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Neural synchronization is of wide interest in neuroscience and has been argued to form the substrate for conscious attention to stimuli,
movement preparation, and the maintenance of task-relevant representations in active memory. Despite a wealth of possible functions,
the mechanisms underlying synchrony are still poorly understood. In particular, in vitro preparations have demonstrated synchroniza-
tion with no apparent periodicity, which cannot be explained by simple oscillatory mechanisms. Here, we investigate the possible origins
of nonperiodic synchronization through biophysical simulations. We show that such aperiodic synchronization arises naturally under a
simple set of plausible assumptions, depending crucially on heterogeneous cell properties. In addition, nonperiodicity occurs even in the
absence of stochastic fluctuation in membrane potential, suggesting that it may represent an intrinsic property of interconnected
networks. Simulations capture some of the key aspects of population-level synchronization in spontaneous network spikes (NSs) and
suggest that the intrinsic nonperiodicity of NSs observed in reduced cell preparations is a phenomenon that is highly robust and can be
reproduced in simulations that involve a minimal set of realistic assumptions. In addition, a model with spike timing-dependent plas-
ticity can overcome a natural tendency to exhibit nonperiodic behavior. After rhythmic stimulation, the model does not automatically fall
back to a state of nonperiodic behavior, but keeps replaying the pattern of evoked NSs for a few cycles. A cluster analysis of synaptic
strengths highlights the importance of population-wide interactions in generating this result and describes a possible route for encoding
temporal patterns in networks of neurons.
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Introduction
Like musicians performing a classical symphony, individual cells
of the cortex act in close interaction with one another and have
the ability to precisely orchestrate their neural activity to control
behavior (Riehle et al., 1997). An important feature of this inter-
action is synchronization of neural activity, whereby populations
of cells fire in close temporal contiguity (Marom and Shahaf,
2002). Although several functional roles of synchronization have
been proposed, including visual system development (Feller et
al., 1997), conscious attention to stimuli (Melloni et al., 2007),
movement preparation (Riehle et al., 1997), and the maintenance
of representations in memory (Axmacher et al., 2006), the precise
neural mechanisms responsible are still unclear. In particular, it
remains unexplained how spontaneous neural activity (i.e., not
directly linked to environmental input) occurs in a nonperiodic
manner (i.e., at intervals that are not regular) (Elbert et al., 1994)

and with long temporal intervals (i.e., 1–2 Hz) (Eytan and
Marom, 2006). This lack of periodicity cannot be explained by
simple oscillatory mechanisms, including models of neural dy-
namics whose energy function settles in fixed point attractors
such as a stable synchronous state (Gerstner and Kistler, 2002) or
a limit cycle (Rabinovich and Abarbanel, 1998).

Here, we investigate the possible origins of nonperiodic syn-
chronization through biophysical simulations aimed at deter-
mining whether aperiodic network spikes (NSs), forming tempo-
rally precise (�100 ms) events of synchronization, arise under a
basic set of plausible assumptions. The model consists of a pop-
ulation of interconnected excitatory integrate-and-fire neurons,
each of which possesses different intrinsic properties, including
integration rates and spike thresholds. This “cellular heterogene-
ity” is consistent with experimental evidence supporting the idea
that, in populations of intercommunicating neurons, different
cells possess different levels of excitability (Murthy et al., 1997)
and discharge patterns (Bland et al., 2005).

In this study, we propose that cellular heterogeneity contrib-
utes strongly to the nonperiodic nature of synchronization ob-
served experimentally. In addition, we aim to show that the lack
of periodicity in the model does not prevent it from generating
more periodic synchronization in response to external stimula-
tion (Bracci et al., 1999; Mikkonen et al., 2002). Given the known
influence of rhythmic spike trains on synaptic efficacy (Bi and
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Poo, 1999), neural responses to periodic stimuli may depend on
changes in the interactions among cells.

To test this idea, we incorporated spike timing-dependent
plasticity (STDP) in the model, enabling long-term changes in
the strength of interactions between interconnected cells based
on the timing of presynaptic and postsynaptic spikes (Abbott and
Nelson, 2000). STDP has been found to promote neural synchro-
nization in several neural systems and organisms. For instance, in
the mushroom body of the locust, this mechanism helps preserve
the propagation of odor-specific codes by enhancing neural syn-
chronization (Cassenaer and Laurent, 2007). Here, we explore
the idea that STDP may be able to encode the frequency of a train
of stimuli delivered synchronously to a whole population of cells,
ultimately providing insights into the neural mechanisms re-
sponsible for encoding temporal information.

Materials and Methods
Description of the model. Our starting point is an interconnected network
of integrate-and-fire neurons. In this model, the membrane potential of
individual cells tends naturally toward a resting potential; however, ex-
citation received from neighboring cells can push the activity away from
its resting state. The membrane potential (Vi) of individual cells is up-
dated as follows:

�
dVi

dt
� � gi�Vi � Ei� � Itonic � Ii � �

j�1

N

wijKj, (1)

where cells are indexed from i � 1,. . . , n, � is a time constant, gi is a
leakage conductance, Ei is a reversal potential, Itonic is a tonic current, Ii is
an external current (set to zero when purely spontaneous activity is con-
sidered), and wij is a connection efficacy from cell i to cell j. Kj is the
excitatory potential of incoming spikes (Gütig and Sompolinsky, 2006;
Thivierge et al., 2007) described by the following:

Kj � V0 � �
i�1

S

exp�ti � t

�fall
� � exp�ti � t

�rise
�, (2)

where ti denotes the spike times of the ith afferent and V0 is a free param-
eter (Fig. 1 A). Equation 2 computes the potential of incoming spikes
based on a maximum of 10 previous spikes (indexed by i � 1,. . . , S).
After the membrane potential of each cell is computed, a spike occurs if
the spike threshold Vthresh is exceeded. When a cell fires, its membrane
potential is set to Vspike for a time duration of Tspike, after which it is reset
to a resting potential of Vrest and held there for a duration of Treset. All
membrane potentials are initialized to random values in the range [0, 1].
Unless otherwise stated, the model only includes excitatory pathways

[for more physiologically elaborate models, see,
for example, Skinner et al. (2005) and references
therein]. By default, the reversal potential is set
much lower than the spike threshold to allow a
slow ramping of activity. The membrane poten-
tial eventually reaches the spike threshold be-
cause of the addition of a small tonic current
(Itonic). This tonic current is analogous to the
addition of particular elements (e.g., potassium
chloride) to in vitro preparations to promote
spontaneous activity (Beggs and Plenz, 2003;
Cossart et al., 2003).

