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The relationship between spiking activities in motor cortex and movement kinematics has been well studied in neurologically intact
nonhuman primates. We examined the relationship between spiking activities in primary motor cortex (M1) and intended movement
kinematics (position and velocity) using 96-microelectrode arrays chronically implanted in two humans with tetraplegia. Study partic-
ipants were asked to perform two different tasks: imagined pursuit tracking of a cursor moving on a computer screen and a “neural cursor
center-out” task in which cursor position was controlled by the participant’s neural activity. In the pursuit tracking task, the majority of
neurons were significantly tuned: 90% were tuned to velocity and 86% were tuned to position in one participant; 95% and 84%, respec-
tively, in the other. Additionally, velocity and position of the tracked cursor could be decoded from the ensemble of neurons. In the neural
cursor center-out task, tuning to direction of the intended target was well captured by a log-linear cosine function. Neural spiking soon
after target appearance could be used to classify the intended target with an accuracy of 95% in one participant, and 80% in the other. It
was also possible to extract information about the direction of the difference vector between the target position and the instantaneous
neural cursor position. Our results indicate that correlations between spiking activity and intended movement velocity and position are
present in human M1 after the loss of descending motor pathways, and that M1 spiking activities share many kinematic tuning features
whether movement is imagined by humans with tetraplegia, or is performed as shown previously in able-bodied nonhuman primates.
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Introduction
Neural activity in the primate primary motor cortex (M1) is
known to correlate with movement kinematics. Previous studies
in nonhuman primates have described M1 tuning to position,
velocity and acceleration of the hand during point-to-point
reaching, pursuit tracking, and drawing movements (Georgo-
poulos et al., 1982; Kettner et al., 1988; Schwartz, 1994, 2004; Fu
et al., 1995; Moran and Schwartz et al., 1999; Paninski et al.,
2004). Although the interpretation and identification of the
mechanisms underlying these tuning functions remain contro-

versial (Kalaska et al., 1989; Todorov, 2000; Scott et al., 2001;
Scott, 2004), their statistical characterization has been important
in informing and constraining models of M1’s participation in
motor control. Studies of the relationships between spiking ac-
tivities and movement control have been, however, largely lim-
ited to the study of nonhuman primates because of the need for
an invasive sensor to record neuronal action potentials.

The launch of pilot clinical trials to develop neural interface
systems based on signals derived from intracortical microelec-
trode arrays provides a unique opportunity to evaluate the prop-
erties of M1 neurons in humans. We have previously reported
neural prosthetic results (Hochberg et al., 2006a) for the first
participant in a pilot clinical trial of an intracortically based neu-
ral interface system [BrainGate Neural Interface System (NIS);
Cyberkinetics Neurotechnology Systems, Foxborough, MA].
Among the many unknowns, it was unclear whether and how the
presumed arm area in M1 [the “knob” (Yousry et al., 1997)]
would be related to intended or attempted movement kinematics
(position and velocity), rather than actual movements, in pa-
tients with lost or highly impaired voluntary control of limb mo-
tion. This participant could successfully control the position of
external devices (e.g., a computer cursor) via a linear filter that
related M1 spiking to position. Although the type of imple-
mented tasks, training procedures and online neural decoding
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algorithms in the pilot trial were primarily designed with neuro-
prosthesis goals in mind, analysis of the collected data provides
the opportunity to investigate more general encoding properties
in human M1, also furthering neural interface system develop-
ment. Here, we studied the relationship between spiking activities
and intended movement velocity and position in two trial partic-
ipants during two tasks: (1) imagined pursuit tracking of a com-
puter cursor moving on a screen, and (2) a “neural cursor center-
out” task executed by the participant using a neural interface
system.

Materials and Methods
Participants, surgical procedures, and the BrainGate system
An investigational device exemption (IDE) for these studies was obtained
from the United States Food and Drug Administration. Participant 1
(SCI001, henceforth referred to as S1) in this study was a 24-year-old
male who, 3 years before trial enrollment, sustained a knife wound that
transected the spinal cord between cervical vertebrae C3 and C4, result-
ing in complete tetraplegia (C4 ASIA A). Participant 2 (SCI003, hence-
forth referred to as S3) was a 53-year-old female who sustained a pontine
stroke 9 years before trial enrollment, resulting in loss of speech and
locked-in syndrome, which later resolved to incomplete tetraplegia. Un-
like S1, this participant has intact sensory pathways, with normal percep-
tion of light touch, pinprick, and kinesthetic stimuli. After informed
consent and medical and surgical screening procedures, a small array of
electrodes was implanted into the arm area of the dominant precentral
gyrus of each participant using a pneumatic technique (Rousche and
Normann, 1992; Suner et al., 2005). The M1 hand/arm area was identi-
fied anatomically as the “knob” region (Yousry et al., 1997; Hochberg et
al., 2006a) of the precentral gyrus in preoperative magnetic resonance
imaging (MRI). Although the posterior region of the precentral gyrus
was targeted, it is possible that some of the array recordings included
neurons from Brodmann area 6.

The recording device, preamplifiers, data acquisition systems, and
computer are part of the investigational NIS. The sensor is a 10 � 10 array
of silicon microelectrodes that protrude 1 mm (S1) or 1.5 mm (S3) from
a 4 � 4 mm platform (Guillory and Norman, 1999). Ninety-six elec-
trodes were available for signal acquisition. At manufacture, electrodes
had an impedance of 322 � 138 k� (mean � SD, at 1 kHz) for S1 and
310 � 125 k� for S3. After placement, electrodes penetrate into the
cortex to record neurons in intermediate layers. Recorded electrical sig-
nals pass externally through a titanium percutaneous connector, which is
secured to the skull. Cabling attached to the connector during recording
sessions routes signals to external amplifiers and then to a series of com-
puters in a cart that process the signals and convert them into an output
or control signal. We call this a “neural cursor” when the output is used
to control a cursor on a computer monitor displayed to the participant.

Neural recordings
Research sessions were scheduled at least once per week at the partici-
pant’s residence. Sessions would commence with neural recording and
spike discrimination, followed by a pursuit tracking task whose purpose
in the context of the clinical trial was the building of decoding filters. In
the two sessions for each participant reported in this study, a neural
cursor center-out task followed next, which used the decoder built dur-
ing the pursuit tracking task (see below for details). Only those neural
signals (units) selected immediately before decoder building were used
for that session’s neural cursor center-out task. Units were manually
discriminated by a technician using visual features to place time-
amplitude windows on waveforms displayed within 1.6 ms windows
triggered when the signal crossed a manually adjusted threshold (Cy-
berkinetics Central Software) while the participant was at rest. All on-line
experiments used spike events sorted in this manner. For the off-line
analyses described here, spikes were re-sorted using Off-line Sorter
(Plexon, Dallas, TX). Sorted spikes were treated as single units depending
on several criteria including analysis of autocorrelation functions, wave-
forms and signal-to-noise ratios (Suner et al., 2005). The analyses were
performed on data from sessions corresponding to postoperative days 86

and 90 (S1) and to days 54 and 55 (S3). Each of these was treated as a
separate data set with no assumptions about which neurons may have
been recorded in both sessions. We considered that the recorded spikes
were generated by the same neuron during the session if the correspond-
ing time amplitude window discriminator for that neuron remained the
same across the session. However, day to day small motions of the mi-
croelectrode array could result in variation of recorded waveforms from
the same neuron or the measurement of a different neuron that had
similar autocorrelation properties and similar recorded waveforms at the
same electrode. For these reasons, the determination of whether any
particular unit recorded on one day was the same as or different from that
recorded on a subsequent day is a difficult problem.

Behavioral tasks
We studied M1 tuning to intended movement position and velocity in
two different tasks: imagined visually guided pursuit tracking and neural
cursor center-out tasks.

