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Encoding the serial order of events is an essential function of working memory, but one whose neural basis is not yet well understood. In
the present work, we advance a new model of how serial order is represented in working memory. Our approach is predicated on three key
findings from neurophysiological research: (1) prefrontal neurons that code conjunctively for item and order, (2) parietal neurons that
represent count information through a graded and compressive code, and (3) multiplicative gain modulation as a mechanism for
information integration. We used an artificial neural network, integrating across these three findings, to simulate human immediate
serial recall performance. The model reproduced a core set of benchmark empirical findings, including primacy and recency effects,
transposition gradients, effects of interitem similarity, and developmental effects. The model moves beyond previous accounts by
bridging between neuroscientific findings and detailed behavioral data, and gives rise to several testable predictions.
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Introduction
Working memory is a cognitive function that serves to preserve
task-relevant information in an active and accessible form over
periods of a few seconds (Baddeley, 1986; Jonides et al., 2005). It
has long been recognized that one critical feature of working
memory is its capacity to encode and maintain information
about the serial order of perceived events (Marshuetz, 2005). This
capacity is essential in many domains including the comprehen-
sion, learning, and production of action sequences, the encoding
of causal relationships, and perhaps above all, language process-
ing (Martin and Gupta, 2004).

The ability to recall serial order information from working
memory, and the limits of this ability, have been studied by cog-
nitive psychologists for decades, and this research effort has
yielded an exceedingly detailed description of human serial recall
performance. However, the neural mechanisms underlying the
behavioral data are not yet fully understood. Although several
neuroscientific models have been proposed previously (Dominey
et al., 1995, 1997; Beiser and Houk, 1998; O’Reilly and Soto,
2001), few have made contact with behavioral data at any level of
detail. At the same time, where psychologically sophisticated
models have been offered, they have rarely made significant con-
tact with evidence from neuroscience (Houghton, 1990; Burgess
and Hitch, 1999; Brown et al., 2000; Farrell and Lewandowsky,
2002; Botvinick and Plaut, 2006).

In the present study, we introduce a novel computational

model of working memory for serial order, which bridges be-
tween the domains of neuroscience and behavior. The model is
based directly on a set of recent neuroscientific findings and
shows how these observations, when integrated into a single ac-
count, might explain detailed patterns of serial recall perfor-
mance. In what follows, we begin by reviewing the neuroscientific
data on which the model is founded, and then report a series of
simulation studies in which the model was tested against empir-
ical benchmarks from the behavioral literature.

Elements of the account
(1) Conjunctive coding of item and rank information in prefrontal
cortex
The first basic finding that our model draws on comes from
single-unit recordings in monkeys performing immediate serial
recall and related tasks. Across a series of such studies, beginning
with Barone and Joseph (1989) and continued most recently by
Inoue and Mikami (2006) (see also Kermadi et al., 1993; Kermadi
and Joseph, 1995; Funahashi et al., 1997; Ninokura et al., 2003,
2004), a critical and consistent finding has been that sequences
are encoded through a conjunctive code, which crosses item with
order information.a Specifically, within the prefrontal cortex as
well as caudate nucleus, single neurons have been found to re-
spond selectively to particular items (shapes or locations), but
their response to these items depends on the ordinal position in
which the items appear (see Fig. 1A). The representational code
carried by these neurons is conjunctive in the sense that the neu-
rons respond maximally to a particular conjunction or combina-
tion of item and ordinal position. Such conjunctive coding pro-
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vides an answer to the question of how the brain may solve the
binding problem inherent to sequence encoding, the need to link
individual items with individual serial positions.

