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Spike Timing, Spike Count, and Temporal Information for
the Discrimination of Tactile Stimuli in the Rat Ventrobasal

Complex
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The aim of this work was to investigate the role of spike timing for the discrimination of tactile stimuli in the thalamic ventrobasal
complex of the rat. We applied information-theoretic measures and computational experiments on neurophysiological data to test the
ability of single-neuron responses to discriminate stimulus location and stimulus dynamics using either spike count (40 ms bin size) or
spike timing (1 ms bin size). Our main finding is not only that spike timing provides additional information over spike count alone, but
specifically that the temporal aspects of the code can be more informative than spike count in the rat ventrobasal complex. Virtually all
temporal information—i.e., information exclusively related to when the spikes occur—is conveyed by first spikes, arising mostly from
latency differences between the responses to different stimuli. Although the imprecision of first spikes (i.e., the jitter) is highly detrimen-
tal for the information conveyed by latency differences, jitter differences can contribute to temporal information, but only if latency
differences are close to zero. We conclude that temporal information conveyed by spike timing can be higher than spike count informa-
tion for the discrimination of somatosensory stimuli in the rat ventrobasal complex.

Introduction

Understanding the neural code is a major challenge for system
neuroscientists. To attempt a definition, the neural code is “a
system of signals or symbols for communication”—which is the
Merriam-Webster’s lemma for “code”—applied to the nervous
system. The field of neural coding relies on two main assump-
tions: information is carried by neurons, and neural “symbols”
are made of spikes. The fundamental problem of neural coding is
therefore to understand how spikes construct the symbols that
neurons use to communicate information.

Spikes are stereotyped events precisely defined in time. The
simplest way to construct symbols with such events is to use spike
count, i.e., to count the number of spikes occurring in a given
time window (Adrian, 1928). Using spike count, a neuron can
only construct as many symbols as the number of spikes it is able
to fire within the time window. A potentially more powerful way
to construct symbols with spikes is to use spike timing, i.e., to
consider exactly when spikes occur within the time window (Op-
ticam and Richmond, 1987; Bialek et al., 1991; Hopfield, 1995;
deCharms and Merzenich, 1996; Victor and Purpura, 1996; de
Ruyter van Steveninck et al., 1997; Borst and Theunissen, 1999;
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Reich etal., 2001; Chase and Young, 2006; Butts et al., 2007). The
maximum number of symbols a neuron can construct with spike
timing is limited only by the temporal resolution of the code
(MacKay and McCulloch, 1952). In formal terms, the informa-
tion capacity of spike timing is much higher than the information
capacity of spike count.

The rat trigeminal system offered an attractive model that
contributed to uncover the role of spike timing in the neural
code. Two main problems have been investigated: (1) discrimi-
nation of stimulus location, when the same stimulus was deliv-
ered to different whiskers; (2) discrimination of stimulus dynam-
ics, when stimuli with different dynamical content were delivered
to the same whisker. In the whisker cortex, spike timing was
consistently shown to convey more information than spike count
alone (Ghazanfar et al., 2000; Panzeri et al., 2001; Foffani and
Moxon, 2004; Arabzadeh et al., 2006). This importance of spike
timing was extended to the forepaw cortex, suggesting a more
general principle of sensory processing (Foffani et al., 2004, 2008;
Blanc and Coq, 2007).

All tactile information reaching the cortex, however, has to
pass through the thalamus. Consistently with the high temporal
precision of thalamic responses to whisker stimuli (Nicolelis and
Chapin, 1994; Deschénes et al., 2003; Aguilar and Castro-
Alamancos, 2005), spike timing is more informative than spike
count alone in the trigeminal thalamus (Ghazanfar et al., 2000;
Montemurro et al., 2007). We have previously shown that tha-
lamic neurons of the ventroposteromedial nucleus (VPM), which
represents the whiskers, and of the ventroposterolateral nucleus
(VPL), which represents the rest of the body, exhibit essentially
the same magnitude/latency structure in their responses to ste-
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reotyped tactile stimuli (Aguilar et al., 2008). Here, we apply
information-theoretic measures and computational experiments
on the same data, investigating the nature of spike timing infor-
mation in the entire ventrobasal complex.

Materials and Methods

Experimental procedures. Experimental data have been previously pub-
lished (Aguilar et al., 2008). Data were obtained from 13 male rats (250 —
350 g) anesthetized at stage III-3 (Friedberg et al., 1999). The level of
anesthesia was monitored by electrocorticogram recording from the pri-
mary somatosensory cortex and by tail-pinch reflex. The experiments
were performed under a predominant frequency of 3—4 Hz in the elec-
trocorticogram recording, which represents a less synchronized state
compared with the deeper anesthesia levels characterized by rhythmic
bursts at lower frequencies. If rhythmic bursts were detected during the
experimental protocol, the stimulation protocol was aborted. The level of
anesthesia was kept constant at stage I1I-3 throughout the course of the
experiments by applying supplemental doses when required (1/4 of orig-
inal doses). Stage III-3 was chosen because it allows consistent single-
neuron recordings to be performed through long stimulation protocols,
and it retains at least part of the spatiotemporal complexity that charac-
terizes the responses of thalamocortical neurons in active states (Aguilar
and Castro-Alamancos, 2005).

Thalamic extracellular single-unit recordings were obtained from
VPM and VPL (anteroposterior, —2.3 to —4.0; lateral, 2—4; dorsal, 5-7)
using tungsten electrodes with 4M() impedance (at 1 kHz). We studied
the responses to whisker stimulation for VPM neurons and the responses
to cutaneous stimulation in forepaw or hindpaw for VPL neurons. Once
aneuron was isolated, we located the receptive field center, defined as the
whisker or cutaneous area that consistently elicited the response with
greater magnitude (number of spikes/stimulus) and shorter latency (n =
39 neurons). In a subset of VPL cells (n = 11 neurons), we located not
only the center of their receptive field (e.g., one digit) but also a respon-
sive surround location (e.g., an adjacent digit).

We then applied our ON-OFF tactile stimulation protocol, which
consisted of a set of 100 square-pulse stimuli of 0.5 Hz frequency and 500
ms duration. All stimuli were generated using a Master8 electrical stim-
ulator (A.M.P.1.) with an ISO-Flex stimulus isolator (A.M.P.1.). Electri-
cal pulses were delivered to a custom-made piezoelectric sensor attached
to a rigid tungsten bar (0.5 mm in diameter, 2.5 cm long, with the tip
curved at 90° for 5 mm). The piezoelectric sensor transduces electrical
pulses into mechanical movements, whose range depends on the voltage.
We used a voltage of 90 V, which imposed a final vertical movement of
0.5 mm to the tungsten bar. The tungsten bar was situated manually
under microscopic control (Leica M300; Leica Microsystems) just a few
micrometers over, but never touching, the whisker or the cutaneous area
selected previously. The output of the Master8 stimulator was sent to the
CED Power 1401 and recorded in Spike2 together with the signals to
trigger the subsequent data analysis.

Neurons were meticulously discriminated off-line using filtering, volt-
age threshold methods and spike-sorting protocols in a complementary
way. For the purpose of the present study, we considered two datasets: (1)
the reduced dataset of 11 VPL neurons stimulated both in the center of
their receptive field and in the responsive surround location; (2) the full
dataset of 39 neurons stimulated only in the center of their receptive field.

