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Recent studies have shown that humans effectively take into account task variance caused by intrinsic motor noise when planning fast
hand movements. However, previous evidence suggests that humans have greater difficulty accounting for arbitrary forms of stochas-
ticity in their environment, both in economic decision making and sensorimotor tasks. We hypothesized that humans can learn to
optimize movement strategies when environmental randomness can be experienced and thus implicitly learned over several trials,
especially if it mimics the kinds of randomness for which subjects might have generative models. We tested the hypothesis using a task in
which subjects had to rapidly point at a target region partly covered by three stochastic penalty regions introduced as “defenders.” At
movement completion, each defender jumped to a new position drawn randomly from fixed probability distributions. Subjects earned
points when they hit the target, unblocked by a defender, and lost points otherwise. Results indicate that after �600 trials, subjects
approached optimal behavior. We further tested whether subjects simply learned a set of stimulus-contingent motor plans or the
statistics of defenders’ movements by training subjects with one penalty distribution and then testing them on a new penalty distribution.
Subjects immediately changed their strategy to achieve the same average reward as subjects who had trained with the second penalty
distribution. These results indicate that subjects learned the parameters of the defenders’ jump distributions and used this knowledge to
optimally plan their hand movements under conditions involving stochastic rewards and penalties.
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Introduction
The consequences of movements depend both on the movement
plan and on the environment in which they are executed. Exper-
iments studying visuomotor control often use deterministic en-
vironments in which there is no uncertainty about the location or
the value of the movement target. Outside the laboratory, how-
ever, environments often change stochastically. On the highway,
drivers in the lane next to you might change lanes without warn-
ing. Your estimate of the probability of this event determines how
you position your car in your lane and the distance you maintain
between cars. Environmental stochasticity significantly impacts
the outcome of our movements and hence the motor strategies
the brain should select.

It has been shown that humans can learn stochastic uncer-
tainty inherent in or imposed on the sensorimotor system and
integrate that knowledge in their movement plan in a statistically
optimal way (Körding and Wolpert, 2004; Trommershäuser et

al., 2005). However, Maloney et al. (2007) showed that optimal
motor planning breaks down when costs and rewards are spa-
tially fixed, but are awarded randomly.

Our task was designed to tie the stochasticity in the experi-
mental environment to an ecologically reasonable causal genera-
tive model. Subjects pointed at a static target (“goal”) partly cov-
ered by three stochastic penalty regions (“defenders”). As
subjects completed their pointing movements, each defender
“jumped” to a position randomly drawn from a probability dis-
tribution anchored at its initial position. Subjects gained points if
they hit the target unblocked by a defender; otherwise, they lost
points. To perform optimally, subjects had to account for the
probability distributions of each defender’s jumps. They had to
decide which side of the middle defender to point to and then
select an aim point on that side. Thus, unlike in previous studies
of sensorimotor decision making, our task included an explicit,
binary decision much like choosing between two gambles in eco-
nomic decision-making experiments, as well as an implicit, con-
tinuous estimate of the optimal aim point. This allowed us to
address the question of whether explicit, binary decisions, which
often fail to maximize expected gain in economic decision mak-
ing (Kahneman and Tversky, 1979), can be optimal if framed as
sensorimotor decisions, which often maximize gain when they
involve implicit decisions in the estimate of aim points (Trom-
mershäuser et al., 2003).

After �600 trials, subjects approached optimal performance
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in the first experiment. They mostly selected the “better” side of
the target and adjusted their aim point within the chosen side to
maximize their gain. We ran a second experiment to explore
whether subjects learned a set of stimulus-action contingencies
(“with this defender configuration, go there, because there you
are least frequently caught”) or whether subjects generated rep-
resentations of the defenders’ jump distributions that would en-
able them to infer the optimal aim point even if the cost/reward
structure was changed. We addressed this question by training
subjects using one set of asymmetric penalties and testing their
performance immediately after switching to a new asymmetric
penalty distribution.

Materials and Methods
Apparatus
Both experiments were run on a custom workstation using Visual C��.
Stimuli were presented in stereo on an NEC MultiSync (Tokyo, Japan)
1370 monitor (118 Hz; 1280 � 1024 pixel) that was facing downward
toward a mirror slanted 20° upward from horizontal (Fig. 1), so that its
virtual image coincided with a frontoparallel table below the mirror, at an
effective viewing distance of 60 cm. The subjects’ head position was fixed
by a combined chin and forehead rest, and they viewed stimuli binocu-
larly through StereoGraphics Crystal Eyes active-stereo shutter glasses at
a refresh rate of 118 Hz (59 Hz for the view of each eye). Black occluders
on the mirror hid any part of the monitor frame that would otherwise

have been visible to the subject. A splint on the subject’s right index finger
was equipped with three infrared markers, the three-dimensional coor-
dinates of which were sampled by a Northern Digital (Waterloo, Ontario,
Canada) Optotrak at 120 Hz. This made it possible to extrapolate the
coordinates of the real finger in space and render a virtual finger on the
screen in real time so that the position of the virtual fingertip shown to
the subject was coextensive with the real fingertip. When the metal splint
on the finger made contact with a metal plate mounted on the frontopa-
rallel table, a circuit was closed, allowing us to register when subjects
touched the table.

Stimuli and procedure
General stimulus and task description. Throughout each experiment,
stimuli were presented against a black background. A score indicator and
a status bar were displayed on top and at the bottom of the visual display,
respectively. These told subjects how many points they had earned and
which proportion of the block had already been completed. As depicted
in Figure 2b, subjects indicated that they were ready to start a trial by
placing their virtual fingertip on a red cross on the right side of the visual
display. The goal, a dim red rectangle oriented perpendicular to move-
ment path, then appeared on the left side of the display. The distance
between starting position and goal center was 15 cm, and the goal center
could be located anywhere on a 30° arc around an imaginary horizontal
line through the starting position (Fig. 2a). Whenever coordinates are
given, we refer to the direction from starting cross to goal center as the
“x-direction” and define the “y-direction” as perpendicular to it and
lying in the same plane, with the coordinate system centered at the center
of the goal (Fig. 2b). The goal was accompanied by a number of rectan-
gular penalty regions. These defenders were as wide as the goal along the
x-dimension (i.e., in movement direction) but covered it only partly
along the y-dimension. After 750 ms, a beep go-signal was presented,
indicating that subjects should start their pointing movement toward the
goal. To make the pointing movement as ballistic as possible, subjects
were constrained to complete the movement in �550 ms. Trials in which
the finger left the starting cross before the go-signal or in which the
pointing movements took longer than 550 ms were aborted and dis-
counted, and an error message told the subject to wait for the beep or to
speed up, respectively.

