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The Sources of Variability in Saccadic Eye Movements
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Our movements are variable, but the origin of this variability is poorly understood. We examined the sources of variability in human
saccadic eye movements. In two experiments, we measured the spatiotemporal variability in saccade trajectories as a function of move-
ment direction and amplitude. One of our new observations is that the variability in movement direction is smaller for purely horizontal
and vertical saccades than for saccades in oblique directions. We also found that saccade amplitude, duration, and peak velocity are all
correlated with one another. To determine the origin of the observed variability, we estimated the noise in motor commands from the
observed spatiotemporal variability, while taking into account the variability resulting from uncertainty in localization of the target. This
analysis revealed that uncertainty in target localization is the major source of variability in saccade endpoints, whereas noise in the
magnitude of the motor commands explains a slightly smaller fraction. In addition, there is temporal variability such that saccades with
a longer than average duration have a smaller than average peak velocity. This noise model has a large generality because it correctly
predicts the variability in other data sets, which contain saccades starting from very different initial locations. Because the temporal noise
most likely originates in movement planning, and the motor command noise in movement execution, we conclude that uncertainty in
sensory signals and noise in movement planning and execution all contribute to the variability in saccade trajectories. These results are

important for understanding how the brain controls movement.
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Introduction

The movements that we produce are variable. This is apparent in
sports such as golf, darts, and basketball in which it is crucial to
have good control over one’s movements. Even after many years
of training, highly skilled sportsmen are unable to produce ex-
actly the same movement several times in succession. From a
neuroscientific point of view, movement variability is important
because it can help us understand how the nervous system con-
trols movement. First, movement variability forms part of the
behavior that theories of motor control should explain. Second,
because variability places a limit on how successful movements
can be, it has been suggested that movements are planned such
that the variability is minimized (Harris and Wolpert, 1998). For
both of these arguments, it is crucial to know the sources of
movement variability.

In theory, movement variability could originate from (1) the
sensory information defining the target of a movement, (2) the
central planning of a movement, and/or (3) the peripheral pro-
cesses of movement execution that take place after motor com-
mands have been planned. Surprisingly, different studies aimed
at identifying the sources of movement variability reached very
different conclusions. Whereas Gordon et al. (1994) and Church-
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land et al. (2006) concluded that the variability in arm move-
ments originates mostly in central movement planning, van
Beers et al. (2004) demonstrated that movement execution is the
major source. Moreover, Osborne et al. (2005, 2007) showed that
sensory information is the major source of variability in smooth
pursuit eye movements. Although the major source could be dif-
ferent for movements of different body parts, the conflicting re-
sults for arm movements demonstrate how poorly the origin of
movement variability is understood. An explanation for the con-
flicting conclusions could be that each study focused on one par-
ticular source while neglecting other sources that could have pro-
duced parts of the observed variability.

To get a better insight into the sources of movement variabil-
ity, we examined the variability in human saccadic eye move-
ments. Saccades are particularly well suited for this purpose, be-
cause, unlike most other movements, we have no voluntary
control over their kinematic properties such as speed and dura-
tion (Becker, 1989). As a result, saccades are stereotyped move-
ments whose kinematic properties are determined by the ampli-
tude, a phenomenon known as the main sequence (Bahill et al.,
1975). Establishing the sources of variability is therefore not
hampered by variability in the subjects’ voluntary control. An-
other advantage of saccades is that they are too quick to be cor-
rected based on sensory feedback received during the movement
(Becker, 1989).

Our approach is to analyze the full pattern of spatiotemporal
variability of human saccade trajectories to targets in different
directions and at different distances. The sources of the observed
variability are then inferred via computational modeling of vari-
ous types of noise in the sensory signals and motor commands.
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The analysis of the full pattern of spatiotemporal variability is
crucial in this approach because it allows us to separate the con-
tributions from different sources.

Materials and Methods

Subjects

Five subjects (two females, three males; 2436 years of age) participated
in this study. The author was one of them; the other subjects were un-
aware of the purposes of the study. The results of the author were not
systematically different from those of the naive subjects. Four subjects
had normal vision and one had corrected-to-normal vision, by wearing
spectacles. This study is part of a research program that has been ap-
proved by the local ethics committee.

Apparatus

Stimuli were presented on a 40 X 30 cm computer screen with a resolu-
tion of 1024 X 768 pixels that was viewed from a distance of 67 cm. For
each subject, the point midway between the eyes was aligned with the
center of the screen. The two-dimensional orientation of both eyes was
recorded at 250 Hz with an EyeLink system (SR Research, Mississauga,
Ontario, Canada). The EyeLink system was used rather than the more
precise scleral search coils because recent studies identified two effects of
search coils that make them unsuitable for the present study. First, search
coils on the eyes make saccades slower (by ~8%) and last longer (by
~8%) than in the natural situation in which no coils are present (Frens
and van der Geest, 2002), and second, they increase the SD in the end-
points by some 20% (Smeets and Hooge, 2003). The video-based Eye-
Link system does not have these problems but measures natural saccade
trajectories with a, for our study, sufficient accuracy and precision (van
der Geest and Frens, 2002). Note that modern video-based eye trackers
that can also record the torsional component of eye orientation, have
insufficient accuracy for our purposes (Houben et al., 2006).

To minimize movement of the EyeLink cameras relative to the eyes,
the subjects” heads were immobilized by a combination of a bite-board
and a forehead support, and the EyeLink cameras were not mounted on
the supplied headband, but, to avoid headband slippage, they were rig-
idly connected to the bite-board. Each subject chose her or his “natural”
upright head orientation.

Procedure

In experiment 1, we tested saccades with different amplitudes, whereas
experiment 2 examined saccades in different directions. Both experi-
ments had a blocked design. In each block, subjects changed their gaze 75
times back and forth between two targets. A blocked design was used
rather than randomly appearing targets to avoid that slow changes in
saccade performance during an experimental session (Jiirgens et al.,
1981) would distort the estimated variability. One target, the starting
position, was always straight ahead of the right eye; the position of the
other target varied across blocks. Both targets were continuously present
throughout the entire block. Stationary targets were used rather than
jumping targets because saccades to stationary targets are more accurate
(they undershootless) and they are not preceded by smooth, anticipatory
eye movements in the direction of the target (Lemij and Collewijn, 1989).

Stimuli consisted of black rings (0.33° outer diameter; 0.17° inner
diameter) shown on a white background. The small inner disk was the
actual target that subjects were asked to fixate.

A calibration block preceded each experimental block. In a calibration
block, 25 targets, organized in a 5 X 5 grid covering the whole screen,
were shown sequentially. Each target was shown for 2 s, giving subjects
ample time to achieve accurate fixation. The eye orientation recordings
of a calibration block were used to calibrate the EyeLink output for the
experimental block that immediately followed it (for details of the cali-
bration method, see below, Analysis).

Experiment 1. Nine targets were used exactly to the left of the starting
position at distances of 2, 4, 6, 8, 10, 12, 14, 16, and 18°. The time to
initiate a saccade was specified by a metronome that produced beeps at a
rate of 40 beeps per minute. Each experimental block therefore lasted 3
min and 45 s and followed a calibration block that took 50 s. Subjects thus
had their heads immobilized for periods of ~4.5 min. Between blocks,
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they could move their head and relax as long as they wanted but not <30
s. Blocks were presented in a random order, and all blocks were tested in
a single session.

Experiment 2. Targets were placed in 24 equally spaced directions at a
fixed distance of 9° from the starting position. The metronome produced
50 beeps per minute and blocks were again presented in a random order.
Each subject took part in two sessions of 12 blocks each that were run on
different days. Both sessions took place ~50 d before experiment 1. All
other details were identical with those of experiment 1.