Data analysis. Our basic problem was to quantify how much informa-
tion can be extracted about the discrimination of stimulus location and
the discrimination of stimulus dynamics from the single-trial responses
of individual thalamic neurons, using either spike count or spike timing.
As a model of discrimination of stimulus location, we considered the
problem of discriminating between center and surround stimuli. As a
model of discrimination of stimulus dynamics, we considered the prob-
lem of discriminating between ON and OFF stimuli delivered to the same
location. The main difference between the discrimination of ON versus
OFF stimuli compared with the discrimination of stimulus location is the
following: independently of whether the dynamical difference of ON
versus OFF stimuli (i.e., opposite movement direction of the stimulator)
activates different peripheral receptors, ON and OFF stimuli remain con-

J. Neurosci., May 6, 2009 - 29(18):5964 -5973 + 5965

fined within a single cutaneous area (or whisker) somatotopically corre-
sponding to the same thalamic cluster (or barreloid); conversely in the
discrimination of stimulus location, stimuli delivered to different fingers
(or whiskers) somatotopically correspond to different thalamic clusters
(or barreloids). Nonetheless, the basic coding principles under investi-
gation are the same for the discrimination of stimulus location and for
the discrimination of ON vs OFF stimuli.

By “information,” here and throughout the study we specifically refer
to Shannon’s mutual information between the single-neuron responses
and the stimuli. To discriminate two stimuli is a binary problem, so the
maximum information, i.e., the entropy of the stimuli, is 1 bit. To say that
a neuron conveys 1 bit of information means that from any single-trial
response we can infer with full certainty which of the two stimuli gener-
ated that response. Indeed, spike timing information is more likely to
emerge when the full information capacity of spike timing can be ex-
ploited, which happens in the discrimination between a high number of
stimuli. The fact that we used binary discrimination problems is thus
conservative for our purposes. To corroborate that our main results are
not specific for binary discrimination, in neurons stimulated both in the
center of their receptive field and in the responsive surround location we
also performed the discrimination between all four stimuli available (ON
center, ON surround, OFF center, OFF surround). In this case, the en-
tropy of the stimuli is 2 bits.

Spike count information. To extract spike count information, for each
neuron we considered a 40-ms-long poststimulus time window, counted
the number of spikes the neuron emitted in each single trial, estimated
the conditional probabilities of the responses given the stimuli, and di-
rectly calculated the mutual information between responses and stimuli
as follows:

(1)

s

P(r|s
I(r,s) = EEP(S) P(r|s)10g2<1§Tl))>,

where P(s) is the prior probability of occurrence of the stimulus s, which
was always 0.5 for both stimuli because the number trials per stimulus
was the same (100), P(r]s) is the conditional probability of the response r
to occur given the stimulus s, and P(r) is the probability of the response r
to occur given any stimulus. Because the responses of our neurons almost
never exceeded 4 spikes in any given trial, the upward bias of the mutual
information attributable to finite sampling was experimentally mini-
mized by using 20 times as many trials per stimulus (100) as the number
of possible responses (five).

Spike timing information. To extract spike timing information, we di-
vided the poststimulus time window into 40 bins of 1 ms and registered
the presence or absence of a spike in each bin as 1 or 0. With 40 1 ms bins,
a neural response to a stimulus looks something like this:
0000000100010000000000000000000000000000.

The above response represents a neuron that fires two spikes, the first
one 8 ms after the stimulus and the second one 12 ms after the stimulus.
To calculate the mutual information with these types of responses is
somewhat problematic, because the number of possible responses is too
high for their probabilities to be precisely estimated from the finite num-
ber of trials experimentally available (in our case 100), which produces
upward bias in the mutual information measure (Panzeri et al., 2007;
Nemenman et al., 2008). To avoid this problem, we reduced the dimen-
sionality of the responses by using them to classify the stimuli. To this
end, we used the peristimulus time histogram (PSTH)-based classifica-
tion method (Foffani and Moxon, 2004), which consists of creating a set
of templates based on the average neural responses to the stimuli deliv-
ered (i.e., PSTHs), and classifying each single-trial response by assigning
it to the stimulus with the “closest” template in Euclidean distance sense.
The outcome of the classification is then used to calculate the mutual
information between the predicted stimuli o and the real stimuli s, as
follows:

P(0]
( IS))) @)

I(o,s) = E EP(S) P(o|5)log2<m

where P(s) is again the probability of occurrence of the stimulus s (i.e., 0.5
for both stimuli in our case), P(als) is the probability of predicting stim-
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ulus o when stimulus s was delivered, and P(o) is the probability of
predicting stimulus o independently of what stimulus was actually deliv-
ered. The way by which the conditional probabilities P(o]s) are estimated
using the PSTH-based classifier can be formalized as follows:

1
P(o = 1|s = j) = ;X (min[X(s",)] = )
€j s

;mw —7(s))? s #j
. My NV, . (3
E(n,(t)— (n,(sn—W)N—_ 1) =]

b

X(s',t) =

where Nis the number of trials per stimulus (N = 100), t € jindicates the
trials corresponding to stimulus s = j, the minimum is calculated across
all stimuli s’ (in our case two), r,(t) represents the single-trial response in
bin b (b = 1:40) of trial ¢, and 7,(s") is the PSTH value of bin b corre-
sponding to stimulus s’ (i.e., the template), calculated as follows:

R = k) = = Sr(t). )
N

tEk

Importantly, when the single-trial response r,(t) corresponding to stim-
ulus j is compared against the PSTH 7,(s") corresponding to the same
stimulus s" = j, the single-trial response is subtracted from the PSTH in
the calculation of the Euclidean distance X(s', t) to guarantee complete
cross-validation in the classification (Foffani and Moxon, 2004). The
upward bias of the mutual information, because of finite sampling, was
experimentally minimized by using 50 times as many trials per stimulus
as the number of possible stimuli (two). The mutual information I(a, s)
between predicted stimuli and real stimuli represents a rigorous lower
bound of the mutual information between the binned neural responses
and the stimuli (Kjaer et al., 1994; Rolls et al., 1997; Furukawa and
Middlebrooks, 2002; Schneidman et al., 2003). We thus used this con-
servative measure to extract spike timing information in our data.

Spike timing information, spike count information, and temporal infor-
mation. The concept of spike timing implicitly considers both how many
spikes occurred and when they occurred. Intuitively, there is no timing if
there is no spike. This concept of spike timing is not related to the par-
ticular method we used to estimate spike timing information (the PSTH-
based classification method), but is intrinsic in the way the responses are
considered to construct the symbols of the code (i.e., binning at 1 ms bin
size). This is consistent with previous studies applying information mea-
sures in the rat somatosensory system (Panzeri et al., 2001; Petersen et al.,
2001; Foffani et al., 2004; Arabzadeh et al., 2006; Montemurro et al.,
2007; Foffani et al., 2008).