When the finger touched down on the table after having left the start-
ing cross, each defender jumped to a new position drawn randomly from
the jump distributions shown in Figure 2c. Subjects were awarded points
if they hit the goal without being blocked by a defender. They lost points
if they missed the goal or were blocked by a defender. Several visual cues
were provided to indicate success or failure on a trial. A small red cross
was displayed where the finger had touched the stimulus, so that subjects
could clearly see where they had hit. If subjects hit the goal without being
blocked by a defender, the defenders exploded visually. If the subject’s
finger hit a defender, this defender spun around. If the subject either hit
a defender or missed the goal (in either case incurring a penalty), the
virtual finger shrank visually. In addition, the number of points earned in
that trial was displayed at screen center, starting in the table plane and
then floating upward toward the subject. Score and status bar were up-
dated at the end of each trial. In both experiments, we used two different
tasks within each daily session: an initial baseline task and the main
experimental task.

Baseline task. In the baseline task, the target was 20 mm wide and 36
mm tall and accompanied by two defenders. The defenders were
bright-red rectangles centered at the top and bottom of the goal at the
beginning of each trial. The top defender was 12 mm tall, and the
bottom defender was 20 mm tall. When the finger touched down on
the table after leaving the starting cross, the defenders jumped toward
target center so that their outer borders landed exactly at the target
borders. This left a space 4 mm high between the two defenders,
centered 4 mm above the center of the target, hitting which was
rewarded by 100 points. Subjects were told in advance that the de-
fenders would always jump to the same positions and leave a gap
between them, so that if subjects always went for this gap, they would
get all available points. It was emphasized that accuracy was most
important in this task, and subjects were encouraged to take their

Figure 1. Set-up. A sketch of the mirror setup used for both experiments. Subjects viewed
stimuli presented in stereo through the mirror, such that the stimuli appeared to be on the
frontoparallel table. Optotrak markers mounted on the subject’s right index finger allowed us to
compute the location of the finger in the workspace and display a virtual image of the finger to
the subject.
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time planning the movement and to use the visual feedback given
about their actual fingertip endpoint to maximize accuracy. The de-
fender configuration was purposely chosen to have an optimal aim
point that was clearly and unambiguously defined but did not coin-

cide with the target center or the point halfway between the start
position of both defenders (i.e., with a position at which subjects’
visual localization ability may be specially enhanced).

Scaling the stimulus to each subject’s endpoint variability. We used the
SD along the y-dimension of each subject’s endpoint cloud in the base-
line task at the beginning of each session as an estimate of the subject’s
endpoint variability along this dimension and scaled the height of the
stimuli in the experimental task accordingly. In particular, we multiplied
all stimulus dimensions (target and defender sizes as well as jump distri-
bution widths) along the y-dimension with a scaling factor that was the
ratio of the endpoint variability of the subject to a standard endpoint
variability of 10 mm. That way, subjects with a large endpoint variability
had taller stimuli than subjects with lower endpoint variability, so that
the task was equally difficult for all of them. More importantly, the ex-
pected gain landscapes (functions expressing the expected total gain for
movements aimed at different positions within the target; see below,
Model of optimal movement planning) had the same shape for all sub-
jects when specified in normalized units. This allowed us to average the
distance between subjects’ aim points and optimal aim points, their
gains, etc. in a coherent way.

Main experimental task. In both experiments, the standard goal used in the
simulations assuming a 10 mm motor variability was 250 mm tall and 20
mm wide and accompanied by three defenders: two 70-mm-tall defenders
centered at either border of the goal and one 60 mm tall, inside the goal
(compare Fig. 2c). The size of the stimuli used in any given experimental
session was scaled to subjects’ endpoint variability as measured in the base-
line block run at the beginning of that session and thus varied between
subjects and sessions. Because subjects’ endpoint variability was, on average,
approximately five times smaller than the standard variability assumed in
our simulations, so were the stimuli. Thus, the targets presented to the sub-
jects were �50 mm tall, with defenders that were �14 mm tall at the bottom
and top of the target and 12 mm tall inside the target. The middle defender
could be centered at five different positions within the goal, yielding five
different conditions (see below, Experimental parameters).

After movement completion, each defender jumped to a new position
drawn randomly from a Gaussian distribution centered at its original
position. Defenders differed in color according to the SDs of their jump
distribution. The jump distributions of the middle and the top defenders
had SDs of 15 mm, scaled according to the subject’s endpoint variability,
and both were colored in bright red. The SD of the bottom defender’s
jump distribution was 50 mm (also scaled to the subject’s endpoint vari-
ability), and this defender was displayed in blue. To prevent defenders
from jumping outside the goal, the jump distributions of the defenders at
goal borders were “folded” such that each jump away from the target
center was mirrored at the center of the jump distribution and converted
into a jump toward the target center. Jump distributions are depicted in
Figure 2c. When two defenders jumped such that they overlapped, one
was presented slightly above the other, thus covering the parts of it where
they overlapped. Which defender had “priority” was chosen arbitrarily,
with the constraint that in those cases in which one defender carried a
higher penalty, this one was always displayed on top.

Experimental parameters. In experiment 1, possible starting positions
of the middle defender were (in standardized y-coordinates) 5, 12.5, 20,
27.5, and 35 mm above the goal center. Hitting the target was rewarded
by 100 points, whereas missing the target or being caught by a defender
cost 100 points. Figure 3 shows the five conditions, together with the
resulting expected gain landscapes for a hypothetical subject with an
endpoint cloud SD of 10 mm. (For details on how the gain landscapes
were calculated, see below, Model of optimal movement planning and
Expected gain landscapes.). In experiment 2, possible starting positions
of the middle defender were (in standardized coordinates) 5, 10, 20, 30,
and 35 mm above the goal center. Hitting the target was rewarded by 200
points; missing it or being blocked by the middle defender cost 100
points. Penalties for being blocked by the top and bottom defenders were
asymmetric. In one version of the task (version A), subjects were penal-
ized 100 points if they were blocked by the top defender but were penal-
ized 400 points if they were blocked by the bottom defender. In version B,
the penalties were reversed (subjects were penalized 400 points if they
were blocked by the top defender and penalized 100 points if they were

