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Brief Communications

Bidirectional Modulation of Transmitter Release by Calcium
Channel/Syntaxin Interactions In Vivo

Ryan K. Keith,' Robert E. Poage,' Charles T. Yokoyama,?> William A. Catterall,> and Stephen D. Meriney'
'Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and 2Department of Pharmacology and Graduate Program in
Neurobiology and Behavior, University of Washington, Seattle, Washington 98195-7280

Protein interactions within the active zone of the nerve terminal are critical for regulation of transmitter release. The SNARE protein
syntaxin 1A, primarily known for important interactions that control vesicle fusion, also interacts with presynaptic voltage-gated calcium
channels. Based on recordings of calcium channel function in vitro, it has been hypothesized that syntaxin 1A- calcium channel interac-
tions could alter calcium channel function at synapses. However, results at synapses in vitro suggest two potentially opposing roles:
enhancement of neurotransmitter release by positioning docked vesicles near calcium channels and inhibition of calcium channel
function by interaction with SNARE proteins. We have examined the possibility that these two effects of syntaxin can occur at synapses by
studying the effects on transmitter release of manipulating syntaxin 1A- calcium channel interactions at Xenopus tadpole tail neuromus-
cular synapses in vivo. Introduction of synprint peptides, which competitively perturb syntaxin 1A- calcium channel interactions,
decreased quantal content at these synapses and increased paired-pulse and tetanic facilitation. In contrast, injecting mRNA for mutant
(A240V, V244A) syntaxin 1A, which reduces calcium channel modulation but not binding in vitro, increased quantal content and
decreased paired-pulse and tetanic facilitation. Injection of wild-type syntaxin 1A mRNA had no effect. The opposing effects of synprint
peptides and mutant syntaxin 1A provide in vivo support for the hypothesis that these interactions serve both to colocalize calcium
channels with the release machinery and to modulate the functional state of the calcium channel. As such, these two effects of syntaxin on

calcium channels modulate transmitter release in a bidirectional manner.
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Introduction

When an action potential depolarizes the presynaptic plasma
membrane, voltage-gated calcium (Ca*") channels are activated
and the resultant Ca*" influx triggers synaptic vesicle fusion (Fatt
and Katz, 1951; Katz and Miledi, 1967; Llinas, 1982). SNARE
proteins required for exocytosis (Sollner et al., 1993; Kee et al.,
1995; Sutton et al., 1998; Wu et al., 1999) interact with voltage-
gated Ca?" channels (Bennett et al., 1992; Yoshida et al., 1992;
Sheng et al., 1994), but the physiological significance of this in-
teraction in vivo is unknown. Syntaxin 1A is an integral plasma
membrane SNARE protein that binds SNAP25, synaptobrevin/
VAMP (vesicle-associated membrane protein), and Ca*" chan-
nels (Trimble et al., 1988; Oyler et al., 1989; Bennett et al., 1992;
Sollner et al., 1993; Hodel et al., 1994; Sheng et al., 1994;
Yokoyama et al., 1997). The H3 domain of syntaxin 1A binds to
the II-III intracellular loop of the «1B subunit of the N-type
Ca** channel (the “synprint” site; amino acids 718 -963) (Sheng
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etal., 1994, 1998; Mochida et al., 1996; Rettig et al., 1996; Kim and
Catterall, 1997). This interaction between Ca** channels and the
release machinery has been hypothesized to be important in co-
localizing these channels with proteins involved in Ca**-
sensitive vesicle fusion (Mochida et al., 1996; Rettig et al., 1997).

Synprint peptides perturb the interaction between Ca’*
channels and syntaxin 1A and reduce transmitter release (Mo-
chida et al., 1996; Rettig et al., 1997). The decrease in transmitter
release was interpreted to be attributable to dissociation of the
Ca" channel from the Ca®" sensor for transmitter release.
Other experiments suggest that the interaction between syntaxin
1A and the synprint site enhances calcium channel inactivation
(Bezprozvanny et al., 1995; Wiser et al., 1996; Degtiar et al., 2000;
Bergsman and Tsien, 2000; Jarvis et al., 2000, 2002; Smirnova et
al., 1995; Sutton et al., 1999; Zhong et al., 1999; Zamponi, 2003).
In particular, coexpression of syntaxin 1A with N-type Ca>"
channels in Xenopus oocytes increases inactivation, but a mutant
form of syntaxin 1A (A240V, V244A) binds to the channel with-
out functional effect (Bezprozvanny et al., 2000).