Unless otherwise stated, synaptic efficacies
(�wij) are adjusted according to STDP (Abbott
and Nelson, 2000) as follows:

�wij�t�

� � W� � exp� � �tij/��� if�tij � 0
� W� � exp(�tij/��) if�tij � 0,

(3)

where �tij � ti � tj reflects the difference between the last spike arrival
times of presynaptic (ti) and postsynaptic (tj) cells. In STDP, increases in
coupling strength are maximal when presynaptic pulses are immediately
followed by a postsynaptic response; conversely, decreases in coupling
strengths are maximal when presynaptic pulses are immediately pre-
ceded by postsynaptic activation (Fig. 1 B). No hard bounding was ap-
plied to limit the range of synaptic weights, other than having to remain
at positive values [i.e., by default, no inhibition was allowed in this sim-
plified account, as in previous work (Nowotny et al., 2003)].

Weights are initialized to random values between [0, 10], with no
self-connections. Weight updates are applied as follows: wij(t) � wij(t �
1) � ��wij(t), where � is a free parameter. There are four adjustable
parameters in the STDP rule: W� and W� control the magnitude of
change in synaptic efficacy; �� and �� control the time course of plastic-
ity. Although a complete exploration of the parameter space of the model
is beyond the scope of the current work, fine-tuning of the parameters
was not necessary to achieve the results below (the effect of different
parametric values is examined in Results). All simulations were per-
formed using Matlab software, with an integration time step of 1 ms.

Short-term adaptation. As an alternative to long-term changes in syn-
aptic efficacy provided by the STDP rule (Eq. 3), we also consider a
mechanism based on short-term adaptation. When a cell emits an action
potential, several types of ionic channels become temporarily depleted,
reducing the likelihood of another action potential for a particular time
interval. For instance, fluctuations in intracellular calcium concentra-
tions are strongly correlated with cortical synchronization (Ikegaya et al.,
2004) and the likelihood of an UP state (i.e., a state of high activity) in
cortex is greatly diminished when calcium concentrations are low. A
simplified model was used to relate spike activity of a cell i to the deple-
tion and recovery of ionic resources over time as follows:

Ui � � k � �
j�1

S

exp�tj � t

�STA
fall

��exp�tj � t

�STA
rise

�. (4)

where k is a parameter controlling the magnitude of depletion, whereas
�fall

STA and �rise
STA control the time course of depletion and recovery, respec-

tively. Synaptic efficacies are updated according to �wij(t) � �Ui � 	Uj

� 
, where �, 	, and 
 are free parameters. Unless otherwise stated, all
results use solely the STDP rule (Eq. 3), without short-term adaptation.
However, Results (see below) also explores simulations that combine
both short-term adaptation and STDP, as well as simulations with only
short-term adaptation.

Initialization of parameters. Default parametric values used in simula-
tions are provided in Table 1. To generate a heterogeneous population of
cells, several of the free parameters of the model were not set to a single
fixed value for all cells. Rather, a random Gaussian distribution of values

Figure 1. Functions for postsynaptic potential and long-term potentiation. A, Temporal evolution of a postsynaptic potential
when a spike is delivered at time t � 50 (Eq. 2). �rise � 1 ms; �fall � 3 ms. B, Change in synaptic efficacy (�w) as a function of
the timing of presynaptic and postsynaptic spikes (Eq. 3). For parameters, see Table 1.
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was defined independently for each of these parameters. Such a proce-
dure has several advantages: (1) single-cell models are not constrained
enough by data to justify precise values for some of these parameters; (2)
even when experimental constraints are available, parametric distribu-
tions insure that the results obtained are robust to these values, and may
thus generalize across cell types; (3) even within a small region of the
brain, cells do not exhibit identical properties. Results of the heteroge-
neous model are compared with those of a homogeneous model in which
parametric distributions are replaced by their means, therefore making
all cells identical with one another.

Detecting network spikes. We define a NS as the synchronization of a
large number of cells within a population, beyond the fortuitous coinci-
dence of spikes that occurs by chance. To determine whether synchro-
nized events constitute NSs, the following bootstrapping method is used.
For each cell in the model, the following two steps are performed: (1) a
binary vector of spike times is computed (with a 1 ms resolution), where
“0” indicates that no spike occurred at that time, and “1” indicates that a
spike was fired; (2) this spike vector is shuffled randomly.

After steps 1 and 2 are performed for all cells, two subsequent steps are
performed: (3) the randomized spike times obtained in step 2 are
grouped by summing across all spikes and all cells within individual time
bins of 10 ms. A bin size of 10 ms is standard practice in both experimen-
tal (Beggs and Plenz, 2003) and theoretical (Abbott and Rohrkemper,
2007) work. To insure that our main conclusions are not affected by this
choice of bin size, we also performed simulations with an alternative bin
size of 1 ms. (4) A threshold is computed such that its value exceeds the
summed activity from step 3 for at least 95% of the total recording time.

Steps 1– 4 are repeated 1000 times, and a final threshold is computed
by averaging over all values obtained in step 4. This final threshold serves
as the critical value to determine whether a NS is statistically reliable. To
identify the precise timing of NSs, we apply this threshold to the original
data (sampled at 1 ms). A NS is detected when the sum of spikes exceeds
the threshold (but does not exceed it at the previous time step). The
maximal NS amplitude corresponds to the maximum number of con-
currently active cells (i.e., within 1 ms) during the time when the sum of
spikes is above threshold.

Functional interactions. An important goal of the simulations pre-
sented here is to examine how changes in synaptic efficacy alter interac-
tions among all cells in the population. From recent work, it is known
that STDP can promote the formation of groups of neurons with strong
mutual interactions (Izhikevich, 2006), but little is known about how
these interactions change as a function of both spontaneous and induced
activity. To investigate this issue, an algorithm termed Girvan–Newman
clustering (Girvan and Newman, 2002) is applied to the matrix of syn-
aptic connections before and after stimulation. The goal of this algorithm
is to identify “communities” of neurons, characterized by strong within-
group interactions and weak between-group interactions. The algorithm
achieves this by focusing on neurons that connect different communities;
by removing these neurons, it reveals the underlying communities. For
instance, the simple network of Figure 2 displays neurons according to
their proximity (neurons with strong synaptic connections between
them are close together in space). This network has three communities
(shown by gray areas) that communicate with one another via a small
subset of neurons (shown in red). These neurons have a high “between-
ness centrality” (Freeman, 1977), referring to their importance in linking
together the three communities; if these neurons are removed, the three
communities become isolated.