Visually guided pursuit tracking. Participants were asked to track a
computer cursor moving on a monitor, as if they were controlling its
position by intending to move their dominant arm or hand, similar to
controlling a computer cursor via a hand held mouse. We refer to this
moving computer cursor as the “tracked” cursor (TC). The TC trajectory
was controlled by a technician, positioned beside the participant, via a
computer mouse. The TC was moved through a succession of randomly
positioned targets on the screen. Examples of TC paths can be seen in
Figure 2 and in supplemental videos 1– 4 (available at www.jneurosci.org
as supplemental material). Target positions were randomly drawn from a
uniform distribution over the workspace. The center of a 19 inch com-
puter monitor was �59 cm away from the participant’s head and the
workspace subtended a visual angle of 33.9° (36 cm) and 27.6° (29 cm)
for the horizontal and vertical dimensions, respectively. Participants
were seated in their wheelchair for all sessions, with their arms positioned
on the arm rests of his chair (S1) or on her lap (S3). In each session, the
tracking of the cursor was organized in eight or more blocks that lasted 1
min each.

These pursuit tracking blocks had been designed for the purpose of
building filters to be used in on-line decoding to drive a neurally con-
trolled cursor in the subsequent center-out and assistive device control
tasks. We inferred the participants’ intended hand movements on the
basis of instructed actions, because measurement of kinematics of overt
behavior was not possible. The filter building procedure has been de-
scribed previously (Serruya et al., 2002; Hochberg et al., 2006a). Briefly,
for each session, single and multiunit data were used to create a linear
filter decoder that related M1 spiking to position to generate a two-
dimensional position output signal. In the beginning of the session, four
1-min-long tracking blocks were presented with only the TC and succes-
sively appearing targets visible on the screen. An initial filter was built
with the neural activity collected during these four blocks. This filter was
used to generate a feedback cursor (FC) about the decoded position.
Next, four more blocks were generated, where the target and both the TC
and FC were shown on the screen. The purpose of the FC was to famil-
iarize the participants with the presence of a neurally controlled cursor
on the screen. During this filter building epoch, participants were in-
structed not to attempt to correct for errors between tracked and feed-
back cursor positions. The filter was updated at the end of each block. To
create the final filter to be used in the on-line center-out task, only the
neural and position data from the last four blocks were used. The posi-
tion linear filters were constructed from a response matrix containing the
firing rate over a 1.4 s history for each neuron (28 50 ms bins), using the
pseudoinverse to solve the least-squares regression problem. In this study
we focus on the off-line analysis of these last four pursuit tracking blocks.
Also, off-line decoding analyses used different decoding algorithms (see
below).

Neural cursor center-out with on-line decoding closed-loop control. A
center-out task was performed after a linear filter decoder had been built
during the pursuit tracking task performed earlier on the same day. In
each session, each participant completed 80 trials of a four-direction
center-out task: the participant was instructed to imagine moving a
circle-shaped cursor displayed on the screen to one of four peripheral
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targets, positioned at 0, 90, 180, and 270°, subtending a visual angle of
4.8° (5 cm) from the center of the monitor; the distance from screen
center to target center was 9.5 cm (9.2°). The position of this cursor was
obtained by regressing spiking activity onto screen position via the linear
filter built in the pursuit tracking task. This on-line neurally controlled
cursor is henceforth referred to as the neural cursor (NC). The NC sub-
tended a visual angle of 2.43° (2.5 cm diameter). A trial began after the
participant held the NC over the center target for 500 ms. At the start of
a trial, one of four peripheral targets appeared on the screen. Participants
were instructed to move the NC to the target location and to hold it at
that location for 500 ms. A trial terminated after 7 s. Trials were consid-
ered successful if the target was acquired in 7 s or less; trials were consid-
ered failures if the target was not acquired in 7 s. Regardless of whether or
not the target was successfully acquired, because the NC was under con-
stant neural control, the participant needed to return the cursor to the
center target (and dwell there for 500 ms) before the next trial would
begin. In each session, 20 trials were collected for each of the 4 pseudo-
randomly presented radial targets. Videos showing examples of these
center-out trials are available in the supplemental material (available at
www.jneurosci.org).

Data analysis 1: off-line analyses of tuning functions
Modeling of spiking activity as a function of kinematic covariates during
pursuit tracking. We represented the spiking activity (recorded spike
times) of each sorted unit as a discrete time neural point process (Truc-
colo et al., 2005), i.e., as a binary sequence (spike train) obtained by
determining whether a spike occurred or not in each consecutive time
bin of width �t � 1 ms. The value of this sequence at a particular time t
is here denoted by �Nt � [0,1]. To investigate the relationship between a
neuron’s spiking activity and specific kinematic covariates, we modeled,
in the log domain, the instantaneous spiking rate as a function of the
covariates. Four models were examined: position, velocity, direction, and
speed models. For the model of spiking activity as a function of TC
position (position model), we used the following:

log�t
c�xt��,yt��	 � � � �1xt�� � �2yt��, (1)

where �t
c is the instantaneous spiking rate function (in spikes/s) at time t

for the cth neuron (out of C recorded neurons), x and y are the horizontal
and vertical positions, respectively, � is a time lag, and [�, �1, �2] are
model parameters to be estimated. A related position model in three
dimensions was presented by Kettner et al. (1988). The chosen form of
the model of spiking activity as a function of TC velocity (velocity model)
was a variation of the model proposed previously by Moran and Schwartz
(1999):

log�t
c� ẋt��,ẏt��	 � � � ��ẋt���cos��t�� 	 �0	 � � � �1ẋt�� � �2ẏt��,

(2)

where ẋt � [ẋt, ẏt]
T is the velocity vector, �t is the movement direction of

TC and �0 is the preferred movement direction (PD) of the neuron.
Although the same letters � and � appear in different models, they relate
to different parameter values depending on the model. This particular
velocity model has been successfully used before in approximations of
M1velocity tuning functions in monkeys performing pursuit tracking
and center out tasks with their hand (Truccolo et al., 2005). Also, our
model is closer in form to the exponential form based on the von Mises
distribution, which has been shown to capture well the tuning to direc-
tion in spiking activity in monkeys performing center-out tasks
(Amirikian and Georgopoulos, 2000). To separately investigate M1 tun-
ing to direction and speed of the TC, we also considered the direction
model:

log�t
c��t��	 � � � �1cos��t��	 � �2sin��t��	 (3)

and speed model

log�t
c��ẋt���	 � � � ��ẋt���. (4)

A unit was considered tuned to a covariate whenever the following two
conditions were satisfied (McCullagh and Nelder, 1989): (1) at least one

of the coefficients in the model was statistically significant (Wald confi-
dence intervals, p value 
 0.05), and (2) a significant reduction in devi-
ance was obtained from a kinematic model when compared with a model
including only the estimated mean spiking rate (
 2 test, p value 
 0.05).
The deviance was computed under the Poisson distribution. (For intu-
ition purposes, one can think of the deviance under the Gaussian distri-
bution; in this case the deviance is simply the residual sum of squares.)
Optimal time lags � were determined by finding the time lag that maxi-
mized the log-likelihood function of the point process. All of the above
models were fitted using standard functions for generalized linear mod-
els in Matlab (MathWorks, Natick, MA). More details about the motiva-
tion and maximum likelihood fitting of these nonlinear neural point
process models can be found in the study by Truccolo et al. (2005).