Analysis

Throughout this study, eye orientation was expressed as rotation vectors
(Haslwanter, 1995). A rotation vector is a three-dimensional vector that
represents the single-axis rotation that is required to bring the eye from
some reference orientation (also known as primary position or primary
orientation) to its current orientation. The direction of a rotation vector
defines the rotation axis and its length equals one-half the tangent of the
rotation angle. Because most readers will be more familiar with degrees to
express the magnitude of rotations, results will be reported in degrees.

We represented the full three-dimensional eye orientation because this
allowed us to estimate motor commands (see below, Estimation of motor
commands). However, we recorded only the horizontal and vertical
components. To obtain the third component (torsion), we assumed List-
ing’s law to hold and we assumed Listing’s plane (Haslwanter, 1995) to be
oriented perpendicular to the right eye’s line of sight when fixating the
starting position. Control simulations were performed to estimate the
effects of possible departures from these assumptions (see Results).

Calibration. We did not use the standard EyeLink calibration proce-
dure but instead used the following, more accurate method. During both
the calibration and the experimental blocks, we saved the raw pupil co-
ordinates of EyeLink. In the output of the calibration blocks, we selected
100 ms intervals during which the output was stable at the ends of the 2 s
intervals for which each target was presented. We assumed that in this
interval the subject fixated the target. Two-dimensional quadratic regres-
sions were then made to find the relationship between the mean EyeLink
output during these 100 ms intervals and the eye orientations required to
fixate the targets. This produced calibrations with typical root mean
square values of 0.3°.

Despite our attempts to minimize movement of the head relative to the
cameras, the experimental data still displayed some drift. This was prob-
ably attributable to small head movements allowed by the soft tissues in
the forehead. Even though this drift was slow (<1 min arc/s), we com-
pensated for it to avoid misestimation of saccadic variability. We deter-
mined for each saccade from the starting position to the target the mean
eye orientation in the 20 ms interval immediately before the saccade. This
mean orientation was then subtracted from the entire trajectory of the
saccade. This method was justified by plotting, for entire experimental
blocks, all eye orientations immediately after the primary saccade and
also the eye orientations 600 ms after the onset of the primary saccade
(i.e., after possible corrective saccades were made). Whereas the former
endpoint distributions were often not centered on the target and dis-
played a relatively large amount of variability, the latter distributions
were much smaller and were well centered on the target.

Kinematic analysis. Eye orientation data were filtered with a second-
order, zero phase-lag Butterworth filter with a 125 Hz cutoff frequency.
Cubic spline interpolation was then used to upsample the data to 1000
Hz. This did not change the values for the frames for which data were
recorded, but only interpolated smoothly in between. This enabled us to
estimate movement duration at a finer timescale, and it improved the
accuracy of the peak velocity estimates.

Angular velocity (), a three-dimensional vector, was determined as
follows (Haslwanter, 1995):

2(r+r X1)
n 1+ °

where r is the eye orientation (expressed as a rotation vector), r is its
temporal derivative, and X denotes the cross product. Temporal deriv-
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atives were calculated numerically using a three-point central-difference
method.

Saccade onset and offset were determined using a velocity threshold of
0.5 ' (expressed as rotation vectors), which corresponds to 29°/s. Sac-
cade onset occurred at the time of the last frame before the norm of the
angular velocity vector exceeded this threshold; saccade offset occurred
at the time of the first frame after the velocity fell below the threshold.
The difference between saccade offset and onset times defined the move-
ment duration M. Peak velocity v, was defined as the peak value of the
norm of the angular velocity vector.

Analysis of variability. We aimed to identify the sources of the spatio-
temporal variability in human saccades by computational modeling of
different sources of variability. The comparison of observed and modeled
variability is only valid when both are computed from sets of (observed
or modeled) saccades that have no suspicious outliers, because outliers
can strongly influence measures of variability. The sets of observed sac-
cades appeared to have outliers, possibly related to variations in the
subjects’ levels of attention and alertness. We rejected saccades whose
starting position, peak velocity, time of peak velocity, movement dura-
tion, maximum perpendicular deviation (the maximum deviation of the
saccade trajectory from a straight line between the start and end orienta-
tion), or end position differed >3 SDs from the mean of all saccades of
that subject to that target. In addition, occasional saccades that had a tail
in the velocity profile with a velocity <2's ™' (~115°/s) for >30 ms were
also rejected. The calculation of variability was based on, on average, 67.8
saccades per target per subject in experiment 1, and 63.6 in experiment 2.

To analyze the variability in saccade endpoints, we determined for
each subject for each target the covariance matrix of all (not rejected)
endpoints. This variability was visualized by 95% confidence ellipses.
Following van Opstal and van Gisbergen (1989), we decomposed the
endpoint variability into two components. SD o represents the variabil-
ity in the direction defined by the straight line between the starting loca-
tion and the mean of all endpoints (“the variability in movement ampli-
tude”), whereas o, represents the variability in the direction orthogonal
to that (“the variability in movement direction”). The variability in all
other quantities was expressed as an SD and/or as a coefficient of varia-
tion (CV) (the SD divided by the mean).

We also analyzed correlations between different variables. The results
show that movement duration, amplitude, and peak velocity are all cor-
related with one another. In that situation, it is not correct to consider
simple correlation coefficients between each pair of variables because
these fail to take into account the interactions with the other variable. We
therefore calculated partial correlation coefficients among these three
variables.

Estimation of motor commands

Our model (see below) requires us to estimate the motor commands that
were sent to the extraocular muscles to generate the observed saccades.
Here, we explain how we estimated these motor commands.

We first derived mean trajectories for the movements that each subject
made toward each target. For that purpose, we temporally rescaled all
trajectories toward a target to their mean duration and resampled them
at 1 ms using cubic spline interpolation. The mean trajectories were then
obtained by averaging these resampled trajectories.

We next calculated the total torque, T, that was generated by the mus-
cles, from the mean trajectories. Following Tweed and Vilis (1987),
Schnabolk and Raphan (1994), and Raphan (1998), we assumed that the
muscle torques must counteract the inertial, viscous, and elastic forces of
the oculomotor plant as follows:

Q) )
T=J +BQ+Kdh.

The first term on the right-hand side represents the inertia of the globe
and equals the product of the eye’s moment of inertia ] and the angular
acceleration. The second term represents viscosity, and is proportional to
the coefficient of viscosity B and the angular velocity. The last term de-
scribes elasticity, which is proportional to stiffness K and rotation angle ¢
from the reference position, and has the direction of rotation axis . We
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used a moment of inertia of J = 2.00 X 10 7 kg - m? (Robinson, 1964).
The viscosity and stiffness were derived assuming time constants of the
overdamped human oculomotor plant of 224 and 13 ms (Robinson et al.,
1986): B = 1.63 X 107> kg'm?+s~ ' and K = 6.87 X 107>
kg -m?-s 2

We next calculated how this total torque was produced by the muscles.
We treated antagonistic muscle pairs as single ideal muscles that can
produce positive and negative torques, and whose insertions on the globe
are orthogonal to each other (Quaia and Optican, 1998). The net torque
generated by each muscle pair can then be found if the pulling directions
of all muscle pairs are known. These pulling directions vary with the eye
orientation because of the effects of muscle pulleys (Demer et al., 1995)
and/or orbital fat (Schutte et al., 2006):

T = Ry7.

Here, 7is a three-dimensional vector that contains the torques generated
by the three muscle pairs and R,, is the matrix for a rotation of angle Y2¢
about axis fi (Raphan, 1998).

The final step is to calculate motor commands from muscle torques.
Physiologically, the best definition of a motor command would be the
entire set of signals sent to all extraocular muscle fibers. This, however, is
not a useful definition here because we do not know all of these signals.
Instead, we will use the equivalent of the sum of all the signals sent to a
muscle as the definition of a motor command. Motor commands can
then be calculated from torques by modeling the muscle as a first-order
low-pass filter with a time constant of 10 ms (Harris and Wolpert, 1998;
Tanaka et al., 2006). A low-pass filter is a simplification of the true com-
plexity of extraocular muscles, but it captures the temporal filtering
properties that are important for propagation of noise.