Figure 2. Stimuli. a, Each trial started when the subject touched a red starting cross at the
right side of the display. The movement target (the goal) then appeared 15 cm from the starting
point, centered on a randomly chosen position on the arc shown here. b, The rectangular dark
red target (here, light gray) was accompanied by three rectangular defenders, the color of which
indicated their “jump abilities” (see c). We will refer to the axis connecting starting position and
target center as the x-dimension and the perpendicular axis in the table plane as the
y-dimension. c, Jump distributions of the three defenders, superimposed on a sketch showing
their starting positions in a standard size goal. Condition 1 is shown: the middle defender is at its
leftmost starting position. In the other conditions, the middle defender and its jump distribu-
tion were closer to the right one. The jumps of the bright-red (here, black) defenders were
drawn from Gaussians with a SD of 15 mm, and the jumps of the blue (here, dark gray) defender
were drawn from a Gaussian with a SD of 50 mm. The jump distributions of the defenders at the
goal borders were folded, so that jumps always went toward goal center, not away from it. Note
that all measures given here (and in the following figures, whenever the x-axis shows
y-coordinate without an explicit metric) are standard measures. The actual measures depended
on subjects’ SDs in the baseline task, according to which we scaled the stimuli as well as the
parameters of the jump distributions. Because we chose the parameters to provide meaningful
conditions given a standard endpoint variability of 10 mm in y-direction and subjects’ endpoint
variability in y-direction was usually four or five times smaller than that, the stimuli presented in
the experiments were about four or five times smaller than our standard scale suggests.
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blocked by the bottom defender). As shown in Figure 7, changing the
penalties while keeping the defenders’ start positions and jump distribu-
tions constant had a strong impact on the resulting expected gain land-
scape. To help subjects remember which defender had the high (400-
point) penalty, we drew the defenders with faces: the two defenders who
cost only 100 points were smiling, whereas the one costing 400 points had
a grim expression.

Procedure. Each session of the experiment started with a spatial cali-
bration procedure to ensure that the stereo stimuli yielded a proper
three-dimensional image, fitting the reference frame of the Optotrak, so
that subjects saw their virtual finger where their real finger indeed was.
We first determined the correct coordinate transformation from the ref-
erence frame of the Optotrak to the one of the monitor and the position
of the subject’s eyes relative to the monitor, using an optical matching
procedure (Knill and Saunders, 2003). For this, we sequentially displayed
a small red dot on 13 different positions on the monitor and temporarily
removed the backing of the half-silvered mirror so that the subject could
place an Optotrak marker where the dot appeared to be. This was done
separately for the right and the left eyes and in two different depth planes.
The three-dimensional position of each eye relative to screen center was
calculated by minimizing the squared error between the three-
dimensional position of the probe predicted by the estimated eye posi-
tion and the measured three-dimensional position of the Optotrak
marker. Validity of the calibration was tested by asking the subject to
move the marker in the workspace and to check whether a red dot dis-
played at the estimated position of the marker seemed to be aligned with
the real marker. Also, we ensured that the distance between the estimated
eye positions was realistic. The second part of the calibration was to make
sure that the visual finger appeared where the real finger was. For that, the
virtual finger was presented on the screen, and subjects placed their right
index finger, now equipped with a metal splint carrying three Optotrak
markers, where the virtual finger seemed to be. After the transformation
from the marker positions to the position of the virtual finger had been
estimated, subjects moved their finger and verified that the virtual finger
moved with it. Last, we closed the mirror backing and presented a cross-
hair on six different positions on the table plane. Subjects touched the
table such that they saw their virtual finger touch the center of the cross-
hair. This way, we made sure that the finger touch points we recorded
during the experiment matched with subjects’ perceived touch points.

Sessions were subdivided into blocks of 100 trials each. The first ses-
sion was dedicated entirely to training: subjects completed three to five
blocks of the baseline task during which they could get used to the stim-
uli, the timing constraints, their virtual finger, and the movement itself,
until endpoint variability decreased and settled on a low level. In the
following sessions, subjects first received a “warm-up” block (100 trials of
the baseline task) during which they could adjust to the task. A second
block of the baseline task was then used to estimate their endpoint vari-
ability. After this, we changed to the experimental task. Experiment 1
comprised five 1 h sessions, one for training and four experimental ses-
sions. The number of experimental blocks in one session varied from two
to five, depending on how much time was left after calibration, warm-up,
and baseline task, so that we got �1200 experimental trials from each
subject. Experiment 2 started with one session for training, followed by
four sessions of one version of the experimental task. In the last two of the
seven sessions, subjects were given the other version of the experimental
task (with the reversed defender penalties). Which version they started
with was counterbalanced across subjects. The number of experimental
blocks per session was held constant at three, so that, for each subject, we
got 1200 experimental trials for the task version they started with, and
600 experimental trials for the other version.

Instructions. To provide subjects with a generative model for the sto-
chastic nature of the locations of the penalty regions, we introduced the
target as the goal and the penalty regions as “defenders with different
jump abilities” who would try to block the subjects from scoring. At the
beginning of each session, subjects were informed about the payoffs as-
sociated with hitting the different regions and instructed to try and get as
many points as possible. To increase motivation, we had individual as
well as general high score lists, and subjects were encouraged to beat their
“personal best” as well as the “absolute high score.” All subjects were

Figure 3. Gain landscapes in all five conditions of experiment 1. The expected gain (in
points) changes as a function of where the movement planner aims. A sketch of the stimulus
situation, the goal and the three defenders at their starting positions, is shown in the top part of
each panel. As explained in the legend for Figure 2c, the y-coordinates given here are standard
coordinates. Actual stimuli (and distribution parameters) were scaled to each individual’s end-
point variability in the baseline task.
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naive to the purpose of the study. They were not told where to aim and
received no information about the defenders’ jump distributions in the
experimental task. It was emphasized that the defenders would only jump
the very moment the finger made contact with the table, so that it would
be no use trying to be fast and hit the goal before the jump (the only
chance to avoid the defenders would be to learn what their jump abilities
were and then predict where they were least likely to jump to).

Subjects
Eight female subjects participated in experiment 1, and four female and
four male subjects participated in experiment 2. All were students at the
University of Rochester, right-handed, had normal or corrected-to-
normal vision, and ranged in age from 18 to 29. None of the subjects
participated in both experiments, and all subjects were naive to the hy-
potheses of the experiments. Subjects were treated according to the eth-
ical guidelines of the American Psychological Association, gave their in-
formed consent before testing, and were paid an hourly rate of $10.