In the present work, we explicitly considered that spike timing
information includes both spike count information (how many spikes
occurred) and temporal information (when they occurred). In gen-
eral, temporal information and spike count information are not in-
dependent. Defining AJ as the synergy/redundancy between temporal
information I o,0ra and spike count information Iy, counp We can
write the following intuitive relation (Nelken et al., 2005): I iming
= Ispikefcount + Itemporal + AI

The synergy/redundancy term A[ is zero not only when spike count
information and spike timing information are independent, but also
when spike count information in zero. In these cases all spike timing
information is temporal information.

To reach the conclusion that temporal information alone is greater
than spike count information, we thus performed two analyses. (1) The
first analysis consisted of considering only the first spike in each single-
trial response and only responsive trials (i.e., trials with spikes) (Nelken et
al., 2005). In this condition, spike count information is identically zero,
so all spike timing information estimated with the PSTH-based classifi-
cation method is indeed temporal information. (2) The second analysis
consisted of selecting neurons that exhibited similar response magni-
tudes to the stimuli. In these neurons, spike count information should be
close to zero, so the difference between spike timing information and
spike count information will represent a tight lower bound of the tem-
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poral information, i.e., most spike timing information will indeed be
temporal information.

Simulations with latencies and jitters. To further investigate the basic
elements of the temporal code, we performed a set of computational
experiments. Using the physiological data as the starting point, the sim-
ulations allowed us to explore a larger range of response parameters than
that available in the physiological variability. We modulated three main
parameters of the responses: (1) the latency difference between stimuli,
(2) the overall jitter of the responses, and (3) the jitter difference between
stimuli. All three parameters represent the fundamental properties of the
simulated responses, and the information obtained with these simula-
tions will allow us to bring the results to a more general level.

To modulate the latency difference, for each neuron we first aligned
the responses to the two stimuli so that the latency difference was 0 ms.
We then moved the responses to one stimulus respect to the other, to
impose a determined latency difference. This operation was repeated
with increasing latency difference (0.2 ms steps). For each latency differ-
ence, we calculated the spike timing information that could be extracted
about the discrimination between the two stimuli.

To modulate the overall jitter, defined as the SD of the first-spike
latency averaged across the two stimuli, we added Gaussian noise to each
single-trial first-spike latency, resulting in an increased overall jitter of
the neural responses. This operation was repeated with increasing vari-
ance of the Gaussian noise (1 ms steps), resulting in an increasing overall
jitter. For each jitter value, we calculated the spike timing information
that could be extracted about the discrimination between the two stimuli.
Importantly, adding jitter to the neural responses is formally equivalent
to adding jitter to the temporal reference used to trigger the responses,
which can be interpreted in terms of imprecision of a decoder. Our
results will thus also provide basic requirements for a decoder to be able
to extract temporal information from the neural responses.

To modulate the jitter difference, we added Gaussian noise to the
single-trial first-spike latencies, only in correspondence to the stimulus
with smaller jitter to reach a situation in which the jitter difference was
approximately zero. We then increased the variance of the Gaussian
noise (5 ms steps), resulting in an increasing jitter difference between the
stimuli. For each jitter difference, we calculated the spike timing infor-
mation that could be extracted about the discrimination between the two
stimuli.

The simulations described above were also combined to investigate the
joint contribution of latency differences, overall jitter and jitter differ-
ences to the temporal information.

Throughout the text values are given as mean * SD. Statistical com-
parisons were performed with paired t tests or repeated-measures
ANOVA. Results were considered significant at p << 0.05. All the analyses
were performed in Matlab (version 7.1, The Mathworks).

Results

Spike timing information in VPL

We analyzed a dataset of 11 well discriminated VPL neurons
responding to ON and OFF tactile stimuli delivered to two dif-
ferent locations: the center of their excitatory receptive field (e.g.,
one digit) and a responsive surround location (e.g., an adjacent
digit). As amodel of discrimination of stimulus location, we used
the ON responses to discriminate between center and surround
stimuli (Fig. 1A, D). Using spike count we could extract 0.18 =
0.13 bits of information. Using spike timing we could extract
0.37 = 0.30 bits of information, that is 106% more information
than spike count. As a model of discrimination of stimulus dy-
namics we discriminated between ON and OFF stimuli delivered
at the center location (Fig. 1B, E). Using spike count we could
extract 0.38 * 0.27 bits of information. Using spike timing we
could extract 0.65 * 0.18 bits of information, that is 71% more
information than spike count. We also discriminated between
ON and OFF stimuli delivered at the surround location (Fig.
1C,F). Using spike count we could extract 0.14 * 0.13 bits of
information. Using spike timing we could extract 0.31 = 0.23 bits
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Spike timing information in VPL. 4, Discrimination of stimulus location. Representative neuron responding to ON
stimuli delivered to its receptive field center (top three traces) and to a responsive surround location (middle three traces), with the
corresponding PSTHs (bottom, calculated over all 100 responses/stimulus available). B, C, Discrimination of stimulus dynamics.
Representative neurons responding to ON and OFF stimuli delivered (B) to the receptive field center, or (C) to a responsive
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of information, that is 121% more infor-
mation than spike count. Two-way
repeated-measures ANOVA confirmed
that spike timing information was signifi-
cantly greater than spike count informa-
tion in the three discrimination problems
described above (first factor, spike count
vs spike timing: p = 0.0055; second factor,
the discrimination problem: p = 0.0006,
interaction p = 0.38). Finally, we discrim-
inated between all four stimuli: ON stimuli
delivered to the center, ON stimuli deliv-
ered to the surround, OFF stimuli deliv-
ered to the center, OFF stimuli delivered to
the surround. Using spike count we could
extract 0.34 * 0.20 bits of information.
Using spike timing we could extract 0.78 =
0.29 bits of information, that is 129%
more information than spike count
(paired ¢ test: p = 0.0017).

Spike timing information, spike count

information, and temporal information
The binned neural responses used to in-
vestigate the role of spike timing quantify
both how many spikes occurred (spike
count information) and when they oc-
curred (temporal information). Let us
consider two representative neurons (Fig.
2). One neuron responded to the two stim-
uli with different magnitudes and different
latencies (Fig. 2A). The other neuron re-
sponded to the two stimuli with similar
magnitudes and different latencies (Fig.
2 B). In the first neuron, in which the re-
sponse magnitudes to the two stimuli were
different (1.4 vs 3.1 spikes/stimulus), spike
timing did not provide additional infor-
mation beyond spike count in our esti-
mate, although the latency difference
could clearly discriminate between the two
stimuli. In this case, the information ex-
tracted with spike timing does not offer
any insight about the temporal informa-
tion obviously conveyed by latency differ-
ence and thus does not disambiguate it
from spike count information. Con-
versely, in the second neuron, in which the
response magnitudes to the two stimuli
were similar (1.1 vs 1.3 spikes/stimulus),
spike timing provided ~10 times more in-
formation than spike count. In this case,
virtually all the information extracted with
spike timing was temporal information
conveyed by latency differences. In gen-

<«

surround location. Top-to-bottom as in A. D-F, Spike count
information (gray) and spike timing information (black) ex-
tracted about the discrimination of (D) stimulus location and
(E, F) stimulus dynamics. Bars represent average values of all
neurons (n = 11). Error bars represent SDs. Asterisks indicate
significant differences ( p << 0.05).
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eral, to say that using spike timing we A
could extract more information than spike

count means that in the neural responses
there was some temporal information that
was independent of spike count informa-
tion, but it does not necessarily mean that
temporal information alone was greater
than spike count information.

