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Optimal Control of Gaze Shifts
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To explore the visible world, human beings and other primates often rely on gaze shifts. These are coordinated movements of the eyes and
head characterized by stereotypical metrics and kinematics. It is possible to determine the rules that the effectors must obey to execute
them rapidly and accurately and the neural commands needed to implement these rules with the help of optimal control theory. In this
study, we demonstrate that head-fixed saccades and head-free gaze shifts obey a simple physical principle, “the minimum effort rule.” By
direct comparison with existing models of the neural control of gaze shifts, we conclude that the neural circuitry that implements the
minimum effort rule is one that uses inhibitory cross talk between independent eye and head controllers.

Introduction
To execute even the simplest action, animals resort to sophisti-
cated neural control that takes into consideration the degrees of
freedom and the dynamics of the effectors used to accomplish it.
The computational complexity of the processes employed to es-
tablish the relevant muscle synergies is often reduced through
simplifying brain mechanisms (Bernstein, 1967). Optimal con-
trol theory (Wolpert and Ghahramani, 2000; Todorov, 2004)
exploits the kinematic and dynamic stereotypes of observed
movements to gain insight into these mechanisms. To this end, a
performance objective is usually expressed as minimization of a
“cost” function, where cost can include time, force, impulse, en-
ergy, jerk, stability, and accuracy (Nelson, 1983). In the past, jerk
(Flash and Hogan, 1985), torque change (Uno et al., 1989), and
variance in the presence of signal dependent noise (Harris and
Wolpert, 1998) are three of the physical measures of cost that
have been minimized to elucidate the principles of organization
of arm reaching movements, whereas minimum-time (Clark and
Stark, 1975; Enderle and Wolfe, 1987) and minimum-variance
(Harris and Wolpert, 1998) have been used to predict the trajec-
tories of rapid eye movements (saccades).

Both the difficulty of a task and the complexity of its neural
control increase when two and more effectors must be coordi-
nated. A case in point is the coordination of the eyes and the head
during rapid gaze shifts. These are stereotypical movements with
severely constrained metrics and kinematics. For example, the
duration of head restrained saccades and head unrestrained gaze
shifts depends linearly on their amplitude as does their peak ve-
locity (Bahill et al., 1975; Tomlinson and Bahra, 1986). Also,
head-free eye velocity profiles are symmetric when they accom-

pany small gaze shifts (�20°) but become two-peaked for larger
gaze shifts (Freedman and Sparks, 1997, 2000; Roy and Cullen,
1998; Tomlinson and Bahra, 1986; Tweed et al., 1995) (for re-
view, see Freedman, 2008). Moreover, larger gaze shifts rely on
considerable head contributions, whereas smaller ones are ac-
complished essentially by the eyes alone while eye and head con-
tributions to gaze shifts depend on initial eye position in the orbit
(Volle and Guitton, 1993; Freedman, 2008).

The neural control of saccades and gaze shifts has attracted
considerable experimental attention and several models have
been proposed to account for the considerable body of evidence
amassed. In the pioneering “linear summation hypothesis,” Bizzi
(1979) proposed that saccades and the vestibulo-ocular reflex
sum linearly, such that head contributions to gaze shifts are sub-
tracted from ocular contributions. Alternatively, the brain has
been thought to use “gaze feedback control” (Laurutis and Rob-
inson, 1986; Guitton et al., 1990). This scheme assumes that gaze
(eye position in space) is the controlled variable and that a neural
controller compares it to instantaneous eye position in space to
create an internal representation of gaze-error, which simulta-
neously drives the eyes and the head until the line of sight reaches
the target. Finally, more recent models of eye-head gaze shifts
(Phillips et al., 1995; Freedman, 2001; Moschovakis et al., 2008),
assume the existence of cross talk between their independent
head- and eye-related circuits (“independent eye and head con-
trol”). Which of these models, if any, reflects reality remains a
matter of debate.

In this study, we use optimal control methods to understand
the functional principles of eye-head gaze shifts. We assumed that
eye and head motor commands keep movement duration as
short as possible while minimizing the squared sum of the mag-
nitude of the control signals that drive the eye and head plants.
This is analogous to a minimum energy dissipation criterion and
we refer to it as the minimum-effort principle. This assumption
suffices to predict the major kinematic features of rapid horizon-
tal eye-head gaze shifts over a wide range of amplitudes, includ-
ing: (1) realistic single-peak eye velocity profiles of head-fixed
saccades as well as small and centripetal head-free gaze shifts, (2)
double-peak eye velocity profiles of large centrifugal gaze shifts,
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(3) ocular components that do not exceed 35° even for large gaze
shifts, and (4) initial eye position dependent contributions of the
eyes and the head. Minimum effort also provides insight into the
interrelation between the duration and amplitude of head-fixed
saccades and head-free gaze shifts. To explore possible neural
mechanisms that could generate the optimal signals inferred
from our model, we compared the commands generated by a
“gaze feedback” model to those of an “independent eye and head”
neural control model. We demonstrate that the latter can gener-
ate the commands needed to implement the herein-proposed
minimal effort rule, whereas the former cannot.