Assessment of changes in preferred direction across experimental sessions.
We examined whether the preferred direction of a tuned unit during the
pursuit tracking task changed significantly from one session to the other.
A bootstrap resampling procedure was used to assess the statistical sig-
nificance of preferred direction changes (Chestek et al., 2007). In brief,
the bootstrap procedure consisted of the following steps. First, for a
chosen unit and session, a distribution of preferred directions was gen-
erated by bootstrap sampling with replacement of the observed unit’s
spiking activity and the related velocity covariate at the previously esti-
mated optimal time lag. One thousand bootstrap samples were used. For
each of these bootstrap samples, a velocity model (Eq. 2) was fitted and
the corresponding preferred direction was obtained as tan �1(�2/�1) re-
solved to the proper quadrant. Second, once a distribution of PDs for a
particular unit and session was generated, the circular mean (Zar, 1999)
of the distribution was subtracted from each of the sampled PDs. Third,
for a chosen unit, we sampled one PD from the session 1 zero mean
distribution and another PD from the session 2 zero mean distribution,
and computed their absolute angle difference. By repeating this proce-
dure (1000 samples) the distribution of changes in PD corresponding to
the null hypothesis (no change in PD) was obtained. This distribution
was used to compute the probability that the actually observed change in
PD was statistically zero. Units whose PD difference had a p value 
 0.05
[false discovery rate (FDR) corrected for multiple comparisons] (Ben-
jamini and Hochberg, 1995; Benjamini and Yekutieli, 2001) were con-
sidered to have a significant change in PD between the two sessions. To
attenuate the effect of the spiking activity’s temporal dependencies in the
bootstrap sampling, we dropped all of the spike train samples that oc-
curred within the spike train autocorrelation length.

Assessment of the power of a model to predict spiking activity during
pursuit tracking. We assessed how much of a neuron’s spiking activity
variation was explained by the above described models. Here, this assess-
ment is performed by measuring the power of a model to predict the
occurrence or not of single spikes. A measure of predictive power can be
derived from receiver operating characteristic (ROC) curve analysis
(Fawcett, 2006). ROC curves were generated as follows. A spike is pre-
dicted to happen at a particular time t whenever the spike probability
conditioned on a particular model, in other words:

P��Nt � 1��t� � 		 � �t� � 	�t (5)

is greater than a specified threshold. A ROC curve can then be generated
from the true positive (hit probability) and false positive rates of pre-
dicted spikes obtained at different thresholds values. The area under the
ROC curve (AUC) gives the probability that, when two different samples
(one containing a spike, �N � 1, and the other not, �N � 0) are ran-
domly drawn from the data, the model will give a higher probability for
the sample with a spike. A measure of predictive power can then be
derived from the AUC as follows:

predictive power � 2 � AUC 	 1, (6)

with values ranging from 0 to 1. If a model does not improve spike
prediction beyond chance level, the AUC will be close to 0.5 (i.e., chance
level) and the predictive power will be zero as expected for a model
without any predictive power. However, if the model always assigns a
higher probability to a sample containing a spike, both the AUC and the
predictive power will be one, again as expected for a model with maxi-
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mum predictive power. In other words, there
exists in this case a specific threshold such that
the prediction would be perfect: the model
would have then explained all of the variation of
the spiking activity in the recorded data.

Relative importance of different kinematic co-
variates to M1 spiking during pursuit tracking:
model independent assessment. Additionally, a
model independent comparison of the relative
importance of a kinematic covariate to the pre-
diction of single neuron spiking activity was at-
tempted by computing the mutual information
between the covariate and the spiking activity.
However, given the small sample and low spik-
ing rates, the variance of mutual information
estimates was high. An alternative, less powerful
but still informative measure based on linear
second-order correlation was taken by comput-
ing the cross-correlation function between se-
quences of spike counts (50 ms time bins) and
position, velocity, direction and speed at multi-
ple time lags. Cross-correlation functions for
position and velocity were computed separately
for each coordinate. For direction, a circular-
linear correlation measure was used (Zar, 1999).
We report, for each neuron and covariate, the
maximum absolute value of the cross-
correlation function. Confidence intervals
(95%) for the null hypothesis were obtained via
random permutation tests that used phase ran-
domization of the covariate time series (for de-
tails, see supplemental text C, available at
www.jneurosci.org as supplemental material).

Modeling of spiking activity as a function of
target direction during the neural cursor center-
out task. We examined the tuning of M1 neu-
rons to target direction during the initial period
after target onset. We used the same direction
model (Eq. 3) with the exception that, because
the target direction was constant during a trial,
the spike trains were transformed into counts
over a 400 ms time window. Confidence inter-
vals for the direction tuning functions in the
neural cursor center-out task were estimated via
bootstrap resampling (5000 bootstrap samples).

Data analysis 2: off-line decoding of
instantaneous velocity, position, difference
vector direction and intended target
Off-line decoding of instantaneous velocity and
position during pursuit tracking. The observed
spike trains from of all of the tuned neurons
together with the corresponding velocity or po-
sition models (fitted to training data sets) were
used to decode off-line the velocity or position
of the TC cursor in test data sets. We adopted a state space formulation to
decode the TC velocity from the spike trains in the recorded neural
ensemble (Eden et al., 2004a; Truccolo et al., 2005). Following Bayes’
rule, the posterior probability distribution for velocity at time t � � can
be expressed as follows:

p�ẋt����N0:t	 �
Pr��Nt��N0:t��t,ẋt��	p�ẋt����N0:t��t	

Pr��Nt��N0:t��t	
, (7)

where �N0:t � ��N0:t
1 ,�N0:t

2 ,. . .,�N0:t
C 
 corresponds to the collection of

spike trains from C observed neurons during an interval from time 0 up
to time t. A stochastic state space point process filter can be derived as a
recursive decoding algorithm (see supplemental text A, available at
www.jneurosci.org as supplemental material). In this algorithm, the de-

coded velocity is taken to be the estimated mode of the posterior distri-
bution (Eq. 7). The initial value for the decoded velocity at time t � 0 was
sampled from a zero mean Gaussian distribution with variance equal to
the variance of the observed TC velocity. Note that the true observed
velocities never entered the recursive algorithm; the input to the decod-
ing algorithm consisted only of the observed spike trains. For visualiza-
tion purposes, we plotted the decoded velocity in polar coordinates, i.e.,
decoded direction and speed, in the Results section. The position model
(Eq. 1) and this stochastic state point process filter were used for off-line
position decoding.

Correlation coefficients between true and decoded covariate values, as
well as specific decoding examples (see Fig. 4), were computed on test
data sets. Training and test data sets were obtained as follows. Each 1 min
block was selected once to be the testing data set whereas the other
remaining three blocks constituted the training data set. For example, if

Figure 1. Spiking activity. A, Average spike waveforms of sorted units in the corresponding microelectrode (labeled C1, C2,
etc., of 96 recording channels) for S1. Examples are from sessions 1 and 2. In some cases, more than one unit was identified in the
same electrode and session (for example, C10). The vertical bar on the left of each of the waveforms corresponds to 100 �V (i.e.,
�50 to 50 �V). Waveforms span 1.6 ms. B, Average spike waveforms for S3. Examples from session 1 are shown. Similar
examples were recorded in session 2. C, D, Two examples of recorded spike waveforms and the corresponding ISI distribution are
shown in C and D for S1 and S3, respectively. The thick darker curve corresponds to the average waveform in the session. Three
hundred randomly chosen waveforms are shown.
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the first three tracking blocks provided 3 min of training data to build the
neural encoding models, the test data consisted of the fourth pursuit
tracking block, and so on until each block had been selected once for test
data. The reported correlation coefficients correspond to the average of
the correlation values obtained for each test data set separately.

Off-line decoding of the direction of the instantaneous difference vector
during the neural cursor center-out task. The same direction model (Eq. 3)
and stochastic state point process filter described above for velocity were
used to decode the direction of the instantaneous difference vector be-
tween the NC position vector and the target position vector during the
neural cursor center-out task. To avoid confusion with the TC direction
denoted above by �t, the direction of the difference vector will be denoted
by �t. For details regarding the definition of the difference vector and its
direction, see Figure 10 A.

