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The Foveal Confluence in Human Visual Cortex
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The human visual system devotes a significant proportion of its resources to a very small part of the visual field, the fovea. Foveal vision
is crucial for natural behavior and many tasks in daily life such as reading or fine motor control. Despite its significant size, this part of
cortex is rarely investigated and the limited data have resulted in competing models of the layout of the foveal confluence in primate
species. Specifically, how V2 and V3 converge at the central fovea is the subject of debate in primates and has remained “terra incognita”
in humans. Using high-resolution fMRI (1.2 � 1.2 � 1.2 mm 3) and carefully designed visual stimuli, we sought to accurately map the
human foveal confluence and hence disambiguate the competing theories. We find that V1, V2, and V3 are separable right into the center
of the foveal confluence, and V1 ends as a rounded wedge with an affine mapping of the foveal singularity. The adjacent V2 and, in contrast
to current concepts from macaque monkey, also V3 maps form continuous bands (�5 mm wide) around the tip of V1. This mapping
results in a highly anisotropic representation of the visual field in these areas. Unexpectedly, for the centermost 0.75°, the cortical
representations for both V2 and V3 are larger than that of V1, indicating that more neuronal processing power is dedicated to second-level
analysis in this small but important part of the visual field.

Introduction
In 1969, Zeki provided a simple schematic representation of mul-
tiple retinotopic maps of macaque [Zeki (1969), his Fig. 8]. He
noted that on primate cortex, the foveal parts of the V1, V2, and
V3 maps all converge toward a common center, not unlike pie
wedges meeting at the center of the pie (Fig. 1a). Zeki could not
resolve the layout of the three areas in this central foveal region,
later termed “the foveal confluence.” The exact layout is still un-
resolved to date, and two models are currently supported by ex-
perimental literature.

The model which currently finds most widespread support
suggests that V2v and V2d are connected forming a band around
the tip of V1, but the two halves of V3 are disconnected (New-
some et al., 1986; Van Essen et al., 1986; Gattass et al., 1988, 2005;
Lyon and Kaas, 2002). The implication of this arrangement is that
V4 must be directly bordering the foveal band of V2 (Fig. 1b).
This raises a question about the foveal representation in V3—
whether it is absent altogether or whether the foveal representa-
tion is pulled back in a peripheral direction. The concept pro-
posed by Gattass et al. [(2005), their Fig. 2] suggests that V3 does
not contain a representation more central than 2° of eccentricity
(although this may be an overinterpretation of the intended pre-
cision of their figure). In either case, the V3 foveal representation
would be substantially underrepresented, implying that whatever

functions are processed in V3 are not available for application to
the foveated features of the image.

In a second model (Piñon et al., 1998; Rosa et al., 2000; Rosa
and Tweedale, 2000, 2005), V2, V3, and V4 each form a contin-
uous band through the center of the foveal confluence (Fig. 1c).
This scheme implies a consistent principle of the mapping of the
fovea across the early representation areas. It suggests that foveal
V4 does not border V2, avoiding both the discontinuity in the
polar angle representation in the foveal confluence and the lack of
foveal representation in V3, which plague the competing model.

Although the first-tier retinotopic areas (V1–3) have been well
specified in human for their peripheral and parafoveal parts
(Dougherty et al., 2003; Schira et al., 2007), the layout of the
foveal confluence on human cortex has remained unresolved
(Wandell et al., 2007). These profound structural uncertainties
preclude a proper understanding of the effects of losses of foveal
vision (as in amblyopia or age-related macular degeneration) or
the design of appropriate stimuli to test the scaling of the crowd-
ing effect. In Schira et al. (2007), we measured the precise layout
of V1 and V2 from eccentricities of 16° down to 0.5°, providing
the most detailed analysis of the mapping of parafoveal visual
cortex thus far. It was found that V2 was only 7 mm wide at 0.5°,
although insufficient resolution prevented the analysis of more
central eccentricities. It was this finding that encouraged us to
pursue the present high-resolution fMRI approach to map the
complete foveal confluence.