In terms of the well known pulse-step pattern of saccadic innervation,
the commands we calculated correspond to the innervation up to the end
of the pulse component. The step component that is still produced after-
ward to keep the eye in its position was not modeled because we consid-
ered the variability in the saccades only, not in possible slow movement
afterward. We confirmed that the shape of our estimated motor com-
mands resembles their recorded shape (van Gisbergen et al., 1982).

The major shortcoming of our procedure is that it cannot represent
coactivation of antagonistic muscles. Our definition of noise, however,
allowed us to include the effects of coactivation on the saccadic variability
(see below, Model).

Model

Individual noise sources. We mentioned three possible sources of saccade
variability in the introduction: sensory signals, movement planning, and
movement execution. Noise in planning and execution will result in
noise in the motor commands that are sent to the muscles. Our approach
allows us to estimate this motor command noise, but it does not allow us
to identify the source of this noise upstream of the motoneurons. As a
result, we are unable to determine unambiguously which part of the
overall variability is caused by movement planning and which by move-
ment execution. Accordingly, we will for now treat these two sources
together, and refer to them as “motor noise.” We defer the decomposi-
tion of motor noise into planning noise and execution noise to
Discussion.

In addition to sensory signals and motor noise, noise in the EyeLink
system must also have contributed to the observed variability and should
therefore be taken into account when modeling the observed variability.
Hence, our model includes three different noise sources. We will term
them “sensory noise,” “motor noise,” and “measurement noise,” and
now discuss each of them.

The effect of measurement noise was estimated from the variability
measured during stable fixation. Expressed as SDs, the precision was
0.04° horizontally and 0.03° vertically for all subjects. This gave rise to an
uncertainty in the velocity estimate of 25°/s (SD). A simulation of the
process of determining movement onset and offset from noisy EyeLink
data recorded at 250 Hz and upsampled to 1000 Hz, suggested that, for a
saccade of a certain duration, this process adds an uncertainty in the
movement duration estimate of 1.6 ms (SD) and it produces a correlation
coefficient of 0.45 between amplitude and duration.
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Saccades cannot be executed more precisely than their target is local-
ized. Localization by the peripheral retina is limited by several factors
such as the size and density of photoreceptors and the precision with
which retinal information is conveyed to and processed in central visual
areas. Our term “sensory noise” refers to the combined effect of all of
these factors. We estimated how precise the targets in our experiments
were localized from a large number of psychophysical studies. Three
factors determine this precision. First, localization of peripheral targets is
more precise in the o, direction than in the o7, direction (Yap etal., 1987;
White et al., 1992; Westheimer, 2005). Second, localization precision in
the o, direction displays a strong “oblique effect”: precision is much
better along the horizontal and vertical meridians than in oblique direc-
tions (White et al., 1992; Westheimer, 2001). Third, localization preci-
sion varies across the visual field in the same way as visual acuity does
(Yap et al,, 1987; Levi and Klein, 1990; Aitsebaomo and Bedell, 1992;
White et al., 1992; Westheimer, 2001, 2005). We quantified the first two
factors using the values reported by White et al. (1992): oy/0,, = 6 for
targets on the horizontal and vertical meridians, and o/o,, = 2 for
targets in other directions. The way in which visual acuity varies across
the visual field was estimated from the data of Wertheim (1894). Visual
acuity decreases with eccentricity. When expressed as a CV (i.e., as an SD
divided by the eccentricity), it is approximately constant for the larger
eccentricities in our experiment, but it is larger for small eccentricities. A
fit to Wertheim’s data produced the following: CV, ,(e) =
CV scuity,0(1.95exp(—€/2.65) + 1), where e is the eccentricity in degrees,
and CV,_yy.0 is the CV at large eccentricities. The data of Wertheim
(1894) further suggest that CV ;o depends on direction. It is smallest
along the horizontal axis, it is ~1.30 times larger upward, and ~1.56
times larger downward.

We used the average of the results of White et al. (1992) and Aitse-
baomo and Bedell (1992) as the CV of localization in the o, direction at
large eccentricities along the horizontal meridian: 0.045. To account for
the directional dependence of the precision, we applied the following
scaling to the localization precision CV in both the o and o directions:

CV(0) = CVyo,(1 + Vsin*(6)),

where CV, . represents the precision on the horizontal meridian, and
angle 6 represents the target direction (with 6 = 0° for rightward, 6 = 90°
for upward, etc.). Factor V' was 0.30 for targets above the horizontal axis
and 0.56 for targets below that axis.

Saccades could have been planned to any position of the target disk
(0.17° diameter). Assuming an equal probability for any position on this
disk, this finite size led to an additional variance of i2diameter ? in both
the horizontal and vertical directions. This was also included in the sen-
sory noise. The resulting localization uncertainty of all targets is visual-
ized by 95% confidence ellipses in Figure 7.

We will now describe the “motor noise” that we added to the estimated
motor commands. Direct recordings of motor command signals in mon-
keys during saccades (Hu et al., 2007) and in cat (Gémez et al., 1986) and
goldfish (Pastor et al., 1991) during fixation have shown that their firing
exhibits “signal-dependent noise” (SDN). The properties of the motor
unit pool of a muscle, such as recruitment, are such that the force pro-
duced by a muscle also has SDN (Jones et al., 2002; Hamilton et al., 2004).
SDN is zero-mean, white Gaussian noise in the magnitude of the signal
with an SD proportional to the magnitude of the signal, and it has been
used extensively in modeling studies (Harris and Wolpert, 1998; Tanaka
et al., 2004, 2006). We added SDN to the motor commands at each
time-step of the mean trajectories. The SD o, of this noise was defined
as Ogpyy > = kgpy 2tt%, where u is the motor command and kg, defines
the level of the noise. SDN in the three muscle pairs was assumed to be
independent.

As described above, we modeled muscle pairs as single ideal muscles
that can produce positive and negative torques. This is a problem for
modeling motor noise because antagonistic muscles are generally acti-
vated simultaneously (Miller and Robins, 1992). As a result of such co-
activation, the torques generated by the two muscles will partially cancel,
but the variances therein will add up. Consequently, the net torque will
not have SDN, even when all motoneurons contributing to this torque
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individually do have SDN. Because no quantitative measures of coacti-
vation are available, we included “constant noise” (CN) to account for its
effect. A combination of SDN and CN can give an appropriate descrip-
tion of the noise in the torque. CN was modeled in the same way as SDN,
but with an SD independent of the motor command: oy ? = key’
Constant and signal-dependent noise were assumed to be independent,
giving rise to an SD of motor command noise of

\/O—gDN + oty = V/képNuz + kix

Not all six extraocular muscles are equally strong. This is relevant
because stronger muscles are less noisy than weaker muscles when
both produce the same torque (Hamilton et al., 2004). The critical
factor determining the noise level of a muscle is its number of motor
units. The CV of the torque produced by a muscle is proportional to
its number of motor units raised to the power of —1/2 (Hamilton et
al., 2004). We therefore scaled the levels of SDN and CN according to
this relationship for each muscle pair. Unfortunately, accurate esti-
mates of the numbers of motor units for the human extraocular mus-
cles are not available. However, two studies (Bors, 1926; Torre, 1953)
suggest that the innervation ratio (the mean number of muscle fibers
per motoneuron) is the same (~5.5) for different extraocular mus-
cles. Assuming the same innervation ratio for all muscles, we could
estimate the numbers of motor units from the reported numbers of
muscle fibers (Bors, 1926; Kato, 1938; Torre, 1953; Oh et al., 2001).
After summing the numbers of muscles belonging to the same pair
together, we arrived at the following ratios of motor unit numbers:
horizontal:vertical:oblique = 1:0.77:0.50. We therefore scaled the lev-
els of SDN and CN of the vertical and oblique muscle pairs by 0.77 %
= 1.14 and 0.50 ~%° = 1.41, respectively.