(2) Information integration through gain-field encoding
The second key finding derives from single-unit recording stud-
ies that suggest how, in general, the brain may compute conjunc-
tive codes. Starting from studies on spatial coordinate transfor-
mations in vision, Salinas et al. (Salinas and Thier, 2000; Salinas
and Abbott, 2001) have proposed that information from multiple
domains is commonly integrated, at the neural level, through
multiplicative gain modulation. For example, in spatial process-
ing, information about retinotopic location and eye position is
integrated to yield head- or eye-centered representations. Single-
unit recording data suggest that this mapping is mediated by
parietal neurons whose response profiles can be modeled as the
product of two receptive fields, one for retinotopic position and
one for eye position (Brotchie et al., 1995). The sufficiency of this
mechanism was demonstrated in a neural network model by
Pouget and Sejnowski (1997) (see Fig. 1C). Additional computa-
tional studies have indicated how the same kind of gain modula-
tion might support information integration in additional do-
mains, including object recognition and sensorimotor mapping
(Pouget and Snyder, 2000; Salinas and Thier, 2000; Salinas and
Abbott, 2001; Salinas, 2004).

(3) Graded, compressive representations of sequential numerosity
in intraparietal sulcus
The third finding of interest bears on the question of how serial
position or rank may be represented at the neural level. It has
been proposed, based in part on neuroimaging data, that serial
order processing may draw on representations of number arising
within the intraparietal sulcus (IPS) (Marshuetz et al., 2000, 2006;
Marshuetz, 2005; Nieder, 2005). Previous single-unit recording

work by Nieder et al. (2006) provides additional motivation for
this idea, by demonstrating that neurons in the IPS respond se-
lectively to the number of occurrences of a repeating event, with
a distinct subset of neurons responding preferentially to the
event’s first occurrence, another subset to its second occurrence,
and so forth. Nieder et al. (2006) described these neurons as
coding for “sequential numerosity” or “sequential quantity.” In
what follows, for brevity, we describe such neurons as coding for
rank.

Importantly, the study by Nieder et al. (2006), together with
closely related work (Nieder et al., 2002; Nieder and Miller, 2003,
2004; Nieder, 2005), provides detailed information concerning
the format of rank representations within the IPS. First, Nieder et
al. (2006) found that IPS neurons code for rank in a graded man-
ner; individual neurons responded maximally to a specific rank,
but also responded more weakly to other ranks, with the response
dropping off in intensity with distance from the preferred rank.
Second, closely related work on numerosity representation
(Nieder and Miller, 2003) indicates that IPS neurons represent
count information using a compressive code, reflected in more
broadly tuned receptive fields for larger numbers (see Fig. 1B). As
Nieder and Miller (2003) and others have noted, such compres-
sive coding provides an explanation for the so-called scalar prop-
erty, an instance of Weber’s law according to which better dis-
crimination is shown between small numerosities than between
larger ones.

Our central proposal is that these three findings (conjunctive
coding of item and rank, information integration through mul-
tiplicative gain modulation, and graded, compressive coding of
count information) can be fit together to provide a satisfying
account of how serial order is represented in working memory.
According to this account, during sequence encoding, graded
and compressive rank representations arising within the IPS feed

Figure 1. A, Response profiles for two prefrontal neurons, reported by Inoue and Mikami (2006), during sequential presentation of two visual shape cues. Both neurons displayed differential
responses to preferred (black) and nonpreferred (gray) shapes, as well as differential responses across ordinal positions. The neuron contributing to the top panels responded preferentially to
first-rank items, and the neuron in the bottom panels to second-rank items. Although these particular units did not display sustained activation, such activation was observed in other units within
the same region. B, Response profiles of IPS neurons with graded, compressed responses to number, from Nieder (2005). Individual traces correspond to neurons with different preferred
numerosities, as indicated by the legend. C, Illustration of the gain-field representations used by units in the computational model of Pouget and Sejnowski (1997). Activity is plotted for a single unit,
with multiplicatively interacting receptive fields for eye-centered stimulus position and eye position [redrawn from Pouget and Snyder (2000)]. D, Graded, compressive representation of rank in the
model. Shown are the response profiles of the first five rank units (preferred ranks 1–5) to items presented at ordinal positions 1– 6. E, Response profile of an internal unit in the model. Delta indexes
the degree of dissimilarity between the current input item and the unit’s most preferred item, with zero being a precise match. The unit displays multiplicatively interacting receptive fields for item
and rank, responding maximally when its preferred item occurs at rank three.
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forward to the prefrontal cortex, where rank information is inte-
grated with item information through multiplicative gain mod-
ulation. The resulting graded conjunctive representation in the
prefrontal cortex provides the basis for serial recall.