Materials and Methods
Although in principle this study used standard retinotopic mapping pro-
cedures, three critical components were significantly improved. First, we
increased the resolution of the anatomical scans from 1 � 1 � 1 mm 3 to
0.75 � 0.75 � 0.75 mm 3 (a volumetric factor of 2). Second, more im-
portantly, the functional resolution was increased to 1.2 � 1.2 � 1.2
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mm 3, an improvement by a volumetric factor of 15 from a typical 3 �
3 � 3 mm 3. Finally, we used retinotopic mapping stimuli that were
carefully developed with the aim of maximal fixation stability and foveal
resolution. We provide a video demonstration of the stimuli in the sup-
plemental material (available at www.jneurosci.org) to allow a full
understanding.

Subjects. Five healthy subjects (two female) ranging from 23 to 41 years
participated in this study. The study protocols were approved by ethics
boards from the University of New South Wales and the Prince of Wales
Medical Research Institute. Data were acquired on a Philips 3T Achieva X
Series equipped with Quasar Dual gradients and an eight-channel head
coil.

Visual stimuli. Retinotopic mapping stimuli were presented on a
shielded 19 inch LCD screen located behind the scanner. Subjects viewed
the screen via a mirror mounted on the head coil at a viewing distance of
1.5 m, resulting in a display spanning a diameter of 11° (or 5.5° in eccen-
tricity). Stimuli consisted of colored dartboard patterns with random
colored checks that changed color every 0.25 ms. The background was
mid gray, and for improved fixation stability, it incorporated an extended
fixation grid (thin dark gray lines and concentric rings covering the com-
plete screen) rather than a small fixation dot or cross as used in similar
studies. We previously showed that such a continuously present fixation
grid allows excellent fixation accuracy of healthy subjects with an SD of
�11 arc minutes while subjects viewed retinotopic mapping stimuli with
such a fixation grid (Tyler et al., 2005; Schira et al., 2007). Furthermore,
the central 3 � 3 pixels (0.04°) comprised a fixation dot that was white
most of the time. Randomly (once every 3– 8 s), this dot flickered slowly
in brightness or turned red. Subjects were instructed to ignore any ach-
romatic luminance change but press and hold a response button when-
ever the central dot turned red and release the button once it returned
white again (typically 1–2 s later). This task was designed not to be par-
ticularly demanding but to require steady fixation. Log-scaled expanding
rings were used to provide many small rings in the fovea and fewer larger
rings in the periphery, aiming to counteract the cortical magnification
and activate similar amounts of cortex with each ring size. We used 18
different ring sizes from 0.08° to 5.5° of eccentricity, scaled in proportion
to eccentricity. The very smallest ring was special in that it was a disk
(rather than a ring) spanning from 0 – 0.08°, and it occluded the fixation
grid as well as the central dot (effectively serving as a big fast-flickering
and color-changing fixation dot), whereas the other rings were occluded
by the fixation grid and the central dot.

Anatomical data collection and processing. Anatomical data were col-
lected using a three-dimensional (3D) MPRAGE with 0.75 � 0.75 � 0.75
mm resolution. Up to five anatomical scans were acquired per subject
(usually three), including partial scans only covering the occipital lobe.
These partial scans allowed the sequence and shimming to be optimized
for the occipital pole resulting in superior gray/white contrast (which

typically tends to decrease at the very occipital
pole). To obtain an optimal gray/white contrast
dataset, these scans were aligned, averaged, and
homogeneity-corrected using routines from
SPM5 (SPM software package, Welcome De-
partment, London, UK; http://www.fil.ion.ucl.
ac.uk/spm/), the mrAnatomy toolbox (Stan-
ford University, Stanford, CA), FSL (Analysis
Group, FMRIB, Oxford, UK; http://www.
fmrib.ox.ac.uk/fsl/), and custom MatLab rou-
tines. Finally, the anatomy datasets were care-
fully and manually segmented to identify the
gray–white boundary using mrGray.

We did not estimate the thickness of cortical
gray matter directly but rather assumed the first
three voxel layers above the gray–white bound-
ary to be cortex. Given the high-resolution 0.75
mm grid of our data, this reflected a 2.25 mm
thickness of cortex. This is a conservative ap-
proach designed to avoid misallocating cortical
voxels from the opposite sulcus. A mesh struc-
ture was constructed based on this stratification
model, and we used this structure for most of

our data analysis. Three-dimensional surface distances were calculated in
the second (middle) layer of this structure, with correction for the min-
imal overestimation of distances in an overconnected 3D grid (Schira et
al., 2007).