The potential physiological significance of this interaction of
syntaxin with the presynaptic Ca*>* channel in vivo is not under-
stood. Some have argued that this interaction aids in the colocal-
ization of the vesicle release apparatus with presynaptic Ca*™
channels (Mochida etal., 1996; Rettig et al., 1997), whereas others
have hypothesized that these interactions modulate channel
function and may relay information about the vesicle docking
state to Ca** channels (Bezprozvanny et al., 1995; Bergsman and
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Tsien, 2000). Here we have studied the
functional impact of modifying presynap-
tic Ca®" channel-syntaxin 1A interactions
in vivo using extracellular recordings of ex-
citatory postsynaptic potentials (EPPs) at
developing Xenopus tadpole tail neuromus-
cular synapses. Our results support the hy-
pothesis that Ca** channel-syntaxin 1A in-
teractions serve both to colocalize proteins
involved in Ca®"-sensitive vesicle fusion
with presynaptic calcium channels and to
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electrophoresis. Mutant (A240V and V244A) syn-
taxin 1A ¢cDNA was produced by Stratagene
Quick Change Site-Directed Mutagenesis and
verified by sequencing. Syntaxin 1A mRNA was
diluted 1:750 with DDH,O, mixed 1:1 with GFP
mRNA, and the mixture was injected. As a con-
trol, rat GST (1 mg/ml in 150 mm potassium ace-
tate; Sigma, St. Louis, MO) was injected into both
blastomeres of two-cell stage embryos. Following
~80 h of development (stage 42-46)
(Nieuwkoop and Faber, 1967), tadpoles showing
dextran or GFP fluorescence were placed in NFR,
pH 7.4, plus 0.2 mg/ml tricaine anesthetic
(Sigma). The tadpole tail was dissected, skinned, and fixed with histoacryl
glue (Indermil; U.S. Surgical, Norwalk, CT) to a recording dish in NFR.

Electrophysiological recordings. Patch electrode-shaped glass pipettes
were used as extracellular stimulating and recording electrodes. Record-
ings were made from stage 42—46 (Nieuwkoop and Faber, 1967) Xenopus
tadpole tail neuromuscular synapses in NFR with 3 um curare (Bachem,
King of Prussia, PA) to prevent contractions. Stimulating and recording
electrodes were placed in the same chevron cleft. Paired-pulse recordings
of EPPs were done at 10, 20, 40, 60, and 100 ms interstimulus intervals
(repeated 30 times) and averaged for analysis. In the same animals, 10
stimulus pulses at 100 Hz were delivered to examine tetanic facilitation,
and 10-15 trials were averaged for analysis. To quantify the strength of
synapses, quantal content was calculated using the failure method (m =
In [trials/failures]) (del Castillo and Katz, 1954) after 150 evoked-
response trials. Acquisition and analysis were performed using pClamp
software (Molecular Devices, Sunnyvale, CA). Paired-pulse ratios and
tetanic facilitation were plotted as EPP amplitude of each response di-
vided by the amplitude of the first response. Significance was determined
via two-population 7 test or ANOVA.

Results

Enhanced paired-pulse facilitation by injection of

synprint peptide

To perturb Ca*" channel interactions with SNARE proteins at
synapses in vivo, we injected synprint peptides and evaluated

Lane 1, His-tagged purified syntaxin protein. Lane 2, Homogenate from a control, uninjected Xenopus tadpole. Lanes 3 and 4,
Homogenate from synprint-injected animals that were brightly fluorescent (indicating injection success). Lanes 2— 4 each contain
the homogenate from a single Xenopus tadpole. All tadpoles were staged 42— 46. B, Representative paired-pulse-evoked EPPs
recorded from a control (GST-injected) animal (left panel) and a synprint-injected animal (right panel). C, In the summary plot of
paired-pulse responses (mean == SEM), synprint-injected animals (open circles, dotted line; n = 9) had synapses with signifi-
cantly greater paired-pulse facilitation at the 10 ms interstimulus interval than control animals injected with either GST (filled
squares, solid line; n = 4) or fluorescent dextran (filled triangles, solid line; n = 15). D, Representative tetanic facilitation (at 100
Hz) of EPP responses recorded from a control (GST-injected) animal (top trace) and a synprint-injected animal (bottom trace). E,
Summary plot of tetanic facilitation (mean == SEM) recorded from synprint-injected animals (open circles, dotted line; n = 9)
compared with control animals injected with GST (filled squares, solid line; n = 4) or fluorescent dextran (filled triangles, solid
line; n = 5). In Aand , the stimulus artifact has been omitted for clarity. *Significantly different, p << 0.05, one-way ANOVA.

transmitter release at Xenopus tadpole tail neuromuscular syn-
apses. At stage 42—46, ~3 d after injection, the animals were
brightly fluorescent and synprint peptides were still present (Fig.
1A) (Rettig et al., 1997). At these ages, synapses are positioned at
the ends of individual muscle cells within the clefts between chev-
ron borders (Kullbergetal., 1977). To assay transmitter release in
vivo, extracellular recordings of EPPs were made in the cleft be-
tween chevrons, and measurements of paired-pulse and tetanic
facilitation were made to evaluate short-term synaptic plasticity.
Synprint-injected animals (Fig. 1B,C) showed significantly
greater paired-pulse facilitation than controls. When examined
with 10 stimuli at 100 Hz (Fig. 1D, E), synprint-injected animals
also showed significantly greater tetanic facilitation. These data
suggest that neuromuscular synapses from synprint peptide-
injected animals are weaker initially and therefore are more able
to exhibit facilitation.