Materials and Methods
We formulated the model as an open-loop optimization one that at-
tempts to recover the best sequence of muscle activations that will min-
imize a performance criterion. As our performance criterion, we adopted
the minimum-effort rule as a two-component cost that depends on both
the eye and head control signals. To compute the optimal trajectories of
the eyes and the head during head-fixed saccades and head-free gaze
shifts, we minimized the time-integral of the square of the eye (ue) and
head (uh) control signals (Eq. 1).

J � min�
t0

tf

���xe�ue
2��uh

2�dt (1)

where tf � t0 is the movement duration, and � and � are weights that scale
the eye and head commands, respectively. The state-varying penalty �
acts as a weight parametrizing the eye control signal. It minimizes the
forces associated with the eye as it moves into eccentric positions where
an increasing amount of effort is required for the agonist extraocular
muscle to contract progressively more. The eye weighting function is a
differentiable second-order polynomial (of the form: � � �0 � �1xe �
�2xe

2) that approximates extraocular muscle tension as a function of eye
position (Collins, 1975; Dean, 1996). Because of this term, the eye com-
mand that controls the agonist muscle causing the eye to move into
eccentric positions are penalized by the state-dependent weight function.
Weight � penalizes the head commands and is state invariant because we
assume that the inertial forces are more prominent than neck muscle
tension for head movements �40°. In the case of very large gaze shifts
(	90°), neck muscle tension and additional effectors, such as the trunk,
may be incorporated into Equation 1.

Equation 1 assumes that effort represents the control energy that is
required to drive the eyes and the head and increases quadratically with
the magnitude of the commands sent to these effectors. Rather than
relate an optimality criterion with a physical state variable of the system,
it is better to associate it with control variables by taking into account the
dynamics of the mechanical components of the system (Uno et al., 1989).
To account for the mechanical properties of the eye and the head, we used
a second-order eye plant with time constants at 150 and 12 ms (van
Opstal et al., 1985), and a second-order head plant with time constants at
182 and 105 ms (inferred from data presented in Bizzi et al., 1978). This
results in a fourth-order state-space model of the gaze control system
with two inputs and one output of the form, dx/dt � Ax � Bu and y(t) �
Cx(t), which is stated below:

ẋ1 � a11x1 � a12x2 � b1ue, ẋ2 � a21x1,

ẋ3 � a33x3 � a34x4 � b3uh, ẋ4 � a43x3, (2)

and y � c2x2 � c4x4,

States x1 and x2 in the first two state-space equations are the velocity and
position states of the eye plant, respectively. Similarly, x3 and x4, are the
velocity and position states of the head plant. The output equation y
represents gaze displacement, where the first term on the right-hand side
is the eye position relative to the head (xe) and the second term is the head
position with respect to space (xh).

Equation 1 does not include terms for online sensory feedback since
experimental evidence suggests that the extraocular muscles are not en-
dowed with a myotatic reflex (Guthrie et al., 1983) and vision is too slow
to help in the control of saccades (Syka et al., 1979). To obtain the opti-
mal control signals, we use Pontryagin’s Minimum Principle (Pontrya-
gin et al., 1962; Bryson and Ho, 1969) to derive analytical expressions for
ue and uh and solve the problem as a two-point boundary value problem.
According to Pontryagin’s Maximum Principle, the Hamiltonian func-
tion H of the system is in the form of H(x, u, t) � L(x, u, t) � �T(t)f(x, u,
t), where function f is our state-space equation (Eq. 2), and L (the La-
grangian) occupies the integral part of the criterion function in Equation
1 and � are the set of Lagrangian multipliers (costate vectors) which
correspond to each of the states, respectively. In this formulation,

H�x,u,t� � �ue
2 � �uh

2 � a11x1�1 (3)

� a12x2�1 � b1ue�1 � a21x1�2

� a33x3�3 � a34x4�3 � b3uh�3 � a43x3�4 .

The optimal controls u(t) can be derived semianalytically by calculating
the impulse response functions �H/�u and equating them to zero. This
rule of stationarity would then result in the following expressions,

ue
* �

b1�1

2�� xe�
, and uh

* � �
b3�3

2�
. (4)

The costate differential equations are derived by substituting Equation 4
into the Hamiltonian in Equation 3 and by applying �̇(t) � ��H/�x,

�̇1 � � a11�1 � a21�2 ,

�̇2 � � a12�1 � ���� xe�

�xe

�
b1

2�1
2

4�2� xe�
� , (5)

�̇3 � � a33�3 � a43�4, and �̇4 � � a34�3 .