To test whether in our experimental
data temporal information alone was
greater than spike count information, we
performed two analyses. The first idea was
to consider only the first spike in each
single-trial response and only responsive
trials (i.e., trials with spikes). In this con-
dition there is no spike count information,
so all spike timing information is indeed
temporal information. We thus investi-
gated the information conveyed by the
first spikes of responsive trials in the same
dataset of 11 neurons responding to ON
and OFF stimuli delivered to the center of
their receptive field and to a responsive
surround location. Again, we first used the
ON responses to discriminate between
center and surround stimuli. Using spike
count with all spikes of responsive trials we
could extract 0.12 = 0.11 bits of informa-
tion. Using spike timing with only first
spikes of responsive trials we could extract
0.26 = 0.24 bits of information. Temporal
information alone on average was thus at
least 116% greater than spike count infor-
mation. We then discriminated between
ON stimuli and OFF stimuli delivered at
the center location. Using spike count with
all spikes of responsive trials we could ex-
tract 0.20 * 0.16 bits of information. Us-
ing spike timing with only first spikes of
responsive trials we could extract 0.53 *
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0.27 bits of information. Temporal infor-

mation alone on average was thus at least
165% greater than spike count informa-
tion. We finally discriminated between
ON stimuli and OFF stimuli delivered at
the surround location. Using spike count
with all spikes of responsive trials we could
extract 0.09 = 0.10 bits of information.
Using spike timing with only first spikes of
responsive trials we could extract 0.40 =
0.29 bits of information. Temporal infor-
mation alone was thus on average at least
344% greater than spike count information. Two-way repeated-
measures ANOVA confirmed that in responsive trials temporal
information was significantly greater than spike count informa-
tion in the three discrimination problems described above (first
factor, spike count vs temporal: p = 0.0028; second factor, the
discrimination problem: p = 0.0136, interaction p = 0.24).

The second idea was to select neurons exhibiting similar re-
sponse magnitudes to the stimuli. In this condition, spike count
information is expected to be very small, so that most spike tim-
ing information can be unambiguously considered temporal in-
formation. We investigated this idea in a dataset of 39 thalamo-

Figure 2.

0 - “10 20 30 40 ul) 10 20 30 40
Time (ms)

Time (ms)

Spike timing information, spike count information, and temporal information. A, B, Representative neurons re-
sponding to ON and OFF stimuli (A) with different response magnitudes and (B) with similar response magnitudes. Top-to-hottom
as in Figure 14-C. , Scatter plot of spike count information and spike timing information for all 39 neurons responding ON and
OFF stimuli delivered to the center of their receptive field. Empty symbols represent neurons exhibiting high magnitude difference
between the responses to the two stimuli (n = 26); filled symbols represent neurons exhibiting low magnitude difference (n =
13). In most neurons exhibiting high magnitude difference it is not possible to disambiguate temporal information from spike-
count information. In most neurons exhibiting low magnitude difference, most spike timing information can be unambiguously
considered temporal information.

cortical neurons responding to ON and OFF stimuli delivered to
the center of their receptive field. We sorted our 39 neurons into
two groups: one group was composed by two-thirds of neurons
exhibiting high magnitude difference between the responses to
the two stimuli (1.1 £ 0.9 spikes/stimulus, n = 26), like the
neuron in Figure 2 A; the other group was composed by the re-
maining one-third of neurons exhibiting small magnitude differ-
ence (0.4 * 0.3 spikes/stimulus, n = 13), like the neuron in Figure
2B (Table 1). We found that neurons that responded to the two
stimuli with different magnitudes conveyed similar information
with spike count (0.43 * 0.27 bits) or spike timing (0.44 * 0.25
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Table 1. Neurophysiological properties of neurons responding to ON and OFF stimuli
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Neurons exhibiting high magnitude difference (n = 26)

Neurons exhibiting low magnitude difference (n = 13)

ON (range) OFF (range) ON (range) OFF (range)
Response magnitude (spikes/stimulus) 1.49 =+ 0.89 (0.32-4.79) 1.07 £ 1.11(0.00-3.37) 1.60 £ 0.51 (0.90-2.64) 1.27 £ 0.59 (0.64 —2.65)
Prestimulus activity (Hz) 22*+34 47+ 49 1.0+ 16 1.2+£13
% of first spikes 67 =21 50 =28 65 £ 21 70 £ 21
Latency of first spikes (ms) 103 £35 146 £ 6.0 92*+26 13347
litter of first spikes (ms) 1.7 %+12 43 +3.7 1.0 =08 24+ 14

The response magnitude was calculated as the average number of spikes per stimulus in the same 40 ms poststimulus time window used in the information analyses. The prestimulus activity was calculated in a 40 ms prestimulus time
window and expressed in hertz. The % of first spikes was calculated as the percentage of spikes that are first spikes of the single-trial responses. Latencies and jitters of first spikes are also included.

bits, paired t test: p = 0.4514). In some neurons spike timing did
provide some additional information over spike count, but in
other neurons the estimated spike timing information was actu-
ally lower than spike count information because of underestima-
tion (Fig. 2C). Overall, in this group it was not possible to disam-
biguate temporal information from spike count information.
Conversely, neurons that responded to the two stimuli with sim-
ilar magnitudes conveyed remarkably more information with
spike timing (0.57 = 0.20 bits) compared with spike count
(0.14 = 0.10 bits, paired ¢ test: p = 0.000004). In this group the
additional information conveyed by spike timing compared with
spike count, which represents a conservative estimate of the tem-
poral information, was 207% greater than the information con-
veyed by spike count.

To corroborate the relation between temporal information
and first spikes, in the same dataset of 39 neurons responding to
ON and OFF stimuli delivered to the center of their receptive
field, we investigated the spike timing information conveyed by
the first spike in each single-trial response. In the 26 neurons that
responded to the two stimuli with different magnitudes the first
spike conveyed 0.38 = 0.24 bits, which corresponds to 86% of the
information conveyed by all spikes. In the 13 neurons that re-
sponded to the two stimuli with similar magnitudes the first spike
conveyed 0.55 * 0.18 bits, which corresponds to 97% of the
information conveyed by all spikes. In these 13 neurons, first
spikes represented 65% of spikes in the ON responses and 70% of
spikes in the OFF responses, which means that the remaining
35% and 30% of spikes provided little information that was not
already conveyed by first spikes. When spike count is ambiguous,
therefore, first spikes convey virtually all temporal information.

Taken as a whole, these results suggest that temporal informa-
tion alone can be greater than spike count information, and sup-
port the idea of first spikes representing the basis of temporal
information in the rat ventrobasal complex.

Informational contribution of first-spike latencies and jitters
To further investigate the nature of temporal information, we
performed a set of computational experiments on the 13 neurons
that responded with similar magnitudes to ON and OFF stimuli
delivered to the center of their receptive field, using the first
spikes of the single-trial responses. Because first spikes can be
effectively characterized in terms of latencies and jitters, we mod-
ulated three main parameters of the responses: (1) the latency
difference between stimuli (Fig. 3A), (2) the overall jitter of the
responses (Fig. 3B), and (3) the jitter difference between stimuli
(Fig. 3C). The rationale of these simulations is that they allowed
us to explore a larger range of response parameters than that
available in the physiological variability.