Off-line decoding of target direction during
neural cursor center-out task. We were interested
in the ability to decode (predict) the location of
a newly appearing target in the right, left, down,
or up radial position, from the ongoing spiking
activity. A naive Bayes classifier was used to de-
code the target direction. The conditional prob-
abilities p(N 1, N 2,. . . , NC), where Nc is the spike
count in a given time window for the cth neuron
and � the direction (0, 90, 180, or 270°) of the
target in a given center-out presentation, were
estimated nonparametrically. The representa-
tion of the spiking activity in terms of spike
counts was chosen for simplicity given that the
covariate of interest, target direction, was con-
stant during the trial. Leave-one-out cross-
validation was used to assess the classification
performance as function of window length and
time with respect to target onset. As an example
using a 100 ms long window, we computed the
classification performance based on spike
counts observed in this time window at several
different times with respect to target onset, start-
ing at time 0 and moving forward in steps of 25
ms. In other words, for time 0 ms the classifica-
tion was based on spiking counts observed in the
interval [�100 ms, 0 ms], for time 25 ms the
classification was based on [�75 ms, 25 ms],
and so on. The length of the explored windows
was varied from 100 to 700 ms in steps of 100 ms.

Results
A total of 29 sorted units (S1) and 121
sorted units (S3) per recording sessions
were included in the analyses presented
here, resulting in 58 (S1) and 242 (S3) neu-
ron recordings. Figure 1 shows the average
extra-cellular recorded action potentials
for the sorted neurons from each partici-
pant. The mean of the peak-to-peak ampli-
tudes of average waveforms across neurons
was 73�66 �V (mean �2 SD) for S1 and
173 � 312 �V for S3. Larger waveform am-
plitudes were observed in S3, perhaps re-
flecting closer proximity of electrode tips to
larger neurons in deep layers given that
longer electrodes were used in this partici-
pant. In a few channels, two or three units
were separated.

M1 spiking activity and intended
kinematics during pursuit tracking task
Before investigating relationships between

neural spiking and kinematics, we briefly describe the main sta-
tistical properties of the trajectories of the TC. Figure 2A shows
examples of paths of the TC during one of the 1 min tracking
blocks. These paths were generated by randomly placing, in se-
quence, a new target on the screen. Once the target was hit by the
TC, the target disappeared and a new one appeared on the screen
(see Materials and Methods). The distribution of movement di-
rection and speed of the TC in the four 1 min tracking blocks used
to fit velocity models are shown in Figure 2B. Motion of the TC in
S1 sessions was generally faster than in S3 sessions. Figure 2C
shows that both position and velocity had temporal correlations
spanning �5 s, and tended to show negative correlations at time

Figure 2. Pursuit tracking task: kinematics of the TC. A, Examples of the paths of the cursor tracked by S1 and S3. Each plot
corresponds to a 1 min tracking block. A technician moved the cursor (TC) to targets (data not shown) that appeared sequentially
in random locations on the screen. B, Joint distribution of direction (in radians) and magnitude (speed) of the velocity vectors
from the pursuit tracking blocks (two sessions) for S1 and S3. Speed is given in visual angle per second (degree/second). Speeds
of the presented TC were generally higher for S1 than S3. The two plots on the right show the marginal distributions for direction
and speed, respectively. C, Correlation functions. Autocorrelation functions, C(�, �), for position and velocity in both horizontal (x)
and vertical ( y) coordinates are shown in the top plots. The bottom plots show the cross-correlation functions, denoted by
C(�, �, �). Blue and red curves correspond to correlation functions for S1 and S3, respectively.
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Figure 3. M1 velocity tuning during pursuit tracking. A, B, Optimal time lag analysis. Examples of velocity tuning functions at different time lags for a neuron (C10a, S1, session 1) are shown in
A. Velocity is represented in polar coordinates. The color coding represents spiking rates with units of spikes per second. The corresponding log-likelihood under the velocity model as a function of
different time lags for these examples is shown in B. The stars on the curve indicate that the velocity model was statistically significant for that time lag. This neuron (Figure legend continues.)
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lags that differed for S1 and S3. Further, position and velocity in
the same coordinate were also positively and negatively corre-
lated depending on the time lag. Although the pursuit task was
designed to minimize all of these temporal correlations in and
among kinematic covariates, the observed correlations are likely
to have resulted from edge effects imposed by the workspace and

properties of natural motion (the TC was
controlled by a technician).

Tuning to velocity during pursuit tracking
M1 neurons were tuned to TC velocity in
both participants. We examined the rela-
tionship between spiking activity and past,
simultaneous and future velocities of the
TC (Fig. 3A). The fact that the TC motion
was relatively slow and that the TC’s target
was present on the screen during the entire
TC motion could have induced both delay
and anticipation effects (see below). For
this reason, we fitted the velocity model
(Eq. 2) for a wide range of different time
lags: � � [�4, �3.9,. . . , 0,. . . , 3.9, 4 s]. For
each neuron, we found the optimal time lag
(OTL), i.e., the time lag at which the log-
likelihood under the velocity model
achieved its maximum value, and checked
whether the model satisfied the two signif-
icance criteria (see Materials and Meth-
ods). A neuron was considered tuned to
velocity if both significance criteria were
met. For further analyses, we used only the
velocity tuning functions at the optimal
time lag. An example of optimal time lag
analysis based on the log-likelihood func-
tion is shown in Figure 3B. The distribu-
tions for the optimal time lag over the pop-
ulation of tuned neurons are shown in
Figure 3, C and D. In S1, optimal time lags
over the population were clustered �100 –
200 ms. This could be a reflection of antic-
ipation effects, given the structure of the
task: the participant knew the target posi-
tion at the start of the TC’s movement and
this movement toward the target was al-
most rectilinear. Optimal time lags for neu-
rons in S3 were bimodally distributed over
the interval, with clustering around posi-
tive and negative time lags (see Discus-
sion). A summary of preferred direction
and tuning depth at the OTLs over all of the
tuned neurons is shown in Figure 3, G and

H. The tuning depth was defined as the total rate modulation in
the tuning function accounted for by the covariate, in this case
velocity. Of the studied neurons across both sessions, 90% and
95% were tuned to velocity in S1 and S3, respectively. The veloc-
ity model can be seen as the introduction of speed effects to the
simpler direction model (Eq. 3). For this reason we assessed
whether the reduction in deviance obtained by the velocity model
with respect to the direction model was statistically significant
(second criterion for significance) (see Materials and Methods).
For all of the recorded units, this reduction in deviance was sta-
tistically significant (
 2 test, p 
 0.05), indicating that the speed
component in the velocity model added to the explanation of
spiking activity. A similar analysis comparing the direction and
the speed models (Eq. 4) revealed also that, for all of the tuned
neurons, the direction model achieved a larger reduction in de-
viance (
 2 test, p 
 0.05), suggesting that the direction model
explained more of the spiking activity than the speed model.

Additional evidence supporting velocity tuning in this pursuit

Figure 4. Off-line Decoding of TC velocity during pursuit tracking. Spike trains of velocity 2-tuned neurons were used, together
with the fitted velocity models (tuning functions as shown in Fig. 3A), to generate a neural ensemble prediction of the velocity of
the tracked cursor. In the examples shown, the models were fitted first to data from three 1 min pursuit tracking blocks (training
data) and then used to decode velocity on test data consisting of a different 1 min block. A stochastic state point process filter was
used for decoding (Eq. 7) (Eqs. S1–S7 in the supplemental material, available at www.jneurosci.org). At time 0, a random velocity
vector was assigned to the initial state and then at every millisecond, during the 60 s of tracking, the TC velocity vector was
updated according to the stochastic state point process filter output. For plotting purposes, the decoded velocity vector is shown
in polar coordinates, with speed given in visual angle (degree) per second. A, C, The neural decoded movement direction (red) and
the actual direction (black) are shown for S1 (A) and S3 (C). The dashed portion of the black curve represents segments where we
considered the cursor to be moving too slowly to have a clearly defined or perceivable movement direction (speed, 
2.5°/s). The
decoded speed of the tracked cursor is shown in B for S1 and D for S3. For computational simplicity, a single time lag was used for
all of the neurons in the ensemble.