Neural network implementation
To make this account explicit, and to evaluate its ability to ac-
count for human recall performance, we implemented the ac-
count in the form of a runnable neural network model. The struc-
ture of the network was based directly on the gain field model of
visual processing proposed by Pouget and Sejnowski (1997). Like
that model, ours was composed of interconnected processing
units, which assumed scalar activation values representing the
time-averaged spike rates of individual neurons.b These were or-
ganized into four layers or groups (see Fig. 2). There were two
input layers, one representing item (e.g., shape, location, or ver-
bal item), and the other representing ordinal position or rank. As
detailed below, each unit in the item layer responded maximally
to a specific and unique item, but also responded submaximally
to other items, to an extent determined by those items’ similarity
to the unit’s optimal stimulus. The response profiles for units in
the rank layer were chosen so as to resemble those reported by
Nieder et al. (Nieder, 2005; Nieder et al., 2006). Specifically, each
unit responded maximally to a unique rank, but also showed
graded responses to surrounding ranks. This, as well as the com-
pressive quality of empirically observed encodings of number,
was captured by making each unit’s response a scaled log-normal
function of rank (see Fig. 1D).

Both input layers sent projections to an internal layer. Each
unit within this layer received connections from one unit in the item
layer and one unit in the rank layer, and assumed a level of activa-
tion equal to the product of the activations of these two input
units (see Fig. 1E). All units in the internal layer sent projections
to each unit in an output layer, within which each unit coded for
a specific response sequence (see Materials and Methods).

The model was used to simulate immediate serial recall for
six-item sequences. The first item in the target sequence was pre-
sented by imposing the appropriate patterns of activation over

the item and rank input layers. Activations in the internal layer
were updated, based on these inputs. The second item in the
target sequence was presented on the next time step by imposing
new patterns of activation over the input layers. The pattern of
internal-layer activation induced by these inputs was added to the
pattern induced by the first item in the sequence. This summa-
tion implemented the assumption that sequence elements are
represented through a superpositional, activation-based code, as
argued by Botvinick and Plaut (2006) (Beiser and Houk, 1998;
O’Reilly and Soto, 2001). Empirical support for such a superpo-
sitional code proceeds from neurophysiological studies such as
those by Inoue and Mikami (2006) and Mushiake et al. (2006),
both of which reported representation of sequences through con-
current activation of prefrontal neurons coding conjunctively for
item and rank.

Subsequent presentation of the third through sixth items re-
sulted in a distributed pattern of activation in the internal layer
that contained information pertaining to all six items in the target
sequence (see Fig. 3A,B). With this pattern in place, activation
fed forward from the internal layer to the output layer. The syn-
aptic weights connecting these layers were trained, using super-
vised gradient-descent learning, to activate the output unit rep-
resenting the target sequence (see Materials and Methods).

On each step of processing, random noise was added to the
activation value of each unit in the input and internal layers,
modeling the intrinsic variability of activation codes in biological
neurons. The introduction of this noise meant that the model’s
internal representation for any given target sequence might “ac-
cidentally” end up looking like the pattern usually used to repre-
sent a different sequence, causing the model to commit a recall
error (see Fig. 3C).

Using procedures detailed in the following section, we used
the model to simulate immediate serial recall under a range of
conditions, evaluating its ability to capture a key set of behavioral
benchmarks.

Materials and Methods
Simulations were implemented using Matlab (Mathworks, Natick, MA).

Model specifications. The model comprised six item units, nine rank
units, 54 internal units, and 720 output units. Each item unit was associ-
ated with an optimal stimulus (�) and unit activation was determined
according to a function of this item and the item actually occurring as a
stimulus, s:

I��S� � � 1, if S � �
1 � �, if S � �, (1)

where I�(s) is the activation of the input unit with optimal stimulus � in
response to stimulus item s, and � is a model parameter controlling the
degree of dissimilarity between item representations (range, 0 –1). For
the simulation involving mixed confusable and nonconfusable items,
input items were divided into two groups: for alternating lists, one group
of three confusable items and one group of three nonconfusable items;
for isolate lists, one group of five confusable items and one separate
nonconfusable item. Confusable items were assumed to differ by �C, and
nonconfusable by �N. The separation between of confusable and non-
confusable items was determined by a third parameter, �NC.

