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Mini-Review

Functional Specialization of the Primate Frontal Cortex
during Decision Making
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Economic theories of decision making are based on the principle of utility maximization, and reinforcement-learning theory provides
computational algorithms that can be used to estimate the overall reward expected from alternative choices. These formal models not
only account for a large range of behavioral observations in human and animal decision makers, but also provide useful tools for
investigating the neural basis of decision making. Nevertheless, in reality, decision makers must combine different types of information
about the costs and benefits associated with each available option, such as the quality and quantity of expected reward and required work.
In this article, we put forward the hypothesis that different subdivisions of the primate frontal cortex may be specialized to focus on
different aspects of dynamic decision-making processes. In this hypothesis, the lateral prefrontal cortex is primarily involved in main-
taining the state representation necessary to identify optimal actions in a given environment. In contrast, the orbitofrontal cortex and the
anterior cingulate cortex might be primarily involved in encoding and updating the utilities associated with different sensory stimuli and

alternative actions, respectively. These cortical areas are also likely to contribute to decision making in a social context.
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Decision making refers to the process by which the animal
chooses a particular response based on its evaluation of the po-
tential costs and benefits associated with alternative actions. Eco-
nomic theories suggest that this can be based on a set of numerical
scores, referred to as utilities, associated with alternative choices
(von Neumann and Morgenstern, 1944). This process of decision
making is dynamic and continually adjusted to reflect the ani-
mal’s experience. As described by the reinforcement learning the-
ory (Sutton and Barto, 1998), any discrepancy between the out-
come expected by the animal and the actual outcome from its
chosen action influences the animal’s future decision-making
strategies. Throughout this interactive process, the animal also
needs to take into consideration the possibility that the mapping
between its chosen actions and their outcomes might change
depending on the environmental context. Furthermore, the de-
sirability of a particular outcome is dependent on the animal’s
current biological needs.

Given the complex nature of the decision-making process and
the need to integrate information about the animal’s external
environment and internal milieu, the primate frontal cortex, with
its close anatomical connections with high-order sensorimotor
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cortical areas (Petrides and Pandya, 1999, 2002) and subcortical
limbic system (Ongiir and Price, 2000), is likely to be involved in
various aspects of decision making (Fig. 1). Recently, fertile in-
teractions between the disciplines of economics, reinforcement
learning theory, and animal learning psychology have influenced
the development of new hypotheses regarding the nature of de-
cision making and these are increasingly being tested in neurobi-
ological studies of the primate frontal cortex. Many findings from
these studies have already begun to provide a more complete and
coherent perspective on multiple functions of the frontal cortex
(Fellows, 2004; Wallis, 2007). Although this review focuses on the
role of primate frontal cortex in decision making, it should be
noted that decision making is a process distributed in numerous
brain areas (Sugrue et al., 2005; Daw and Doya, 2006), and that
frontal cortex is likely to be involved in functions other than
decision making (Miller and Cohen, 2001; Amodio and Frith,
2006).

Lateral prefrontal cortex and state representation

An optimal action, namely an action that is most likely to yield
the most desirable outcome, often changes according to the state
of the animal’s environment. Therefore, if a sensory stimulus
informs the animal of a change in the state of its environment, the
animal needs to store such information until it produces an ap-
propriate action or until this information can be combined with
another stimulus to determine the new state of the environment.
For example, a classic working memory task requires the animal
to remember a particular state of the environment, as often indi-
cated by a brief sensory stimulus. The animal is rewarded only
when it produces an action corresponding to this state after some
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Figure 1. A, B, Medial (A) and lateral (B) view of the rhesus monkey's brain showing the
lateral prefrontal cortex, the orhitofrontal cortex, and the anterior cingulate cortex.

delay. Therefore, neural activity related to the animal’s working
memory, as commonly seen in the lateral prefrontal cortex (Fus-
ter and Alexander, 1971; Funahashi et al., 1989), can be charac-
terized as representing the state of the environment. Similarly,
many other types of signals found in the prefrontal cortex, such as
the abstract properties of a sensory stimulus (Freedman et al.,
2001; Nieder et al., 2002) and the rules of the task that specify how
to determine a correct action based on sensory stimuli (Sakagami
and Niki, 1994; Wise and Murray, 2000; Hoshi et al., 2000; Wallis
et al., 2001) can be considered as encoding the state of the envi-
ronment. Neurons in the lateral prefrontal cortex are also in-
volved in accumulating sensory evidence (Kim and Shadlen,
1999) or transforming perceptual information to motor outputs
(Takeda and Funahashi, 2004). In short, neurons in the lateral
prefrontal cortex encode specific states of the environment nec-
essary to determine an optimal action unequivocally.

More recently, many investigators have manipulated the mo-
tivational context during working memory tasks. In these tasks,
the animal is informed of the correct action and its immediate
outcome. The results from these experiments have shown that
so-called delay activity is often modulated by the outcomes ex-
pected from the correct and incorrect actions (Watanabe, 1996;
Leon and Shadlen, 1999; Amemori and Sawaguchi, 2006; Koba-
yashi et al., 2006), indicating that the lateral prefrontal cortex
might encode the state of the environment and the properties of
the expected reward conjunctively (Watanabe and Sakagami,
2007). In the lateral prefrontal cortex, increasing the value of the
expected reward often increased the reliability of the state repre-
sentation (Kobayashi et al. 2002). Therefore, in addition to en-
coding the state of the environment, the lateral prefrontal cortex
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might represent the utilities or values associated with various
states of the environment.