Finally, we added “temporal noise” (TN) to account for variability in
movement duration. Because the results of experiment 1 show that the
CV of movement duration does not vary with saccade amplitude (see
Results), we defined the level of TN, k., as the CV of movement dura-
tion. Temporal noise was defined as a simultaneous scaling of the move-
ment duration and the velocity profile: when duration was scaled by a
factor 1 + «, velocity was scaled by a factor 1/(1 + «). This definition of
temporal noise does not lead to variability in saccade endpoints; it pro-
duces variability in the temporal aspects of the saccade only. The same
scaling was applied simultaneously to all muscle pairs. Temporal noise
does not reflect noise that is added directly to the motor commands but
it produces motor command variability in an indirect way. In the simu-
lations, movement duration was varied by varying the time step in the
calculation of a saccade trajectory from a motor command. All time steps
within a single simulated movement were scaled by the same factor, but
this factor was varied across simulated movements to obtain the desired
CV of duration.

Combining the effects of all noise sources. We combined the effects of all
types of noise into a total variability that we could compare with the
observed variability. The variability caused by the three types of motor
noise was determined simultaneously in simulations in which all three
noise types were present (see below, Fitting the model). We then added
the effects of measurement and sensory noise.

The total endpoint variability was found by adding the covariance
matrices attributable to motor, sensory, and measurement noise together
(for each subject and target separately). Similarly, the SDs in amplitude,
peak velocity, and movement duration were found by adding the vari-
ances attributable to all sources together. Sensory noise leads to variabil-
ity in not only endpoints, but also in duration and peak velocity, because
a movement that is planned to have a larger amplitude will, according to
the main sequence, also have a longer duration and a larger peak velocity.
To estimate these variabilities, we estimated each subject’s main se-
quence relationships from the data of experiment 1 by fitting the ob-
served duration and peak velocity to the function A(1 + exp(—amp/B)),
where amp is the amplitude of the movement, and A and B are fit param-
eters. Local linearization of these functions then allowed us to transform
SDs in amplitude into SDs in duration and peak velocity.

To determine predicted correlations between each pair of amplitude,
duration, and peak velocity, we used the general equation for the corre-
lation coefficient p( X, Y) for the correlation between X and Y as follows:



van Beers e Variability in Saccades

J. Neurosci., August 15, 2007 - 27(33):8757—-8770 « 8761

A2 . Amplitude (deg) B Duration (ms) g)() Peak velocity (deg/s) pvpM) =
80 COVina(VypM) + SDien(1;) * SDeensM)
15 400 .
60 \/V3'rmuﬁ(vp) + Varsens(vp> + Varmeas(Vp) )
10 40 300 Vvarmol(M) + Varsens(M) + Varmeas(M)
5 20 200
0 0 100 Here, the subscripts “mot,” “sens,” and “meas”
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 refer to motor, sensory, and measurement
Amplitude (deg) Amplitude (deg) Amplitude (deg) noise, respectively. As for the experimental
D . E . F ) data, partial correlations were calculated from
CV(Endpoints) CV(Duration) CV(Peak velocity) these simple correlations to account for the in-
0.20 0.20 0.20 . . .
—_0 terrelationship between the three variables.
0.15 S, 0.15 0.15
-------- Fitting the model
0.10 0.10 P . | 0.10 \-—\_/ We generated 500 sets of noisy motor com-
0.05} *ss, —— 0.05 0.05 mands for each target for each subject, and cal-
0.00 — 0.00 0.00 culated the resulting movement trajectories.
0 ) 10 20 0 3 ) 10 15 20 0 5 ) 1015 200 pe endpoint of a simulated movement was de-
Amplitude (deg) Amplitude (deg) Amplitude (deg) fined as the position immediately after the last

Figure 1.
and peak velocity (€), and (Vs of o, and o

b

@
[

Figure 2. Raw data in experiment 1. All endpoints, 95% confidence ellipses, and mean
trajectories of a representative subject (HL) in experiment 1. The results for different targets
have been offset vertically to avoid overlap.

2 deg

Cov(X,Y)
\ Var(X) - Var(Y)’

where Cov(X,Y) is the covariance between X and Y, and Var(X) is the
variance in X. The preceding paragraph explained how we obtained the
variances in the denominator. To determine the covariance in the nu-
merator attributable to sensory noise, we again linearly approximated the
main sequence relationships. This resulted in correlation coefficients of
unity, so that each covariance equaled the product of two SDs. Measure-
ment noise was assumed to produce a correlation coefficient of 0.45
between amplitude and duration (see above, Individual noise sources),
and zero correlations in the other cases. This led to the following equa-
tions for the predicted correlation coefficients:

p(X,Y) =

p(amp,v,) =

COVmot(amp)Vp) + SDsens(amp) : SDsens(Vp)

\Var(amp) + Var,,(amp) + Varpe,(amp) -
AY Varmot(vp) + Varsens(vp) + Varmeas(vp)

p(amp,M) =
COme(amp)M) + SDsens(amp) ‘
SDSCHS(M) + 0'455Dmeas(amp) ° SDH]CBS(M)

VVary(amp) + Var,,(amp) + Var,(amp) -
Jvarmot(M) + Varsens(M) + Varmeas(M)

Main sequence parameters in experiment 1: mean and variability. A-F, Mean values for amplitude (4), duration (B),
(D), duration (E), and peak velocity (F) as a function of target amplitude in
experiment 1. In D, the CV of &, is the SD in the o, direction, divided by the mean amplitude. The black curves represent the
mean of all subjects, and the gray areas represent 95% confidence intervals of the intersubject variability (1.96 times the SE).

motor commands had been sent (other meth-
ods, such as using a velocity threshold produced
very similar results). The variability in these
movements was then combined with the vari-
ability attributable to sensory and measure-
ment noise as described above.

The model had two free parameters: the levels of SDN and CN (kg
and k). The level of TN was derived from the data of experiment 1,
such that the model reproduced the observed mean CV of movement
duration (i.e., k;y = 0.068). To estimate the free parameters, we fitted
the model to the data from both experiments by optimizing the log
likelihood of the observed endpoints (van Beers et al., 2004). This in-
volved the following steps. First, for a given set of parameters, we simu-
lated 500 movements for each target and each subject. We then deter-
mined the means and the covariance matrices of the simulated
endpoints. This defined the model prediction. We next computed the log
likelihood for each observed endpoint given the model prediction, and
added these log likelihood scores together. This sum quantifies how well
the observed endpoints match the predictions. The sum was optimized
using an unconstrained nonlinear optimization algorithm (fminsearch
in MatLab; The Mathworks, Natick, MA) that determined the two pa-
rameters that produced the best likelihood score. The same parameters
were used for all subjects and targets.

Results

Experiment 1

Mean main sequence parameters

The top row of Figure 1 shows the mean amplitude, duration, and
peak velocity as a function of the target amplitude. The first plot
shows that the subjects on average made saccades of the required
amplitude. The duration and peak velocity plots display the well
known main sequence characteristics. Duration increases ap-
proximately linearly with amplitude, whereas peak velocity in-
creases at a decreasing rate.

