate the experimental protocol of Figure 1 A for the Hodgkin–Huxley and neocor-
tical models with (solid lines) and without (dotted lines) the slow sodium inactivation. s was set
to [64 96 128] pA in A and [80 120 160] pA in B. Colors are as in Figures 1, 2, S1, and S2.
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be varied while computing existence and location of f*. Persistent
activity states were represented in Figure 8A as a bifurcation di-
agram, where the values f corresponding to stable mean firing
states were plotted as a function of J and denoted by a solid line.
Unstable solutions were instead denoted by a dashed gray line.

Because no additional inhibitory population has been in-
cluded in the model, the range �J of such a recurrent excitatory
coupling strength J is usually small (Fig. 8A) and, together with
the width d of the basin of attraction, shrinks as the level of
spontaneous activity F0 increases (Fig. 8B,C). In Figure 8, we
studied the range �J and the width of the basin of attraction of
stable solutions f* while increasing m0 and s0 to obtain an increase
in the spontaneous activity F0. Comparing identical networks of
LIF (� � 0) and sLIF (� � 0) neurons required adjusting m0 and
s0 in such a way that the same F0 was achieved. When �J and d
were studied systematically as a function of F0, we found an
�300% increase in the range of F0 for which bistability exists
when comparing sLIF neurons (� � 0) to LIF neurons (� � 0)
(Fig. 8). Whereas for an infinitely large network, once a persistent
state is reached, it will be retained endlessly, unless external per-
turbations occur, in small networks finite-size fluctuations might
push the activity out of a persistent state when exceeding the
width of the corresponding basin of attraction. This suggests that,
in recurrent network of IF neurons with divergent f–I relation-
ships, the emergence and maintenance of persistent states is gen-
erally more robust against fluctuations of background activity
and heterogeneities of synaptic strengths.

Discussion
Comparison with previous work
To relate our results to previous observations obtained under
similar conditions, we focused exclusively on current-clamp ex-
periments and on a particular stimulation protocol, where the
current mean m and SD s were separately manipulated (Rauch et
al., 2003). Qualitative comparisons between different stimulation
techniques require care, because different protocols may involve
different definitions of noise input mean and SD. For example,
Chance et al. (2002) reported a divergence in frequency-input
curves in the SSC neurons (i.e., gain modulation) under dynamic
clamp. That phenomenon, known as gain modulation, is unre-
lated to the divergence of the f–I curves (i.e., noise sensitivity plus
mean insensitivity) observed here under current clamp. In fact,
Chance et al. (2002) could account for the gain modulation by

studying the theoretical response func-
tions of conventional biophysical models
as well as conductance-driven LIF
neurons.

In our work, we aimed to unambigu-
ously examine the suprathreshold regime
and the effect of input fluctuations, char-
acterizing the neuronal response for a
large variety of inputs while not choosing
any particular trajectory in the stimula-
tion plane (m, s) (e.g., balanced excitation
and inhibition). We studied the response
regimes for relatively large values of m
only to expose more clearly the difference
in f–I curve sensitivity on s.

The peculiar response properties
found here likely have been observed al-
ready in the SSC for a minority of cells. For
example, Rauch et al. (2003) mention that
they observed a divergence in the linear
part of the f–I curves corresponding to dis-

tinct values of s, but L5 pyramidal cells could not usually sustain
input currents stronger than 600 –1000 pA for tens of seconds
without substantial degeneration of the spike shape and a strong
run down of the instantaneous firing rate. Depending on the cell
type, a gain modulation by input noise has also been observed in
the SSC (Higgs et al., 2006). Supporting our findings, Fellous et
al. (2003) observed a qualitatively similar divergence of f–I curves
in mPFC neurons by using the dynamic-clamp technique. How-
ever, reported absolute discharge frequencies and sensitivity to
input fluctuations were markedly smaller than ours. In addition,
their exclusive use of point-conductance injection technique
makes it difficult to quantify the predominance of intrinsic mem-
brane mechanisms, as isolated in our work, from effects associ-
ated to concomitant influences on the effective membrane time
constants during stimulation.