Each rank unit was assumed to be activated maximally by a specific
rank �, and to assume an activation based on this rank and the rank
actually being encoded (r), according to the scaled log normal function:

R��r� � exp� �
�lnr � ln��2

2�2 �, (2)

where R�(r) is the activation of the rank unit with preferred rank �,
during presentation of the item at rank r. As shown in Figure 1 D, this

bAs in the model of Pouget and Sejnowski (1997), no effort was made to capture differences in overall firing rates
between cortical regions (e.g., between the IPS and prefrontal cortex). Such an undertaking would face the problem
that spike rates in the relevant empirical studies have tended to be reported only in normalized form.

Figure 2. Structure of the model showing connections to and from one internal unit.
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function leads to graded, compressive response profiles resembling those
reported by Nieder et al. (2002, 2006; Nieder and Miller, 2003, 2004) (see
Fig. 1 B), graded in the sense that rank units respond maximally to a
particular rank, but also submaximally to other ranks, and compressive
in the sense that unit tuning curves broaden with increasing rank.

Each unit in the internal layer took inputs from a unique pair of item
and rank units, and assumed an activation value based on the product of
their activation values:

�h�� � R��r�I��s�, (3)

where h�� is the activation of the internal unit receiving input from the
rank unit with preferred rank � and the item unit with preferred stimulus

�. The � symbol indicates that internal unit ac-
tivation was augmented by the indicated activa-
tion product on each step of encoding. At each
step of encoding, multiplicative noise, with SD
�, was applied to input and internal layers.

Each output unit represented a unique or-
dering of the six items represented in the item
input layer. Every output unit received inputs
from all internal units. At the end of encoding,
the activation of each output unit was set ac-
cording to the softmax function:

oi �
exp�ai��i�exp�ai��

, (4)

where ai is the net input to unit i, determined by
the activations of the internal units (hj) and the
intervening connection weights wij:

ai � �
j

hjwij. (5)

The task simulated was immediate forward recall
for six-item sequences.c The target sequences al-
ways included the same six items. At the onset of
each new trial, all unit activations were set to zero.
Presentation of target items then proceeded as de-
scribed above. After presentation of the sixth list
item, the output layer was updated, and its most
active output unit identified the output sequence.

Training. Internal to output weights were set
initially to 0. All 720 possible target lists were
presented in random order, without replace-
ment, and after each trial the internal to output
weights were adjusted using the � rule:

�wij � 	�ti � oi�hj, (6)

where 	 is a learning rate, and ti is the target
value for output unit i for the present target list
(1 for the output unit representing the target
list, otherwise 0). The learning rate was dynam-
ically adjusted to minimize the training dura-
tion, which was truncated at 500 cycles through
the training set. However, essentially identical
results were obtained with a fixed learning rate
of 0.001 and a fixed training duration of 2500
cycles. The noise parameter � was set to zero
during training.

Testing. To evaluate performance under a
given set of parameters, the model was tested 50
times on each sequence in the training set, and
average positional accuracy was computed. In
addressing each behavioral benchmark, param-
eters minimizing root mean squared error were
sought through grid search over the model’s
three free parameters �, �, and � (in the mixed-
list simulation, the five parameters �, �C, �N,

�NC, and �).

Results
Positional accuracy
In behavioral studies of serial recall, plotting recall accuracy by
serial position typically results in a “bow-shaped” curve (Fig. 3D),
reflecting a recall advantage for initial items (the primacy effect)
and a smaller advantage for the last one or two items (the recency

cRank units with preferred ranks larger than six were included in the model because, given the graded nature of the
rank code, such units naturally contribute to the representation of six-item sequences.