4

(Figure legend continued.) seems to be maximally tuned to velocity at � � 0.5 s (i.e., to future
values of the TC’s velocity), suggesting anticipation effects. C, Distribution of the optimal time
lags over the population of tuned neurons in S1. D, Distribution of the optimal time lags over the
population of tuned neurons in S3. Positive time lags suggest anticipation effects. Such effects
could happen because a given target was present on the screen until it was acquired by the TC.
E, F, Summary of PDs and spike rate modulation for the population of velocity tuned neurons in
S1 (E) and S3 (F ). The direction of each vector gives the preferred direction (in degrees) and the
length of the vector denotes the tuning depth or spike rate modulation caused by variations in
velocity. Distribution for the same preferred directions and tuning depths over the tuned pop-
ulation in S1 and S3 are shown in G and H, respectively. Summaries and histograms include
neurons from the two recording sessions.
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tracking task was provided by the off-line
neural decoding of TC velocity in cross-
validated blocks. We set the time lag of the
velocity covariate for all of the neurons to
the same value given by the mean of the
optimal time lag over the population. Ob-
viously, this choice of a single time lag
might not have been optimal, but it was
taken, nevertheless, for simplifying the
computations. Correlation coefficients be-
tween true and decoded velocity com-
puted over all of the four 1 min block test
datasets (see Materials and Methods) were
relatively small (0.28 and 0.35 in S1, 0.37
and 0.35 in S3, for velocities in x and y
coordinates, respectively). Despite these
relatively small correlations, reasonably
accurate off-line decoding of the direction
of the velocity vector was achieved (Fig.
4A,C). Figure 4 shows decoding examples
for both participants.

We also examined whether the pre-
ferred direction of a tuned unit changed
significantly from one session to the other.
The two recording sessions for each partic-
ipant were separated by four and one
day(s) in S1 and S3, respectively. As in
Chestek et al. (2007), we visually inspected
waveforms and interspike distributions to
determine whether a recorded unit in a
given electrode seemed similar or not in
both sessions. Only the recorded units that
were tuned to direction in both sessions
were included in the analysis. In the case
that more than one unit was sorted from a
single electrode, only the largest unit en-
tered the analysis. A bootstrap sampling
procedure was used to assess the statistical
significance of changes in preferred direc-
tions (see Materials and Methods). In S1, 5
of 12 examined units (41%) showed a sig-
nificant change in PD ( p 
 0.05, FDR cor-
rect for multiple comparisons) (Benjamini
and Hochberg, 1995). Of these five units,
changes of 38.5, 41.5, 59.6, 114.0 and
130.9° were observed. In S3, 33 of 76
(43%) units showed a significant change in
PD. The changes in PD ranged from 30.9
to 176.2°, with a median of 125°. Possible interpretations of these
results are given in the Discussion.

Tuning to position during pursuit tracking
Our previous work (Hochberg et al., 2006a) demonstrated the
availability of position information in the recorded neuronal en-
sembles in S1, by showing that he was able to successfully control
a computer cursor and other devices via a position linear filter
decoder. Here, we report more extensive analyses for him and an
additional participant (S3) with a different neurological condi-
tion (see Materials and Methods). As was done for the analysis of
velocity tuning, we fitted the position model (Eq. 1) for a range of
different time lags � � [�4, �3.9,. . . , 0,. . . , 3.9, 4 s], and we
report analyses based on the position tuning function at the op-
timal time lag. Figure 5A shows an example of an empirically

estimated mean spiking rate conditioned on the TC position, and
the corresponding fitted model is shown in Figure 5B. Figure 5, C
and E, shows the distribution of PD in the position space for the
population of tuned units. This position PD corresponds to
the direction, in the two-dimensional position space, in which
the spiking rate changes the most with changes in position. The
distribution of optimal time lags for both participants is shown in
Figure 5, D and F. Optimal time lags for S1 and S3 tended to
cluster around � � 1 s, with wider spread for S3. Summaries for
both participants include tuned neurons from both sessions 1
and 2. Of the studied units, 86% and 84% were tuned to position
in S1 and S3, respectively. Position decoding has been previously
examined (Hochberg et al., 2006a); here we add that off-line
position decoding using the point process filter algorithm (see
Materials and Methods) (supplemental text A, available at

Figure 5. M1 position tuning during pursuit tracking. A, B, An example of a position-tuned neuron (C18a, S1, session 1) is
shown. The empirical mean spike rate conditioned on x,y position of the tracked cursor at � � 1 s is shown in A. To compute the
conditional mean rate, we used spike counts in 100 ms bins. The conditional mean rate is given in spikes per second (pseudocolor
coding). Blank bins refer to states in the position space where we considered there were not enough samples to estimate the
conditional mean (i.e., bins with 
10 samples during the four 1 min pursuit tracking blocks). Position is given in centimeters. The
corresponding position tuning function based on position model (Eq. 1) fitted to the actual point process data (1 ms time
resolution spike trains, not the conditional mean) is shown in B. Summaries of the PD in position space and of the tuning depth
modulation over the population of tuned neurons are shown in C for S1 and E for S3. These summaries include neurons from the
two recording sessions. The corresponding distributions of optimal time lags (OTL) are shown in D for S1 and F for S3. Optimal time
lags were determined based on the same log-likelihood analysis used for the velocity model (see Fig. 3 A, B).
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www.jneurosci.org as supplemental material) yielded correlation
coefficients between true (TC) and decoded position of 0.41 and
0.29 for S1, and 0.42 and 0.45 for S3 in x and y coordinates,
respectively.

Comparison between velocity and position models
Because differences in decoding performance can also be a reflec-
tion of the nature and assumptions in the decoding algorithm
itself, we used a different approach to compare position and ve-
locity models. We compared the velocity and position models in
terms of their power to predict the occurrence of single spikes (1
ms time resolution). As stated in the Materials and Methods sec-
tion, the predictive power (Eq. 6) is a value between 0 (minimum
predictive power) and 1 (maximum predictive power) and it is
derived from the area under the ROC curve. A predictive power
of 1 would mean that the model explained all of the variation in
the spike train.

Position and velocity models were fitted to data from the four
1 min pursuit tracking blocks. ROC curves were computed on the
same data. Because the number of parameters in the velocity and
position model was the same and this number was very small

compared with the number of samples,
data overfitting was not an issue and a
cross-validation scheme was not necessary.
Figure 6A provides an example of ROC
curve analysis for a single neuron. Summa-
ries of the predictive power of velocity and
position over the population of recorded
neurons from both participants are shown
in Figure 6, B and C. Differences between
the predictive power of position and veloc-
ity were minor and did not motivate fur-
ther detailed statistical testing.