Functional data. To achieve high resolution, speed, and small distor-
tions, we used a SENSE (Pruessmann et al.,1999)-accelerated echoplanar
imaging (EPI) sequence. Great care was taken to minimize distortion,
and each subject’s data were carefully investigated to ensure distortion
was minimal (Fig. 2c). Functional data were acquired in 27 1.2 mm slices
with a 192 � 192 matrix, 230 mm field of view, and a SENSE factor of 2.3.
Volume repetition time was 3 s. In total, each subject was scanned for 3 �
12 min for a T1 anatomy and between 12 and 18 functional scans over 5.3
min each, resulting in a total scan time of up to 135 min, distributed
across 2–3 sessions.

Functional data were motion corrected and slice scan-time corrected
using the SPM5 software package, then imported into the mrVista-
Toolbox (Stanford University, Stanford, CA; http://white.stanford.edu/
software/) where all further processing and analysis were performed.
Because we used cyclic stimulation protocols, a fast Fourier transform
(FFT) procedure was used (Engel et al., 1994; Sereno et al., 1995; Schira et
al., 2007). In essence, for each voxel, an FFT is computed and a coherency
value determined as the ratio between the power at the stimulation fre-
quency to the total sum of the power across all frequencies. The retino-
topic location eliciting the activity of each voxel was then determined
from the phase value at the stimulus frequency. This is a standard tech-
nique for retinotopic mapping, and we choose it because it has proven to
be simple, robust, and sensitive.

For estimating the magnification data, we used an improved version of
the ATLAS-Toolbox (Dougherty et al., 2003; Schira et al., 2007). Briefly,
this method fits a schematic model of the early visual areas (V1, V2, and
V3) to the measured polar angle and eccentricity maps simultaneously
(see Fig. 8b,c). Its purpose is to determine the borders between these early
visual areas and to fit a smooth representation of both polar angle and
eccentricity within these borders. It is semiautomated, since it requires
the operator to generate a starting scheme and since the operator assesses
the results of the fit, which may terminate in local minima of the optimi-
zation. Repeated fits were made with different starting points to confirm
stable convergence in the V1–V3 region, identified by eye at the first pass.
Based on these atlas fits, six ranges of isoeccentricity (0 – 0.125°, 0.125–
0.25°, 0.25– 0.5°, 0.5–1°, 1–2°, 2– 4°) were defined. Areal magnification
was then computed as the ratio of the surface area on cortex (in millime-
ters squared, measured in the undistorted 3D surface representation) and
the area (in degrees squared) in the visual field these ranges cover.

A bootstrapping approach was used to identify visual area boundaries
while estimating the spatial uncertainty of these borders in individual
subjects. For this procedure, a curved line was fitted to those voxels

Figure 1. Possible layouts of the foveal confluence. a, The first concept of the foveal confluence as suggested by Zeki (1969),
based on studies of macaque monkey. b, Layout of the foveal confluence that has the most support (Newsome et al., 1986;
Maunsell and van Essen, 1987; Gattass et al., 1988, 2005) (based on data from macaque monkey). c, Alternative layout of the
foveal confluence (Pinon et al., 1998; Rosa et al., 2000; Rosa and Tweedale, 2000, 2005) based on results in marmoset and cebus
monkey.
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within 0.3 radians of the phase reversals signifying the border. Bootstrap-
ping the polar angle measurements allowed estimating the spatial vari-
ance of this line fit as a function of the variance in the phase estimates. A
fifth order polynomial was used for the line fit, and the cloud of voxels
was rotated before the fit using singular value decomposition. The un-
derlying data were bootstrapped 200 times, resulting in a cloud of fits
from which the 95% confidence interval was estimated along the line
orthogonally to its local orientation. A more detailed description of the
procedure including illustrations is provided in the supplemental mate-
rials (available at www.jneurosci.org).