Model of optimal movement planning
A model of optimal movement planning based on statistical decision
theory, developed by Trommershäuser et al. (2003a,b), predicts which
mean movement endpoint (x�, y�) an optimal movement planner will
choose, taking into account gains and losses assigned to the stimulus
configuration and the subject’s endpoint variability. In previous experi-
ments, this variability has been found to follow a Gaussian distribution
around the aim point (x�, y�):

p�x,y|x�,y�,�x,�y� �
1

2��x�y
e �[(x � x�)2/2 �x

2 �(y � y�)2/2 �y
2]. (1)

In our experiments, subjects hardly ever missed the target along the
x-dimension. Thus, only the endpoint variability along the y-axis was
relevant to the outcome, and we can neglect the x-dimension in the
following formulas. This simplifies Equation 1 to the following:

p(y�y�,�y) �
1

2��y
e � �y � y��2/2�y

2

, (2)

where y� is the aim point, y is the movement endpoint, and �y is the SD of
the endpoint distribution in y-direction, which we refer to as the subject’s
endpoint variability. Aim point and endpoint variability determine the
probability that the movement ends at a certain endpoint.

In our task, there is a second source of uncertainty that also has to be
taken into account, namely, the uncertainty regarding the locations of
the defenders along the y-axis after their jumps. For each defender, his
start position and jump distribution determine the probability that he
will be at y after his jump. These probabilities, and the penalties associ-
ated with hitting each defender, as well as the rewards of hitting the goal
unblocked by a defender, determine the gain G( y) associated with hitting
a certain point y. A detailed derivation of how we compute G( y) can
be found in the supplemental material (Appendix A, available at www.
jneurosci.org as supplemental material).

The expected gain of aiming at y� can now be obtained by integrating
over all endpoints y the gain of hitting them, multiplied by the probability
of hitting them given aim point y� and endpoint variability �y:

EG(y�)��G(y)p(y�y�)d y. (3)

An optimal movement planner that maximizes expected gain would thus
aim at the optimal aim point y_opt at which the expected gain function
has its maximum:

y_opt � arg max[EG(y�)]. (4)

Expected gain landscapes
Figures 3 and 6 show the expected gain landscapes as a function of the
average aim point y� in experiments 1 and 2, respectively, for a hypothet-
ical subject with a standard endpoint variability of �y � 10 mm. The gain
landscapes were derived assuming that subjects never missed in the
x-direction (which they almost never did). The optimal aim point for
each condition ( y_opt) is the y-coordinate at which the expected gain

landscape for that condition has its maximum. The optimal expected
gain (EG_opt) is the expected gain of the optimal movement planner
aiming at y_opt. In the same way, we determined the y-coordinate of the
peak on the other side of the middle defender’s starting position as the
peak2 and the associated EG_peak2. Because we scaled the stimulus to
each subject’s endpoint variability in y-direction, the gain landscapes had
the same shapes for all subjects, and therefore the standardized y_opt and
peak2, as well as the associated expected gains, were the same for each
subject and session.

The gain landscapes shown in Figures 3 and 6 were computed assum-
ing that the endpoint variance in subjects’ pointing movements mea-
sured in the baseline condition accurately represented their true vari-
ance. However, there is some uncertainty to our estimate of the subject’s
endpoint variance; therefore, we performed a resampling analysis to test
the potential effects of errors in our measures on our estimates of sub-
jects’ true expected gain landscapes. Separately for each subject and ses-
sion, we repeatedly estimated the model predictions, each time using a
different estimate of the endpoint variability obtained via resampling the
subject’s endpoints in the baseline task (upscaled such that their SD
before resampling fit with the 10 mm SD assumed by our model). From
all the estimates, we then determined the mean and the 95% confidence
interval borders for both the y_opt and the associated EG_opt. The re-
sampling procedure arrived at the same y_opt in 	95% of the cases,
indicating that the y_opt is robust to small deviations from the estimated
endpoint variability; we thus do not show confidence intervals around it.

The expected gain landscapes provided the basis for measuring the
efficiency of the subjects’ behavior and more particularly for decompos-
ing inefficiencies in behavior to inefficiencies attributable to their ex-
plicit, discrete choice behavior (which side to point to) and inefficiencies
in their implicit selection of continuous aim points within a chosen side.

Results
Baseline task performance
In the baseline task in experiment 1, SDs in the y-direction ranged
from 0.11 to 0.32 cm, with a mean of 0.23 cm; in experiment 2,
they varied between 0.14 and 0.26 cm, with a mean of 0.20 cm.
Variability in x-direction was significantly larger in most cases
but small enough that no subject missed the goal along the
x-direction in 	0.4% of the trials. We tested whether subjects’
endpoints in the y-dimension followed a Gaussian distribution
using a Lilliefors test (Lilliefors, 1967) on the baseline task data of
every subject in every experimental session. Only 1 of 32 baseline
task endpoint distributions in experiment 1 and 4 of 48 in exper-
iment 2 differed significantly from a Gaussian. In neither exper-
iment did the shape of the endpoint distribution differ signifi-
cantly from a Gaussian more than once for a subject. We took
these results as evidence that subjects’ endpoint distributions can
be modeled as Gaussian distributions. Supplemental Figure S1
(available at www.jneurosci.org as supplemental material) shows
a typical endpoint distribution as found in the baseline task.

Experiment 1
Data analysis
The entire stimulus configuration for the main experimental
task, including jump distributions, was scaled to match each sub-
ject’s endpoint variability as measured in the baseline task of each
session. The first step in the data analysis was therefore to rescale
subjects’ endpoint positions to the standard stimulus size used
for computing the expected gain landscape. This normalized the
stimulus configuration, endpoint measurements, and endpoint
variability to a common scale across subjects and sessions.

In some cases, subjects’ endpoints formed two clusters, one on
each side of the target, corresponding to the gaps between de-
fenders (for an example, see supplemental Figure S2, top panel,
available at www.jneurosci.org as supplemental material). The
clusters were nonoverlapping and could be easily classified as to
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which gap subjects were aiming for on each trial. On each trial,
therefore, we were able to label which of the two gaps subjects
selected for their pointing movement, which reflects their dis-
crete choice as to which of two “games” to play [the top or bottom
game (or right and left from the point of view shown in the
figures)]. This allowed us to measure subjects’ explicit choice
behavior and how it evolved over trials. Computing the mean of

each endpoint cluster enabled us to com-
pare subjects’ aim points with the aim
points that would have been optimal in
their chosen game.