We also performed a model-
independent comparison of the strength of
the relation between different kinematic
covariates (position, velocity, direction,
and speed) and M1 spiking activity. Low
spike rates and small sample data pre-
vented us from applying standard mutual
information analyses. Instead, we adopted
a less powerful but still informative mea-
sure: cross-correlation functions between
the 1 min long spike trains (transformed
into 50 ms counts) and the corresponding
time series of the kinematic covariate.
These functions were computed at multi-
ple lags and averaged across the four pur-
suit tracking blocks. Cross-correlations for
position and velocity were computed sep-
arately for x and y coordinates, and the cir-
cular–linear correlation (Zar, 1999) was
computed for the TC movement direction.
Neurons whose cross-correlation function
values (at any time lag) achieved statistical
significance were included in the analyses.
95% confidence intervals were obtained
from distributions generated via phase
randomization tests (see Materials and
Methods) (supplemental text C, available
at www.jneurosci.org as supplemental ma-
terial). Figure 7 summarizes this analysis
for both participants. A sign test per-
formed separately for each session and par-

ticipant revealed no mean differences between correlation values
for position and velocity in each coordinate over the recorded
neuron population ( p value � 0.05). Highly significant differ-
ences were obtained, however, when comparing direction and
speed (sign test, p value 
 0.0001) in each session and participant.
Correlation values were higher for direction in 93 and 96% of the
neurons for S1 (sessions 1 and 2, respectively), and 100% and
96% for S3. In summary, both predictive power and model-
independent comparisons did not reveal major differences in the
relative importance of velocity and position for explanation of
M1 spiking activity in this task. Significant differences were de-
tected only for the relative importance of direction and speed.

Relation of M1 neural activity to intended kinematics in a
neural cursor center-out task
As shown above, during the imagined pursuit tracking task, M1
neural activity in both participants with tetraplegia was tuned to
both TC position and velocity. We were also interested in further
investigating neuronal spiking activity when the participant was
using a neurally controlled cursor to acquire a series of targets.

Figure 6. Velocity and position spike prediction power during pursuit tracking: ROC analysis. A, ROC curve example for one
neuron. The curve was constructed by computing the true positive rate (hit probability) and false positive rate in spike prediction
based on a specific model (position model in this example) and different threshold values. The probability of a spike at a given
discrete time is derived from the instantaneous spiking intensity given a model. If this probability is higher than a specified
threshold, a spike is predicted. The shaded region corresponds to the AUC. B, The position and velocity models’ power to predict
a spike are shown for S1. Each point value corresponds to predictive power for a particular tuned neuron from either session 1 or
2. The diagonal line corresponds to equal prediction power for position and velocity. The prediction power was defined as 2 �
AUC � 1, ranging from 0 to 1 (maximum power). For details, see Materials and Methods (Eq. 6). C, Same as in B, but for S3. Tuned
neurons from session 1 and 2 were included. Over all, differences between predictive power of position and velocity models were
small in this pursuit tracking task.
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Spiking activity during a neural cursor control task
We start by investigating the time course of spiking activities and
the properties of their tuning functions to intended target direc-
tion during the neural cursor center-out task. Target onset was
preceded by a holding phase in which the participant kept the NC
at the center of the workspace for at least 500 ms. When this hold
period was satisfied, a target appeared at one of four radial posi-
tions (right, up, left, and down) and the participant proceeded,
following prior instruction, to move the NC toward the target.
Most of the analyses described below focus on the initial period
[0, 1.5 s] after target onset. Neurons recorded in both participants
showed clear modulation of their spiking rates after target onset.
Figure 8 shows examples of perievent time histograms (PETHs),
centered at target appearance (time 0). Modulation in the PETH
tended to occur around 300 ms for S1. In S3, the modulation
onset showed a broader range. In some cases, the temporal profile
of spike rate modulation varied according to the target.

M1 tuning to intended movement direction during neural cursor
center-out task
We studied the above described dependence of spiking rates on
different targets in terms of tuning to target direction. It is not
obviously expected that M1 spiking activity should be related to
intended movement direction in this center-out task. That is be-
cause the participants used a position based control interface to
perform this task (for more details, see Materials and Methods):
the position of the neural cursor was given by the output of a
position filter which explicitly extracted position, not velocity,
information from the recorded M1 neuronal ensemble via a lin-
ear mapping. As exemplified in Figure 9, A and C, tuning to target
direction was well captured by the direction model (Eq. 3, Mate-
rials and Methods). The percentage of neurons that showed sta-
tistically significant tuning to target direction in specified time
windows after target onset was 66 and 64% for S1 and S3, respec-
tively. Figure 9, B and D, summarizes the preferred directions in
the tuned population.

Because there were only four radial targets, intended target
(possibly also location) and intended direction could be con-
founded during the initial phase (0 –1.5 s) of “reaching.” There-
fore, the detected direction tuning could actually be a reflection
of tuning to intended target identity or position. For this reason,
we extended our analyses of direction tuning to later phases of the
center-out reaching. As reported previously, the on-line position
linear filter decoder used to animate the neural cursor was far
from optimal. Although the participants were able to navigate the
cursor from the center to the target and back, often in a few
seconds, the cursor motion commonly strayed from a straight or
a simple curvilinear path linking the center and the target. As a
result, there were many more than just four directions in which to
move the neural cursor toward the target during the reaching
phase. This provided us, therefore, with a much wider range of
intended directions for the examination of M1 direction tuning.
This examination was performed as follows.

Given target and instantaneous NC position vectors during a
center-out trial, the direction of the difference vector between
these two vectors can provide a reasonable approximation to the
intended movement direction in which to move the NC (for a
schematic description of these vectors, see Fig. 10A). In this sce-
nario, the direction of the difference vector would then approxi-
mate the direction of the intended velocity vector at each mo-
ment in time during the center-out task. We fitted direction
models (Eq. 3, with the covariate now representing the direction
of the difference vector) to the neural point process data (1 ms
time bins) and used these models together with the stochastic
state point process filter (see Materials and Methods) to decode
the direction of the difference vector. The instantaneous angle
error (i.e., angle difference between true and decoded direction of
the difference vector) obtained by using this decoding algorithm
was relatively small. It can be seen in Figure 10B that the distri-
bution of the angle error concentrated below 45°, demonstrating
that decoding of this direction clearly departed from chance lev-
els. Correlation coefficients (circular correlation) (Zar 1999) be-
tween the true and decoded difference vector’s direction were r �
0.21 and 0.4 for S1 and S3, respectively. An assessment of the
power of this covariate to predict spike activity is provided in
Figure 10C, where we have used the same ROC approach as done
in the analysis of velocity and position during the pursuit tracking
task. Both the decoding and predictive power analyses indicated,
therefore, that information about the direction of the difference
vector, or intended movement direction, was available in the M1
spiking activity during the neural cursor center-out task. Issues

Figure 7. M1 spiking activity and kinematics during pursuit tracking: correlation analysis. A,
B, A model independent assessment of the relative importance of different kinematic covariates
[position (pos), velocity (vel), speed, and direction] to M1 spiking activity was obtained by
computing cross-correlation functions between each covariate and the sequence of spike
counts for each neuron (see Materials and Methods for details). The plots summarize the distri-
bution of the maximum absolute cross-correlation function values between spike count se-
quences and the time series of a specific kinematic covariate over the recorded population of
neurons, including data from both sessions 1 and 2. The bottom and top boundary of each box
corresponds to the 2.5 and 97.5 percentiles, respectively; the interior line shows the median and
the crosses correspond to the computed maximum absolute correlation values for each neuron.
A sign test, applied to data from each session separately, revealed no mean differences ( p �
0.05) between cross-correlation values for position and velocity in each coordinate. Highly
significant differences were detected when comparing correlation means for direction and
speed (sign test, p 
 0.0001) in both S1 and S3.
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regarding neural adaptation, including changes in direction tun-
ing properties attributable to the type of the task (e.g., pursuit
tracking vs neural cursor center-out), are addressed in the
Discussion.