In contrast, the f–I relationship of the mPFC neurons investi-
gated here were characterized by unique and distinct saturation
levels. The shift in spike threshold Vth still was independent of s
(Fig. 4C), and it resulted in a delayed spike maximal upstroke
velocity, without violating the stationarity criteria adopted by
Rauch et al. (2003) (Fig. 1C3, inset). Additionally, the input re-
sistance and membrane capacitance of the mPFC cells clearly
reflected a distinct population of layer 5 pyramidal neurons com-
pared with the SSC cells analyzed (Rauch et al., 2003). Moreover,
the response of mPFC neurons could not be fit by the LIF model
routinely used for pyramidal neurons and interneurons in the
SSC with success in previous reports (La Camera et al., 2006).
Finally, both the plateau and the increased sensitivity to input
fluctuations do not appear to be artifacts of long stimulation
protocols, because they occur already within the first 2 s of stim-
ulation (Fig. 3).

Concerning the suggested consequences of f–I curve diver-
gence at the network level, we analyzed self-sustained stationary
states emerging from networks where the local recurrent connec-
tivity is mainly excitatory. Under these conditions, persistent
states differ mainly in the mean current to the neurons (Amit and
Brunel, 1997a). An alternative form of persistent states, driven by
the fluctuations rather than by the mean of the input current to
each neuron, has been described recently in recurrent networks
of integrate-and-fire models, where excitation and inhibition
strongly balance each other (Renart et al., 2007). Compared with
the mean-driven persistent activity, fluctuation-driven states are

Figure 8. Divergent single-cell f–I curves increase the stability of persistent activity states emerging in recurrent random
networks of IF model neurons. We compared populations of IF neurons with divergent f–I curves (sLIF) to populations of conven-
tional leaky IF neurons (LIF). A, Existence and location of persistent states were studied as a bifurcation diagram, �J denoting the
range of J for which a spontaneous activity state and a persistent activity state simultaneously exist. d is the maximal width of the
basin of attraction of the spontaneous activity state. In B and C, the robustness of the network bistability was studied by evaluating
�J and d as functions of F0, which was regarded as a source of interference to the emergence or maintenance of network persistent
states. In networks of sLIF neurons, the range of F0 corresponding to two simultaneous equilibria was extended by �300% (B, C),
and the sensitivity of d on F0 (i.e., �d/�F0) was significantly reduced (C) compared with the performance of an identical network
composed of LIF neurons. Model parameters are as follows: �� 0 pA s, �m � 21.8 ms, C � 190.8 pF, H �
5.3 mV, �arp � 15.5
ms, and � � 10.2 ms pA (sLIF) or � � 0 ms pA (LIF).
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determined by subthreshold input cur-
rents, require parameter fine-tuning, and
have not been found to be a robust phe-
nomenon (Renart et al., 2007). Because
the divergence of the f–I relationships is a
feature of the suprathreshold regime, we
do not expect the stability of fluctuations-
driven persistent states to be significantly
enhanced in networks of sLIF neurons.

Implications for network
information processing
What are the computational properties of
mPFC pyramidal neurons? From the large
variability in the distribution of �, we sug-
gest that two response profiles might exist
in cortical pyramidal cells: (1) a substan-
tially linear steady-state f–I profile, similar
to that reported in the literature (Fig. 9A),
without sensitivity to fluctuations in the
suprathreshold regime (i.e., above rheo-
base) (� � 0 and small �arp); and (2) a
saturating response function with in-
creased sensitivity to the amount of fluc-
tuations in the input (� � 0 and large �arp)
(Fig. 9A). What happens when one inter-
prets the consequence of such an observa-
tion in the context of simple models of
internally generated activity in recurrent
networks of excitatory and inhibitory
model neurons (Amit and Brunel, 1997a;
Vogels et al., 2005)?

To preliminary address this issue, we
qualitatively studied the response of a ho-
mogeneous population of IF neurons assuming, for the sake of
simplicity, that global persistence in two distinct network states
was determined and maintained by an unmodelled recurrent net-
work of excitatory and inhibitory neurons. We predict a differ-
ential and state-dependent feature extraction of an external input
waveform iext(t), globally fed into the excitatory neurons (Fig. 9).
Intuitively, the shape of divergent f–I curves suggests that rela-
tively high-rate spike trains contain relatively more information
about input fluctuations s(t) than input mean m(t). Conversely,
relatively high-rate spike trains from neurons with convergent f–I
curves code m(t) more effectively than s(t). Indeed, as found in
theoretical (Fourcaud-Trocmé et al., 2003) and experimental (H.
Köndgen, C. Geilser, S. Fusi, X.-J. Wang, H.-R. Lüscher, and M.
Giugliano, personal communication) work, when both m(t) and
s(t) change slowly in time (i.e., 
50 –100 Hz), neuronal response
properties are dominated by the f–I relationship and its local
slope.