Rather than measure a subject’s perfor-
mance in each condition and session by
their actual gain, which can be highly dis-
torted by chance, we computed the total
gain for a subject’s “strategy” in each con-
dition and session. To do this, we com-
puted a weighted average of the expected
gain of the subject’s aim points (using the
values of the gain landscape at the aim
point scaled by the proportion of trials in
which the subject played the respective
game). To calculate confidence intervals
on our measures of subjects’ gain, we re-
sampled both the baseline data used to
scale subjects’ data and their data in the
main experimental task and computed the
SDs of the resampled estimates of end-
point position in the normalized stimulus
space and of the resampled estimates of
subjects’ expected gain.

Performance in the last session
Figure 4 shows, on a standardized scale,
subjects’ aim points in the last session of
experiment 1 superimposed on the ex-
pected gain landscapes. (In supplemental
Fig. S3, available at www.jneurosci.org as
supplemental material, each subject’s aim
points can be seen separately.) The size of
the aim point marker represents the pro-
portion of a subject’s endpoints that were
in the cluster around this aim point. As can
be seen, the vast majority of subjects’ end-
points fell close to the point of maximum
expected gain ( y_opt). Most of the re-
maining endpoints were close to the sec-
ond local maximum ( peak2). The princi-
pal deviation from this pattern appears in
condition 3, in which the peaks of the ex-
pected gain function for both the top and
bottom games were almost equally high.
Thus, subjects’ explicit choice behavior
(between the two games) appears near op-
timal. In conditions 1 and 5, in which the
difference between the expected gains in
the two games was the greatest, subjects
mostly converged on a strategy of playing
only the better game. In the other condi-
tions, subjects showed a small measure of
typical sampling or foraging behavior, in
which the relative frequency with which
subjects chose between two options
roughly matched the relative reward rates

of the options (Sugrue et al., 2004; Herrnstein, 1970). Some sub-
jects showed biases toward one game, playing it in a majority of
trials even when its expected gain was lower than the one of the
other game. Figure 4 also shows that in the final session subjects
aimed for the peaks of the expected gain landscapes, regardless of
which side of the target they pointed to. It is important to note

Figure 4. Subjects’ aim points in the last session of experiment 1, superimposed on the expected gain landscapes. The
y-coordinates of the individual aim points were divided by the subject’s endpoint variability in the session, so that all aim points
can be plotted in the same standard size goal, even though goals were scaled to each subject’s endpoint variability. The position
of the symbols on the y-axis is chosen such that they fall on the gain landscape, indicating the expected gain of the aim point (in
points). Marker size is scaled to the proportion of a subject’s endpoints in the cluster around the respective aim point. As can be
seen here, subjects always aimed at the local maxima of the gain landscape, and the majority of endpoints (indicated by large aim
point symbols) was close to the global maximum (y_opt) in all but the third condition. In the third condition, some subjects
seemed to prefer the second peak over the optimal one, but because the second peak was nearly as high as the optimal peak,
aiming there was not significantly worse. The expected gains of individual subjects’ aiming behavior in the last session of
experiment 1 can be seen in supplemental Figure S4 (available at www.jneurosci.org as supplemental material).
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that neither the peaks nor subjects’ aim
points coincide with the center of a gap
between two defenders (otherwise, near-
optimal performance could be explained
by subjects using a simple “aim at the cen-
ter of a gap” heuristic that would not re-
quire them to learn anything about the de-
fender jumps).

Development of performance over sessions:
To evaluate subjects’ learning over the
main experimental sessions, we calculated
the average loss (the difference between
expected gain calculated from subjects’
aim points and the expected gain of an op-
timal movement planner) for each subject
in each session. Figure 5, left, shows the
change in loss across sessions 2–5, aver-
aged across subjects and sessions. We fit-
ted learning curves of type y � ae
bx � c to
the data shown in Figure 5, left, and found
that the time constant b was significantly
different from zero (b � 1.31 � 0.05), in-
dicating significant learning. The data
show that learning was fast, because sub-
jects’ performance asymptoted after the
first two learning sessions (1/b corre-
sponds to �230 trials).

We independently measured the sub-
jects’ loss as a result of choosing the worst
of the two games (the side of the target with lower peak expected
gain) and their loss as a result of inaccuracy in aim points relative
to the optimal aim point within a game. We calculated the loss
attributable to wrong choices as the difference between the ex-
pected gain for the optimal aim point in the best game and the
optimal aim point in the other game, multiplied by the propor-
tion of trials in which subjects chose the worst of the two games.
The loss attributable to inaccurate aiming within a game was
computed as the average difference between the peak expected
gain in that game and the expected gain of the subject’s aim point
in that game. Because in some sessions and conditions subjects
had too few endpoints in their second cluster to reliably estimate
a second aim point, we based the second loss function only on the
aim points computed from subjects’ biggest endpoint cluster in
each session and condition. Figure 5, middle and right, show the
development of the two loss functions over time.

The losses observed in the second session already reflect some
amount of learning that occurred during that session; thus, they
do not provide a true performance baseline before learning. Be-
cause we cannot compute reliable estimates of subjects’ aim
points based on single blocks, we cannot explore learning with
higher temporal resolution. To provide a baseline performance
level with which to compare subjects’ asymptoptic performance,
we compared subjects’ losses with those of a naive actor who uses
what would appear to be the optimal strategy before learning
about the task-relevant uncertainties: to aim at the center of the
largest gap. Such an observer would have a total average loss of
31.63 points, with a loss attributable to wrong choices (which he
would make in conditions 1 and 2) of 16.07 points and a loss
attributable to inaccuracy of 15.56 points. These compare with
the subjects’ average losses in the final session of 7.24 (total), 5.01
(choice loss), and 1.97 (accuracy loss).

Fitting exponential learning curves to subjects’ losses, we

found significant learning in both aspects of the task (choice
learning: b � 1.03 � 0.06, 1/b � 291 trials; aim point learning: b
� 1.36 � 0.05, 1/b � 221 trials). Supplemental Figure S5 (avail-
able at www.jneurosci.org as supplemental material) shows these
same data as efficiencies (ratios of subjects’ expected gains and
the optimal movement planner’s expected gain). In terms of ef-
ficiency, subjects’ performance asymptoted at 83.9% (�2.5%),
with a choice efficiency of 88.7% (�2.4%) and an aiming effi-
ciency of 95.5% (�0.8%).