Variability in main sequence parameters

All the endpoints, and their 95% confidence ellipses, of a repre-
sentative subject are shown in Figure 2. The target is in some cases
not located within this ellipse, which indicates that constant er-
rors were made. Constant errors were also found for the other
subjects, but their size and direction differed across subjects, and
no general pattern emerged. We did not analyze the constant
errors further. The confidence ellipses of the endpoints are ap-
proximately aligned with the movement direction. In other
words, the variability in movement amplitude (o) is larger than
the variability orthogonal to that (o), in agreement with the
results of van Opstal and van Gisbergen (1989). Endpoint vari-
ability increases with target amplitude.
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The variability of the saccade end-
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Correlations between main

sequence parameters Figure3. Correlations between main sequence parameters in experiment 1. A—C, Plots of raw data of duration as a function of

The observation that the variability in am-
plitude tends to be smaller than that in du-
ration and peak velocity can easily be ex-

amplitude (4), peak velocity as a function of amplitude (B), and peak velocity as a function of duration (C) for one representative
subject (HL) in experiment 1. Confidence ellipses have been plotted for the sake of clarity; these have not been used in the analysis.
D-F, Shown are pcc values between amplitude and duration (D), amplitude and peak velocity (), and duration and peak velocity

plained by variations in movement speed.
Movements of the same amplitude but
with different durations will also have dif-

(F), as a function of target amplitude, averaged over all subjects. The format is the same as in Figure 1.
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tude. This is one of the well known main Figure 4. Main sequence parameters in experiment 2: mean and variability. A—F, Shown are plots of mean amplitude (4),

sequence characteristics that was already
shown in Figure 1 B. Figure 3A also shows
that duration and amplitude are also pos-
itive correlated within sets of saccades to
the same target. Thus, saccades to a certain target that had a
longer than average duration also tended to have a larger than
average amplitude. This is confirmed by Figure 3D, which shows
the pcc between duration and amplitude as a function of target
amplitude, averaged over all subjects. The pcc decreases with
amplitude but remains strongly positive for all amplitudes tested.

Across targets, peak velocity increases with amplitude (Fig.
3B). This is another part of the main sequence that was also shown
in Figure 1C. Peak velocity increases with amplitude also within sets
of saccades to the same target. The pcc between amplitude and peak
velocity is strongly positive for all amplitudes, although its magni-
tude decreases with amplitude (Fig. 3E). Thus, amplitude, duration,
and peak velocity are all correlated with one another.

Experiment 2
Mean main sequence parameters
The top row of Figure 4 shows plots of the mean amplitude,

duration (B), and peak velocity (€), and (Vs of o and o, (D), duration (E), and peak velocity (F) as a function of target direction
in experiment 2. The format is the same as in Figure 1.

duration, and peak velocity as a function of the target direction.
The amplitude generally agreed with the target amplitude of 9°.
Saccade duration increased with the magnitude of the vertical
component of the saccade, especially for downward saccades.
Duration was minimal for purely horizontal saccades (mean du-
ration, 48 ms), and it was significantly longer ( p < 0.003) for
purely upward (mean, 59 ms) and downward (mean, 61 ms)
saccades. This pattern was found for all subjects and it agrees with
previous studies (Oohira et al., 1983; Collewijn et al., 1988a,b;
Kubo et al., 1991).

Variability in main sequence parameters

All saccade endpoints and the mean trajectories of one represen-
tative subject are shown in Figure 5. As in experiment 1, confi-
dence ellipses of the endpoints are approximately aligned with
the movement direction. This figure also suggests that the ellipse
shape may vary with the target direction. Relatively elongated
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Figure 5. Raw data in experiment 2. All endpoints, 95% confidence ellipses, and mean
trajectories of a representative subject (JR) in experiment 2.

ellipses are found for the horizontal targets and for the purely
downward target. Ellipses in other directions tend to be rounder.
Figure 4D confirms that, across all subjects, o, has minima for
targets along or near the cardinal axes (one-tailed ¢ test compar-
ing the values for the four cardinal directions against the other 20
directions, p < 0.0003). There are no such minima for o; this SD
varies smoothly with direction and increases with the magnitude
of the vertical component of the saccade, especially for downward
saccades. Peak velocity (Fig. 4C) is approximately the same for all
directions.

The variability of the duration and peak velocity is shown in
Figure 4, E and F. As in experiment 1, the mean CV of movement
amplitude was smaller (0.065) than those for duration and peak
velocity (0.104 and 0.100, respectively).

Correlations between main sequence parameters

As in experiment 1, the pcc values between amplitude and dura-
tion and between amplitude and peak velocity are strongly posi-
tive, whereas that between duration and peak velocity is strongly
negative (Fig. 6). None of these pcc values varies with direction
and the values are similar to those for horizontal saccades of
comparable amplitudes in experiment 1.

Model predictions

Predictions of individual noise types

The aim of this study was to determine the sources of variability
in saccades. We did this by determining which combination of
measurement, sensory, and motor noise can explain the observed
variability. We will first demonstrate the variability resulting
from the individual noise sources. The contribution of measure-
ment noise is very small and will not be shown.

The properties of the assumed sensory noise have been de-
scribed in detail (see Materials and Methods, Model). The result-
ing variability is shown in Figure 7 in orange for what appeared to
be very informative measures: the endpoint variability in exper-
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iments 1 and 2, and the three pcc values between amplitude,
duration, and peak velocity in experiment 1. Endpoint variability
is represented by 95% confidence ellipses centered on the mean
endpoint location. Given sensory noise alone, the three pcc values
between pairs of amplitude, duration, and peak velocity are unity.
This is because a target that is localized further away will, accord-
ing to the main sequence, provoke a saccade with a longer dura-
tion and a higher peak velocity.

The variability resulting from SDN in the motor commands is
shown in Figure 7 in red (for kg = 0.172; not a best fit for this
situation). This variability was calculated by setting the levels of
all other noise types to zero. The predicted endpoint variability
varies strongly with movement direction. Very elongated ellipses
are produced along the cardinal axes. This can be understood
from the extraocular muscles that are used. For a purely horizon-
tal saccade, for instance, the horizontal muscles are activated
strongly, resulting in noisy motor commands for these muscles.
The vertical and oblique muscles are hardly activated and will
therefore have little noise. This results in a large variability in
movement extent, and virtually no orthogonal variability. In con-
trast, saccades in oblique directions are produced by substantial
activation of both horizontal and vertical muscles. Both muscle
pairs will thus have appreciable noise, which results in rounder
confidence ellipses. The size of the confidence ellipses increases
with movement amplitude because saccades with larger ampli-
tudes require larger motor commands (that have more noise),
and they take longer so that noise is added over a longer time. The
pcc values involving duration are zero because SDN does not lead
to variations in movement duration. The pcc between amplitude
and peak velocity is strongly positive. This is because fluctuations
of the motor command above its desired value will lead to both a
higher peak velocity and a larger amplitude.

The variability resulting from CN in the motor commands is
shown in Figure 7 in green (for ko = 1.37 X 10 > kg m?s~2).
The resulting endpoint variability hardly varies with movement
direction. This is because CN does not depend on the motor
commands. The variability is slightly larger in the vertical than in
the horizontal direction because the vertical muscles are slightly
noisier. The endpoint variability increases with movement am-
plitude because saccades with larger amplitudes have longer du-
rations so that more noise is added. The three pcc values resulting
from CN are quite similar to those caused by SDN. The correla-
tions involving duration are zero because CN does not lead to
variations in movement duration. The pcc between amplitude
and peak velocity is positive but not as large as for SDN. This
difference can be understood from the different natures of SDN
and CN. For SDN, the fluctuations in the motor commands will
be larger when the motor command is larger. Such large fluctu-
ations will lead to stronger correlations between amplitude and
peak velocity than the smaller fluctuations that result from CN.