Figure 9 illustrates how two populations, characterized by dis-
tinct properties of single excitatory cells (Fig. 7A–C) embedded in
a large recurrent network, respond to a common foreground
time-varying fluctuating input iext(t). Each neuron of these net-
works receives a total current with mean and variance mtot �
mean{iext(t)} � mup/down and stot � std{iext(t)} � sup/down, where
(mdown, sdown) and (mup, sup) are background input components
set by the unmodelled network, and they correspond to the in-
ternally generated global persistent states. Although the two sub-
networks are responding essentially in the same way during low-
frequency spontaneous activity, because individual f–I curves
differ only in the regime dominated by large values of m, they

show differential computational properties as soon as they oper-
ate under a (self-sustained) higher frequency regime. In Figure 9,
the distinct background network states have been referred to as
up and down states, reminiscent of the literature suggesting that
in vivo cortical networks might operate under distinct states
(Holcman and Tsodyks, 2006) determined by the synaptic back-
ground activity (Destexhe et al., 2003; Salinas, 2003) and recently
denoted as mean-driven (Renart et al., 2007).

By examining and comparing single-cell response profiles, it is
natural to expect that in the downstates, the responses of the two
networks are almost indistinguishable. However, the transforma-
tions performed by each neuron of the two networks differ sig-
nificantly for the upstate. These networks exclusively propagate
information coded in m(t) or in s(t) depending on their single-
cell response profile but not both simultaneously as it occurs in
the downstates. Then, one population would compute
mean{iext(t)} and the other std{iext(t)}, as illustrated schemati-
cally in Figure 9, B and D.

Finally, another interesting prediction can be made for feed-
forward network architectures. To a first approximation, the
mean of the overall synaptic input arising from the activity of Ne

excitatory and Ni inhibitory afferent neurons firing asynchro-
nously at fe and fi, respectively, is the difference between the ex-
citatory and the inhibitory contributions [i.e., m � Ne Je fe �e 

Ni Ji fi �i, where �e and �i represent the decay time constant of
individual synaptic events and Je and Ji represent the effective
synaptic strength of the excitatory (e) and inhibitory (i) presyn-
aptic afferents, respectively (Amit and Brunel, 1997a)]. Con-
versely, the variance of the inputs is the sum of individual vari-
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Figure 9. Networks of model neurons compute either the SD or the mean of a global input during persistent activity. Excitatory
IF neurons, alternatively characterized either as sLIF neurons with divergent f–I curves or as standard LIF neurons with convergent
f–I curves, were assumed to be embedded into a larger pool of cells. The coexistence of an internally generated network state and
of an external feedforward input iext( t) was simplified by approximating the effect of iext( t) as a modulation around two working
points in the single neuron f–I curves (Eqs. 2, 3). For the sake of illustration, iext( t) was a noisy waveform, characterized by a
time-varying mean m( t) and a sinusoidally modulated variance s( t)2. The dotted blue line represents m( t), and the solid red lines
represent m( t) � s( t) (center inset). In the down state, the responses of the two networks are almost indistinguishable, whereas
they significantly differ in the up state. In fact, in B, neurons exclusively propagate information encoded by m(t) (dashed line),
whereas in D, they are strongly sensitive to s(t) (dashed line). Model parameters are as follows: A, best-fit response function as in
Figure 8C (left) of Rauch et al. (2003) (i.e., � � 5.3 pA s, �m � 21.5 ms, C � 250 pF, H � 1.9 mV, and �arp � 4.2 ms, � � 0); C,
best-fit response function of a typical mPFC cell with similar effective membrane time constant (parameters as in Fig. 8); A, B,
(mdown, sdown) � (100, 0) pA and (mup, sup) � (600, 50) pA; C, D, (mdown, sdown) � (21, 0) pA and (mup, sup) � (600, 50) pA.
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ances (i.e., s 2 � 0.5 Ne Je
2fe�e � 0.5 Ni Ji

2fi�i) (Amit and Brunel,
1997a). Because individual neurons can exclusively encode infor-
mation about their input mean or their input variance, ad-hoc
postsynaptic read-out networks could recover and separate the
information conveyed in the excitatory and inhibitory compo-
nents. This would be the consequence of their selective response
to the input mean or to the input variance, arising from converg-
ing or diverging f–I curves. In fact, fe and fi are related algebra-
ically to m and s, being

Ne Je fe�e � (2s 2 � mJi)/(Je � Ji),Ni Ji fi�i �

(2s 2 
 mJe)/(Je � Ji), (7)

so that fe � (2s 2 � mJi), fi � (2s 2 
 mJe).
Therefore, simple dendritic and synaptic summation and sub-

traction (Poirazi et al., 2003a,b; Wolfart et al., 2005) might re-
cover the distinct contributions fe(t) and fi(t) from the output of
two neuronal populations, which process the same input but
process it differently.