The betweenness centrality of each neuron is defined as the fraction of

shortest paths between any pair of neurons that pass through that neu-
ron. For a cell i, betweenness centrality is calculated as follows:

Bi �
1

N�N � 1� �
s�i�t

�st�i�

�st
, (5)

where �st(i) is the number of shortest paths (i.e., shortest number of
intermediate cells) from neurons s to t that pass through neuron i, and �st

is the number of all shortest paths linking s to t. Matlab code used to
calculate this algorithm is available online (Gleich, 2006). Neurons that
connect different communities will have a high betweenness centrality,
because they will often provide the shortest path between members of
different communities.

Second, the neuron with highest betweenness centrality is removed.
The algorithm then begins from step 1 again, recalculating betweenness
centrality, and iterating until no neurons remain. The result is a tree of
community memberships. To identify particular communities from this
tree, we first set a cutoff point for the maximum number of communities
to consider, and then label neurons along the same branch, as done
previously (Girvan and Newman, 2002).

Results
Nonperiodic synchronization
In a population of cells simulated for 5 min, spontaneous activity
arises in a highly nonperiodic manner, forming several of NSs
with strong statistical reliability (Fig. 3A). As in experimental
recordings of rat cortex (Eytan and Marom, 2006), the temporal
interval separating different NSs is not constant; rather, there is a
distribution of intervals ranging from 	1 to 
5 s (Fig. 3B).

Table 1. Default values of parameters and distributions

Parameters and distributions Default values

Spike parameters Vrest � 1 (�0.5) mV; Treset� 3 (�1, 8 ms) ms; Vspike � 100 (�10) mV; Tspike � 1 ms

STDP parameters W� � 10 (�5); W� � 100 (�10); �� � 60 (�10) ms; �� � 30 (�10) ms

Means of parameter distributions (� � 0.33) �fall � 3 (�1) ms; E � �60 (�10) mV; �rise � 1 (�0.5) ms; g � 0.01 (��0.005, �0.05) pS; Vthresh � 18 (�3) mV

Short-term adaptation parameters �fall
STA, mean of 200; �rise

STA, mean of 2; k, mean of 5; � � 0.5, 	 � 0.5, 
 � 10

Miscellaneous parameters Itonic � 1.1 (�0.5) mV; V0 � 4 (�1) mV; � � 0.5 (�0.2); � � 0.01; n � 100 cells

The values in parentheses show a range of parameters that yield qualitatively similar results.

Figure 2. Neurons with high betweenness centrality play a fundamental role in the commu-
nication of different communities of cells. The gray areas show three communities. Neurons
within each community are strongly interconnected but only weakly connected with other
communities. Neurons linking communities together (shown in red) have a high betweenness
centrality.
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Because the above simulation did not include any stochastic
fluctuations in the membrane potential, the nonperiodicity of
NSs cannot be accounted for by such random noise. Rather, non-
periodicity is a direct consequence of cellular heterogeneity:
when the latter is completely eliminated in a simulation in which
all cells have identical properties, synchronization is exactly peri-
odic (generating NSs at 1 Hz) (Fig. 3B, white bar).

In addition to accounting for the nonperiodic intervals be-
tween NSs, cellular heterogeneity is also responsible for generat-
ing a relatively broad spectrum of peak amplitudes in the number
of cells active across different NSs (Fig. 3C), as found experimen-
tally (Eytan and Marom, 2006). By comparison, a homogeneous
simulation always recruits all cells during NSs.

Although cellular heterogeneity represents a potential means

of generating nonperiodic synchroniza-
tion, it is insufficient by itself to explain
why synchronization arises. In this respect,
plasticity plays an important role. The role
of STDP in neural synchronization is high-
lighted in a simulation in which connec-
tions remain fixed at their initial values. In
this case, synchronized activity still occurs,
but is never terminated (Fig. 4). Once a
NS is initialized by positive feedback in the
interaction among excitatory cells, there
is no longer any means of stopping it,
and high-frequency synchronized activity
is perpetuated until the simulation is
stopped.

Together, the above results argue that a
basic mechanism combining STDP and
cellular heterogeneity can account for the
generation of NSs with broad distributions
of time intervals and peak amplitudes, as
reported experimentally (Eytan and
Marom, 2006). Note that, although the
heterogeneous model did not include sto-
chastic fluctuations in membrane poten-
tial, the addition of noise does not pre-
clude the formation of NSs (supplemental
Table 1, available at www.jneurosci.org
as supplemental material). In biological
networks, nonperiodic synchronization
may therefore reflect a combination of
factors, including cellular heterogeneity
and stochastic fluctuations in membrane
potential.

How much does nonperiodic synchro-
nization depend on the various parameters used in the model?
We addressed this question by examining the effect of varying all
of the parameters of the model (Table 1) and plotting the result-
ing distribution of time intervals between NSs for a 5 min simu-
lation of spontaneous activity (supplemental Table 1, available at
www.jneurosci.org as supplemental material). As depicted, most
of the parameters can be altered and still yield a broad distribu-
tion of inter-NS intervals.

In one variant of the model, we introduced a distribution of
delays in synaptic transmission in the range [1, 20] ms across the
different cells of the population (supplemental Table 1, “with
delays,” available at www.jneurosci.org as supplemental mate-
rial). Even when these delays form the only source of heteroge-
neity (all other parametric distributions collapsed onto their
means), a broad distribution of NS intervals emerges, in agree-
ment with previous work (Izhikevich, 2006).

In another variant of the model, we reduced the density of
connections between cells by permanently removing a percentage
of randomly chosen connections at the beginning of the simula-
tion. In this way, up to 20% of connections could be removed
without eliminating the occurrence of NSs. A similar result is
found when permanently replacing a percentage of randomly
chosen connections with inhibitory values (wij � �1); the net-
work can withstand the addition of up to 30% of inhibitory path-
ways and still produce nonperiodic NSs. Interestingly, changes to
the network parameters sometimes have an unpredictable impact
on network dynamics. For instance, the addition of 30% of inhi-
bition increases the proportion of NSs with �500 ms of temporal
distance.

Figure 4. Simulation of spontaneous activity without STDP. Without STDP, the positive
feedback between neurons causes persistent firing which is never aborted.