Boundary conditions need to be specified for t � t0 and t � tf to fully
define the two-point boundary value problem (refer to Fig. 1). Initial
boundary conditions are given by path velocity constraints x: x1(t0) �
x3(t0) � 0. This implies that saccades and head movements start simul-
taneously with the gaze shifts they accompany as is the case in monkeys
(Freedman and Sparks, 1997). Final boundary conditions are provided:
(1) through �f

T � ��/�x [where � � 0.5( y � 
G�), and 
G� is the
desired gaze displacement], which is imposed on the costates � and lead
to the following boundary conditions: �2(tf) � 2c2( y � 
G�), �3(tf) � 0,
and �4(tf) � 2c4( y � 
G�), and (2) x1(tf) � 0, which implies that gaze
shifts end together with ocular saccades as is the case in monkeys (Freed-
man and Sparks, 1997). Together with initial boundary conditions, the
latter implies that the duration of gaze shifts equals the duration of the
saccades that accompany them, as is the case in monkeys (Freedman and
Sparks, 1997). After the end of the gaze shift, the head continues to move
but does not alter the direction of the line of sight because of the opera-
tion of a fully functional vestibulo-ocular reflex (for a recent review, see
Pelisson and Guillaume, 2009). For this reason, rather than simulate the
complete trajectory of the head, we only consider the contribution of its
movement until the end of the gaze shift.

Extremal trajectories are generated by simultaneously solving the sets
of ordinary differential Equations 2 and 5 subject to the boundary con-
ditions with a standard boundary-value solver. Results were obtained by
using the two-point boundary value problem solver function bvp4c.m
available in MatLab. The following parameters were used in the simula-
tion of the optimal control model (Eqs. 1–5): a11 � �90, a12 � �17.36,
a21 � 32, b1 � 4, c2 � 4.34, a33 � �15, a34 � �6.54, a43 � 8, b3 � 4, c4

� 2.81, �0 � 9.1, �1 � 0.36, �2 � 0.014 and � � 18. The first five
parameters arise from the conversion of the transfer function of the
ocular plant into its state-space representations and correspond to time
constants equal to 150 and 12 ms (van Opstal et al., 1985). Similarly, the
next five parameters apply to the same conversion for the head plant and
correspond time constants equal to 182 and 105 ms, which, as described
above, are inferred from the biomechanics data of Bizzi et al. (1978). The
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remaining four parameters are associated with the eye and head control
energy penalties. The first three (�0, �1, �2) were obtained from iterative
curve-fitting of the extraocular muscle length-tension curve of Collins
(1975) and are approximately similar to the parameters estimated by
Dean (1996). Our simulations are not sensitive to the precise value of
parameter � (which penalizes the head control energy), provided that
� 	 �0, unless very large values of � are reached, in which case shifts of
the line of sight are accomplished by the eyes alone.

Results
The generation of saccades and eye-head gaze shifts is governed
by an optimal balance between “effort” and movement duration.
We define effort as the time-integral of the squared sum of the
motor commands driving the relevant plants (see Eq. 1 in Mate-
rials and Methods) that represents the control energy required to
efficiently displace an effector from one point in space to another.
This movement effort cost is plotted as a function of time in
Figure 1a (solid) for a medium-sized (50° in amplitude) centrif-
ugal gaze shift. As shown here, the effort needed to execute the
ocular component of such a gaze shift (dashed) grows paraboli-
cally as the eye moves into more eccentric locations and extraoc-
ular muscle tension increases quadratically (Collins, 1975; Dean,
1996). However, the initial part of the curve describing the cost of
the head component (dash-dots) is linear and grows to an asymp-
tote toward the end of the gaze shift as it enters into its decelera-
tion phase.

To understand the interrelation between movement duration,
amplitude, and effort, these three quantities are simultaneously
displayed as iso-effort contour plots for head-fixed eye saccades
in Figure 1b. Each contour line represents a constant level of
effort for different combinations of amplitude and duration. For
every movement amplitude, effort becomes almost movement-
size invariant beyond a critical duration, coincident with the in-
flection points of the iso-effort contours shown in Figure 1b.
Further decrease in duration beyond this critical value requires
additional effort that increases exponentially in inverse propor-
tion to duration. One would thus expect the amplitude– duration
relationship of primate saccades not to venture far from these
inflection points. An amplitude– duration relationship shallower