Results
We acquired retinotopic maps at 1.2 mm isovoxel resolution in
10 hemispheres of five subjects, using high-resolution protocols
for functional (T2* weighted) and anatomical (T1 weighted)
data. As can be seen in Figures 2 and 3, the spatial contrast in the
functional EPI data conveys a significant level of structural infor-
mation, allowing accurate alignment between the T1 anatomical
recordings and the functional EPI recordings, hence facilitating
direct visual control over alignment and distortion. Almost all
significant functional activity was restricted to gray matter (Fig.
3a, colored curves), whereas neighboring voxels sampling white
matter contained little or no functional activation (Fig. 3a, gray
curve).

We recorded polar angle and log-scaled eccentricity signals for
each subject and projected the resulting response phases onto
each subject’s cortical surface, which was then flattened over a
small cortical region centered on the occipital pole (Figs. 4, 5).
We mapped retinotopic responses down to 0.1° eccentricity,
which is less than one millionth of the full visual field but none-

theless maps to substantial regions of cortex (560 mm 2) (Table
1). The retinotopic boundaries were marked by following the
lines of phase reversal in the polar angle maps, without reference
to the information in the eccentricity maps. The representations
of the horizontal and vertical meridians are the key features that
inform the layout and borders of visual areas, which we describe
first in relation to the example in Figure 4.

Consider first the vertical meridian representations forming
the V1/V2 border and the approximately parallel anterior V3
border. These fiducial borders are coded as a yellow phase rever-
sal in dorsal cortex and as a light blue phase reversal in ventral
cortex, with a clear discontinuity where they meet the horizontal
meridian (purple/red border) at the central foveal representa-
tion. In particular, the anterior border of ventral V3 can be iden-
tified by its representation of the upper vertical meridian (light
blue). For dorsal V3, the representation of the anterior border can
be identified by its representation of the lower vertical meridian
(yellow). Note that the foveal ends of V3d and V3v form a con-
tinuous line with a clearly visible phase discontinuity from blue to
yellow where they meet at the dorsal/ventral transition.

Figure 5 shows the results for each subject and hemisphere.
Black lines indicate the area boundaries as estimated by a boot-
strapping procedure; the 95% confidence intervals of these fits
are marked by white lines. In most subjects, the area boundaries
are reliable right into the foveal confluence with little or no over-
lap of the confidence intervals between adjacent areas. Except for
S4 (right hemisphere V3d), each and every V3 quadrant border is
clearly traceable even for eccentricities �0.5°. Thus, our high-

Figure 2. Illustration of the high-resolution protocols used in this study. a, Illustration of the slice orientation and location. The slice orientation was tilted to reduce distortion. (Note that this
illustration contains only 16 slices instead of 27, which would be too fine for the resolution of this print.) b, Superposition of functional and anatomical data. Anatomical data are in gray scale,
functional data in red–yellow. There is substantial structural information in the functional data. This structural information was used for careful alignment. Note that the T2*-weighted EPI scans and
the T1-weighted scans have inverted contrast properties. c, As for b but with the red EPI image thresholded for brightness, i.e., voxels below a threshold luminance in the EPI scan are made
transparent and accordingly replaced by the T1 image (gray). This view is particularly useful to check the precision of the spatial alignment between the anatomical (T1) and functional (EPI) scans
and further to detect any distortion. Ideally, the remaining red–yellow image should fill the dark sulci of the anatomy.

Figure 3. The benefits of high-resolution fMRI. a, A single EPI image slice depicting the high amount of structural information in the EPI data. The results of the retinotopic analysis are projected
onto this slice in color. The data have been statistically thresholded, and the color map depicts retinotopic location (not level of significance). The right-hand graph shows the time course of three
neighboring voxels taken from the area depicted by the tiny red rectangle. The three voxels are adjacent and picked so that they span a gyrus, with two gray matter voxels (designated as green and
blue) sampling retinotopically distinct locations on two sides of a gyrus. In 3D space, the third voxel is located between these two gray matter voxels but samples white matter and shows no
retinotopic response. All three voxels are within 3.6 mm and accordingly would be sampled by a single EPI voxel at the typical EPI resolution of 3 mm. b, The result of thresholded statistical analysis
interpolated into the 3D space of the T1 anatomy. It is evident that significant activity is restricted to gray matter and accurately follows the fine structure of the subjects’ anatomy.
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resolution protocol was able to provide effective information
about the layout of the cortical maps right into the foveolar
representation.