The variability caused by TN is shown in Figure 7 in blue (for
krn = 0.068). The confidence ellipses are very small because tem-
poral noise is defined in such a way that it does not produce
variability in endpoints. The small variability shown is the result
of inaccuracies in the numerical differentiation and integration
in the simulations. The pcc between duration and peak velocity is
strongly negative. This reflects how the temporal noise was de-
fined: as variations of speed such that a saccade with a longer
duration has a lower peak velocity. The two pcc values involving
amplitude also take extreme values, but these are less important
because they are caused by the above-mentioned inaccuracies in
numerical differentiation and integration.
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The full model

Figure 7 makes clear that none of the con-
sidered noise types in isolation can explain
the observed variability. We therefore ex-
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we optimized the log likelihood of the ob- 1
served endpoints by finding the optimal
values of the levels of SDN and CN, which
were assumed to be the same for all sub-
jects. The optimal values were as follows:
kspn = 0.172 and ko = 1.37 X 10 > kg
m?s >

The variability predicted by the model
with these parameters is illustrated in Figure 8. The confidence
ellipses produced by the model in Figure 8, A and B, are quite
similar to those of the data, although they are somewhat larger.
Overall levels of variability varied across subjects; the examples
shown are from subjects with a smaller than average variability.
For other subjects, the observed variability could be larger than
that predicted. The other panels show that the model captures all
aspects of the observed spatiotemporal variability very well: the
95% confidence areas of observations and predictions overlap
almost everywhere. The main exception in experiment 1 is that
the predicted magnitudes of the three pcc values for the smallest
amplitudes are smaller than the actual ones. The most important
result of experiment 2 (the direction dependence of o and o,
with minima for o, in the cardinal directions, and a o that
increases with the magnitude of the vertical component of the
saccade) is predicted very well. Although the predicted CV in
duration is slightly too small, especially for downward saccades,
and the predicted magnitudes of the three pcc values are slightly
too large, the overall results of experiment 2 are also well repro-
duced by the model. The underprediction of the CV in duration
for downward saccades is related to the observation that this CV
is somewhat larger for saccades in these directions, whereas we
assumed it to be the same (kry = 0.068) for all directions. It is
unclear why the CV is larger for downward saccades. It is possible
that duration is intrinsically more variable in these directions, but
other factors, such as a reduced reliability of the eye tracker for
downward gaze, could also play a role. We therefore decided not
to model this effect, and kept the definition of temporal noise as
simple as possible (i.e., as a constant CV in duration that holds for
all directions).

To find out how much each noise source contributes to the
total variability, we calculated the endpoint variability for each
noise source in isolation. In fact, the confidence ellipses in Figure
7 represent these individual contributions. Figure 9 shows the
contributions as a percentage of the total endpoint variance.
These contributions vary somewhat with movement amplitude
and direction, but sensory noise is always the major source of
endpoint variability. On average, sensory noise is responsible for
57% of the variance, whereas SDN and CN both contribute 21%.
The contributions of TN and measurement noise are <<1%.

Is it necessary to include all noise types to reproduce the ob-
served variability? For some noise types, it is obvious that they
have to be included. Sensory noise, for instance, has such a pro-
found influence on saccade variability that not including this
would be unrealistic. The importance of TN can be understood
from the observed negative correlation between duration and
peak velocity. Without TN, it is not possible to obtain a negative
correlation because all the other noise types produce a positive or
zero correlation (Fig. 7). The need to include CN is evident from

Figure 6.
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Correlations between main sequence parameters in experiment 2. A—C, Shown are partial correlation coefficients
between amplitude and duration (A), amplitude and peak velocity (B), and duration and peak velocity (€) as a function of target
direction in experiment 2, averaged over all subjects. The format is the same as in Figure 1.

the observed o, for saccades in cardinal directions. All other
noise types lead to a o, that is much smaller than that observed
(Fig. 7). CN is the only type of noise that generates appreciable
values in these directions. The only noise source whose essential-
ity is not immediately obvious is SDN. We included SDN because
physiological studies (Gomez et al., 1986; Pastor et al., 1991; Hu
et al., 2007) suggest that oculomotor commands have SDN.

To examine whether SDN is an essential part of the model, we
compared the predictions of the model just described to the pre-
dictions of an alternative model that includes all noise types ex-
cept SDN. This alternative model was optimized in the same way
as the full model. An objective way to compare how well these
models predict the endpoint variability is to compare the likeli-
hoods of the observed endpoints. However, a direct comparison
of these likelihoods is not fair because the model with SDN has
one free parameter more than the model without SDN. We there-
fore calculated Akaike’s information criterion (AIC) (Akaike,
1973) for both models. AIC quantifies the goodness of fit of a
statistical model based on its likelihood while taking into account
the number of free parameters of the model. The lower the AIC,
the better the model. For the full model, the AIC is —174.879,
whereas it is —174.444 for the model with no SDN. Hence, in-
cluding SDN significantly improved the quality of the fit, and the
improvement is large (it amounts to the expected effect of >200
noninformative free parameters). This implies that all noise types
included are essential.

Model validation

We validated the model by examining how well it predicts the
variability in other data sets. The first data set consists of the
trajectories of the left eye in experiments 1 and 2 for the saccades
back from the target to the starting position. The variability in
this data set was independent from that in the main data set
because it consists of different saccades, made by different eyes.
Importantly, the model was fitted to data from saccades that
started from the primary position, whereas this data set consists
of saccades that started from secondary and tertiary positions. A
good prediction of the variability in these data would thus enlarge
the generality of the model. We did not fit the model to this new
data set but used the same parameter values as for the main data
set.

The variability in these data was analyzed in the same way as
that in the main data set. The results are shown in Figure 10, A—N.
All aspects of the observed variability depend in approximately
the same way on movement direction and amplitude as in the
main data set. Thus, starting from a different position does not
strongly influence the saccade variability. This is also what the
model predicts (Fig. 10A-N). The agreement between observed
and predicted variability is comparable with that of the main data
set.
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Figure7.

Variability resulting from individual noise sources. A, B, Endpoint variability for subject HL in experiment 1 (A) and subject JR in experiment 2 (B), represented by 95% confidence levels.

C-E, Shown are partial correlation coefficients between amplitude and duration (€), amplitude and peak velocity (D), and duration and peak velocity (E) in experiment 1. Shown are the following:
observed data (black) and predictions by sensory noise only (orange), SDN only (red; ksp,, = 0.172), (N only (green; kg, = 1.37 X 10 ~*kgm?s —2),and TN only (blue; ky,, = 0.068). For each type
of noise, the assumed noise level is the level in the model containing all types of noise. The levels are thus not optimal for the situations shown here.

We applied the model also to the left eye saccades from the
starting position to the target in experiment 2, because most of
these saccades moved this eye from a secondary to a tertiary po-
sition. Such saccades may be special because the eye orientation
could tilt out of Listing’s plane (Raphan, 1998). Figure 10, O-T,
shows that the variability in these saccades is similar to that for
saccades starting from the primary position (Fig. 8[-N), and this
is also predicted by the model. We evaluate the effect of possible
torsional blips in these data in the next section.

Control simulations

We made a large number of assumptions in the data analysis and
in the formulation of the model. We have run control simulations
to estimate the effects of possible inaccuracies of these
assumptions.

Torsional variability

We assumed that Listing’s law was obeyed during the recorded
saccades. This allowed us to determine the full three-dimensional
eye orientation from the recorded two-dimensional gaze direc-
tions. However, Listing’s law is not obeyed perfectly, but the tor-
sional component of eye orientation varies with an SD of 0.5-1.0°
(Straumann et al., 1991; Desouza et al., 1997). Torsional variabil-
ity can influence the predicted variability in the horizontal and
vertical components because the motor commands for the hori-
zontal and vertical muscles depend on the eye’s torsion. We
added variability to the torsion in control simulations. The same
mean trajectories were used as before, but we added random
torsion to each of the 500 simulated trajectories for each subject
and target, while keeping the gaze direction the same. Random
torsion values, drawn from zero-mean Gaussian distributions
with a fixed SD, were added to the initial and final eye orientation
of each simulated trajectory. The torsion at intermediate frames
was assumed to follow the displacement profile of the gaze direc-
tion. We then fitted the model in the same way as the main model
by optimizing the likelihood of the two-dimensional (horizon-
tal-vertical) endpoints.