The first intuitive idea we tested is that temporal information
arises from latency differences between the responses to different
stimuli. As expected, information increased as the latency differ-

ence was increased, rapidly reaching a saturation point of 0.70 *
0.18 bits. With physiological jitters, the latency difference that
allowed the responses to convey 50% of the maximal information
was 1.9 £ 0.9 ms, and the latency difference that allowed the
responses to convey 95% of the maximal information was 3.8 =
1.4 ms.

The second intuitive idea we tested is that the jitters of the
neural responses limit the temporal information conveyed by
latency differences. We observed that increasing the jitter of the
neural responses rapidly reduced the information that could be
extracted, from 0.55 * 0.18 bits with the physiologic jitter of
1.7 = 1.0 ms, to 0.10 * 0.12 bits with an overall jitter of 4.4 = 0.5
ms. Similarly, when the jitter was increased, the latency difference
that allowed the responses to convey 50% of the maximal infor-
mation increased from 1.9 £ 0.9 ms to 9.1 £ 1.8 ms, and the
latency difference that allowed the responses to convey 95% of
the maximal information increased from 3.8 + 1.4 ms to 16.6 =
3.2 ms. More in general, the latency difference that was necessary
to allow neurons to transmit a given amount of information in-
creased as the jitter of the neural responses was increased (Fig.
3D). If adding jitter to the neural responses is interpreted from a
decoding perspective, these results also quantify how the tempo-
ral imprecision of a decoder can affect its ability to extract infor-
mation conveyed by latency differences.

Latency differences are not the only possible source of tempo-
ral information. The third intuitive idea we tested is that at least
some information unrelated to latency differences could be at-
tributable to jitter differences between responses to different
stimuli. This idea has physiological relevance in our dataset, as
the jitter of the responses to ON stimuli (1.0 = 0.8 ms) was
significantly smaller than the jitter of the responses to OFF stim-
uli (2.4 = 1.4 ms; paired ¢t test: p = 0.0004, n = 13). For each
neuron we first aligned the responses so that the latency differ-
ence was zero and therefore could not contribute any informa-
tion. As expected, the information increased as the jitter differ-
ence was increased, reaching a saturation point much lower than
what we observed by increasing latency differences. With a jitter
difference of 12.8 * 4.3 ms we obtained 0.26 = 0.16 bits of
information. We then investigated how the informational contri-
bution of jitter differences changed as a function of the latency
difference. We found that increasing the jitter differences in-
creased the information only if the latency differences were very
close to zero, whereas it always decreased the information if la-
tency differences were sufficiently large (Fig. 3E).

Discussion

The main finding of the present work is not only that spike timing
provides additional information over spike count alone, but spe-
cifically that the temporal aspects of the code can be more infor-
mative than spike count in the rat ventrobasal complex. Virtually
all temporal information—i.e., information exclusively related to
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when the spikes occur—is conveyed by
first spikes, arising mostly from latency
differences between the responses to dif-
ferent stimuli. Although jitters are highly
detrimental for the information conveyed
by latency differences, jitter differences be-
tween stimuli can contribute to temporal
information, but only if latency differences
are close to zero.

Methodological considerations

Mutual information was used as a rigorous
measure of statistical predictability be-
tween stimuli and neural responses. To es-
timate mutual information, we directly
used Shannon’s formula for spike count,
whereas we recurred to PSTH-based clas-
sification for spike timing to avoid overes-
timating the information because of the
bias problem. PSTH-based classification
(Foffani and Moxon, 2004) has now been
used in a number of studies (Foffani et al.,
2004, 2008; Gutierrez et al., 2006; Malone
etal., 2007; Engineer et al., 2008). Because
PSTH-based classification provides a
lower bound of spike timing information
and has better sampling properties com-
pared with the direct Shannon’s formula,
the additional information conveyed by
spike timing over spike count in our data is
a conservative estimate. PSTH-based clas-
sification does not explicitly take into ac-
count information represented by spike
patterns, i.e., correlations between spikes
in different bins. However, correlations
between spikes seem to play a minor role
for information encoding and decoding in
the rat thalamus (Montemurro et al.,
2007). Furthermore, first spikes conveyed
virtually all information in our data, sug-

<«

Figure 3.  Informational contribution of first-spike laten-
cies and jitters. A, Simulations with latency differences. The
left panel shows PSTHs corresponding to the first spikes of a
representative neuron in which the imposed latency differ-
ence between the responses to the stimuli is 0 ms. The right
panel shows PSTHs corresponding to the responses of the
same neuron when the latency differenceisincreased. B, Sim-
ulations with overall jitters. The left panel shows PSTHs cor-
responding to the first spikes of a representative neuron with
physiological values of latencies and jitters. The right panel
shows PSTHs corresponding to the responses of the same
neuron when the jitters are increased. €, Simulations with
jitter differences. The left panel shows PSTHs corresponding
to the first spikes of a representative neuron in which the
imposed latency difference is 0 ms. The right panel shows
PSTHs corresponding to the responses of the same neuron
when the jitter difference between the responses to the stim-
uliisincreased. D, The information conveyed by the responses
increases as the latency difference is increased and decreases
as the jitters are increased. E, Spike timing information in-
creases as the jitter difference increases, but only when the
latency difference is close to zero.
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gesting that any information conveyed by correlations between
spikes was at most redundant to the information conveyed by
first spikes.

The coding problem addressed in this study was to discrimi-
nate what stimulus occurred assuming that a stimulus did occur
(see supplemental Results, available at www.jneurosci.org as sup-
plemental material) and that stimulus onset was known. All our
analyses thus assume an external temporal reference, which is a
common assumption in the field (VanRullen et al., 2005). This
assumption implies that the brain should have an equivalent in-
ternal temporal reference to decode the information in the spike
timing codes described here. Intuitively, when a tactile stimulus is
delivered, the brain could use the global thalamic response to
generically detect that a stimulus occurred. It would then be fea-
sible to use, for example, the beginning of such global response as
an internal temporal reference to construct and decode latency
codes for finer stimulus discrimination. Indeed, several works are
now proposing possible internal references, including spikes
emitted by other neurons (Chase and Young, 2007; Gollisch and
Meister, 2008) or—less likely in our case—a specific phase in the
oscillations of local field potentials (Huxter et al., 2003; Buzsaki
and Draguhn, 2004; Lee et al., 2005; Lisman, 2005; Fries et al.,
2007; Montemurro et al., 2008). Importantly, spike timing infor-
mation can even increase when an internal reference is used
(Chase and Young, 2007), confirming that the knowledge of
stimulus onset is not a limiting assumption.