To test if the stability of foveal boundary estimates was a result
of peripheral data constraining the boundary fits, we removed
phase information central to 0.5°. This exclusion resulted in the
foveal boundary estimates becoming unreliable and in the confi-
dence intervals increasing to larger than 20 mm (see supplemen-
tal materials, available at www.jneurosci.org). Hence, it is the
phase information within the central 0.5° that provides the con-
straints responsible for keeping estimates of the areal boundaries
from crossing or meeting in all hemispheres that we mapped
(with only one exception).

Because of the intersubject variance in location, layout, and
size of the early visual areas on cortex, the coverage of our high-
resolution protocol was insufficient to resolve the outer border of
V3 in some cases (especially in subjects with large brains). This
typically impacted the ventral side of the maps as seen in subject
S2 (Fig. 5), where the peripheral extent of V3v has been truncated
slightly on the right but significantly on the left (hence missing
much of V3v and part of V2v). Subjects S3 and S5 show a similar,
albeit less pronounced, truncation. The representations of the
horizontal and vertical meridians are the key features that inform
the layout and borders of visual areas with the same color coding
as in Figure 4. The top vertical meridians are color coded in light
blue in both hemispheres in Figures 4, 5, and 8, although they are
surrounded by blue in the left hemisphere and by dark green in
the right hemisphere. Similarly, the lower vertical meridian rep-
resentations are color coded in yellowish in Figures 4, 5, and 8 but
are surrounded by red in the left hemisphere but by light green in
the right hemisphere. These are the coding features that were
used to guide the border assignations.

Close inspection of the polar map representations in Figure 5
reveals that in most of the hemispheres the foveal end of V3d and
V3v form a continuous line with a clearly visible phase disconti-
nuity where they meet. This phase discontinuity—signifying the
switch from the upper to the lower visual field (i.e., from V3v to
V3d)—is a prominent feature in almost all of our maps (see also
the quantitative analysis in Fig. 6). Beyond the anterior border of
V3 (dorsal and ventral), the data exhibit a further retinotopic
coding with a return to horizontal phases (i.e., green phases for
left hemispheres and purple phases for right hemispheres). Fig-
ure 6a provides an analysis of the phase discontinuity on the
anterior border of V3 in the very center of the foveal representa-

tion—averaged across all subjects and hemispheres. It shows the
estimated angular (red) and eccentricity (blue) location along the
anterior V3 border, plotted against distance from the foveal cen-
ter. The transition from upper vertical meridian representations
(�90°) to lower vertical meridian representations (�90°) is
within a few voxels (4 mm or �3 functional voxels). The eccen-
tricity representation at these transitional voxels is �0.15°. This
plot shows that the foveal part of V3 (dorsal and ventral) forms an
elongated band of considerable length containing a fine eccen-
tricity representation �1° of eccentricity.

Figure 6b plots along the isoeccentricity lines, orthogonal to
the meridian in 6a. Three eccentricities, 0.25, 0.5, and 1° ventral
and dorsal are shown. The lines start at the V1/V2 border and
stop at the anterior V3 border, demonstrating a polar phase pro-
file that signifies V2 and V3. At both 0.25 and 0.5°, the combined
bands of V2 and V3 span �12 mm, but at 1° eccentricity, they are
considerably wider, spanning �20 mm. Thus, the plots in Figure
6 provide a quantitative analysis of the organization of the foveal
confluence for V1–3.

The widths of the V2 and V3 bands were measured at their
thinnest point in each hemisphere, where possible. An average
width of 6.6 mm (� � �2.4 mm) was found for V2 and 4.9 mm
(� � �1.9 mm) for V3. The surface area of the central-most
region (eccentricities �0.1° comprising V1, V2, V3, and further
anterior areas) was estimated to average 560 mm 2 (� � �158
mm 2), also determined where possible.

Finally, using the Retinotopic Atlas Tools (Dougherty et al.,
2003; Schira et al., 2007), a model of the representations of the
visual field was fitted to those 6 of the 10 hemispheres with full
coverage. This allowed estimation of a variety of numerical prop-
erties, in particular surface areas and magnification. We found
that for foveal eccentricities �0.6°, both V2 (F � 138; p � 10�5)
and V3 (F � 241; p � 10�5) had a significantly larger surface area
than V1, as measured in the undistorted, folded 3D surface re-
construction rather than flatmap space. Conversely, for the
parafoveal eccentricity range from 0.6 to 5°, the area for V1
was numerically larger than that for V2 and V3 (Fig. 7b),
although this difference was not significant (F � 27; p �
0.065) in our data sample. This result is in line with previous
work (Dougherty et al., 2003; Schira et al., 2007). Although V3
was slightly thinner than V2 in the foveal confluence, the es-
timated areas were similar for both (�0.6° only), suggesting
that V3 is elongated relative to V2.