Reduced paired-pulse facilitation by overexpression of
mutant syntaxin

To contrast with synprint peptide effects, the syntaxin 1A mutant
(A240V, V244A) that prevents syntaxin-mediated modulation of
Ca’" channel inactivation without affecting Ca** channel-
syntaxin binding (Bezprozvanny et al., 2000) was used as an
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Figure2.  Effects of wild-type (WT) and mutant (A240V, V244A) syntaxin mRNA injection on paired-pulse and tetanic facilita-

tion. A, Representative paired-pulse-evoked EPPs recorded from a control (wild-type syntaxin mRNA-injected) animal (left) and a
mutant (A240V, V244A) syntaxin mRNA-injected animal (right). B, In the summary plot of paired-pulse responses (mean == SEM),
mutant (A240V, V244A) syntaxin mRNA-injected animals (open circles, dotted line; n = 8) had synapses with significantly
reduced paired-pulse facilitation at the 10 and 20 ms interstimulus intervals compared with control animals injected with either
GFP mRNA (filled squares, solid line; n = 9) or wild-type syntaxin mRNA (filled triangles, solid line; n = 12). C, Representative
tetanic facilitation (at 100 Hz) of EPP responses recorded from a control (wild-type syntaxin mRNA-injected) animal (top trace)
and a mutant (A240V, V244A) syntaxin mRNA-injected animal (bottom trace). D, Summary plot of tetanic facilitation (mean =
SEM) recorded from mutant (A240V, \/244A) syntaxin mRNA-injected animals (open circles, dotted line; n = 7) compared with
control animals injected with GFP mRNA (filled squares, solid line; n = 6) or wild-type syntaxin mRNA (filled triangles, solid line;
n=4).InAand (, the stimulus artifact has been omitted for clarity. *Significantly different, p << 0.05, one-way ANOVA.
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inhibitor of the syntaxin modulation of
Ca’* channel gating. Overexpression of
wild-type syntaxin had no effect on paired-
pulse facilitation compared with GFP alone
(Fig. 2A,B). In contrast, neuromuscular
synapses from mutant (A240V, V244A) syn-
taxin-injected animals had significantly re-
duced paired-pulse facilitation compared
with wild-type syntaxin or GFP alone in-
jected (Fig. 2A, B). When examined with 10
stimuli at 100 Hz (Fig. 2C,D), mutant
(A240V, V244A) syntaxin-injected animals
also showed significantly reduced tetanic fa-
cilitation. These data suggest that neuro-
muscular synapses from mutant (A240V,
V244A) syntaxin-injected animals are ini-
tially stronger and therefore facilitate less.

Comparison of effects of synprint
peptides and mutant syntaxin
Comparison of mean results (Fig. 3A)
shows that the four control conditions
(wild-type syntaxin, GFP, GST, or fluores-
cent dextran) are not significantly differ-
ent, whereas mutant (A240V, V244A) syn-
taxin reduces paired-pulse facilitation,
and synprint increases paired-pulse facili-
tation. To test the hypothesis that
synprint-injected synapses were weaker
than mutant (A240V, V244A) syntaxin-
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Figure 3. A, Summary plot of the effects of all experimental manipulations on paired-pulse
facilitation at the 10 ms interstimulus interval (mean == SEM). Synprint-injected animals
showed significantly greater paired-pulse facilitation, whereas mutant (A240V, V244A) syn-
taxin mRNA-injected animals showed significantly reduced paired-pulse facilitation. *Signifi-
cantly different, p < 0.05, one-way ANOVA. B, Effects of experimental manipulations on quan-
tal content as determined by failure analysis (mean == SEM). Synprint-injected animals had
significantly smaller quantal content than mutant (A240V, V244A) syntaxin mRNA-injected
animals. Quantal content estimates in control conditions (1.8 mm Ca2 ™) fell between the two
experimental conditions. *Significantly different, p << 0.05, one-way ANOVA.