Spike timing information in the ventrobasal complex of

the thalamus

Two previous studies have shown that in the VPM spike timing
conveys more information than spike count alone in the discrim-
ination of stimulus location (Ghazanfar et al., 2000) and in the
discrimination of stimulus dynamics (Montemurro et al., 2007),
suggesting the presence of temporal information that was inde-
pendent of spike count information. Here, we extended these
results from the VPM to the VPL, thus bringing at the informa-
tional level the homogeneity that we previously investigated at
the neurophysiologic level (Aguilar et al., 2008). Temporal infor-
mation about stimulus dynamics in the ventrobasal complex im-
plies that at least part of the remarkable spike timing precision
observed in the responses of primary afferents to transient stimuli
(Jones et al., 2004a, 2004b) is preserved in the thalamus (Desbor-
des et al., 2008; Petersen et al., 2008). Temporal information
about stimulus location is trickier. Primary afferents selectively
respond to a very circumscribed body area, e.g., one digit or one
whisker (Leiser and Moxon, 2006). Primary afferents could thus
exploit the spike timing precision of their responses only to dis-
criminate between close locations within the body area they rep-
resent, e.g., within a fingertip (Johansson and Birznieks, 2004),
but not to discriminate between separate locations such as differ-
ent digits or different whiskers. Temporal information conveyed
by spike timing about stimulus location between digits or be-
tween whiskers in the ventrobasal complex is thus a product of
the basic transformations that occur in the brainstem (Panetsos
etal,, 1997; Aguilar et al., 2002, 2003; Ferndndez de Sevilla et al.,
2006; Soto et al., 2006), which determine the enlargement of
receptive fields at thalamic level. Importantly, the receptive field
size of thalamocortical neurons is particularly large in active or
awake states (Nicolelis et al., 1993; Nicolelis and Chapin, 1994;
Friedberg et al., 1999; Aguilar and Castro-Alamancos, 2005).
Larger receptive fields imply greater temporal information (Fof-
fani et al., 2008), so the relative weight of temporal information
over spike count information observed here in anesthetized con-
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ditions is expected to increase in awake animals. Although our
experimental anesthetized conditions represent a good model of
passive unexpected stimuli during quiet behaviors (Krupa et al.,
2004; Ferezou et al., 2006), it is important to remark that infer-
ences about how stimuli are processed by behaving animals based
on anesthetized data should be cautious. Nevertheless, the loss of
spatial selectivity resulting from the large receptive fields—not
only in the thalamus but also in the cortex (Ghazanfar and
Nicolelis, 1999; Tutunculer et al., 2006; Moxon et al., 2008)—
could be the price paid by sensory systems to fully benefit from
the high information capacity of spike timing codes (Foffani et
al., 2008).

Spike timing information, spike count information, and
temporal information

A few recent studies hint at the intuitive idea of spike timing
becoming particularly informative when the stimuli to be dis-
criminated evoke similar response magnitudes (Arabzadeh et al.,
2006; Foffani et al., 2008; Montemurro et al., 2008). In the present
study, we explicitly considered that spike timing information in-
cludes both spike count information (how many spikes occurred)
and temporal information (when they occurred), i.e., Lpike timing
= Lpike-count T Lemporat + AI (Nelken et al., 2005). Indeed, the
experimental observation of different stimuli leading to similar
spike counts with different latencies represents a limit case that is
useful to intuitively show that temporal information can be much
greater than count information. But the significance of our re-
sults is more general: using first spikes of responsive trials we were
able to disambiguate the redundancy between temporal informa-
tion and spike count information, showing that temporal infor-
mation alone can be greater than spike count information even if
different stimuli elicit rather different spike counts. The addi-
tional information obtained with spike timing compared with
spike count in previous studies in the somatosensory system was
therefore likely underestimating the real temporal information
present in the code.

Informational contribution of first-spike latencies and jitters
In the somatosensory system and even in other sensory modali-
ties, the very first spike emitted by single neurons in each single-
trial response seems to convey most of the information about
stimulus discrimination (Heil, 1997; Panzeri et al., 2001; Petersen
et al., 2001; Furukawa and Middlebrooks, 2002; DeWeese et al.,
2003; Foffani et al., 2004, 2008; Johansson and Birznieks, 2004;
Nelken et al., 2005; Gollisch and Meister, 2008). First-spike cod-
ing is functionally appealing for rapid processing of sensory in-
formation (Thorpe et al., 2001; VanRullen et al., 2005), and is
methodologically attractive because one spike represents the
minimal element that is necessary to construct a spike timing
code. In our data first spikes conveyed virtually all temporal in-
formation, suggesting that first-spike coding can operate in the
ventrobasal complex of the thalamus. Our computational exper-
iments confirm that temporal information is primarily caused by
latency differences between the responses to different stimuli.
These results support the importance of response latency as a
fundamental element of the neural code (Amassian, 1953; Jones
1956; Gawne et al., 1996; Eggermont, 1998; Raiguel et al., 1999;
Oram et al,, 2002; Hurley and Pollak, 2005; Thomson and
Kristan, 2006; Gollisch and Meister, 2008; Foffani et al., 2008).
Beside latencies, jitters clearly play a crucial role in neural
codes based on spike timing (Mainen and Sejnowski, 1995; Berry
et al., 1997; Hunter et al., 1998; Cecchi et al., 2000; Fellous et al.,
2001; Sziics et al., 2004; Aldworth et al., 2005; Rokem et al., 2006;
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Billimoria et al., 2006; Daw et al., 2006; Tiesinga et al., 2008). Our
computational experiments formalize the intuitive idea of large
jitters being detrimental for the information conveyed by latency
differences. Importantly, increasing the jitter of the neural re-
sponses is also equivalent to increasing the jitter of the “clock”
that the brain would need as an internal reference to decode spike
timing information. Our simulations thus provide rigorous
boundaries to the precision required for candidate clocks to ex-
tract temporal information from latency differences.

Our computational experiments also uncover a more subtle
informational contribution by jitter differences between the re-
sponses to different stimuli. Jitter differences, however, can only
contribute information if latency differences are close to zero.
This suggests that jitter differences might be more difficult to be
exploited at a functional level, whereas temporally precise first
spikes synchronously emitted by multiple neurons within the
same aggregate could be particularly efficient for transmitting
tactile information from the thalamus to the somatosensory cor-
tex (Bruno and Sakmann, 2006).

In conclusion, temporal information conveyed by spike tim-
ing can be higher than spike count information for the discrimi-
nation of somatosensory stimuli in the rat ventrobasal complex.

References

Adrian ED (1928) The basis of sensations. New York: Norton.

Aguilar ], Soto C, Rivadulla C, Canedo A (2002) The lemniscal-cuneate re-
current excitation is suppressed by strychnine and enhanced by GABAA
antagonists in the anaesthetized cat. Eur ] Neurosci 16:1697-1704.

Aguilar ], Rivadulla C, Soto C, Canedo A (2003) New corticocuneate cellu-
lar mechanisms underlying the modulation of cutaneous ascending trans-
mission in anesthetized cats. ] Neurophysiol 89:3328-3339.

Aguilar J, Morales-Botello ML, Foffani G (2008) Tactile responses of hind-
paw, forepaw and whisker neurons in the thalamic ventrobasal complex
of anesthetized rats. Eur ] Neurosci 27:378 -387.

Aguilar JR, Castro-Alamancos MA (2005) Spatiotemporal gating of sensory
inputs in thalamus during quiescent and activated states. ] Neurosci
25:10990-11002.

Aldworth ZN, Miller JP, Gedeon T, Cummins GI, Dimitrov AG (2005) De-
jittered spike-conditioned stimulus waveforms yield improved estimates
of neuronal feature selectivity and spike-timing precision of sensory in-
terneurons. ] Neurosci 25:5323-5332.