Figure 4. Result of the polar angle study for a single subject and hemisphere. Left and center, Projected on the reconstructed and inflated 3D surface of the subject’s cortical surface. On the right
is shown a flattened patch of the subject’s cortex around the occipital pole, which intuitively provides a convenient overview of the important features. Although these flat maps depict the global
layout of the cortical response topography, they contain some degree of distortion and size scaling, and hence should only be interpreted for relative location.
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Figure 5. Retinotopic maps of all 10 hemispheres. The eccentricity maps are given on the left. Note the explicit eccentricity scale (bottom left) going down to 0.1° eccentricity. The polar angle
maps are shown on the right. Vertical meridians are marked with continuous lines and horizontal meridians with dotted lines. The horizontal and vertical meridians and their confidence intervals
(white) in this figure result from a bootstrapping analysis to estimate the spatial uncertainty of our measurement of visual area border. A high-resolution figure with and without these markings and
one with manually identified borders are provided in the supplemental material, available at www.jneurosci.org.
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Discussion
High-resolution fMRI
Using high-resolution protocols for functional as well as anatom-
ical data, we were able to achieve excellent data quality that over-
came the partial voluming problem, a major confound in typical
fMRI designs using resolutions of 3 � 3 � 3 mm 3 or larger.
Significant functional activity was restricted to cortical gray mat-
ter, whereas neighboring voxels sampling white matter contained
little or no functional activity (Fig. 3a). A similar degree of func-
tional isolation has been shown by previous studies (Logothetis
and Pfeuffer, 2004; Ress et al., 2007) but not in an experiment
designed explicitly to cover a significant volume of cortex and
with the objective of investigating the functional organization of

the cortical layout. For “everyday retino-
topic mapping,” our experience shows
that procedures consisting of two to four 5
min runs are sufficient. As a further con-
clusion from our study, we can also state
that high-resolution fMRI is not only fea-
sible but highly recommended for studies
of functional organization using a stan-
dard 3T clinic/research scanner, a stan-
dard 8-channel head coil, and classic ac-
quisition protocols.

Organization of the foveal confluence
Our data strongly support the conclusion
that in the human cortex, areas V2 and V3
are separated and distinguishable from V1
and from each other, right up to the cen-
tral representation of the visual field. They
further suggest that, for both V2 and V3,
the ventral and dorsal halves are connected
to form a band through the very center of
the foveal projection. These V2 and V3
bands surround the tip of V1, each being
�6 mm wide (varying from 3 to 9 mm
among subjects). Accordingly, a coarser
resolution will not be able to resolve these
structures. Finally, our data suggest that,
beyond both the field sign reversals of the
upper vertical meridian (anterior V3v bor-
der) and the lower vertical meridian (an-
terior V3d border) representations, the
field sign of the polar angle map reverses
again toward the horizontal meridian. Ac-
cordingly, in the human brain, our data
indicate that V4 has no common border
with V2, hence supporting the model pro-
posed for the cortex of both marmoset and
cebus monkeys (Piñon et al., 1998; Rosa
and Tweedale, 2000, 2005). With respect
to the V3 architecture, this organization is
also in line with the model suggested by
Hansen et al. (2007) in humans. This pat-
tern was in agreement in both hemispheres
of all subjects (except a single border in a
single hemisphere, S4 RH; V3v). In this
regard, it is important to note that no sub-
jects were excluded from the analysis of
Figures 5 and 6 because of inadequate data
quality.