Figure 3. A, Pattern of activation over the internal units of the model, representing the sequence 123456, where the numbers
correspond to the items preferred by item units 1– 6. Each cell corresponds to a single unit in the model, with units in each row
sharing a preferred item (1– 6, counting from the top) and units in each column sharing a preferred rank (1–9, counting from the
left). For clarity, the contribution of noise is omitted. B, Pattern of activation representing the sequence 124356 (noise omitted).
C, Pattern generated by the input sequence 123456, including noise, on a trial when the response was 124356. D, Positional recall
data from an empirical study by Henson (1998). Each trace shows the proportion of trials on which items from a single input
position were recalled at each output position. E, Positional recall from the model. Root mean squared error of fit, 0.036. Param-
eters for all data shown are � � 0.5, � � 0.6, and � � 0.09. F, Pattern of positional recall from the model, when invariant and
symmetrical Gaussian response profiles were used for the rank units.

Figure 4. A, Activation patterns representing sequences of dissimilar items (�� 0.6, top), similar items (�� 0.4, center) and
a combination (similar items at positions 1, 2, 3, 5 and 6, �N � 0.6, �C � 0.4, �NC � 0.65; bottom). Remaining parameters are
� � 0.5, � � 0. B, Positional accuracy data from an experiment by Farrell and Lewandowsky (2003) for pure lists of phonolog-
ically confusable and nonconfusable items, alternating lists with confusable items at odd ranks, and lists of confusable items with
one distinctive item (“isolate”) at position 2, 4, or 6. Data from the latter list type is summarized by showing recall for isolate items
from all positions in one data series. C, Corresponding performance pattern from the model. Parameters as listed for left panels, with��
0.08. Root mean squared error (RMSE), 0.049. D, Transposition gradients from an empirical study by Henson (1996), showing the propor-
tion of transposition errors involving displacements of one to five positions for six-item lists of phonologically confusable or nonconfusable
items. E, Corresponding simulation data. Parameters are �� 0.3, �� 0.5, 0.7, �� 0.2. RMSE, 0.011.
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effect). The positional recall accuracy of
the model displayed this same profile, as
shown in Figure 3E. This pattern of perfor-
mance stems from two factors. Both the
primacy and recency effects derive from
edge effects, because there are fewer op-
portunities for items at the boundaries of
the sequence to exchange positions with
near neighbors. The primacy effect de-
rives, additionally, from the greater dis-
tinctiveness of items at the beginning of
the list, driven by the compressive rank
code of the model.d The contribution of
this factor can be seen by comparing Figure
3, E and F. Figure 3F illustrates the perfor-
mance of the model when ordinary Gaussian
rather than log-normal rank codes are used,
eliminating the broadening of tuning curves
with increasing rank. As comparison with E
makes clear, this change to the model signif-
icantly reduces the magnitude and extent of
the primacy effect.

Transposition gradients
Another consistent finding from behavioral studies of serial recall
is that when an item is recalled at the incorrect serial position (a
transposition error), its recall position is likely to lie near its orig-
inal position. As shown in Figures 3 and 4, the model’s recall
performance displayed this same property. This aspect of the
model’s behavior derives from the similarity structure of its in-
ternal representations. As a result of the form of the rank repre-
sentations of the model, items in nearby ordinal positions are
represented more similarly than items in more widely separated
positions, a factor that makes it relatively common for the model
to confuse the locations of closely spaced items.

Effects of interitem similarity
In behavioral studies, when sequence items are highly confusable
(e.g., phonologically similar in verbal recall), recall performance
is undermined (Fig. 4B). Conrad (1965) showed that this is at-
tributable in part to an increase in the number of transposition
errors when items are confusable. Moreover, transpositions in
confusable lists are prone to span wider lags than in nonconfus-
able lists (Henson, 1996) (Fig. 4D). The performance of the
model displayed these same effects (Fig. 4C,E). Variations in in-
teritem similarity were simulated by varying the degree of overlap
between activation patterns in the model’s item input layer (see
Materials and Methods) (Fig. 4A). Increasing interitem similarity
reduced recall by increasing the number of transpositions, and
increased the tendency of items to transpose across relatively
wide lags. Once again, the model’s performance can be under-
stood in terms of the similarity relations among its internal rep-
resentations. The internal representations of two different list
orderings are more similar, and therefore more confusable, when
items are relatively highly overlapping than when they overlap
less.