Figure 3. Nonperiodic network spikes. A, Example of a 10 s simulation. Top, Rasters indicate the firing times of individual cells
in a population of 100. Bottom, Percentage of cells active in nonoverlapping 10 ms bins. The dashed line shows statistical
significance of activity at p � 0.05 (obtained through bootstrap reshuffling). B, Distribution of intervals between statistically
reliable NSs. The vertical bars show SEM for 10 independent runs of the model. Gray bars, Heterogeneous model. White bar,
Homogeneous model. C, Distribution of the percentage of active cells during NSs.
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By adjusting the reversal potential and
mean resting potential of the model, one
variant of the model approximates values
reported for cortical neurons (E � Vrest �
�65 mV) (Dayan and Abbott, 2001). In
this variant, two parameters of central im-
portance are the tonic current (Itonic) and
mean spike threshold (Vthresh). An in-
creased tonic current reduces the distance
between NSs by increasing the slope of the
rising membrane potential, whereas a de-
creased spike threshold achieves a similar
effect by making individual cells fire when
a lower potential is reached (Fig. 5).

In a final variant of the model, we re-
place the STDP rule with a short-term ad-
aptation rule representing the temporary
depletion of ionic resources after an action
potential (Eq. 4). This rule enables the pro-
duction of NSs that are stopped when
ionic resources are depleted (Fig. 6A).
Short-term adaptation can also be com-
bined with STDP, resulting in a model
with both faster and slower changes in syn-
aptic efficacy. In such a model, it is possi-
ble to impose STDP modifications that
cannot occur faster than every 10 s, and
still obtain NSs (albeit with a narrower distribution) (compare
Fig. 3B). Although previous modeling efforts have forced STDP
updates every 1 s (Izhikevich, 2006), we show that longer, more
realistic time courses also yield NSs if short-term adaptation is
part of the model. Next, we demonstrate how the combination of
STDP and heterogeneity can account for other important aspects
of NSs.

Exponential growth in activity
A key property of cortical NSs is the rate at which more and more
cells become active up to the peak of a NS, fitting an exponential
population growth function (Eytan and Marom, 2006). This ef-
fect is captured in simulations by first storing the spontaneous
activity of all cells for 60 s. Then, all NSs are aligned in time
according to their peak activity (Fig. 7A). Taking the mean spike
rate across all peaks and all cells, we observe an exponential in-
crease in activity up to the peak of this “grand average NS” (Fig.
7B). As in experimental work, we fit this grand average NS with
the following function: A(t) � a � b � e ( � � 1) � t. The parameters
a, b, and � were adjusted to obtain the best possible fit by mini-
mizing the sum of squared errors between the data points and
function. Although the model was in no way optimized to match
experimental results, the fitted values for the parameters of the
exponential function are relatively close to values previously re-
ported for rat cortical slices: a � 0.012 (cortex, 0.05), b � 0.011
(cortex, 0.01), and � � 1.106 (cortex, 1.045) (Eytan and Marom,
2006). This result arises with no explicit rule or mechanism for
enabling the exponential recruitment of cell activity; rather, it is a
property that emerges simply through positive feedback in an
interconnected network. In addition, the temporal precision of
the grand average NS obtained in the model offers a close match
to that observed in cortex, with a total duration (beginning with
the initial rise of activity and ending with its return to baseline
levels) of 	100 ms.

In recent in vitro experiments (Eytan and Marom, 2006), NSs
recruit the greater majority of electrodes in a cortical preparation.

A similar result emerges in simulations: when summing the total
number of active cells over a 200 ms window surrounding each
NS (from �100 to �100 ms with respect to peak activity), we find
that a large proportion of NSs recruit 	80% and more of cells; in
fact, over a 5 min simulation, only a small minority of NSs re-
cruits �50% of cells. Synchronization can thus be considered a
relatively global phenomenon within a population of cells, as
opposed to smaller, more local interactions among small clusters
of cells (see Fig. 13) (discussed below).

A subpopulation of cells is highly sensitive to the imminence
of a network spike
In vitro recordings have suggested the presence of cells that pref-
erentially increase their activity immediately before NSs (Eytan
and Marom, 2006). To investigate this phenomenon in the
model, we first performed a within-cell regression relating the
correlation between firing rates before NSs (100 ms before peak)
and firing rates at the peak of NSs. This analysis identified a
subgroup of cells (57% of the population) that reliably increased
their activity before NSs ( p � 0.01/N, Bonferroni-corrected for
each cell in the network). Following recent experimental results,
we refer to this subgroup as “early-to-fire” cells (Eytan and
Marom, 2006).

To more clearly segregate cells in the network according to
their firing rates before NSs, we followed the above analysis with
a between-cell regression examining the mean firing rates of
early-to-fire cells versus other cells in the model. Across early-to-
fire cells, an increased firing rate before NSs was predictive of an
increased firing rate at the peak of NSs (Fig. 8, cells marked in
blue) (linear regression over all these cells: r 2 � 0.40, p � 0.002,
after removing a single outlier cell with firing rate 
4 SDs above
the mean). Across the remaining cells, in which no statistically
reliable relationship could be established between activity before
and during NSs, a trend was observed in the opposite direction:
higher firing rates before NSs were linked to lower firing rates

Figure 5. Influence of tonic current and mean spike threshold on temporal intervals between NSs. A, Distribution of time
intervals between NSs for a version of the model with reversal potential and resting potential approximating those of cortical cells
(E � Vrest � �65 mV). Itonic � 2.6 mV; Vthresh � �10 mV. B, C, Increasing tonic current or decreasing spike threshold reduces
the mean temporal interval between NSs (5 min simulation of spontaneous activity). The vertical bars indicate SEM. D, Increasing
the tonic current leads to a steeper increase in the membrane potential of a single cell (blue line, 2.4 mV; green line, 2.8 mV). The
two potentials are aligned according to a spike occurring at 100 ms. The parameters of the two membrane potentials compared
are identical except for their tonic current. The dashed line indicates spike threshold. E, Increasing the spike threshold delays the
time at which an action potential occurs in a single cell (blue line, �9 mV; green line, �11 mV; spike time difference, 1 ms). The
dashed lines label spike thresholds by color for the two membrane potentials.
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during NSs (Fig. 8, cells marked in red) (linear regression over all
these cells: r 2� �0.77, p � 0.001).

Hence, the heterogeneous population cells in the model di-
vided itself into two subgroups. For one subgroup, increased ac-
tivity before NSs was linked to decreased activity during NSs; for
the other subgroup, a similar increase in activity before NSs was
linked to an increase in activity during NSs. The latter subgroup
represents a subset of cells whose activity is highly predictive of
the imminence of NSs, as found in cortical preparations (Eytan
and Marom, 2006).