than this would describe saccades that last less but at the cost of
additional effort, whereas a steeper one would characterize low-
effort saccades that take a long time to complete. The amplitude–
duration relationship of experimental subjects often passes
through or very near these optimal points. For example, such a
relationship (1.2 ms/deg) (Fig. 1b, dashed-dots) is obeyed by the
two monkeys of van Gisbergen et al. (1981) and one of the mon-
keys (#1) of King et al. (1986). Yet, the amplitude– duration rela-
tionships can differ a lot between subjects. Slopes as high as 1.9
ms/deg (Fig. 1b, dotted line) were obtained from monkey #2 of
King et al. (1986), whereas slopes as low as 1 ms/deg (Fig. 1b,
dashes) were found by Fuchs (1967). However, even in these
somewhat extreme cases, relationships experimentally deter-
mined from monkeys do not depart much from the herein-
determined optimal one. To simulate optimal head-fixed sac-
cades, a value of 1.6 ms/deg (Fig. 1b, solid line) is used, which
leaves the amplitude– duration relationship comfortably within
the range of experimentally determined ones.

Similarly, Figure 1c displays the iso-effort contours for head-
free gaze shifts. Their inflection points are not as easily discernible
and span a bigger region than those of the iso-effort contour plots
of saccades and effort becomes invariant at much higher duration
values. Experimentally determined gaze amplitude– duration re-
lationships also intersect the iso-effort contours when the latter
become size invariant. The dashed line of Figure 1c illustrates a
case in point documented by Tomlinson and Bahra (1986) and
characterized by a slope of 2.4 ms/deg. Other published gaze
amplitude– duration relationships are even steeper. For example,
a slope equal to 3.4 ms/deg (Fig. 1c, dashed-dot) was found in
monkey T by Freedman and Sparks (1997) and a slope equal to
3.7 ms/deg (Fig. 1c, dotted line) was obtained from monkey (RO)
by Phillips et al. (1995). A value of 2.85 ms/deg (Fig. 1c, solid line)
is used to simulate optimal eye-head gaze shifts.

If the minimum effort principle holds, it should simulta-
neously apply to both saccade and gaze shift kinematics. To ex-
plore whether this is the case, we first simulated a series of head-
fixed saccades. Figure 2a shows the velocity profiles of five
saccades ranging from 5° to 40° which obey the amplitude– du-

Figure 1. Effort and movement duration. a, Time course of effort for a medium-sized (50°) gaze shift. Solid line, Combined effort for both eye and head. Dashed line, Effort associated with eye
component. Dashed-dot line, Effort associated with head component. Note that the total effort of the movement is the cost value of the combined effort at the end of the movement. b, Iso-effort
contours for head-fixed saccades. Abscissa, Saccade amplitude; ordinate, saccade duration. Lines indicate the amplitude– duration relationship obtained from Fuchs (1967), King et al. (1986), van
Gisbergen et al (1981), and the one used in our optimal control model (dashed line, dotted line, dashed-dot line and solid line, respectively). c, Iso-effort contours for head-free gaze shifts. Abscissa,
Amplitude; ordinate, duration. Lines indicate the amplitude– duration relationship obtained from Tomlinson and Bahra (1986), Phillips et al. (1995), Freedman et al. (1997), and the one used in our
simulations of eye-head gaze shifts (dashed line, dotted line, dashed-dot line and solid line, respectively). Numbers indicate the total effort required to accomplish the movement (on the log-scale).

Kardamakis and Moschovakis • Optimal Control of Gaze Shifts J. Neurosci., June 17, 2009 • 29(24):7723–7730 • 7725



ration relationship that follows the solid
line of Figure 1b. The velocity profiles of
saccades smaller than 20° are symmetrical,
whereas larger saccades exhibit a short ac-
celeration phase followed by a longer de-
celeration phase. Consistent with experi-
mental observations in monkeys
(Freedman, 2008) and humans (van Op-
stal and van Gisbergen, 1987), the skew-
ness of the velocity profiles increases with
movement size. This is shown in the inset
of Figure 2a which illustrates the velocity
profiles of three typical saccades from the
monkey [extracted from the study by
Freedman (2008), their Fig. 2b]. Although
the onset and offset of our simulated sac-
cades is more abrupt than those of pri-
mates, this is attributable to our choice of a
second-order ocular plant rather than a
third-order one to model eye movements
[compare Fig. 2a of the present study to
the study by Harris and Wolpert (1998),
their Fig. 2b,c]. Also consistent with exper-
imental observations (Collewijn et al.,
1988, Fuchs, 1967), the peak values
reached by our optimal velocity profiles
display a soft saturation. Rather than hav-
ing to explicitly constrain a model to re-
produce them, several qualitative features
of saccadic velocity profiles thus emerge
from the application of the minimum ef-
fort rule.