Mixed lists
Another behavioral finding that has received a great deal of recent
emphasis involves recall for sequences of highly similar items

(e.g., in verbal recall, the phonologically related letters B, P, T, C,
G) that contain one or more distinctive items, for example,
BPTRCG or BRPMTL. The general finding is that the distinctive
or “nonconfusable” items within such mixed lists are recalled as
well or better than when the same items appear among other
nonconfusable items (e.g., JRYMQL) (Fig. 4B). Varying the de-
gree of overlap among the model’s item representations to sim-
ulate the presentation of mixed lists (see Materials and Methods)
(Fig. 4A) yielded a comparable pattern of recall performance
(Fig. 4C).

Development
Another benchmark behavioral finding pertains to recall perfor-
mance among children versus adults. Not surprisingly, recall ac-
curacy improves with age. A more informative finding is that the
transposition curve becomes steeper with age, that is, transposi-
tions tend to span smaller lags (McCormack et al., 2000) (Fig.
5B,C). This effect has been proposed to derive from a progressive
sharpening of neural rank representations over the course of de-
velopment (Lipton and Spelke, 2003). We simulated this by vary-
ing the breadth of tuning among the rank input units in the
model (see Materials and Methods) (Fig. 5A). Relatively broad
tuning yielded recall performance resembling that observed
among children (Fig. 5D,E).

Representational capacity
One possible objection to the account implemented in the model
is that it would seem, in the general case, to require a prohibitively
large number of processing units. It is often assumed that con-
junctive representational regimes scale poorly, because of the
problem of combinatorial explosion. However, O’Reilly et al.
(O’Reilly and Busby, 2002; O’Reilly et al., 2003) have demon-
strated that this assumption is not generally warranted. In the
present model, the use of conjunctive representations of item and
order might appear to require at least I � R units, where I is the
number of distinct items to be represented and R is the number of
distinct ranks. However, as shown in Figure 6 (blue data series),
the present model can recall six-item lists when equipped with
�36 internal units. As in the theoretical account provided by
O’Reilly et al. (2002, 2003), the present model’s ability to function
with only a subset of its internal units is attributable to its use of
coarse conjunctive representations, within which any given unit

dAnother consequence of this factor is that exchanges between adjacent items become more frequent with increas-
ing rank. Thus, although the format of the data in Figure 3E does not make it evident, the model is less prone to
exchange items at positions 2 and 3 than it is to exchange items 4 and 5.

Figure 5. A, Representations of sequence 123456 in simulations addressing performance of adults (top; �� 0.3) and children
(bottom; �� 1.0). Remaining parameters are �� 0.3, �� 0. B, C, Positional recall accuracy (B) and transposition gradients (C)
for children and adults, from a study by McCormack et al. (2000). D, E, Corresponding pattern from the model with parameters as
just listed, except � � 0.09. Root mean squared error for all 22 data points, 0.059.
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carries information about a range of item-rank pairings. The re-
dundancy inherent in the use of such coarse coding also means
that the model can continue to perform accurately if a small
number of units are removed after training (data not shown).
Another important consequence is that, although the model can
function correctly with relatively few internal units, increasing
the number of internal units results in performance that is more
robust to noise. This is shown in Figure 6 (lower data series),
which shows the model’s performance under noise across a range
of internal layer sizes.

Alternative implementations
Very similar results were obtained with an implementation of the
model in which additive noise was used, an implementation in
which activation in each input layer was normalized to sum to 1,
and an implementation in which separate output groups were
used for each ordinal position, with output item at each position
represented by the most active unit in the relevant group. How-
ever, as noted previously, use of straight Gaussian rank represen-
tations with fixed variance, in place of the original log-normal
representations, changed the behavior of the model considerably,
yielding a pattern of recall accuracy inconsistent with the empir-
ical data (Fig. 3F).e

Discussion
We have presented a computational model addressing how serial
order is represented in cortical working memory. The model is
integrative in two senses. First, the model integrates across three
basic findings from single-unit neurophysiology, indicating how
they may fit together to subserve a single, critical cognitive func-
tion. Second, the model bridges across the domains of neuro-
science and behavior, starting from formally specific and highly
constraining neuroscientific findings, and leveraging these to ex-
plain detailed patterns of recall behavior.