Neural stimulation leads to an all-or-none response
The above simulations on the exponential growth of cell activity
preceding NSs demonstrate that, despite a great deal of unpre-
dictability in the time interval between NSs, some aspects of
spontaneous activity display a high degree of predictability. A
similar conclusion is reached when simulated cells are stimulated
by external currents of different intensities (Fig. 9A,B). As in
cortical networks (Eytan and Marom, 2006), population activity
responds to stimulation in an all-or-none manner: when the
stimulation intensity is above a certain threshold of intensity
(	600 mV, in which all cells are stimulated for 5 ms), the major-
ity of cells are activated (i.e., the population “ignites”). Below this
threshold of intensity, the population of cells remains at a low
baseline of activity.

A comparable phenomenon of threshold-governed popula-
tion response is observed when the number of simultaneously
stimulated cells is varied (Fig. 9C–E). When less than 	10% of
cells are stimulated concurrently (1000 mV current, lasting 5 ms),
the induced activity remains localized to a relatively small num-
ber of cells. When 10% or more of cells are stimulated in the same
manner, the induced activity spreads to a large proportion of cells
in the population.

The above results suggest the presence of a “critical point” in
the number of cells stimulated and the intensity of stimulation,
beyond which there is activation of a majority of cells in the
population. In the model, the presence of this critical point is
strictly implicit and was never directly enforced by the design of
the simulations. Of course, the particular value of this critical
point depends on the choice of model and parameters, which
could be adjusted to fit particular experimental constraints; here,
we offer a proof-of-principle that a model based on simple neural
interactions can capture the “ignition” effect observed experi-
mentally (Jimbo et al., 1999; Eytan et al., 2003; Eytan and Marom,
2006).

Rhythmic stimulation generates an echoic trace
The ability of simulated cells to respond in a reliable manner after
stimulation (i.e., after an all-or-none NS) suggests that, although
some aspects of spontaneous activity are seemingly unpredict-
able, the network nonetheless responds in a systematic and pre-
dictable way to external stimulation. To explore this possibility
further, we aimed to determine whether the response of the net-
work could be influenced by the temporal structure of a sequence
of stimuli (Yoshioka, 2002). There is a substantial body of exper-
imental literature supporting this idea: for instance, Mikkonen et
al. (2002) examined the response of compound action potentials
after tetanization at different frequencies. Between 	30 and 50
Hz, the frequency of occurrence of compound action potentials
after tetanization mimicked that of the stimulation. In a similar
vein, the termination of rhythmic evoked potentials elicits a neu-
ral response at the approximate time at which the next stimulus
would have occurred. This phenomenon, termed “omitted stim-
ulus potential,” is found across several species, from humans to
honeybees and ants, and forms the neural substrate of a basic
form of cognitive expectation (Ramón and Gronenberg, 2005).

To examine whether our model reproduces this phenome-
non, the following simulations were performed. First, spontane-
ous activity was recorded for 60 s (this constitutes the baseline
epoch). Next, an external stimulation was applied at a fixed fre-
quency (e.g., 10 Hz) (Fig. 10A) (current intensity, 1000 mV; pulse
duration, 5 ms) for a duration of 60 s. Finally, the stimulation was
terminated and spontaneous activity again recorded for 2 s. Dur-
ing the baseline epoch, NSs occurred in a nonperiodic manner
and with low frequency (Fig. 3A,B), as discussed previously.
When a current was applied, NSs were generated at a mean fre-
quency close to that of the stimulation (Fig. 10B, particularly
between 1 and 50 Hz). Finally, when stimulation was terminated,
the mean frequency of NSs did not immediately revert to baseline
levels. Rather, this frequency “echoes” that of the stimulation for
a few cycles (�1000 ms poststimulation). This behavior of the
model, which we term an “echoic trace,” was observed over a
range of frequencies from 	1 to 50 Hz (Fig. 10B). It represents a
transient state of synchronization in which spontaneous NSs can
occur at a much higher rate than observed at prestimulation base-
line, in a way that resembles the induced frequency of stimula-
tion. A theoretical treatment of the role of STDP in sequence
learning is beyond the scope of the current work and can be found
in previous studies (Suri and Sejnowski, 2002; Yoshioka, 2002;
Chao and Chen, 2005; Aoki and Aoyagi, 2007; Jun and Jin, 2007;
Masuda and Kori, 2007; Hosaka et al., 2008; Kube et al., 2008;
Masquelier et al., 2008;). Consistent with this work, our results
argue that STDP may be a key mechanism for learning temporal
sequences; indeed, a simulation that removes STDP but retains
short-term adaptation does not exhibit an echoic trace that mim-
ics the frequency of induced stimulation (Fig. 11).

Figure 6. Short-term adaptation gives rise to network spikes. A, Top, Rasters indicate the
firing times of individual cells across time. Bottom, Changes in wij (short-term depletion of ionic
resources) after NSs (Eq. 4). B, Distribution of time intervals between spontaneous NSs for
simulations with a Gaussian distribution of time delays for updates to synaptic changes (cen-
tered at either 1 or 10 s, with SD � � 0.33).
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Despite the short lifetime of an echoic
trace, neural stimulation has long-term ef-
fects on the spike dynamics of the model.
This point is illustrated by examining the
spiking activity of three independent sim-
ulations with no stochastic fluctuations in
membrane potential, and identical initial
states (Fig. 12). For the first 1100 ms after
initialization, the activity of these three
simulations was identical. Then, a single
pulse of stimulation was delivered with
only 1 ms difference between the three
simulations (i.e., at 1100 ms for the first
simulation, 1101 ms for the second simu-
lation, and 1102 ms for the third simula-
tion). As a result of this subtle time differ-
ence, the spiking activity of the three
simulations diverged noticeably, with re-
percussions well beyond the time of stim-
ulation [in fact, differences across condi-
tions can be observed for as long as the
simulation was carried (i.e., 2000 ms)].
These simulations argue for the idea that,
even in purely deterministic cellular net-
works, spike activity can be influenced by a
long preceding history.