Amassian VE (1953) Evoked single cortical unit activity in the somatic sen-
sory areas. Electroencephalogr Clin Neurophysiol 5:415-438.

Arabzadeh E, Panzeri S, Diamond ME (2006) Deciphering the spike train of
a sensory neuron: counts and temporal patterns in the rat whisker path-
way. ] Neurosci 26:9216-9226.

Berry MJ, Warland DK, Meister M (1997) The structure and precision of
retinal spike trains. Proc Natl Acad Sci U S A 94:5411-5416.

Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D (1991) Reading
a neural code. Science 252:1854-1857.

Billimoria CP, DiCaprio RA, Birmingham JT, Abbott LF, Marder E (2006)
Neuromodulation of spike-timing precision in sensory neurons. J Neu-
rosci 26:5910-5919.

BlancJL, CoqJO (2007) Coding processes involved in the cortical represen-
tation of complex tactile stimuli. J Physiol Paris 101:22-31.

Borst A, Theunissen FE (1999) Information theory and neural coding. Nat
Neurosci 2:947-957.

Bruno RM, Sakmann B (2006) Cortex is driven by weak but synchronously
active thalamocortical synapses. Science 312:1622-1627.

Butts DA, Weng C, Jin J, Yeh CI, Lesica NA, Alonso JM, Stanley GB (2007)
Temporal precision in the neural code and the timescales of natural vi-
sion. Nature 449:92-95.

Buzséki G, Draguhn A (2004) Neuronal oscillations in cortical networks.
Science 304:1926-1929.

Cecchi GA, Sigman M, Alonso JM, Martinez L, Chialvo DR, Magnasco MO
(2000) Noise in neurons is message dependent. Proc Natl Acad Sci U S A
97:5557-5561.

Chase SM, Young ED (2006) Spike-timing codes enhance the representa-

Foffani et al. ® Spike Timing in the Ventrobasal Complex

tion of multiple simultaneous sound-localization cues in the inferior col-
liculus. ] Neurosci 26:3889-3898.

Chase SM, Young ED (2007) First-spike latency information in single neu-
rons increases when referenced to population onset. Proc Natl Acad Sci
U S A 104:5175-5180.

Daw MI, Bannister NV, Isaac JTR (2006) Rapid, activity-dependent plastic-
ity in timing precision in neonatal barrel cortex. ] Neurosci
26:4178-4187.

deCharms RC, Merzenich MM (1996) Primary cortical representation of
sounds by the coordination of action-potential timing. Nature
381:610-613.

de Ruyter van Steveninck RR, Lewen GD, Strong SP, Koberle R, Bialek W
(1997) Reproducibility and variability in neural spike trains. Science
275:1805-1808.

Desbordes G, Jin J, Weng C, Lesica NA, Stanley GB, Alonso JM (2008) Tim-
ing precision in population coding of natural scenes in the early visual
system. PLoS Biol 6:e324.

Deschénes M, Timofeeva E, Lavallée P (2003) The relay of high-frequency
sensory signals in the whisker-to-barreloid pathway. ] Neurosci
23:6778—-6787.

DeWeese MR, Wehr M, Zador AM (2003) Binary spiking in auditory cor-
tex. ] Neurosci 23:7940-7949.

EggermontJJ (1998) Azimuth coding in primary auditory cortex of the cat.
II. Relative latency and interspike interval representation. ] Neurophysiol
80:2151-2161.

Engineer CT, Perez CA, Chen YH, Carraway RS, Reed AC, Shetake JA, Jakka-
msetti V, Chang KQ, Kilgard MP (2008) Cortical activity patterns pre-
dict speech discrimination ability. Nat Neurosci 11:603—608.

Fellous JM, Houweling AR, Modi RH, Rao RP, Tiesinga PH, Sejnowski TJ
(2001) Frequency dependece of spike timing reliability in cortical pyra-
midal cells and interneurons. ] Neurophysiol 85:1782-1787.

Ferezou I, Bolea S, Petersen CC (2006) Visualizing the cortical representa-
tion of whisker touch: voltage-sensitive dye imaging in freely moving
mice. Neuron 50:617-629.

Fernéndez de Sevilla D, Rodrigo-Angulo M, Nufiez A, BufioW (2006) Cho-
linergic modulation of synaptic transmission and postsynaptic excitabil-
ity in the rat gracilis dorsal column nucleus. ] Neurosci 26:4015—4025.

Foffani G, Moxon KA (2004) PSTH-based classification of sensory stimuli
using ensembles of single neurons. ] Neurosci Methods 135:107-120.

Foffani G, Tutunculer B, Moxon KA (2004) Role of spike timing in the
forelimb somatosensory cortex of the rat. ] Neurosci 24:7266—7271.

Foffani G, Chapin JK, Moxon KA (2008) Computational role of large recep-
tive fields in the primary somatosensory cortex. ] Neurophysiol
100:268-280.

Friedberg MH, Lee SM, Ebner FF (1999) Modulation of receptive field
properties of thalamic somatosensory neurons by the depth of anesthesia.
] Neurophysiol 81:2243-2252.

Fries P, Nikolize D, Singer W (2007) The gamma cycle. Trends Neurosci
30:309-316.

Furukawa S, Middlebrooks JC (2002) Cortical representation of auditory
space: information-bearing features of spike patterns. ] Neurophysiol
87:1749-1762.

Gawne TJ, Kjaer TW, Richmond B] (1996) Latency: another potential code
for feature binding in striate cortex. ] Neurophysiol 76:1356-1360.

Ghazanfar AA, Nicolelis MA (1999) Spatiotemporal properties of layer V
neurons of the rat primary somatosensory cortex. Cereb Cortex
9:348-361.

Ghazanfar AA, Stambaugh CR, Nicolelis MA (2000) Encoding of tactile
stimulus location by somatosensory thalamocortical ensembles. ] Neuro-
sci 20:3761-3775.

Gollisch T, Meister M (2008) Rapid neural coding in the retina with relative
spike latencies. Science 319:1108-1111.

Gutierrez R, Carmena JM, Nicolelis MA, Simon SA (2006) Orbitofrontal
ensemble activity monitors licking and distinguishes among natural re-
wards. ] Neurophysiol 95:119-133.

Heil P (1997) Auditory cortical onset response revisited. I. First-spike tim-
ing. ] Neurophysiol 77:2616-2641.

Hopfield JJ (1995) Pattern recognition computation using action potential
timing for stimulus representation. Nature 376:33-36.

Hunter JD, Milton JG, Thomas PJ, Cowan JD (1998) Resonance effect for
neural spike time reliability. ] Neurophysiol 80:1427-1438.



Foffani et al. ® Spike Timing in the Ventrobasal Complex

Hurley LM, Pollak GD (2005) Serotonin shifts first-spike latencies of infe-
rior colliculus neurons. ] Neurosci 25:7876-7886.

Husxter J, Burgess N, O’Keefe ] (2003) Independent rate and temporal cod-
ing in hipocampal pyramidal cells. Nature 425:828—832.

Johansson RS, Birznieks I (2004) First spikes in ensembles of human tactile
afferents code complex spatial fingertip events. Nat Neurosci 7:170-177.