Off-line decoding of intended target during neural cursor
center-out task
We examined how well intended target could be decoded from
M1 activity during the initial phases of the reaching center-out
trials. We assessed the decoding performance of intended target
during the interval [0,1.5 s] of the center-out task for trials that
lasted at least 2 s. Figure 11, A and B, shows the distributions of
the times taken by the participants to move the neural cursor
from the center of the screen to the radial target and to hold at the
target for 0.5 s. By limiting our off-line analysis to the first 1.5 s,
we ensured that the neural spikes entering the decoding analyses
had occurred before target acquisition in all of the examined
trials. Figure 11, C and D, shows the temporal evolution of the
classification performance based on spike counts in a given mov-
ing time window (see Materials and Methods). A naive Bayes
classifier was used for classification. Models were fitted on train-
ing data and target classification was performed on test data using
a leave-one-out cross-validation scheme. In other words, a
trial was selected as the test trial, and all of the remaining

others were used to fit the model. We varied the window
lengths from 100 to 700 ms, in 100 ms steps. For each time and
window length, the conditional probability of a neuron’s spike
count in the window was estimated nonparametrically. In S1,
classification performance departed from chance classifica-
tion (0.25) at �200 ms after target onset. In S3, this departure
happened later at �400 ms. Maximum performance levels and
peak time depended on the length of the time window used for
the spike counts. The maximum correct classification perfor-
mance and performance peak time increased monotonically
with the window length (Fig. 11 E–H ). For each participant,
the time course in classification performance was about the
same in the two analyzed sessions.

Discussion
In two humans, M1 tuning to position and velocity of intended
movement shared many of the features previously observed in
able-bodied nonhuman primates. In particular, we have demon-
strated that M1 neural spiking in these two humans is strongly
tuned to intended movement direction in both pursuit tracking
and point-to-point (center-out) ‘reaching’ tasks. It is notable that
these features were observed years after severe damage to de-
scending motor pathways alone (S3) or combined damage to

Figure 8. A, B, Target onset PETHs during neural cursor center-out task. Examples of PETHs for nine different neurons from S1 (A) and S3 (B) from either session 1 or 2 are shown. Each row in the
figure corresponds to a particular neuron (e.g., C18a), and the four columns correspond to the four target directions (i.e., right, up, left, and down). The PETH for the top neuron includes the
corresponding raster plot. Target onset is at time 0. A time bin width of 50 ms was used to compute the spike counts and the corresponding spike rate. The red curve gives the smoothed histogram.
Each PETH was computed from 20 center-out trials.
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both descending and ascending pathways (S1), although it can-
not be ruled out that these features emerged as a result of the
neurologic injury or adaptation to specific task constraints (e.g.,
“massless” cursor and pure kinematics control) in the given ex-
perimental tasks. Although the analyses do not point to a partic-
ular mechanism underlying the nature of M1 representations and
their role in motor control in the intact nervous system, the ex-
istence of these tuning features in humans with tetraplegia has
implications for both models of motor control and for the devel-
opment of neuroprostheses for persons with paralysis or limb
loss. Aspects of these results warrant further elaboration.

Tuning to kinematics during pursuit tracking
The ability to decode movement direction continuously during 1
min long pursuit tracking blocks was notable: in contrast to previous
studies in able-bodied monkeys performing pursuit tracking with
actual hand movements (Paninski et al., 2004; Truccolo et al., 2005),
here the participants were unable to move their hands or arms. Al-
though we propose that the underlying source of tracking-related

velocity signals in M1 was an ‘imagined’ action or intention to move,
a few alternative explanations should be also considered. First, al-
though the two participants sustained damage to descending motor
pathways, voluntary motion of the head, neck and eyes remained.
These motions could have accompanied the imagined tracking. Our
previous analysis (Hochberg et al. 2006a) showed, however, that
head motion and trajectories of the neural cursor were poorly cor-
related, indicating that this remaining motion played a minor role, if
any. Furthermore, open loop experiments where the participant
(S1) was asked to simply imagine different arm and hand move-
ments yielded diverse and imagined-movement-specific modula-
tion in M1 neuronal activity that could not have resulted from
visuomotor cues [Hochberg et al. (2006a), their Fig. 3 and supple-
mental Fig. 1]. Future studies involving participants with advanced
ALS (i.e., persons with almost no remaining head, trunk, or appen-
dicular movements) (Hochberg et al., 2006b) may help to answer
this question directly. Other alternative explanations would be that
signals about the direction of the tracked cursor could have been
made available in M1 via indirect visual inputs originating, for ex-

Figure 9. M1 tuning to target direction during neural cursor center-out task. Examples of direction tuning functions are shown in A and C for S1 and S3, respectively. Direction tuning functions
were fitted to single neuron spike count data collected over a 400 ms time window covering the time interval 200 – 600 ms after target onset for S1 and either 150 –550 ms or 400 – 800 ms,
depending on the neuron, for S3. The four red stars represent the observed mean spiking rate conditioned on the four intended movement directions. Models were fitted to single trial data, not to
the computed conditional mean rates. The fitted model (black curve) allowed interpolation to directions in [0, 360] degrees. The red curves give the 95% confidence interval estimated via bootstrap
resampling (5000 samples). Different neurons from either session 1 or 2 were used in these examples. The polar plots in B and D summarize the estimated preferred directions for the tuned neurons
in both sessions for S1 and S3, respectively. The length of the vector represents the depth in modulation in the tuning function.
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ample, from area MT, or that M1 tuning reflected gaze direction
effects (Baker et al., 1999). Additional experimental controls, beyond
those adopted under the priorities and constraints of this pilot clin-
ical trial, would have been required to sort out these alternative ex-
planations. Although the precise origin of these kinematic signals is
unclear, our findings have nevertheless demonstrated their robust
persistence in M1 neuronal spiking activities in humans with
tetraplegia.

Optimal time lags for the tracked cursor velocity clustered
around 400 ms for S1, suggesting anticipatory effects. These ef-
fects might have easily taken place in this task because the target
was present at all times during cursor motion, and that the cur-
sor’s motion toward the target was almost rectilinear. Similar
clustering was observed for position in S1. A different pattern was
seen in S3 for whom velocity and position optimal time lags were
more spread out and a bimodal distribution with clusters around
�1 and 2 s was observed for velocity time lags. For comparison,
note that in able-bodied monkeys actually performing a hand
tracking task, optimal time lags for hand velocity tend to cluster
around 100 ms, as expected for neurons controlling the actual hand
movement, whereas for hand position, time lags tend to distribute
more uniformly in a broad interval from (�1,2) s (Paninski et al.,

2004) (Fig. 11D,E). It should be also noted
that the observed distribution of optimal
time lags might reflect more the properties of
the tasks, different cognitive strategies used
by the participants, or their neurological
condition and associated compensations,
than general M1 functional properties.

The direction of the cursor’s velocity vec-
tor during the tracking task contributed
more to the explanation of neuronal spiking
activity than did speed. A similar observation
has been made in M1 spiking activity in
monkeys manually executing pursuit track-
ing (Truccolo et al., 2005) and reaching tasks
(Moran and Schwartz, 1999). It should be
noted, however, that this weaker contribu-
tion of speed in the human data reported
here could also reflect the small range of
speeds of the tracked cursor in the pursuit
tracking task. Our analyses suggest also a bal-
anced relative contribution of position and
velocity to the explanation of M1 spiking ac-
tivity. However, because these analyses relied
on model based (ROC) and linear correla-
tion measures, the issue of the relative ex-
planatory or predictive power of these two
covariates needs further exploration.