Population-wide synaptic interactions
Are the interactions among cells altered as
a function of neural stimulation? If so,
what is the relationship between synaptic modification and the
ability of cells to echo at certain frequencies? To address these
questions, we applied the Girvan–Newman clustering algorithm
to the matrix of synaptic connections immediately before and
after 10 Hz stimulation (this frequency was chosen because it
yields a strong echoic trace) (Fig. 10A). Before stimulation, a
large community of cells emerges among the network of interac-
tions, accompanied by a number of other markedly smaller com-
munities (Fig. 13A, left). To facilitate visualization, Figure 13
displays the network of neurons according to a multidimensional
scaling (MDS) (Davison, 1983). MDS finds a set of coordinates in
two-dimensional space such that the Euclidean distances among
neurons corresponds as closely as possible to their shortest paths
(i.e., shortest number of intermediate cells) (Sporns, 2002). The
result is a graph that shows how closely two neurons are interact-
ing, with some neurons communicating directly with one an-
other (i.e., short path lengths) and others communicating only
through other neurons (i.e., longer path lengths).

For every cell in the network, we computed a cross-correlation
function and compiled these results in a histogram of preferred
(strongest) correlations for each community (Fig. 13B). To con-
trol for spurious correlations, we performed a 100-fold bootstrap
reshuffling of the spike times of each cell. Any portion of the
cross-correlation function was considered statistically reliable if
it exceeded at least 99% of the shuffled cross-correlations. Before
stimulation, the histogram of the largest community reveals a
strong preferred correlation within �10 ms of time lag, arguing
for the absence of long temporal dependencies between the activ-
ity of different pairs of cells (Fig. 13B, top left). A similar profile is
found for all three of the largest communities of the prestimula-
tion network.

After stimulation, synaptic interactions are markedly altered, and
the network breaks apart into three distinct communities (Fig. 13A,

middle). As a result, the network of interactions becomes strongly
modular, combining multiple within-community ties with few
between-community ties. In addition, the largest community of
the poststimulation network (Fig. 13, blue cells) has a cross-
correlation histogram that differs in a meaningful way from that
of the largest prestimulation community: in addition to a peak at
0 ms time lag, a smaller peak is visible at �100 ms, as well as small
peaks near �90 ms time lag. These peaks occur above chance
(when compared with the shuffled cross-correlograms) and are

Figure 7. Exponential growth in cell activity. A, Average firing rate in spikes per second (sp/s) of 100 cells for all NSs obtained
over a 60 s simulation, and aligned at their peak (time 0). B, Grand average NS obtained by taking the mean spike rate over all cells.
The portion of this curve used when fitting an exponential function is highlighted in red [selected to correspond to the portion of
curve used in previous experimental work (Eytan and Marom, 2006)]. Inset, Cortical data from Eytan and Marom (2006). C,
Exponential fit to the data using the function reported in Eytan and Marom (2006) for a 50 ms window preceding peak activity.
Solid line, Fitted function; dots, data points from red portion of curve in B. D, Percentage of cells recruited over all NSs for 100 ms
before and after peak activity.

Figure 8. Relationship between mean firing rates before NSs and during NSs. The scatter
plot shows cells with either a significant (blue dots) or nonsignificant (red dots) correlation
between activity before and during NSs. The dashed lines are corresponding linear regressions
for the activity of these cells. Firing rates are means over both NSs and time window (during NSs,
100 ms; at peak of NSs, 1 ms). sp, Spike.
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consistent with an echoic trace at 10 Hz frequency. They are only
present in the largest community of cells; the second and third
largest communities do not exhibit such peaks. These results sug-
gest that the echoic trace effect can be localized within a network

of interacting cells; although a large group
of cells contributes to this effect, others
do not.

The presence of distinct communities
in the poststimulation network likely de-
pends on precise synaptic interactions, be-
cause they cannot be discriminated by fir-
ing rates alone (Student’s t test, red vs
green communities, t(51) � 2.01, p 

0.074; blue vs red, t(67) � 2.00, p 
 0.779;
blue vs green, t(58) � 2.00, p 
 0.430); sim-
ilar analyses attempting to discriminate
among communities based on cell proper-
ties (see parameters of Table 1) or initial
synaptic weights (i.e., average weights ei-
ther sent or received by each cell) also fail
to reach statistical significance ( p 
 0.05).
Finally, the fragmentation of the func-
tional network into distinct modules is a
short-lived effect. After the third second
poststimulation, the network returns to a
single large community from which only a
few cells are excluded (Fig. 13A, right).

Discussion
Highly synchronized, nonperiodic neural
activity is a widely reported phenomenon
in spontaneously active populations of
cells (Cossart et al., 2003; Eytan and
Marom, 2006). The simulation results
provided here argue that network spikes

may result from positive excitatory feedback
originating from a recurrent connectivity
between cells. When such feedback gets
strong enough, all cells in the population fire
in close temporal contiguity. At that point, a
large proportion of cells fall in a refractory
state that prevents the immediate generation
of additional action potentials, causing the
NS to terminate. As a result, activity will de-
synchronize. In the model, the nonperiodic
occurrence of NSs is a direct consequence of
heterogeneous cellular properties. In a ho-
mogeneous simulation in which all cells have
the exact same intrinsic properties, synchro-
nization becomes strictly periodic, and indi-
vidual NSs always recruit the whole popula-
tion of cells. In the model presented here, no
additional stochasticity (beyond the random
initialization of cell properties) is required to
produce a relatively broad distribution time
intervals between NSs. This suggests that the
nonperiodic synchronization observed in
cortical networks may be more strongly de-
pendent on the network-wide interactions of
a heterogeneous population of cells than on
small stochastic fluctuations in the mem-
brane potentials of individual neurons.

A direct prediction from our simulation
results is that the downregulation of endog-

enous or activity-driven factors responsible for cellular heteroge-
neity would result in a more periodic synchronization of cell
activity. For example, BDNF upregulation has been argued to

Figure 9. All-or-none population response to stimulation. A, Percentage of cells active in response to different intensities of
stimulation. B, Sum of spikes across all cells given different stimulation intensities, ranging from 100 mV (bottom trace) to 1000
mV (top trace). C, Percentage of cells active given different percentages of cells stimulated. D, E, Examples of population activity
when either 5 or 20% of cells are stimulated (stimulated area shown in gray). Stimulation was performed at 1000 mV for a
duration of 1 ms. (A, C, Spikes were summed across bins of 10 ms.) sp, Spike.

Figure 10. Echoic trace effect. A, Spiking activity of simulation across all cells. The left window shows activity for the last
0.5 s before onset of stimulation and the first 0.5 s of activity after onset of stimulation (the x-axis is time in seconds relative to
onset of stimulation). The right window shows spiking activity for the last 0.5 s of stimulation and the first 0.5 s of activity after
stimulation is terminated. The stimulation was delivered to all cells simultaneously, at a frequency of 10 Hz (gray overbar shows
the window of stimulation). B, Frequency of NSs for different time windows (averaged over 10 independent runs), in response
to different frequencies of induced stimulation. The dashed line corresponds to unity. The vertical bars are SEM.
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shift the distribution of synaptic conduc-
tances upward in a population of cells,
leading to a skewed distribution and in-
creased cellular homogeneity, with (as
predicted by our simulations) marked in-
crease in the periodicity of NSs (Fujisawa
et al., 2004).