Experiment 2
Experiment 2 extended experiment 1 in two important ways.
First, we introduced an asymmetric loss function, so that to
achieve optimality subjects could not simply choose aim points
based on frequency of success, but rather had to take into account
the relative costs of being blocked by different defenders. Second,
we switched the losses associated with each defender after session
5. This allowed us to test whether subjects simply learned
stimulus-action contingencies or whether they learned some-
thing about the jump distributions that allowed them to make
optimal visuomotor decisions based on the new loss functions
introduced in session 6. Figure 6 shows the expected gain land-
scapes associated with the two versions of the task used in the
experiment. Not only are the functions significantly different
from those associated with the symmetric loss functions used in
experiment 1, but they are also significantly different from one
another.

Performance in sessions 2–5
Sessions 2–5 of experiment 2 replicated those of experiment 1,
but with asymmetric cost functions. Figure 7 shows subjects’ aim
points across the five conditions in session 5 of the experiment.
Subjects’ aim points were clustered around the optimal aim

Figure 5. Losses of the subjects compared with the optimal movement planner: experiment 1. Left, Average gain losses (in
points) of subjects compared with the optimal movement planner. Middle, Losses attributable to subjects’ choosing the wrong
game. To compute this measure, we computed the difference between the optimal gain and the gain subjects would have gotten
if they chose the games they chose, but within the chosen game got the best possible outcome (no losses because of inaccuracy).
Right, Losses attributable to deviations of aim points in the game the subject chose in a majority of trials from the optimal aim
point in that game. Error bars indicate the �1 SEM; curves are exponential functions fitted to the data. As expected, losses
decreased over sessions as subjects learned the jump distributions. A comparison of the middle and right panels shows that
subjects lost more points because they aimed at the wrong local maximum than because their aim points deviated from the
maximum.
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Figure 6. Gain landscapes in all five conditions and both versions of experiment 2. Conven-
tions are as in Figure 3. As can be seen in the stimulus sketch in the top part of each panel, the
two versions only differed in which of the defenders bore the higher penalty, but not in the
starting positions of the defenders. Penalty values are printed on defenders only for illustrative
reasons and were not there during the experiment. Instead, the 
400 defender had a grim
face, and the 
100 defenders had smiling faces. A comparison of the expected gain landscapes
in the left and right columns shows that changing the penalties from one version of the task to
the other resulted in slight shifts of the peaks (barely visible at this scale) and affected the
relative height of the local maxima such that in condition 3 the global maximum changed from
one peak to the other.

Figure 7. Subjects’ aim points in session 5 of experiment 2: all conditions and both task
versions. Marker size is scaled to the proportion of endpoints in the cluster around the depicted
aim point. The x-axis is broken to show aim points in both games (both peaks of the gain
landscape) while omitting the space between, where no subject ever aimed. Clearly, aim points
fell close to the two maxima in the gain landscapes (indicated by the vertical lines). The majority
of endpoints (indicated by bigger markers) were around the optimal aim point for most subjects
and conditions. There were, however, individual biases toward one or the other side (e.g.,
subject 3 showed a clear preference for the left game, even in conditions in which the optimal
game was the right one), and in conditions in which the two peaks of the expected gain land-
scapes were similar in height, most subjects showed a small proportion of sampling behavior
(they occasionally played the game with the lower expected gain). Within one side, subjects’
aim points followed the slight shift of the optimal aim point from condition to condition. The
expected gain of subjects’ aiming strategies in session 7 of experiment 2 can be seen in supple-
mental Figure S7 (available at www.jneurosci.org as supplemental material). cond., Condition.
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points and shifted appropriately from
condition to condition. Some choice inef-
ficiency was apparent in the sampling be-
havior shown by subjects in the conditions
in which the peaks in the expected gain
functions were close to one another in
height, replicating similar patterns shown
in condition 3 of experiment 1. Aim points
in session 7, at the end of experiment 2 and
in the second session after the task version
had been switched, showed the same ef-
fects (compare supplemental Fig. S6, avail-
able at www.jneurosci.org as supplemental
material). Figure 8 shows subjects’ average
loss as a function of session number.

To get a baseline measure or perfor-
mance for a subject who did not know the
defenders’ jump distributions, we calcu-
lated the optimal aim points for an actor
who takes into account the losses associ-
ated with hitting the different defenders
and his own endpoint variability. Such an
actor always aims at the center of the big-
gest gap, because the gap is so big relative
to his endpoint uncertainty that the penal-
ties to the left and right of it do not matter.
This actor would have gotten an average
total loss of 96.90 points, a choice loss of
46.60 points (74.84 points in task version
A and 18.36 points in task version B), and a
loss attributable to inaccuracy in his chosen game of 50.30 points
(74.77 in task version A and 25.84 in task version B). Our subjects’
average losses in session 5 of the experiment were 11.24 (total),
8.04 (choice), and 2.33 (inaccuracy).

Fitting exponential learning curves to the data from sessions
2–5 (before the switch in loss function) gave similar results as
found in experiment 1 (total learning: b � 2.07 � 0.07, 1/b � 145
trials; choice learning: b � 2.05 � 0.06, 1/b � 145 trials; aim point
learning: b � 0.74 � 0.06, 1/b � 405 trials).

Transfer to the new loss function in session 6
In session 6, subjects were presented with the same stimulus con-
ditions as in sessions 2–5, but the losses associated with the two
outside defenders were flipped. Figure 6 shows the changes in the
expected gain function generated by the switch, both in the rela-
tive heights and in the locations of the peaks. To maintain opti-
mality, subjects would have to follow the slight shift of the peak
locations in conditions 1, 2, 4, and 5 from one task version to the
other and switch to the other peak in condition 3. Neither stick-
ing to their previous aim points nor following a simple mirror
heuristic would lead to high gains. Were subjects’ improvement
over the four sessions before the change only attributable to fine
tuning of some stimulus-action contingencies, performance
should drop after the change. Alternatively, if subjects learned the
jump distributions of the defenders and were able to combine this
knowledge with the new loss functions in session 6, their perfor-
mance should remain stable.