overexpressed synapses, we used a failure
analysis to measure quantal content. As
expected, synprint-injected animals had synapses with signifi-
cantly smaller quantal content than mutant (A240V, V244A)
syntaxin-overexpressing animals (2.1 = 0.15 vs 2.9 * 0.20; p <
0.05), whereas the analysis of control synapses fell between these
two experimental manipulations (2.4 = 0.27) (Fig. 3B).
Varying extracellular Ca*" resulted in mild synaptic depres-
sion at 10 mm [Ca*"], and progressively stronger paired-pulse
and tetanic facilitation at lower [Ca*"], (Fig. 4A,B). Paired-
pulse facilitation in synprint-injected animals recorded in 1.8 mm
Ca** was very similar to paired-pulse facilitation recorded in
controls in 1.0 mm Ca*", and paired-pulse facilitation in mutant
(A240V, V244A) syntaxin-injected animals recorded in 1.8 mm
Ca** was comparable with that in controls using 7.5 mm Ca*"
(Fig. 4C). A similar overlap of synprint and mutant syntaxin data
with control data at 1.0 mm and 7.5 mm Ca*™, respectively, was
observed in tetanic stimulation experiments (Fig. 4 D). These re-
sults support the conclusion that the effects of synprint peptides
and mutant syntaxin are caused by changes in calcium dynamics,
reflecting alterations in calcium entry through calcium channels
and calcium access to locally docked vesicles.

Discussion

Biphasic regulation of synaptic transmission by Ca**
channel/syntaxin interactions in vivo

Previous work suggests that interactions of syntaxin with calcium
channels are functionally important in active zones (Catterall,
1999; Mochida, 2000; Teng et al., 2001; Atlas, 2001). Presynaptic
Ca** channels bind syntaxin, and this interaction may serve to
localize the source for Ca>" ions near the Ca>™ sensor, increasing
the efficiency of transmitter release (Mochida et al., 1996; Rettig
et al., 1997). Syntaxin also increases calcium channel inactiva-
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tion, potentially reducing transmitter re- A
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Effects of altering extracellular calcium concentration on paired-pulse and tetanic facilitation. All values plotted

inhibition of calcium channels without
docked vesicles. In this condition, we find
that synprint peptide reduces quantal con-
tent and increases both paired-pulse and
tetanic facilitation, consistent with im-
paired efficiency of transmitter release. Ev-
idently, the effect of the synprint peptide
to dissociate calcium channels from

represent mean == SEM A, The effects of varying extracellular calcium concentration in control uninjected animals on paired-pulse
facilitation in 10 mm (open circles), 7.5 mm (open squares), 1.8 mm (open diamonds), and 1.0 mm (open triangles) extracellular
calcium. B, The effects of varying extracellular calcium concentration in control animals on tetanic facilitation in 10 mum (open
circles), 7.5 mm (open squares), 1.8 mm (open diamonds), and 1.0 mm (open triangles) extracellular calcium. C, The effects on
paired-pulse facilitation of synprint peptide introduction (filled squares) and mutant (A240V, V244A) syntaxin (filled circles)
recorded in 1.8 mu extracellular calcium overlaid on plots recorded from control terminalsin 1.0 and 7.5 mu extracellular calcium.
D, The effects on tetanic facilitation of synprint peptide introduction (filled squares) and mutant (A240V, V244A) syntaxin (filled
circles) recorded in 1.8 mm extracellular calcium overlaid on plots recorded from control terminals in 1.0 and 7.5 mm extracellular
calcium.

docked vesicles is predominant and re-

duces the efficiency of transmitter release,

whereas the effect of synprint peptide to relieve calcium channel
inhibition affects predominantly channels that are not associated
with docked vesicles and therefore cannot effectively initiate
transmitter release. Accordingly, the main effect of inhibition of
calcium channels by syntaxin is to reduce unproductive calcium
entry at sites with no nearby docked vesicles.

Following overexpression of mutant (A240V, V244A) syn-
taxin, SNARE protein association should be retained, whereas
syntaxin-mediated inhibition of Ca*" channels should be re-
duced (Bezprozvanny et al., 2000). In this case, we would predict
a general increase in Ca”" entry into the nerve terminal, which
would increase transmitter release (quantal content) and reduce
paired-pulse and tetanic facilitation, as we have observed. These
results show that there is functionally significant modulation of
presynaptic Ca”>* entry mediated by interaction of syntaxin with
Ca’" channels in vivo.

Comparison with invertebrate synapses

A homologous syntaxin mutation in Drosophila (Fergestad et al.,
2001) causes more substantial loss of neurotransmission. This
may reflect complete replacement of wild-type syntaxin by mu-
tant in Drosophila versus partial replacement here or may reflect
intrinsic differences between invertebrate and vertebrate syn-
apses. Both Drosophila and Lymnaea Ca** channels lack a syn-
print site (Spafford et al., 2003b), but synprint peptides can still

inhibit transmitter release in Lymnaea (Spafford et al., 2003a).
Similar upstream actions of synprint peptides may contribute to
their effects in vertebrate synapses, but our ability to mimic ef-
fects of synprint peptides by alterations in extracellular calcium
supports the conclusion that their main effect is to dissociate
docked vesicles from calcium channels.
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