Although spontaneous NSs do not fol-
low a precise period of occurrence, the
model can be entrained to produce an
echoic trace, that is, NSs that approximate
the period of induced stimulation. The ad-
justment of synaptic strengths through
STDP plays a crucial role in the formation
of this echoic trace. When this property is
removed from the model, or replaced with
short-term adaptation, spontaneous NSs are preserved, but the
poststimulation activity no longer approximates the induced
stimulation.

After stimulation, STDP induces a marked reorganization of
the functional interactions among connected cells, leading to a
fragmentation of cells into communities with distinct cross-
correlation functions. The observed fragmentation of functional
interactions is unlikely to be caused by some bias in the initial
state of the system before simulation. Indeed, neither did intrin-
sic cell parameters nor synaptic strengths correlate reliably with
community membership. Rather, communities are formed as a
result of spike interactions that are reinforced through time by
synaptic plasticity. A logical extension of this conclusion is that it
might be possible to slow down the return of synaptic interac-
tions to their prestimulation state by inhibiting spontaneous ac-
tivity immediately after stimulation. Because of the complexity of
spike interactions, and the effect that millisecond differences in
spike timing have on overall dynamics (Fig. 12), predicting the
exact number of communities in the poststimulation network of
interactions as well as which particular cells will fall into one
community or another would likely require an analysis whose
complexity approaches that of the system under study.

Although other modeling approaches have examined the role
of STDP under different forms of neural stimulation (Tsuda,
2001; Suri and Sejnowski, 2002; Yoshioka, 2002; Nowotny et al.,
2003) as well as spontaneous activity (Izhikevich, 2006), the cur-
rent work shows how a single model can account for established
experimental findings relative to both spontaneous and induced
NSs. When simulated NSs are induced with a rhythmic stimula-
tion, the model demonstrates the ability to transition from a state
of spontaneous, nonperiodic synchronization, to a stimulus-
induced, more periodic state of activity. Hence, the tendency of
the model to spontaneously produce nonperiodic NSs does not
preclude the generation of more ordered responses under stim-
ulation (Marom and Shahaf, 2002).

Given the ubiquity of spontaneous activity across species and
brain regions (Raichle, 2006), could it have a functional rele-
vance? One suggestion is that nonperiodic forms of spontaneous
activity may facilitate responses to external stimuli by preventing
resting-state activity from getting permanently “stuck” in a par-
ticular state (i.e., a so-called attractor state). We thus conjecture
that the upshot of nonperiodic forms of activity may be to enable
a great deal of flexibility and rapid responsiveness to external
events. In future work, this conjecture could be extended further
by using the model proposed here to encode more behaviorally
and cognitively relevant stimuli. Studies aimed at this goal are
already beginning to emerge. For instance, a recent theoretical

model based on STDP (Koene and Hasselmo, 2008) captures the
replay of spatiotemporal sequences of spikes observed in hip-
pocampus during slow-wave sleep (Lee and Wilson, 2002) as well
as consummatory behavior (Foster and Wilson, 2006). More
generally, the well documented role of STDP in learning tempo-
ral sequences (Abbott and Blum, 1996; Bi and Poo, 1999) makes
it a promising avenue of exploration toward uncovering the basic
mechanisms of learning and memory.

The current work is a step forward in bridging spontaneous
and stimulus-driven forms of synchronization, and the model
developed offers a relatively good match to some aspects of ex-
perimental data (for instance, in fitting an exponential function
to the growth of population activity preceding NSs). However, we
do not provide a comprehensive coverage of the extensive litera-
ture on the statistics of spontaneous and evoked activity. Addi-
tional work will be required to capture other specific findings,
including (but not limited to) neural avalanches (Beggs and
Plenz, 2003) and so-called “cortical song” (Ikegaya et al., 2004),
both constituting highly nonrandom forms of spontaneous ac-
tivity. Recent modeling work is moving in that direction (Abbott
and Rohrkemper, 2007).

In conclusion, although the proposed model is a simplified
account that remains to be enriched by additional biophysical

Figure 11. No echoic trace is produced in a model without STDP, despite the presence of short-term adaptation. Spiking
activity of simulation across all cells is shown (for details, see Fig. 10 A).

Figure 12. Millisecond precision of spike dynamics in the model. Three different simulations
each run with identical initial conditions. The top condition receives a single pulse of stimulation
at time 1100 ms (approximate temporal location indicated by the arrow above the top raster),
and the subsequent conditions receive the same pulse 1 ms later (i.e., at 1101 and 1102 ms).
Pulses were delivered at 1000 mV and lasted for 5 ms. Despite the stimulation being delivered
extremely closely in time across the three conditions, notice the marked divergence in spike
dynamics, lasting well beyond the time of stimulation.
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details, additional developments will likely not overturn the fun-
damental property of this simple account to produce nonperi-
odic synchronization under reasonable conditions. The nonperi-
odic synchronization of simulated cells may represent a natural
and unavoidable consequence of spontaneous cell interactions in
numerous regions of the brain.

References
Abbott LF, Blum KI (1996) Functional significance of long-term potentia-

tion for sequence learning and prediction. Cereb Cortex 6:406 – 416.
Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neu-

rosci 3 [Suppl]:1178 –1183.
Abbott LF, Rohrkemper R (2007) A simple growth model constructs critical

avalanche networks. Prog Brain Res 165:13–19.
Aoki T, Aoyagi T (2007) Synchrony-induced switching behavior of spike

pattern attractors created by spike-timing-dependent plasticity. Neural
Comput 19:2720 –2738.

Axmacher N, Mormann F, Fernández G, Elger CE, Fell J (2006) Memory
formation by neuronal synchronization. Brain Res Rev 52:170 –182.

Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits.
J Neurosci 23:11167–11177.

Bi G, Poo M (1999) Distributed synaptic modification in neural networks
induced by patterned stimulation. Nature 401:792–796.

Bland BH, Konopacki J, Dyck R (2005) Heterogeneity among hippocampal
pyramidal neurons revealed by their relation to theta-band oscillation and
synchrony. Exp Neurol 195:458 – 474.