Orbitofrontal cortex and value representation

Lesions which encompass the orbitofrontal cortex in human pa-
tients often impair their ability to adjust decision making strate-
gies when the previously successful choices are no longer advan-
tageous (Bechara et al., 2000; Rolls, 2000) and to make preference
judgments consistently (Fellows and Farah, 2007). Impaired de-
cision making abilities in such psychiatric conditions as sub-
stance abuse and frontotemporal dementia may also result from
the dysfunction of the orbitofrontal cortex (Rahman et al., 2001).
Similarly, orbitofrontal lesions in monkeys impair the ability to
modify behavior when the outcomes of decisions change dynam-
ically (Izquierdo et al., 2004) and to assign appropriate values to
different objects in the environment (Izquierdo et al., 2005). Ac-
cording to one novel proposal derived from reinforcement learn-
ing, this faculty may depend on the ability to represent the statis-
tical interdependence between the values of alternative options
(Hampton et al., 2006). Knowledge of such interdependence
might allow the decision makers to switch to a better choice im-
mediately, as soon as they experience the reduction of values
from a particular choice.

Signals related to the expected reward have been also identi-
fied in the primate orbitofrontal cortex. However, in contrast to
the neurons in the lateral prefrontal cortex, neurons in the or-
bitofrontal cortex seldom encode different states of the environ-
ment and optimal actions associated with them. Instead, their
activity is largely determined by the expected outcome (Tremblay
and Schultz, 2000; Wallis and Miller, 2003; Roesch and Olson,
2004), even when the outcome is determined by the animal’s own
choice (Padoa-Schioppa and Assad, 2006). These results demon-
strate that it is possible to design experiments that determine how
frontal areas differ in their processing of signals related to the
states of the environment and the outcomes that can be expected
from those states. Although it is widely assumed that various
frontal areas make distinct contributions to decision making and
cognition, few studies have directly tested this assumption and
compared the contributions of different frontal areas in the same
task. Formal accounts of decision making suggest a number of
critical axes along which to compare frontal areas in future
experiments.

Anterior cingulate cortex and outcome evaluation

Several lines of evidence suggest that the primate anterior cingu-
late cortex might play a key role in choosing appropriate actions
when the environment is uncertain or dynamic. First, many
single-neuron recording studies have found that the neurons in
the anterior cingulate cortex modulate their activity according to
the outcome of the animal’s action (Niki and Watanabe, 1979; Ito
etal., 2003; Matsumoto et al., 2003, 2007). Second, this outcome-
related activity might be required for the animals to update its
decision-making strategies after committing an error (Shima and
Tanji, 1998; Procyk et al., 2000). Third, a lesion in the anterior
cingulate cortex impairs the animal’s ability to integrate signals
related to the outcomes of the animal’s previous choices to make
optimal decisions (Kennerley et al., 2006). Finally, the results
from rodent studies suggested that the anterior cingulate cortex
may also be involved in combining information about the costs
and benefits associated with alternative actions (Rudebeck et al.,
2006b). Combined with the anatomical finding that much of the
primate anterior cingulate cortex projects to cortical areas with
motor functions (Dum and Strick, 1991), including the pre-
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supplementary motor area and supplementary eye field (Wang et
al., 2001; Luppino et al., 2003), these results suggest that the
utilities associated with different actions, referred to as action
value functions in reinforcement learning theory, may be en-
coded and updated in the anterior cingulate cortex (Rushworth et
al., 2007).

Frontal cortex and social interactions

During social interaction, the outcome of an action can change
dynamically depending on the actions of other decision makers
in a group. Although choice behaviors of humans and animal in
social settings often deviate from the optimal strategies described
by game theory, such deviations can be often accounted for by
reinforcement learning algorithms (Camerer, 2003; Lee et al.,
2004). Given that the different areas of primate frontal cortex are
intimately involved in reinforcement learning, this suggests that
they might also play an important role in socially interactive de-
cision making. For example, lesions in the orbitofrontal cortex
induce a loss of social dominance with increased aversion and
reduced aggression in threatening situations (Butter and Snyder,
1972).

During a computer-simulated zero-sum game, the activity in
the lateral prefrontal cortex encode the signals related to the an-
imal’s previous choices and their outcomes in multiple trials
(Barraclough et al., 2004; Seo et al., 2007), and therefore might
provide an appropriate context in which the animal’s decision-
making strategies can be updated during social interaction. For
more complex social interactions, such as cooperation, the pro-
cess of identifying successful decision-making strategies might
depend on some cortical areas specialized for processing socially
meaningful stimuli and thereby inferring actions expected from
other animals. For example, the direction of gaze in other animals
might provide information about their probable actions during
social interactions (Deaner et al., 2005; Flombaum and Santos,
2005). In fact, a lesion in the primate anterior cingulate gyrus
causes the animals to become less interested in gathering infor-
mation from social stimuli, such as faces (Rudebeck et al., 2006a),
implicating an important role for this frontal area, perhaps in
conjunction with the amygdala (Bachevalier and Loveland,
2006), in social perception.

Summary and conclusion

Guided by the detailed accounts of connectivity among different
subdivisions of the primate frontal cortex and by formal theories
of decision making, a large number of recent lesion and physio-
logical studies have begun to explore the contribution of the fron-
tal cortex to the making and assessment of choices. Overall, the
results from these studies suggest that the lateral, medial, and
ventral aspects of the prefrontal cortex might be specialized for
representing the relevant states of the animal’s environment, up-
dating the desirability of alternative actions, and predicting the
values of rewards expected from different objects in the animal’s
environment, respectively. How these brain areas interact with
one another and whether they are further differentiated to im-
prove the animal’s ability to behave optimally during complex
social interaction remains an important topic for future research.
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