After showing that the minimum effort
rule provides an accurate account of sac-
cade kinematics we explored whether it
also captures the main features of eye-head
gaze shifts. To this end, we simulated a se-
ries of horizontal gaze shifts with amplitudes ranging from 5° to
75° and obeying an amplitude– duration relationship such as the
one shown in Figure 1c. No constraints were imposed on the sizes
of the individual eye and head components of the gaze shifts.
Instead their sum is constrained to equal retinal error (
G�) for
all gaze shifts spanning the entire range that was simulated (Fig.
3c). Figure 3b shows the relation between the size of the simulated
gaze shift and the amplitude of the contribution of the head (open
diamonds) plotted together with empirical data obtained from
monkey T of Freedman and Sparks (1997) and illustrated in their
Figure 6C (dots). As in experimental subjects (Freedman and
Sparks, 1997; Stahl, 1999), small (15–20°) simulated gaze shifts
are accomplished by the eyes virtually alone, and the contribution
of the head remains negligible (Fig. 3b). As is the case in monkeys
[Fig. 3a, dots: extracted from the study by Freedman and Sparks
(1997), their Fig. 6E], the ocular components of simulated gaze
shifts (Fig. 3a, open diamonds) do not exceed 30 –35° even for
large gaze shifts. It should be pointed out that both the saturation
of the ocular contribution for large gaze shifts and the negligible
contribution of the head for small gaze shifts are not caused by the
imposition of additional constraints, such as saturating and
threshold nonlinearities, but are instead emergent properties of
the minimum effort principle.

The assumption that it underlies eye-head coordination also
allowed us to reproduce the eye velocity profiles of gaze shifts
widely ranging in size. Figure 2b shows three examples, the small-

est one from a 20° movement, a medium-sized one from a 40°
movement, and the largest one from a 70° gaze shift. As the size of
the gaze shift increases, peak velocity decreases and duration in-
creases. Furthermore, the shape of the velocity profiles changes. It
is almost symmetrical for the small one, skewed in the case of the
medium-sized one, and dual-peaked for the biggest of the three.
They resemble the eye velocity traces extracted from small, me-
dium, and large, respectively [Freedman and Sparks (1997), their
Fig. 8B, traces a– c], head-free movements of the monkey shown
in the inset of Figure 2b. In both the monkey and the model, it
would thus appear as if the eye must accelerate, subsequently
decelerate, and then reaccelerate whenever head-free gaze shifts
are large enough, i.e., when they are accompanied by large head
movements. Indeed, such twin peak eye velocity profiles have
been repeatedly documented (Tomlinson and Bahra, 1986;
Tweed et al., 1995; Freedman and Sparks, 1997, 2000; Roy and
Cullen, 1998) for head-free gaze shifts of monkeys accompanied
by large head contributions. To obtain these velocity profiles, we
used the amplitude– duration relationship shown as solid line in
Figure 1c, as a boundary condition in the cost function we mini-
mized. Use of a shallower amplitude– duration relationship [for
example, one that lies below the line in Fig. 1c obtained by Tom-
linson and Bahra (1986)] leads to movements of shorter duration
that are also characterized by the disappearance of the second
peak in their velocity profiles.

The simulated movements we examined so far were assumed

Figure 2. Eye velocity profiles. a, Time course of head-fixed eye velocity for saccades ranging from 5– 40°. Inset, Data extracted
from Figure 2 B of the study by Freedman (2008), showing a 10°, 20°, and 30° saccade. b, Eye-velocity profiles of head unrestrained
gaze shifts of 20°, 40°, and 70° starting with the eyes centered in their orbit. Inset, Data extracted from Figure 8 B of the study by
Freedman and Sparks (1997) showing a 24° and 35° gaze shift, and from Freedman (2008) showing a 70° gaze shift.

Figure 3. Metrics of gaze shifts with the eyes and the head facing straight ahead. a, b, Eye amplitude (a) and head contribution
(b) as a function of gaze amplitude for gaze shifts ranging from 5 to 75°. Open diamonds, Simulation results; dots, experimental
data extracted from Figure 6 of the study by Freedman and Sparks (1997). c, Amplitude of head-unrestrained gaze shifts as a
function of retinal error.
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to start from straight ahead initial position of the eyes. Changing
this initial condition allowed us to explore the interaction be-
tween eye and head contributions to gaze shifts. These are known
to depend on the position of the eyes in the orbit at the onset of
the gaze shift (Freedman and Sparks, 1997). To investigate the
origins of this phenomenon, three gaze shift sizes, 30°, 50°, and
70° were simulated (Fig. 4), whereas initial eye position varied
between 30° to the left and 15° to the right of straight ahead.
Although this was not imposed on our optimal control model
through the adoption of any additional constraints, as shown in
Figure 4a, the size of the ocular contributions to the gaze shift is

inversely correlated to initial eye position. To generate constant
amplitude gaze shifts (Fig. 4c), the head contribution must ex-
hibit the opposite relation (Fig. 4b), i.e., a positive slope with
respect to initial eye position. A second emergent property of the
minimum effort rule associated with position sensitivity of gaze
shifts is the fact that the larger the size of the gaze shift, the steeper
the regression slope. The same is true of the ocular and the head
contributions to head-free gaze shifts of the monkey as shown in
the insets of Figure 4, a and b, respectively [which includes data
extracted from the study by Freedman and Sparks (1997), their
Fig. 15B,C, respectively].