Relevance to previous and future studies
It has been proposed previously that neurons in primary sensory
cortices quickly adapt to step changes in input fluctuations (Sil-
berberg et al., 2004) and generally show low sensitivity to the
input fluctuation, thereby maximizing the dynamical range of
their response. For instance, Fairhall et al. (2001) discussed vari-
ance normalization in H1 cells of the fly visual system. This might
contribute to a redundancy reduction in sensory systems (Buiatti
and van Vreeswijk, 2003) and an efficient representation of sen-
sory inputs (Dean et al., 2005). Similarly, spatial variance normal-
ization has been reported as an adaptation strategy in V1 as well
(Carandini et al., 1997), so that normalization of the temporal
input variance might work equally well as a means of temporal
contrast adaptation. Therefore, there may be computational con-
straints and requirements motivating why the response proper-
ties of SSC neurons show a steady-state insensitivity to input
fluctuations.

In contrast, higher cortical areas might require different en-
coding strategies for associative and multisensory processing.
The sensitivity to input fluctuations reported here might, for in-
stance, constitute an additional candidate mechanism account-
ing for cross-modal response enhancement, similarly to what
described in the deep layers of superior colliculus (Wallace et al.,
1996). The response to one modality (i.e., input mean) might be
augmented by another signal encoded as a different modality
(i.e., input variance).

Following such a speculative view, no multiplicative mecha-
nism (e.g., mediated by NMDAR) would need to be invoked in
mPFC cortical networks. In addition, channel-specific enhance-
ment or suppression could emerge from a change in the coher-
ence of the activity in distinct converging synaptic pathways, re-
sulting in a regulation of the amount of input fluctuations. In
such a context, the emerging properties predicted in Figure 9
might effectively constitute a framework to interpret a modality/
channel filtering, related to the actual network state.

In conclusion, data suggest that pyramidal neurons can com-
pute in fundamentally different ways with regard to encoding
information of input mean and variance in firing rate. An exhaus-
tive in vitro characterization of the spike response properties of
neurons from all layers, cell types, and cortex regions would be a
first step toward a complete understanding of the information
processing abilities possessed by individual cortical neurons.

Our approach has been that different computational capabil-
ities of single neurons can translate into functionally distinct
global populations of neurons. For instance, cortical interspike
interval variability has been often reported to be large or unex-
pectedly low (Kara et al., 2000). This might be a specific indica-
tion of a distinct operational mode of individual neurons (e.g.,
whether they decode input fluctuations or respond to slower in-
put components).

Similar to the investigation of Kara et al. (2000) from the
retina to LGN and from LGN to V1, we envision future experi-
mental attempts at characterizing how variability in the in vivo
spike trains, coding for the same information, propagates cen-
trally through higher cortical areas. The single-cell differential
processing of input fluctuations revealed in the present study
might provide a working framework to study and interpret the
modulation of irregular firing in information propagation.

Finally, the impact of neuromodulatory systems on mecha-
nisms for spike initiation, inactivation, and refractoriness might
be studied in a novel context by examining resulting differences
in single-cell coding strategies related to the encoding of input
fluctuations.
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Giugliano M, Darbon P, Arsiero M, Lüscher H-R, Streit J (2004) Single-
neuron discharge properties and network activity in dissociated cultures
of neocortex. J Neurophysiol 92:977–996.

Hempel CM, Hartman KH, Wang XJ, Turrigiano GG, Nelson SB (2000)
Multiple forms of short-term plasticity at excitatory synapses in rat me-
dial prefrontal cortex. J Neurophys 83:3031–3041.

Higgs MH, Slee1 SJ, Spain WJ (2006) Diversity of gain modulation by noise
in neocortical neurons: regulation by the slow afterhyperpolarization
conductance. J Neurosci 26:8787– 8799.
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Multiple time scales of temporal response in pyramidal and fast spiking
cortical neurons. J Neurophysiol 96:3448 –3464.

Larkum ME, Kaiser KM, Sakmann B (1999) Calcium electrogenesis in distal
apical dendrites of layer 5 pyramidal cells at a critical frequency of back-
propagating action potentials. Proc Natl Acad Sci USA 96:14600 –14604.
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