Cassenaer S, Laurent G (2007) Hebbian STDP in mushroom bodies facili-
tates the synchronous flow of olfactory information in locusts. Nature
448:709 –713.

Chao TC, Chen CM (2005) Learning-induced synchronization and plastic-
ity of a developing neural network. J Comput Neurosci 19:311–324.

Cossart R, Aronov D, Yuste R (2003) Attractor dynamics of network UP
states in the neocortex. Nature 423:283–288.

Davison ML (1983) Introduction to multidimensional scaling and its appli-
cations. Appl Psychol Meas 7:373–379.

Elbert T, Ray WJ, Kowalik ZJ, Skinner JE, Graf KE, Birbaumer N (1994)
Chaos and physiology: deterministic chaos in excitable cell assemblies.
Physiol Rev 74:1– 47.

Eytan D, Marom S (2006) Dynamics and effective topology underlying syn-
chronization in networks of cortical neurons. J Neurosci 26:8465– 8476.

Eytan D, Brenner N, Marom S (2003) Selective adaptation in networks of
cortical neurons. J Neurosci 23:9349 –9356.

Feller MB, Butts DA, Aaron HL, Rokhsar DS, Shatz CJ (1997) Dynamic
processes shape spatiotemporal properties of retinal waves. Neuron
19:293–306.

Foster DJ, Wilson MA (2006) Reverse replay of behavioural sequences in
hippocampal place cells during the awake state. Nature 440:680 – 683.

Fujisawa S, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y (2004) BDNF
boosts spike fidelity in chaotic neural oscillations. Biophys J
86:1820 –1828.

Gerstner W, Kistler W (2002) Spiking neuron models: single neurons, pop-
ulations, plasticity. Cambridge, UK: Cambridge UP.

Figure 13. The network of synaptic interactions among cells is restructured after a rhythmic 10 Hz stimulation. A, Girvan–Newman analysis of synaptic connectivity before and after stimulation.
Different communities are labeled by color for each cell in the network (for ease of visualization, only the top 10 largest communities are colored). Neurons are arranged in space according to a
multidimensional scaling with high goodness-of-fit (stress values, �0.2). B, Population cross-correlograms for the three largest communities in the prestimulation and poststimulation networks
(corresponding community shown by color in top right of each figure). Gray lines, Average cross-correlogram obtained by 100-fold bootstrap reshuffling of the spike times. Temporal locations at
which the population cross-correlogram crosses at least 99% of the shuffled cross-correlograms are shown in red.

Thivierge and Cisek • Nonperiodic Synchronization J. Neurosci., August 6, 2008 • 28(32):7968 –7978 • 7977



Girvan M, Newman ME (2002) Community structure in social and biolog-
ical networks. Proc Natl Acad Sci U S A 99:7821–7826.

Gütig R, Sompolinsky H (2006) The tempotron: a neuron that learns spike
timing-based decisions. Nat Neurosci 9:420 – 428.

Hosaka R, Araki O, Ikeguchi T (2008) STDP provides the substrate for ig-
niting synfire chains by spatiotemporal input patterns. Neural Comput
20:415– 435.

Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R (2004)
Synfire chains and cortical songs: temporal modules of cortical activity.
Science 304:559 –564.

Izhikevich EM (2006) Polychronization: computation with spikes. Neural
Comput 18:245–282.

Jimbo Y, Tateno T, Robinson HP (1999) Simultaneous induction of
pathway-specific potentiation and depression in networks of cortical neu-
rons. Biophys J 76:670 – 678.

Jun JK, Jin DZ (2007) Development of neural circuitry for precise temporal
sequences through spontaneous activity, axon remodeling, and synaptic
plasticity. PLoS ONE 2:e723.

Koene R, Hasselmo M (2008) Reversed and forward buffering of behavioral
spike sequences enables retrospective and prospective retrieval in hip-
pocampal regions CA3 and CA1. Neural Netw 21:276 –288.

Kube K, Herzog A, Michaelis B, de Lima A, Voigt T (2008) Spike-timing-
dependent plasticity in small-world networks. Neurocomputing
71:1694 –1704.

Lee AK, Wilson MA (2002) Memory of sequential experience in the hip-
pocampus during slow wave sleep. Neuron 36:1183–1194.

Marom S, Shahaf G (2002) Development, learning and memory in large
random networks of cortical neurons: lessons beyond anatomy. Q Rev
Biophys 35:63– 87.

Masquelier T, Guyonneau R, Thorpe SJ (2008) Spike timing dependent
plasticity finds the start of repeating patterns in continuous spike trains.
PLoS ONE 3:e1377.

Masuda N, Kori H (2007) Formation of feedforward networks and fre-
quency synchrony by spike-timing-dependent plasticity. J Comput Neu-
rosci 22:327–345.

Melloni L, Molina C, Pena M, Torres D, Singer W, Rodriguez E (2007)

Synchronization of neural activity across cortical areas correlates with
conscious perception. J Neurosci 27:2858 –2865.

Mikkonen JE, Grönfors T, Chrobak JJ, Penttonen M (2002) Hippocampus
retains the periodicity of gamma stimulation in vivo. J Neurophysiol
88:2349 –2354.

Murthy VN, Sejnowski TJ, Stevens CF (1997) Heterogeneous release prop-
erties of visualized individual hippocampal synapses. Neuron
18:599 – 612.

Nowotny T, Zhigulin VP, Selverston AI, Abarbanel HD, Rabinovich MI
(2003) Enhancement of synchronization in a hybrid neural circuit by
spike-timing dependent plasticity. J Neurosci 23:9776 –9785.

Rabinovich MI, Abarbanel HD (1998) The role of chaos in neural systems.
Neuroscience 87:5–14.

Raichle ME (2006) Neuroscience. The brain’s dark energy. Science
314:1249 –1250.

Ramón F, Gronenberg W (2005) Electrical potentials indicate stimulus ex-
pectancy in the brains of ants and bees. Cell Mol Neurobiol 25:313–327.

Riehle A, Grün S, Diesmann M, Aertsen A (1997) Spike synchronization
and rate modulation differentially involved in motor cortical function.
Science 278:1950 –1953.

Skinner FK, Chung JY, Ncube I, Murray PA, Campbell SA (2005) Using
heterogeneity to predict inhibitory network model characteristics. J Neu-
rophysiol 93:1898 –1907.

Sporns O (2002) Graph theory methods for the analysis of neural connec-
tivity patterns. In: Neuroscience databases (Kötter R, ed), pp 171–186.
Boston: Klüwer.
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