Discussion
We used optimal control theory to disclose a principle of organi-
zation of eye-head gaze shifts, the minimum effort rule. Iso-effort
contours reveal that the optimal performance of head-fixed sac-
cades and head-free gaze shifts take advantage of a balance be-
tween effort and time. Every muscular system is subject to fatigue
when used continuously and this is particularly true of the ocular
muscles of primates and humans, which are known to shift their
gaze more than 10 5 times a day (Bahill and Stark, 1975). Once
fatigued, saccades become slower with lower peak velocities that
violate the main sequence relationship (Bahill and Stark, 1975).
To reduce the risk of fatigue, the saccadic system could limit its
operation to between 5 and 9.5 on the effort scale (Fig. 1), thus
avoiding the use of excessive forces. This could be accomplished
by increasing movement duration. However, movements of the
eyes compromise vision and thus their duration should prefera-
bly be kept to a minimum. One would thus intuitively expect
optimal gaze shifts from the trade-off between effort and move-
ment duration. As suggested before, extraocular muscles and the
neurons that control them are endowed “with one or more safety
factors, which ensure accurate and consistent performance re-
gardless of the demands placed on them” (Fuchs and Binder,
1983). Movement duration could be one such safety factor. In
turn, eye and head contributions to gaze shifts are constrained by
a trade-off between the forces associated with the high inertia of
head and the viscoelastic forces associated with rapid eye move-
ments. Such a trade-off is reached at a point determined from the
two weights (� and �) in the equation that describes the func-
tionality of the system (Eq. 1) and penalize the size of the motor
command sent to the eye (�) and to the head (�). Evidently one
could generalize this argument to encompass additional effec-
tors, such as the trunk and the lower body.

An inspection of optimal eye and gaze trajectories demon-
strates their similarity to those executed by animals. First, the
velocity profiles of small head-fixed saccades (�20°) are symmet-
rical, whereas those of bigger movements are skewed with short
acceleration and longer deceleration phases (Fig. 2), as in humans
(Collewijn et al., 1988, van Opstal and van Gisbergen, 1987) and
monkeys (Freedman, 2008). Also, consistent with experimental
observations (Freedman and Sparks, 1997; Syka et al., 1979),
smaller simulated gaze shifts (�20°) are not accompanied by
head movements and ocular components do not exceed 30 –35°
even for large (40 –90°) gaze shifts (Fig. 3). Moreover, as in nat-
ural movements (Freedman and Sparks, 1997), the eye velocity
profiles of relatively small head-free gaze shifts (�15°) are uni-
modal and rather symmetrical, whereas larger ones are charac-
terized by lower peak values and two-humped velocity profiles
(Tomlinson and Bahra, 1986; Tweed et al., 1995; Freedman and
Sparks, 1997, 2000; Roy and Cullen, 1998). Furthermore, the size
of the contributions of the eye and the head depend on the initial
orbital position of the eyes (Volle and Guitton, 1993; Freedman

Figure 4. Metrics of gaze shifts with the eyes starting from different initial positions. a– c,
Size of eye (a) and head (b) contributions to rightward head-free gaze shifts (c) of constant
amplitudes equal to 30° (open circles), 50° (open squares), and 70° (open diamonds), as a
function of initial eye position (abscissa). Negative values indicate leftward initial eye positions.
Data were fit with least-squares regression lines the slopes of which were the following: (a) 30°:
�0.3; 50°: �0.5; 70°: �0.7 and (b) 30°: 0.3; 50°: 0.5; 70 °: 0.7. Insets, Data extracted from
Figure 15B (in b) and Figure 15C (in a) of the study by Freedman and Sparks (1997).
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and Sparks, 1997). The head contributes
progressively less (and the eyes more) to
gaze shifts of the same size as initial eye
position is directed contralaterally to the
impending gaze shift. The opposite is true
when the eyes are directed ipsilaterally.
The eye position dependence increases
with the size of the gaze shift. Comparison
of Figure 4 of this study to the study by
Freedman and Sparks (1997), their Figure
15, demonstrates that our model repro-
duces quite well the overall features of this
effect as determined experimentally for
gaze shifts of 30, 50, and 70°. For example,
the slopes of the regression lines relating
head amplitude to initial eye position in-
creased from 0.3 to 0.7 as the size of the
simulated gaze shift increased from 30 to
70°. The same is true for the relationship
between ocular contributions and initial
eye position; for example, the slope (�0.7)
we obtained for large gaze shifts (70°) lies
in between the values determined experi-
mentally (�0.43 and �0.85) in two mon-
keys executing 70° gaze shifts (Freedman
and Sparks, 1997).