Table 1 shows the fit parameters for torsion SDs of 0.0 (the
main model), 0.5, and 1.0°. The differences in the fit parameters
are very small, at most several percent. The predictions for the
quantities shown in Figure 8 completely overlap those of
the main model and are therefore not shown. This suggests that
the effects of assuming zero torsional variability are very small.

Note that, as a direct result of motor noise, our model itself
predicts nonzero torsional variability. How does this predicted
variability compare with the reported variability? For the sac-
cades in experiment 1, the predicted torsion SD increases with
target amplitude. For an 18° saccade, the SD is ~0.4°. This is only
slightly smaller than the reported SD of 0.5-1.0° (Straumann et
al., 1991; Desouza et al., 1997). Those values were in fact deter-
mined from experiments in which subjects produced many large
saccades with amplitudes of up to 60°. Extrapolation of the pre-
dicted SD to such large amplitudes results in values within the
reported range. This suggests that our model could well explain
the reported torsional variability.

Torsional blips

So-called torsional blips (Tweed et al., 1994) form another possible
violation of Listing’s law. Torsional blips are torsional deviations
from Listing’s plane (the plane that contains all possible eye orienta-
tions obeying Listing’s law) that can be induced by a saccade. Con-
sistent torsional blips have been reported for horizontal saccades,
with the peak amplitude occurring shortly before the end of the
saccade (Straumann et al., 1995). The amplitude of these blips varied
with saccade amplitude and eye elevation. Based on these data, we
optimized the model again, this time assuming torsional blips with
peak amplitudes of 10% of the horizontal saccade component, with
intorsion occurring for abduction and extorsion for adduction. Ta-
ble 2 shows that these blips influenced the fit parameters by several
percent. However, the quality of the fit (as shown in Fig. 8) was not
affected. Another simulation showed that torsional blips that de-
pend on the vertical component of the saccade do not influence the
fit parameters or the quality of the fit. Most importantly, the predic-
tions for the data set that could be expected to have the largest tor-
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sional blips (the left eye saccades from the
starting position to the target in experiment
2) (see above, Model validation), were not
affected by the inclusion of torsional blips
either. These results suggest that the esti-
mated noise levels depend at most weakly on
the presence of torsional blips, whereas the
quality of the fit is not affected.

Orientation of Listing’s plane

Listing’s plane of the right eye was assumed
to be orthogonal to the direction of gaze
when this eye looked straight ahead. How-
ever, the actual orientation can be different.
Listing’s plane can have a nonzero pitch an-
gle (i.e., being rotated about the interocular
axis) and a nonzero yaw angle (i.e., being ro-
tated about a vertical axis), where the angles
are defined relative to the assumed orienta-
tion. Several studies (Ferman et al., 1987;
Tweed and Vilis, 1990) have shown that
when the head is in an upright position that
is experienced as “natural,” the pitch angle is
on average approximately zero. Pitch angles
of individual subjects, however, can differ
substantially from this mean, but the vast
majority differs only several degrees (Hasl-
wanter etal., 1994). The yaw angle is primar-
ily determined by vergence (Mok et al., 1992;
Bruno and van den Berg, 1997). When the
vergence angle approximates zero (i.e., when
the viewing distance is large), the yaw angle is
close to zero. When the vergence increases
(i.e., when the viewing distance decreases),
Listing’s plane rotates temporally at a rate
that varies across individuals but averages at
~0.72° for each degree of vergence per eye
(Mikhael et al., 1995). For our viewing dis-
tance of 67 cm, the expected temporal rota-
tion will be ~2°.

We optimized the model again assum-
ing different orientations of Listing’s
plane. We examined forward and back-
ward rotations of 2.5°, and temporal rota-
tions of 2 and 4°. Table 3 shows that the fit
parameters hardly vary with orientation.
Moreover, the predictions for the quanti-
ties shown in Figure 8 are in all cases vir-
tually identical with those of the main
model (data not shown). These results
suggest that the estimated noise levels and
the quality of the fit are as good as insensi-

tive to possibly incorrect assumptions about the orientation of

Listing’s plane in our subjects.

Direction of muscle torques

We assumed that the directions of the torques produced by the
extraocular muscles vary with eye orientation in the way pro-
posed by Raphan (1998). It is, however, unclear how well this
describes the actual directions during saccades. To estimate the
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Figure8. Variability predicted by the full model. 4, B, The endpoint variability predicted for subject HL in experiment 1 (4) and

subject JRin experiment 2 (B). Results for experiment 1 occur in C~H: (Vs of oy and Ty (€), CV of duration (D), CV of peak velocity
(E), pcc between amplitude and duration (F), pcc between amplitude and peak velocity (G), pcc between duration and peak
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parameters, and also the predictions for the quantities in Figure 8,
were virtually identical with those of the main model (the largest
difference occurred for kqy: 0.15%). This means that the matrix
proposed by Raphan (1998) has virtually no effect on the pre-
dicted variability. Although surprising at first sight, this can easily
be understood: this matrix mainly changes the torsional com-
mands but those for the horizontal and vertical muscles are
hardly affected.

possible effect of this assumption, we optimized an alternative

model that was at the other extreme: muscle torque direction was
assumed to be independent of eye orientation (as in Tweed and
Vilis, 1987; Schnabolk and Raphan, 1994). Surprisingly, both fit

Level of sensory noise
The level of sensory noise was not a free parameter because the
uncertainty in target localization was taken from literature values
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led to underestimations of the variability
in duration and overestimations of the

Contributions noise sources (%) g(())ntributions noise sources (%)

60\‘/

-

40t L-°

P
...
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CN We performed control simulations to
determine how the model predictions de-
pend on a number of assumptions that we
made regarding the torsion component of
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Figure 9.  Contributions of individual noise sources. A, B, Contributions to the total endpoint variance as a function of move-

ment amplitude in experiment 1 (4) and movement direction in experiment 2 (B). “Total motor noise” is the sum of the contri-

butions of SDN, CN, and TN.

(see Materials and Methods, Model). However, the actual local-
ization uncertainty in our subjects could have been different. We
repeated the optimization for different levels of sensory noise.
This was done by scaling all the SDs and CVs that define the
localization uncertainty by factors 0.9 and 1.1 relative to the base-
line values, while keeping the anisotropy of localization uncer-
tainty constant. In these simulations, the optimal level of TN
(kry) varied also because different levels of sensory noise lead to
different amounts of variability in saccade duration. Table 4
shows that the level of sensory noise has a rather large effect on
the fit parameters. All parameters decrease with increasing level
of sensory noise. Both kqy and kpy do so weakly, whereas kgp
decreases more strongly. No notable changes occurred for the
predictions shown in Figure 8. Hence, the level of sensory noise
influences the fit parameters but not the quality of the fit.

Discussion

We measured the spatiotemporal variability in the trajectories of
human saccades as a function of movement amplitude and direc-
tion. Our results confirm many previous findings of isolated as-
pects of this variability (Jirgens et al., 1981; Becker, 1989; van
Opstal and van Gisbergen, 1989; Smeets and Hooge, 2003). One
of our new observations is that the variability in movement di-
rection is smaller for purely horizontal and vertical saccades than
for saccades in oblique directions. We also found that saccade
amplitude, duration, and peak velocity are all correlated with one
another. All of the results together allowed us to determine the
levels of different types of noise in a model that we used to identify
the sources of saccade variability. This modeling suggests that
uncertainty in localization of the target is the major source of
variability in saccade endpoints, with noise in motor commands
explaining a slightly smaller fraction. On top of this, there is
temporal variability such that saccades with a longer than average
duration have a smaller than average peak velocity, without af-
fecting the saccade amplitude. The model has a large generality. It
was fitted to a data set that contained only saccades starting from
the primary position, but it predicts the variability in saccades
starting from secondary and tertiary positions equally well.