The cortical organization we observe is
in disagreement with the maps usually reported for nonhuman
primates— especially those for macaque monkey (Newsome et
al., 1986; Maunsell and Van Essen, 1987; Gattass et al., 1988,
2005). However, close examination of those studies shows that
the evidence on which these maps are based is far from conclu-
sive, although they have become widely disseminated and are
considered the dominant interpretation. As highlighted in the
introduction there are, in fact, several studies suggesting a layout
of the foveal confluence in other primate species very similar to
our results (Piñon et al., 1998; Rosa et al., 2000; Rosa and
Tweedale, 2000, 2005). This discrepancy among monkey studies
could be a species difference, with a split organization of V3 in the
macaque monkey but a continuous V3 organization for the cebus

Figure 6. Quantitative analysis of isoeccentricity and isopolar lines. a, The vertical meridian representation that forms the
anterior V3 border across all 10 measured hemispheres, as indicated by the red line in the pictogram on the left. The red curve
shows the polar position estimate and the blue curve the eccentricity estimate, an ideal curve would be as step function switching
from �90 to �90 in the center. The blue curve depicts eccentricity along the same line; here, the ideal curve would be V shaped.
The data are averaged across subjects based on distance from the foveal center, with distance measured within the 3D surface
reconstructions rather than in flattened patches. b, Polar position along isoeccentricity lines starting on the V1/V2 border, crossing
V2 and V3, and ending at the anterior border of V3. Again, the position of the lines are depicted on the left. Ideally, the curves
should be V shaped, too. Ventral curves should start at�90 and go down to 0, whereas dorsal curves should go from�90 to 0 and
return to �90. Distance measurements are normalized to the mean length for this eccentricity. Filled circles represent data from
the dorsal, squares from the ventral quarter field.
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monkey and human. This would leave the organization in mar-
moset monkey under dispute, with some studies suggesting a
split organization for V3 (Lyon and Kaas, 2001, 2002), whereas
others imply a continuous V3 organization (Rosa and Tweedale,
2000, 2005).

Rather than treating this as an interspecies difference, one
may group the studies based on the principle used to identify
retinotopic areas. Studies relying on various histochemical
staining patterns (Newsome et al., 1986; Maunsell and Van
Essen, 1987; Gattass et al., 1988; Lyon and Kaas, 2002) suggest
a split organization for V3, whereas those relying on field
mapping (Piñon et al., 1998; Rosa et al., 2000; Rosa and
Tweedale, 2000) suggest a continuous V3 organization consis-
tent with the present study. Although Gattass et al. (1988)
performed an extensive receptive field mapping in their study,
they had to rely on “a myeloarchitectonic basis” for the orga-
nization of the foveal confluence. Myeloarchitecture is known
to change within a visual area and in V3, in particular (New-
some et al., 1986), and hence may not provide the optimal
criterion to address this question. Examination of the figures
in Gattass et al. (1988) did not reveal a clear case for either
organization, and careful reevaluation of the foveal organiza-
tion in macaque, possibly using optical imaging techniques,
may thus be required. This question is of great importance,
since the interpretation of an organizational difference be-
tween human and cebus monkey on the one hand and ma-
caque monkey on the other hand would have significant im-
plications for our understanding of the phylogenesis of visual
cortex in these species.

If we adhere to the principle that the same architecture
should be expected to occur across primate species, character-
ization of the human visual system stands as an ideal approach
to resolve this question, because the human visual cortex is
vastly larger than that of any other primate. Accordingly, al-
though V2 and V3 narrow to thin bands, they still yield struc-
tures with measurable widths of �6 mm. In comparison, less
than a millimeter width has been suggested for marmoset
monkey (Rosa and Tweedale, 2000). A second advantage of the

human studies is the fact that human subjects can be easily
instructed to perform accurate fixation over extended periods
of time.

Proposed layout of the foveal confluence
Based on our data, together with other recent retinotopic

mapping studies in human (Tyler et al.,
2005; Larsson and Heeger, 2006; Hansen
et al., 2007), we would like to propose
the canonical model of the foveal conflu-
ence in human depicted in Figure 8. The
main features are that V2 and V3 form
continuous bands around the foveal sin-
gularity of V1 and that V3A and hV4 are
both hemifield representation in the
dorsal and ventral regions anterior to
V3d and V3v, respectively. V3A seems to
have a strong peripheral representation,
whereas hV4 has a strong foveal repre-
sentation adjacent to that of V3v.