Together, this combination of attributes represents a signifi-
cant step beyond previous models of serial order processing. A
number of psychological models have engaged behavioral data in
detail (Page and Norris, 1998; Burgess and Hitch, 1999; Brown et
al., 2000; Farrell and Lewandowsky, 2002; Botvinick and Plaut,

2006). In fact, the model we proposed has important features in
common with some of these models, most notably the use of
overlapping rank representations (Houghton, 1990; Burgess and
Hitch, 1999; Brown et al., 2000; Botvinick, 2005; Botvinick and
Plaut, 2006). However, in contrast to the present model, most
models addressing detailed behavioral benchmarks have not
made meaningful contact with neuroscientific data.

Our model also shares basic features with a number of previ-
ous models addressing the neural basis of serial order processing,
including the use of conjunctive, superpositional sequence rep-
resentations (Dominey et al., 1995; Dominey, 1997; Beiser and
Houk, 1998; O’Reilly and Soto, 2001). The model we presented
goes beyond this previous work by making contact with detailed
behavioral data.

Predictions of the model
Like other work proposing the dependence of serial order mem-
ory on rank representations in the IPS (Marshuetz, 2005; Nieder,
2005), our model predicts that any disruption of these represen-
tations should specifically impair immediate serial recall perfor-
mance. This appears consistent with neuropsychological evi-
dence associating left parietal damage with impairments in
memory span (Vallar and Shallice, 1990). A more distinctive pre-
diction of the model is that there should exist neocortical neurons
whose response properties take the form of gain fields combining
item and order information in a graded and compressive manner.
Although the data suggest that such neurons may occur in the
inferior prefrontal cortex (Inoue and Mikami, 2006; see Fig. 1A),
at least for visual stimuli, gain field representations might well
arise first more posteriorly. Indeed, receptive fields resembling
those predicted by the model have been observed in the context of
motor production, located in the superior parietal lobule
(Sawamura et al., 2002).

Directions for additional evaluation and development
To focus on the issue of representation, our model abstracted
over several mechanisms and processes, which could be ad-
dressed in a fuller implementation. For example, the internal
units in our model were assumed to display persistent activation,
a key property of active memory widely believed to underpin
working memory function (Fuster, 2001; Miller and Cohen,
2001). One way of elaborating the model would be to incorporate
specific mechanisms giving rise to sustained activation, along the
lines proposed by Compte et al. (2000) or Zipser et al. (1993). Our
implementation also did not address the mechanism by which
multiplicative codes might be computed. A more explicit account
of this might be drawn work such as that of Mehaffey et al. (2005).
Another simplification in our model was to abstract, like some
previous neuroscientific models (Beiser and Houk, 1998), over
the process of recall. This is another area where the model calls for
further development, and where previous models once again
provide useful precedents (Dominey, 1997; O’Reilly and Soto,
2001; Botvinick and Plaut, 2006).

There also remain a large number of interesting behavioral
phenomena to which the present theory might also be applied.
Findings not addressed in the present work include list length
effects, suffix and modality effects, grouping effects, and effects of
irrelevant speech, as well as effects of prior probability (Botvinick
and Bylsma, 2005). Testing the applicability of the model to such
additional phenomena presents a worthwhile direction for future
work.

eThe strong recency effect in the figure reflects the fact that early list items are more subject to the cumulative effects
of noise. If this factor is equalized across items (as might be justified given that in the laboratory task items are
recalled one by one), the straight Gaussian implementation yields a symmetric recall accuracy curve, still inconsis-
tent with the empirical pattern.

Figure 6. Mean positional accuracy displayed by the model when trained with a varying
number of internal units and tested both without the injection of noise (top series) and with
noise (bottom series). In each simulation at a given unit count, units were selected at random
and removed until the target unit count was attained. Error bars show the range of accuracies
across 10 simulations. The horizontal line indicates the level of chance performance. Parameters
as listed in the caption to Figure 1.
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