Validity of the model

Although our model accounts for most aspects of the observed
variability (Fig. 8), the predictions differed from the observations
for some aspects. This occurred mainly for saccades with small
amplitudes (2 and 4°), especially for the correlations between
amplitude, duration, and peak velocity. This could well be related
to the fact that these saccades had relatively short durations (22
and 31 ms on average) compared with the sampling rate of the eye
tracker (one frame every 4 ms). This made the determination of
the saccade onset and offset relatively inaccurate, and it may have

eye orientation during saccades. The sim-
ulations showed that these factors may
have influenced the estimated levels of the
various noise types weakly, but they did
not affect the quality of the fit. The as-
sumed direction of muscle torques, result-
ing from the effects of muscle pulleys
and/or orbital fat, affected the results even
less. This suggests that the effects of possible noise in the active
control of muscle pulleys (Demer et al., 2000) will also be negli-
gible. The only factor that influenced the fit parameters more
strongly is the level of sensory noise. We used literature values
about the precision with which visual targets are localized, but
this precision can vary across subjects (Aitsebaomo and Bedell,
1992; White et al., 1992). Indeed, the observed saccade variability
varied across our subjects (the raw data in Figs. 2 and 5 were from
subjects with a lower than average variability). We initially tried
to fit the model for each subject individually, with the level of
sensory noise as an additional free parameter, but the individual
data sets were too small to obtain reliable fits. We therefore as-
sumed that for each noise type the noise levels were the same for
all subjects. Although this will have led to suboptimal predictions
for individual subjects, the noise levels determined this way can
be considered as representative population estimates.

The sources of variability
Our model contains different types of noise: sensory noise and
three types of motor noise: SDN, CN, and TN. Aitsebaomo
and Bedell (1992) previously showed that both sensory noise and
motor noise contribute to saccadic variability. Our results extend
this by quantifying their contributions. Sensory noise explains
~57% of the variance in saccade endpoints, whereas SDN and
CN each explain ~21%. It is not easy to interpret the absolute
levels of SDN and CN that we estimated, because these depend on
the time step used in the simulations (they scale with the time step
raised to the power of —1/2). The level of TN, 0.068, is easier to
interpret because it is the coefficient of variation in movement
duration that remains after subtracting the variability in duration
resulting from uncertainty in target localization. Thus, the intrin-
sic SD in duration is ~7% of the mean duration. We modeled TN
as a simple scaling of the duration and velocity of the saccade
trajectory, such that the amplitude remained unaffected. In ad-
dition to our data, such temporal noise can also explain other
phenomena such as the remarkably small variability in the prod-
uct of peak velocity and duration (Smit et al., 1987), and com-
pensation for variations in saccade speed (Quaia et al., 2000).
What are the sources of the various types of motor noise? SDN
could have been expected to be the major type of motor noise
because the noise in oculomotor neurons is approximately signal
dependent (Goémez et al., 1986; Pastor et al., 1991; Hu et al,,
2007). However, our results show that CN is equally important.
As explained in Materials and Methods, coactivation of antago-
nistic muscles (Miller and Robins, 1992) is a likely explanation
for CN. However, it is not possible to relate the level of CN to
coactivation quantitatively, because no quantitative data on co-
activation are available.
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Figure10.  Model validation: observed and predicted variability in other data sets. A-N, Saccade variability for saccades of the

left eye from the target back to the staring position. In B, the trajectories have been shifted such that the initial positions of all
saccades coincide. Otherwise, the format is the same as in Figure 8. 0T, Saccade variability for saccades of the left eye from the
starting position to the target in experiment 2.
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If the noise in individual muscles is in-
deed SDN, where does this come from? It
is possible that noise in the magnitude of
motor commands originates in the mo-
toneurons themselves, but it seems more
likely that at least a part of the noise arises
upstream, in the brainstem regions in
which the motor commands are gener-
ated. Noise in these areas will inevitably
lead to variations in motor commands.
Noisy variations in the representation of
the saccade vector in the motor map of the
superior colliculus, for instance, could
lead to variability in saccade endpoints
(van Opstal and van Gisbergen, 1989).
Noise in motor commands could there-
fore be related to noise in the brainstem
areas involved in saccade command
generation.

However, the effects of noise in these
structures are thought to be counteracted
by a local feedback loop in the saccade
command generating circuit (Robinson,
1975). This local feedback loop contains a
neural integrator that mathematically in-
tegrates the activity emitted by the pulse
generator. It compares the integrated ac-
tivity to the activity that would be required
for a saccade of the desired amplitude. The
pulse is terminated when the difference
between the two becomes zero. Conse-
quently, the desired amplitude will be
achieved regardless of fluctuations in the
pulse activity. When the pulse happens to
be higher or lower than desired, its dura-
tion is adjusted automatically. This most
likely forms the basis of what we called
temporal noise.

In Introduction, we mentioned three
possible sources of saccade variability: sen-
sory signals, movement planning, and
movement execution. The preceding para-
graph suggests that movement planning is
the likely source of the temporal noise in
our model.

A perfect feedback loop would almost
completely counteract the consequences
of noise in the pulse generator. Therefore,
any noise in the magnitude of the motor
commands that affects the endpoint of the
saccade, should have arisen downstream
of the feedback loop (i.e., in movement ex-
ecution). However, it is possible that the
feedback loop does not operate perfectly.
In that case, noise in the magnitude of the
motor commands could also originate in
movement planning. Because it is not
known how well the feedback loop works,
we conclude that the SDN and CN in our
model arise in movement execution and
possibly also partly in movement plan-
ning, but we are unable to determine their
exact individual contributions.



van Beers e Variability in Saccades

Table 1. Optimal fit parameters for the main model and for simulations with
variability added to the torsional component of the modeled saccades

SD torsion (°) ke key=10"kgm?s 2
0 (main model) 0.172 137
0.5 0.173 1.35
1.0 0.177 1.29

SD torsion defines how much variability was added.

Table 2. Optimal fit parameters for the main model and for a simulation with
torsional blips

Torsional blips kepw key=10"kgm?s 2
No (main model) 0.172 137
Yes 0.163 1.46

The blip amplitude was assumed to be 10% of amplitude of the horizontal component of the saccade.

Table 3. Optimal fit parameters for the main model (top row) and for simulations
in which different orientations of Listing’s plane were assumed

Pitch angle (°) Yaw angle (°) keon oy =10 kgm?*s 2
0 0 0.172 137
—2.5 (backward) 0 0.170 138
2.5 (forward) 0 0.174 1.36
0 —2.0 (temporal) 0.172 137
0 —4.0 (temporal) 0.173 137

Table 4. Optimal fit parameters for different levels of sensory noise

Relative level of sensory noise kspn kv =10 kgm*s 2 Koy

0.9 0.208 1.39 0.069
1.0 (main model) 0.172 137 0.068
1.1 0.128 1.36 0.066

The relative level of sensory noise is the actual level divided by that of the main model.

Conclusions

We conclude that the variability in human saccades is caused by a
combination of uncertainty in target localization and noise in
movement planning and execution. Uncertainty in target local-
ization is the major source of endpoint variability, but the com-
bined effect of movement planning and execution is only slightly
smaller. This stresses the importance of carefully considering all
possible sources when studying the variability in a motor system.
It is unlikely that a single source can explain all variability, al-
though the relative contributions may vary across motor systems
and movement types.

Because, for saccades, the consequences of noise in movement
planning and execution depend on the movement trajectory, our
results suggest that the variability will depend on the desired
trajectory. This is important because it suggests that, for a given
saccade target, there may be an optimal trajectory for which the
endpoint variance and therefore the expected movement error
are minimal (Harris and Wolpert, 1998). Importantly, SDN in
motor commands is a relatively small source of this variance. This
is a serious departure from the commonly made assumption
(Harris and Wolpert, 1998; Tanaka et al., 2004, 2006) that end-
point variance results from signal-dependent noise only. It re-
mains to be determined which trajectories minimize the conse-
quences of the actual noise.
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