Inspection of the optimal eye-head
motor commands provides some insight
into the signals driving the eyes and the
head. Figure 5a illustrates the dynamic
portion of the control signals leading to
head-free gaze shifts of three different sizes
starting from straight ahead. These motor
commands are velocity-dependent and
compensate for inertial effects, and consis-
tent with the separation principle (Guigon
et al., 2007) they can be optimized inde-
pendently from the static components re-
flected in the tonic activity compensating
for gravitational and elastic restoring
forces. The commands sent to the eye are
tightly linked to eye velocity, resulting
from the fact that the eye is virtually
inertia-less and is dominated by viscous
elements (Robinson, 1981). However, the
head is dominated by its high inertial com-
ponent and thus the agonist commands sent to it are tightly
linked to the acceleration phase of its movement (Zangemeister
et al., 1981). This is followed by antagonist commands applied by
the opposing muscle to decelerate the head movement (Han-
naford et al., 1986). Our model demonstrates that for a certain
amount of effort, the size of head contributions to gaze shifts
increases when their acceleration phase coincides with the move-
ment of the eye. This is resulting from the fact that signals con-
veyed to antagonist neck muscles (by convention these are con-
sidered to have a negative sign) induce the expenditure of effort
(because of the quadratic form of the minimum effort perfor-
mance criterion) and decelerate the head rather than assist ago-
nist muscles in pushing it further in the same direction. Thus the
present model provides an intuitive explanation for the fact that
the duration of the ocular component of gaze shifts coincides
with the acceleration phase of their head components (Guitton et
al., 1990).

As shown in Figure 5a, the signal controlling the head need
not reach its peak value together with the signal controlling the
eye. As the amplitude and duration of signals controlling the head
increase, the shape of the optimal eye commands change from
single-peaked to two-humped profiles. Because of their rapid
responsiveness, the velocity of the eyes can follow much faster
control signals, and distinct peaks can occur near the beginning
and toward the end of large gaze shifts. However, the head is a
slower plant (Bizzi et al., 1978) and slower signals suffice to drive
it through realistic trajectories. The command signals sent to it
display a single peak, which often occurs approximately halfway
through the activation of the agonist muscle. The aforemen-
tioned details concerning the waveforms of the optimal signals
driving the eye and the head apply to gaze shifts of all sizes and
emerge from the minimum effort rule.

What alternative optimality principles could govern gaze
shifts? It has been argued that saccades are programmed such that

Figure 5. Motor commands controlling gaze shifts (
G) of 30, 50, and 70°. a, Signals derived from the minimum effort rule. b,
Left, Schematic illustrating the major building blocks of a neural model that assumes independent eye and head control and
inhibitory cross talk between the head related and eye related neural circuitry (Phillips et al., 1995; Freedman, 2001; Moschovakis
et al., 2008). Right, The eye and head commands it generates for the gaze shifts illustrated in a. c, Schematic (left) illustrating the
major building blocks of a neural model that assumes gaze feedback driving both the eye and head controllers (Guitton et al.,
1990) and the control signals it generates (right). Negative signs next to the arrowheads indicate inhibitory connections. All other
connections are excitatory. The VOR has been ignored because of its negligible role during the quick phases of gaze shifts. Both
neural models (b) and (c) have been implemented in Simulink of the MatLab environment. Time bar (200 ms) applies to all
waveforms. The amplitude of the motoneuronal eye and head units (measured in spikes per second) vary because of differences
among the gains of their corresponding eye and head plants.
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their duration is kept to a minimum (Clark and Stark, 1975;
Enderle and Wolfe, 1987). Assuming that the saccadic system is
linear, the minimum-time requirement implies that it uses
“bang-bang” control, i.e., that its output is at its maximum force
limits (positive or negative) over the entire movement. As argued
before (Harris and Wolpert, 1998), adoption of the minimum
time rule does not lead to realistic saccade velocity profiles. More-
over, minimizing movement time leads one to expect larger con-
tributions from the faster of the two effectors (the eyes) during
coordinated eye-head gaze shifts. In fact, ocular contributions are
smaller than expected from the oculomotor range since the eyes
are known to reach eccentricities not exceeding 30 –35° (Freed-
man and Sparks, 1997), even when monkeys execute large eye-
head gaze shifts and although their oculomotor range is 45–50°.
Minimum jerk (Flash and Hogan, 1985) or torque change (Uno
et al., 1989) models have been proposed for arm movements, but
are unlikely to provide the underlying principle of saccades and
eye-head gaze shifts because they fail to account for important
kinematic features of eye movements, such as their skewed and
dual peak velocity profiles (Harris and Wolpert, 1998). Finally,
minimum variance in the presence of signal-dependent noise has
been invoked to account for saccade trajectories (Harris and
Wolpert, 1998). Indeed, such a model could account for some of
the psychophysics explained by our model such as the fact that
the ocular components do not exceed some value (�30 degrees in
the monkey). However, it is not obvious to us that it would ac-
count for the twin-peak eye-velocity profiles of large enough gaze
shifts or for the initial eye position sensitivity of eye and head
contributions to gaze shifts.