Jones FN (1956) Space-time relationships in somesthetic localization. Sci-
ence 124:484.

Jones LM, Depireux DA, Simons DJ, Keller A (2004a) Robust temporal cod-
ing in the trigeminal system. Science 304:1986—-1989.

Jones LM, Lee S, Trageser JC, Simons DJ, Keller A (2004b) Precise temporal
responses in whisker trigeminal neurons. ] Neurophysiol 92:665—-668.

Kjaer TW, Hertz JA, Richmond BJ (1994) Decoding cortical neuronal sig-
nals: network models, information estimation and spatial tuning. ] Com-
put Neurosci 1:109-139.

Krupa DJ, Wiest MC, Shuler MG, Laubach M, Nicolelis MA (2004) Layer-
specific somatosensory cortical activation during active tactile discrimi-
nation. Science 304:1989-1992.

Lee H, Simpson GV, Logothetis NK, Rainer G (2005) Phase locking of single
neuron activity to theta oscillations during working memory in monkey
extrastriate visual cortex. Neuron 45:147-156.

Leiser SC, Moxon KA (2006) Relationship between physiological response
type (RA and SA) and vibrissal receptive field of neurons within the rat
trigeminal ganglion. ] Neurophysiol 95:3129-3145.

Lisman] (2005) The theta/gamma discrete phase code occurring during the
hippocampal phase precession may be a more general brain coding
scheme. Hippocampus 15:913-922.

MacKay DM, McCulloch WS (1952) The limiting information capacity of a
neuronal link. Bull Math Biophys 14:127-135.

Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical
neurons. Science 268:1503-1506.

Malone BJ, Scott BH, Semple MN (2007) Dynamic amplitude coding in the
auditory cortex of awake rhesus macaques. ] Neurophysiol 98:1451-1474.

Montemurro MA, Panzeri S, Maravall M, Alenda A, Bale MR, Brambilla M,
Petersen RS (2007) Role of precise spike timing in coding of dynamic
vibrissa stimuli in somatosensory thalamus. ] Neurophysiol
98:1871-1882.

Montemurro MA, Rasch MJ, Murayama Y, Logothetis NK, Panzeri S (2008)
Phase-of-firing coding of natural visual stimuli in primary visual cortex.
Curr Biol 18:375-380.

Moxon KA, Hale LL, Aguilar J, Foffani G (2008) Responses of infragranular
neurons in the rat primary somatosensory cortex to forepaw and hindpaw
tactile stimuli. Neuroscience 156:1083-1092.

Nelken I, Chechik G, Mrsic-Flogel TD, King AJ, Schnupp JW (2005) Encod-
ing stimulus information by spike numbers and mean response time in
primary auditory cortex. ] Comput Neurosci 19:199-221.

Nemenman I, Lewen GD, Bialek W, de Ruyter van Steveninck RR (2008)
Neural coding of natural stimuli: information at sub-millisecond resolu-
tion. PLoS Comput Biol 4:e1000025.

Nicolelis MA, Chapin JK (1994) Spatiotemporal structure of somatosensory
responses of many-neuron ensembles in the rat ventral posterior medial
nucleus of the thalamus. ] Neurosci 14:3511-3532.

Nicolelis MA, Lin RC, Woodward DJ, Chapin JK (1993) Dynamic and dis-
tributed properties of many-neuron ensembles in the ventral posterior
medial thalamus of awake rats. Proc Natl Acad Sci U S A 90:2212-2216.

J. Neurosci., May 6, 2009 - 29(18):5964 -5973 « 5973

Opticam LM, Richmond BJ (1987) Temporal encoding of two-dimensional
patterns by single units in primate inferior temporal cortex. ] Neuro-
physiol 57:162-178.

Oram MW, Xiao DK, Dritschel B, Payne KR (2002) The temporal precision
of neural signals: a unique role for response latency? Philos Trans R Soc
Lond B Biol Sci 357:987-

Panetsos F, Nufiez A, Avendaino C (1997) Electrophysiological effects of
temporary deafferentation on two characterized cell types in the nucleus
gracilis of the rat. Eur ] Neurosci 9:563-572.

Panzeri S, Petersen RS, Schultz SR, Lebedev M, Diamond ME (2001) The
role of spike timing in the coding of stimulus location in rat somatosen-
sory cortex. Neuron 29:769-777.

Panzeri S, Senatore R, Montemurro MA, Petersen RS (2007) Correcting for
the sampling bias problem in spike train information measures. ] Neuro-
physiol 98:1064-1072.

Petersen RS, Panzeri S, Diamond ME (2001) Population coding of stimulus
location in rat somatosensory cortex. Neuron 32:503-514.

Petersen RS, Brambilla M, Bale MR, Alenda A, Panzeri S, Montemurro MA,
Maravall M (2008) Diverse and temporally precise kinetic feature selec-
tivity in the VPm thalamic nucleus. Neuron 60:890-903.

Raiguel SE, Xiao D, Marcar VL, Orban GA (1999) Response latency of ma-
caque area MT/V5 neuron and its relationship to stimulus parameters.
J Neurophysiol 44:295-311.

Reich DS, Mechler F, Victor JD (2001) Temporal coding of contrast in pri-
mary visual cortex: when, what, and why. ] Neurophysiol 85:1039-1050.

Rokem A, Watzl S, Gollisch T, Stemmler M, Herz AV, Samengo I (2006)
Spike-timing precision underlies the coding efficiency of auditory recep-
tor neurons. ] Neurophysiol 95:2541-2552.

Rolls ET, Treves A, Tovee MJ (1997) The representational capacity of the
distributed encoding of information provided by populations of neurons
in primate temporal visual cortex. Exp Brain Res 114:149-162.

Schneidman E, Bialek W, Berry MJ 2nd (2003) Synergy, redundancy, and
independence in population codes. ] Neurosci 23:11539-11553.

Soto C, Martin-Cora F, Leiras R, Velo P, Canedo A (2006) GABA(B)
receptor-mediated modulation of cutaneous input at the cuneate nucleus
in anesthetized cats. Neuroscience 137:1015-1030.

Sziics A, Vehovszky A, Molnar G, Pinto RD, Abarbanel HD (2004) Reliabil-
ity and precision of neural spike timing: simulation of spectrally broad-
band synaptic inputs. Neuroscience 126:1063—1073.

Thomson EE, Kristan WB (2006) Encoding and decoding touch location in
the leech CNS. J Neurosci 26:8009—-8016.

Thorpe S, Delorme A, Van Rullen R (2001) Spike-based strategies for rapid
processing. Neural Netw 14:715-725.

Tiesinga P, Fellous JM, Sejnowski T] (2008) Regulation of spike timing in
visual cortical circuits. Nat Rev Neurosci 9:97-109.

Tutunculer B, Foffani G, Himes BT, Moxon KA (2006) Structure of the
excitatory receptive fields of infragranular forelimb neurons in the rat
primary somatosensory cortex responding to touch. Cereb Cortex
16:791-810.

VanRullen R, Guyonneau R, Thorpe SJ (2005) Spike times make sense.
Trends Neurosci 28:1-4.

Victor JD, Purpura KP (1996) Nature and precision of temporal coding in
visual cortex: a metric-space analysis. ] Neurophysiol 76:1310—1326.