Figure 8 shows an initial indication that subjects learning
transferred to the new loss function in session 6. Subjects’ average
total loss in session 6 was, if anything, lower than in session 5,
although the two were not significantly different. This behavior
appears both in subjects’ choices and in their aim point accuracy.
Supplemental Figure S8 (available at www.jneurosci.org as sup-

plemental material) shows the same effect in terms of efficiencies.
That choice performance did not drop significantly is not too
surprising, because the optimal aim point changed sides in only
one condition (condition 3). That aiming performance within
the optimal game did not drop, however, shows that subjects
appropriately changed their aim points from session 5 to session
6 to accommodate the change induced by the new loss function.
Using the data from conditions 1, 2, 4, and 5, in which the opti-
mal aim point (and subjects’ choices, by and large) did not
change sides, we tested whether subjects shifted their aim points
from session 5 to session 6 by measuring the average change in
aim point in the direction of the optimal change (a positive dif-
ference was a change in the “right” direction). Subjects’ average
shifts were in the correct direction and significantly different
from zero (t(7) � 3.811; p � 0.007, two-tailed). Figure 10, top,
shows an example of the shift between sessions 5 and 6.

As an alternative analysis of transfer, we compared the loss of
subjects who started the experiment with one version of the task
with the loss of subjects who switched to that version on session
six of the experiment. As can be seen in Figure 9, performance in
session 6 was significantly better than in session 2 (results of
ANOVA; F(1,76) � 22.11, p � 0.001 for both task versions; version
A: F(1,38) � 11.89, p � 0.001; version B: F(1,38) � 10.22, p �
0.003), even though in both cases subjects were confronted with a
new loss function. Moreover, there was no significant increase in
losses from session 5 to session 6, neither across task versions
(F(1,76) � 0.21; p � 0.652) nor for version A (F(1,38) � 1.20; p �
0.214) or version B (F(1,38) � 2.30; p � 0.137) separately. Shown
in Figure 9 for comparison is the loss predicted by a simple trans-
fer of visuomotor strategies from session 5 to session 6, clearly
showing that such a strategy transfer cannot account for the ex-
perimental results. Supplemental Figure S9 (available at www.
jneurosci.org as supplemental material) shows in more detail a

Figure 8. Subjects’ losses in gain compared with the optimal gain, in experiment 2. Conventions are as in Figure 5. Learning
curves were fitted only to the data of sessions 2–5, after which the cost function was changed. Although subjects were exposed to
a novel situation in session 6, losses did not increase between sessions 5 and 6, indicating that subjects used the knowledge they
had gained about the jump distributions to immediately adjust their strategies to the new payoff situation. Actually, subjects
seem to be better instead of worse with regard to their choices and overall performance after the switch, which might be
attributable to higher motivation because of the new challenge. Note that, although for each subject the task version, and thus the
optimal gain, changed between sessions 5 and 6, the average optimal gain across all subjects did not because, as before, four
subjects saw one version of the task and four saw the other version. We therefore can compare average losses in sessions before
and after the change without confounding the results with differences in optimal gain between the task versions.
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comparison of subjects’ expected gain in each condition and ses-
sion of the experiment with the expected gain of an optimal
movement planner.

In only one condition did transfer require switching games
(condition 3). Subjects showed a significant change in this direc-
tion but did not switch perfectly (Fig. 10, bottom). Whereas in
session 5 subjects chose the best game to play on 87.5% of trials in
condition 3, they chose the best game to play in session 6 (after
the cost function switch) only 63.4% of the time. (For compari-
son, in the other conditions, the percentage of correct choices
was, on average, 81% in session 5 and 90% in session 6, and it did
not decrease for any of those conditions.)

Discussion
Our study addressed the question of whether humans can choose
sensorimotor strategies that maximize expected gain under con-
ditions in which both the movement itself and the environment
in which the movement is performed are stochastic. The stochas-
ticity in the movement is naturally there: because of noise in the
sensorimotor system, it is uncertain where the pointing move-
ment will actually end (Fitts and Petersen, 1964). The uncertainty
we imposed on our task environment was qualitatively similar
and designed to be “natural” in that it was caused by the random
movements of agents in the environment. Our results indicate
that subjects were very good learning the optimal aim points in
the task. In both experiments, the average losses attributable to
having an average aim point away from the optimal corre-
sponded to subjects being blocked by a defender only one time
more than they would have been at the optimal aim point.

Subjects’ total losses were dominated by inefficiencies in their
choice behavior; however, even these losses were fairly low, on

average, after learning. Some subjects
showed biases toward one side of the tar-
get: they aimed there in a majority of trials
even in conditions in which the other side
promised higher expected gain. Many sub-
jects suboptimally “sampled” the lower ex-
pected gain side of the target on a minority
of trials. This behavior varied as a function
of the relative expected gains associated
with the two sides: subjects showed more
sampling (or foraging) behavior for condi-
tions in which the peak expected gains on
the two sides were nearly equal. Both as-
pects of subjects’ performance (choice and
aim-point selection) improved over time,
but the sampling behavior and biases
never completely disappeared.

These results may help to answer the
question why there is such a striking dis-
crepancy between the results of experi-
ments on economic and sensorimotor de-
cision making. In economic decision-
making experiments, in which subjects
have to decide which of two gambles to
play, subjects often fail to maximize ex-
pected gain and often show biases (Allais,
1953; Kahneman and Tversky, 1979). In
contrast, subjects have been shown to plan
movements under risk such that they op-
timize a loss function (Baddeley et al.,
2003; Trommershäuser et al., 2003, 2005;
Körding and Wolpert, 2004).

One important difference between sen-
sorimotor and economic “decisions” seems to be how informa-
tion about the stochasticity is presented to the subjects. Maloney
et al. (2007) found that subjects who optimally took into account
the uncertainty associated with their own pointing movement
performed suboptimally when explicit uncertainty was added to
the task by telling subjects that rewards and penalties would only
be given with a 50% chance. From this, the authors concluded
that a key difference between sensorimotor and economic
decision-making experiments is that, in the latter, the informa-
tion about the task-relevant stochasticity is given explicitly,
whereas in the former, the uncertainty is inherent in the move-
ment itself and thus known implicitly. Indeed, it has been dem-
onstrated that decisions based on explicit descriptions of proba-
bilities are different from those that are made when subjects
“experience” (i.e., implicitly learn) the probabilities (Barron and
Erev, 2003; Hertwig et al., 2004).