Our optimal control model describes eye-head coordination
at the computational level and need not be relevant to the pre-
motor circuits responsible for saccades and gaze shifts. The prin-
ciples of operation of the system gleaned from such models are
independent of brain structures and neural processes. It is, how-
ever, meaningful to ask what neural circuitry could generate mo-
tor commands consistent with those derived from the minimum
effort rule. To answer this question, optimal control approaches
must be supplemented with models of the neural control of gaze
shifts that rely on systems theory to link neurophysiology (and
neuroanatomy) to psychophysics (and neurology since the “le-
sion” of model units can be readily simulated).

Control systems theoretic approaches have been widely used
to model the information flow and signal transformations in pre-
motor circuitry controlling saccades and gaze shifts (Moschova-
kis et al., 1996). Models of the neural control of gaze shifts can be
classified into two categories: (1) gaze feedback control and (2)
independent eye and head control. These two classes of models
differ in the control strategy they employ to accurately shift the
line of sight. Gaze feedback models (Fig. 5c) are extensions of the
eye position saccadic controller (van Gisbergen et al., 1981) and
assume that desired gaze position is compared with current gaze
position, so that the resulting gaze-position-error signal drives
both the eyes and the head (Laurutis and Robinson, 1986; Guit-
ton and Volle, 1987; Guitton et al., 1990). In contrast, indepen-
dent eye and head control models (Fig. 5b) assume that the SC
command is decomposed into separate eye and head components
driving their respective plants, independently. These models use
an inhibitory interaction between the head portion and the eye
portion of their circuitry, mediated by the VOR (Bizzi, 1979;
Whittington et al., 1984) or an efference copy of the head com-
mand (Phillips et al., 1995; Freedman, 2001; Moschovakis et al.,
2008).

To examine which gaze control model generates commands

best resembling those inferred from the present study, we simu-
lated an independent eye and head control model (Fig. 5b) and a
gaze feedback control model (Fig. 5c). We decided to simulate the
model of Moschovakis et al. (2008) as representative of the inde-
pendent control models and that of Guitton et al. (1990) as rep-
resentative of the gaze feedback control models because there are
parameter specifications allowing the numerical simulation of
both models. The right-hand side of Figure 5, b and c, shows the
phasic component of the commands sent to the eye (top rows)
and the agonist neck muscle (bottom rows) obtained from the
independent control (Fig. 5b) and gaze feedback model (Fig. 5c),
respectively, for a 30, 50, and 70° gaze shift. As movement ampli-
tude increases, the peak value of the commands sent to the ocular
plant of the independent control model decreases and they dis-
play a second peak toward the end of large gaze shifts (Fig. 5b), as
do the waveforms produced by the minimum effort principle
(Fig. 5a, top row) and the velocity profiles of primate head free
eye movements (Tomlinson and Bahra, 1986; Tweed et al., 1995;
Freedman and Sparks, 1997, 2000; Roy and Cullen, 1998).
Clearly, such signals are not produced by the gaze feedback model
(Fig. 5c). For example, unlike those required to optimally drive
the eyes (Fig. 5a), the amplitude of the signals sent by the gaze
feedback model to the eye and the head resemble each other, and
simply scale with movement size while they do not display any
distinct peaks.

We demonstrated that the minimum effort rule is an impor-
tant design principle of eye-head motor coordination and that
the CNS could implement it through inhibitory cross talk be-
tween independent eye and head controllers. We also demon-
strated that such an independent control strategy can generate
motoneuronal discharges matching the commands inferred from
our optimal control model. Thus, results from our optimal con-
trol and neural systems modeling converge toward a unified
framework of eye-head motor coordination. We anticipate that
the integration of optimal control and system modeling of neural
processes will prove decisive in efforts to understand the neural
control of action.
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