Tuning to intended movement direction
and target during neural cursor
center-out task
Because there were only four radial targets,
their respective identity and direction were
confounded at the beginning of each target
presentation. Therefore, the observed tun-
ing to direction (Fig. 9) could have re-
sulted from tuning to the intended target,
or conversely, the classification of in-
tended target (Fig. 11) could have been
based on intended direction signals. Fu-
ture experiments that prevent such con-

founding (e.g., by using two layers of radial targets, where a
straight line between the center and outer target would intercept
an inner target) will be required to fully resolve this ambiguity.
Nevertheless, the decoding analysis of the difference vector’s di-
rection provided additional evidence for the existence of infor-
mation about intended movement direction in M1 spiking dur-
ing this (position control) neural cursor center-out task. The
direction of the difference vector, computed throughout the
center-out trials, was largely independent of target identity or
target position in our data: the neural cursor did not follow, in
general, a straight path from the center to the target; the paths
were usually very wiggly. In this way, the difference vector’s di-
rection provided an approximation to the intended movement
direction at any instant during the center-out task. (We say an
approximation because the intended direction might have also
depended on other factors such as velocity and acceleration of the
neural cursor.) We also note that tuning to intended direction
should not be expected a priori in this task, because participants
controlled the neural cursor via an on-line linear position filter.
This filter required explicit information about intended position,
not direction or velocity, from M1 spiking activity. The fact that
many successful trials lasted longer than the length of the on-line

Figure 10. Decoding of difference vector direction during neural cursor center-out task. A, The difference vector is illustrated.
The red and blue circles represent the target and the neural cursor, respectively, and the red and blue arrows represent the
corresponding target and instantaneous neural cursor position vectors. The green arrow represents the difference vector between
the target and neural cursor position vectors, and �(t) denotes the instantaneous angle or direction of this difference vector. The
dashed curve represents the ongoing trajectory of the neural cursor during a center-out trial. B, The normalized histogram of the
error between the true direction and the decoded direction, ��(t) � �(t)� (in degrees), obtained by decoding the difference
vector direction during the two center-out sessions for both participants. The horizontal line represents the uniform distribution
expected from a “random” decoder. The fact that error concentrated at angle errors below 45° suggests that information about the
direction of the difference vector was available in the M1 neural ensemble during the neural cursor center-out task. C, Estimated
predictive power of the difference vector direction based on the AUC measure (for details, see Materials and Methods, Eq. 6, Fig. 6).
The crosses correspond to the estimated predictive power values for each neuron; each box corresponds to the 95% data interval
(over the neuronal population), and the interior line represents the median predictive power value.
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position linear filter (i.e., 1.4 s) argues
against a filter that was actually outputting
position by integrating velocity information
available in the neuronal ensemble activity.

Differences between participants
Although most of our results regarding tun-
ing to kinematics were qualitatively similar
between the two participants, there were a
few important differences. As mentioned,
the distribution of optimal time lags con-
trasted between the two participants. Addi-
tionally, off-line neural decoding of direc-
tion during pursuit tracking and of the
intended target during the center-out task
was better in S1 than in S3. Also, S3 required
longer times for target acquisition using the
on-line position linear filter decoder. This
occurred although this participant’s record-
ings had many more significantly tuned
neurons than S1. We can only speculate
about a series of factors that may have con-
tributed to these differences: recording
from different cortical layers (electrodes
were 1.0 mm long in S1 and 1.5 mm in S3),
possible differences in the cognitive and
control strategies adopted by the partici-
pants when handling the position linear fil-
ter interface and their different medical
conditions, i.e., spinal cord transection in S1
with complete deafference and defference of
the limb, and pontine stroke with intact sen-
sory pathways and intermittent bilateral up-
per extremity flexor spasms in S3.

Stability of recorded neuronal signals:
changes in recorded neuronal
populations and changes in tuning
properties
Neurons were recorded stably across single
sessions: tracking spike waveforms continu-
ously across a session (1–2 h) revealed that
there was no observed change in the num-
ber or identity of recorded neurons. How-
ever, because recordings occurred for only a
few hours each day, and thus continuous
tracking of waveforms across sessions could
not be performed, we do not know whether
waveforms discriminated from same elec-
trode across days were from the same or a
different neuron. Additionally, we also ob-
served that, in some cases, a unit well iso-
lated in one session could not be discrimi-
nated in the other session. (This was one of
the motivations for building new decoding
filters at the beginning of each session.) We
believe that small vertical motions of the
microelectrode array, on the order of a few
tens of micrometers with respect to the cor-
tical tissue, could be a source of these fluc-
tuations across sessions. Further, there has
been interest in assessing the stability of sin-
gle neuron tuning properties over hours or

Figure 11. Off-line classification of intended target during neural cursor center-out task. A, B, The distribution of times required for
S1 and S3, respectively, to acquire the target with the neural cursor in all of the successful trials (both sessions). C and D plot the
proportionofcorrectclassificationasafunctionoftime,basedoncountscomputedfromwindowsofdifferentlengths(100,500,and700
ms) for S1 and S3, respectively. The intended target for each of the center-out trials was decoded based on spike counts. Each window
was shifted by 25 ms to obtain the time course of the classification performance. Black dots represent the correct classification rate
computed separately for each of the two sessions. The red curves represent a smooth fit to these points. The black line at 0.25 represents
the chance level of correct classification given four targets. Time 0 corresponds to target onset time. Only successful trials that lasted�2
s from target appearance to target acquisition were used in this analysis (for details, see Materials and Methods). In E and G, the
maximum achieved correct classification and the corresponding peak time based on all of the explored window lengths (100, . . . , 700
ms) are shown for S1. F, H, Similarly for S3. The two points for each window length correspond to the values for sessions 1 and 2.
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days. Several previous studies have reported changes in these
properties and related them to learning (Li et al., 2001; Padoa-
Schioppa et al., 2004) or to background intrinsic fluctuations
(drift) of tuning functions on a hypothesized solution manifold
(Rokni et al. 2007). Others have found little or no significant
variability in tuning (Chestek et al., 2007). We attempted a simple
assessment of the stability of tuning properties in our data by
examining changes in preferred direction across the two experi-
mental sessions. Our results seem to indicate that whereas �60%
of the examined units showed no significant change in preferred
direction, �40% of the examined units in both participants
showed a statistically significant change. These results should be
interpreted with caution, however. First, our identification of
unit identity across different sessions was based on visual inspec-
tion of spike waveforms and interspike distributions. A more
rigorous identification would require, as mentioned above, the
tracking of waveforms continuously over the time period in be-
tween sessions (Santhanam et al., 2007). We hope to systemati-
cally investigate tuning function stability and the effects of learn-
ing with more controlled tasks and larger data sets in future
studies. Second, it should also be noted that nonstationarity of
tuning properties, as well as changes in the recorded neuronal
population, can be properly handled in neuroprosthetic applica-
tions via intermittent recalibration of decoding filters (e.g., as
performed here with filter rebuilding at the beginning of a ses-
sion) or via continuous tracking of the neuronal population and
their tuning properties (Eden et al., 2004a,b; Srinivasan et al.,
2007). In addition, as pointed out by Rokni et al. (2007), one can
also conjecture that an optimal solution manifold might similarly
emerge for the neuronal population recorded at the prosthetic
interface. If this conjecture is correct, spontaneous background
drift of tuning functions on this optimal solution manifold would
not significantly affect decoded motor output.

Implications for neural interface systems
The results from these off-line encoding-decoding analyses sug-
gest that intended velocity could be used as a control signal for
direct corticomotor prosthetic devices by persons with paralysis.
A preliminary evaluation in one participant showed that closed-
loop velocity based control resulted in significantly improved
performance compared with position based control (Kim et al.,
2007). Additionally, the fact that both intended position and ve-
locity signals are available in M1 activity in these two humans
with tetraplegia suggests that the combined use of these two vari-
ables in decoding algorithms (Kemere et al., 2004; Srinivasan et
al., 2006, 2007; Wang et al., 2007; Yu et al., 2007) may enhance
performance.
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