Our results suggest that subjects’ failure to account for sto-
chasticity in the task environment in the study by Maloney et al.
(2007) was not attributable to the fact that the stochasticity was
external to the movement but to the fact that it was explicit.
Mathematically, the environmental uncertainty induced in the
current study was more complex than the simple 50 –50 chance of
receiving the penalty attached to a penalty region, as described by
Maloney et al. (2007). Nevertheless, our subjects did strikingly
well. This result suggests that when observing stochastic events
that have a visible natural cause (jumping defenders), subjects are
able to implicitly learn near-optimal behaviors.

Subjects did show suboptimal sampling behavior in their se-
lection of which game to play on each trial. The proportion of
movement endpoints around the second highest peak increased

Figure 9. Comparison of subjects’ performance in both task versions of experiment 2 before and after the new cost function
was introduced. As can be seen, losses of one group of subjects (averaged across subjects and conditions) in session 2 were higher
than losses of the other group of subjects in session 6, although in both cases the subjects were confronted with a new loss
function. Moreover, losses did not increase significantly between sessions 5 and 6, although session 5 was the last of four sessions
during which subjects could become experts for the cost function that was present during those sessions and session 6 was the first
session in which they were faced with a new cost function. The rightmost bars in each panel indicate the losses we would see if
subjects had just maintained the strategies they used in session 5. Clearly, subjects’ performance in session 6 was significantly
better than it would have been if they had maintained their session 5 strategies, indicating that they adjusted their aiming
behavior to the new task version. Error bars indicate �1 SEM.
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as the relative heights of the two peaks became more similar. The
sampling behavior generally decreased over time. A tentative ex-
planation for that is that subjects based their decisions on ob-
served statistics and that they mostly observed the defender
jumps in the game they chose on a given trial. Early in the exper-
iment, only a few jumps would have been observed, and thus
subjects’ estimates of the relative expected gains of the two games
would have been highly uncertain. Therefore, it would be a good
strategy to maintain explorative behavior (i.e., try both gaps), so
that more information about both games could be accumulated.
This behavior should decrease over time as more information is
gathered. It should also depend on the difference between the
expected gain associated with each gap. Subjects’ data show both
of these patterns. However, some subjects also were biased to play
one game on a majority of trials even in conditions in which its
expected gain was clearly lower than that of the other game. This
cannot be explained in terms of foraging behavior and shows that
some subjects’ suboptimal choice behavior was attributable both
to uncertainty about which game was optimal and to internal
biases. Our data does not allow us to say from where those biases
arise. They could arise from mis-estimates of the expected costs in
each game or from more heuristic biases, for example, to point to
the larger gap. They also could indicate the influence of some
other loss function: Subjects might have a bias toward the game
that is physically more comfortable for them to play.

Experiment 2 showed that subjects were able to generalize
knowledge of the environmental stochasticities near-perfectly to
situations with new loss functions (and hence new optimal point-
ing strategies). This suggests that, in fact, subjects did internalize
knowledge of the statistics of defenders’ jumps rather than simply
learn stimulus-action contingencies. We can gain some insight
into this learning process by looking at the temporal contingen-
cies between subjects behavior on successive trials. Subjects’
choice behavior provides a particular robust source of informa-
tion about this aspect of learning. We computed a success change
ratio by dividing the number of times subjects switched to the
other game after a success by the number of success trials, and we
computed a failure change ratio in the same manner. We then
computed the change ratio as failure change ratio divided by
success change ratio. Change ratios larger than 1 indicate that
subjects were more likely to choose the other game after having
been caught in one game than after having succeeded in the game
they chose.

In both experiments, subjects were more likely to switch
games after having been caught in the previous trial of the same
condition than after having succeeded. The average change ratios
were 1.79 and 1.74 in experiments 1 and 2, respectively. They
were close to 1 (0.98 and 1.03 for experiments 1 and 2, respec-
tively) when we looked at the immediately following trial (re-
gardless whether it was of the same condition) instead of at the
next trial of the same condition. This shows that the outcome of a
trial did not generally affect subjects’ choices in the following
trial, but only in the following trial of the same condition. Inter-
estingly, average change ratios were no larger (1.40 and 1.74 for
experiments 1 and 2, respectively) when we looked only at cases
in which the next trial of the same condition immediately fol-
lowed the success/failure trial. Thus, the outcome of a trial was
equally likely to affect the choice in the next trial of the same
condition, no matter whether this trial followed immediately or
with some trials between.

Both the proportion of changes after success and the propor-
tion of changes after failure decreased over sessions in both ex-
periments. Average failure change ratios in the last sessions of

Figure 10. Aim points of one group of subjects before and after the switch of the cost
function, in conditions 5 and 3 of experiment 2, plotted for direct comparability. The
y-coordinates of the individual aim points were divided by the subject’s endpoint variability in
the session, so that all aim points can be shown in the same plot, although goals were scaled to
each subject’s endpoint variability. Marker size is scaled to the number of endpoints in the
cluster around the respective aim point. The x-axis is broken to show aim points on both sides of
the middle defender in the same plot. The positions of the subject symbols on the y-axis are
arbitrarily chosen. Horizontal error bars indicate �1 SEM estimate. This figure shows that, as
task versions changed, subjects followed the slight shift of the optimal aim point within a game
in condition 5. They did not fully follow the switch of the optimal aim point from one side of the
middle defender to the other that was induced by the change in the cost function in condition 3.
All subjects did, however, shift some of their endpoints to the new optimal aim point.
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experiments 1 and 2 were 0.27 and 0.14, respectively, compared
with 0.34 and 0.29 in session 2. Clearly, as subjects became more
confident about what the right choice would be, they became less
likely to switch games even if they were caught. In condition 3 of
experiment 2, the proportion of changes after failure decreased
over the first four sessions (from 0.30 to 0.15), just as in the other
conditions, but in the last two sessions after task versions had
been switched, it jumped back to high values (0.30 and 0.35 in
sessions 6 and 7, respectively). This indicates that switching the
gains increased subjects’ uncertainty about which game to choose
in this condition, which is not surprising because the gain change
actually switched which game was the better one.

In summary, our study has shown that human sensorimotor
decisions can maximize expected gain even if complex stochastic
uncertainties in the task environment have to be taken into ac-
count, as long as these uncertainties can be experienced and thus
implicitly learned over a few hundred trials. Moreover, subjects
appear to learn information about the statistics of the environ-
ment to achieve optimality rather than simply learning stimulus-
action contingencies.
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