The crossover of the magnification
curves of V1 and V2/V3
Figure 7 shows that, �0.6° eccentricity,
both V2 and V3 are larger than V1. Al-

though surprising at first glance, this crossover is a necessary
feature of the layout of the foveal confluence that we have
identified. In Schira et al. (2007), we proposed a simple math-
ematical model of a retinocortical projection function that
incorporated a constant ratio of the magnification of V1 and
V2. This model would predict that the two halves of V2 con-
tinue to get narrower and narrower until they meet at a point
singularity for the very central representation. Our present
high-resolution results, however, reveal that V2 does not nar-
row down indefinitely but rather remains as a band of substan-
tial width. In combination with the confluent eccentricity
map, this layout must inevitably suggest a larger magnification
for V2 (and V3) for regions foveal to some eccentricity, since
V1 does indeed narrow down to a point.

hV4, V4d, and dorsal lateral occipital/lateral occipital 1
Although one might expect to find V4d and V4v anterior to the
borders of V3d and V3v, respectively, Tootell and Hadjikhani
(2001) reported that they could not identify the polar angle
characteristics that they would expect from a V4d and ques-
tioned the existence of human V4d at the location suggested by
nonhuman primate studies. In our data, however, the reversal
of field map direction anterior of the representation of the
lower vertical meridian is present in each and every case. The
present study is far from being the first to report this feature
(Tyler et al., 2005; Larsson and Heeger, 2006; Hansen et al.,
2007). Tyler et al. (2005) interpreted this lateral occipital pro-
jection as an area containing an enlarged lower field represen-
tation and called it dorsal lateral occipital (DLO). Larsson and
Heeger (2006) named this area lateral occipital 1 (LO1) and
understand it as a part of a hemifield representation. Hansen
et al. (2007) suggested that close to the foveal representation,
this lower quarter field representation anterior to V3d corre-
sponds to V4d, as described in nonhuman primates [challeng-
ing the interpretations by Tyler et al. (2005) and Larsson and
Heeger (2006) but not their reported data]. Since some of the
reported results may have been contaminated by partial vol-
uming of the activation across sulci, we suggest that this area

Figure 7. Surface area analysis based on the six hemispheres with full coverage. a, Foveal magnification function; error bars
depict the SE across measured hemispheres. For eccentricities of 1° and greater, V1 has a larger magnification than V2 or V3, but
for 0.5° and below, both V2 and V3 are larger than V1. b, Surface areas in early visual areas for foveal representations (0 – 0.6°) and
parafoveal representations (0.6 – 4.8°). For foveolar eccentricities V1 is significantly smaller than V2 and V3.

Table 1. Dimensions of the foveal confluence, showing the means and SDs across
the hemispheres measured

V2 width (mm) V3 width (mm) 0.1° (mm2)

Mean 6.6 4.9 560
� �2.4 �1.9 �158
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needs to be reexamined using high-resolution protocols. The
present data cannot disambiguate this debate, since this area is
often at the very edge of the coverage of the present high-
resolution protocols and is rarely fully represented. We would
nevertheless like to suggest that DLO/LO1/V4d extends along-
side V3d right into the center of the foveal confluence.

Conclusion
Our high-resolution protocols and accurate fixation strategies
allowed us to obtain clear retinotopic mapping data into the
center of the foveal representations of retinotopic areas V1,
V2, V3, and the adjacent cortical territory. Tracking the phase
reversals corresponding to the horizontal and vertical merid-
ian representations allowed us to establish that areas V2 and
V3 in human cortex do not meet at a point but form contin-
uous foveolar bands with a width of �6 mm in each case. For
V3, in particular, this is a profoundly different view of its
foveolar organization than the general consensus in various
monkey species. We nevertheless suggest that this organiza-
tion may not be incompatible with the sparse published data in
those species and that the issue should be revisited with more
definitive assessment techniques.

The fact that the V2 and V3 maps retain significant width in
the foveolar region implies that they devote a larger area of
cortex to the representation of the retina for eccentricities
below �1° than does the V1 map. Interestingly, this approxi-
mately matches the extent of the foveal pit. This expansion of
foveolar coverage in V2 and V3 opens up the possibility that
there may be specialized processing for features and forms in
the central fovea and suggests that detailed psychophysical
measures of the foveolar magnification function may be used
as a indicator of the operative processing level for particular
visual tasks.
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