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Reinforcement learning theory plays a key role in understanding the behavioral and neural mechanisms of choice behavior in animals
and humans. Especially, intermediate variables of learning models estimated from behavioral data, such as the expectation of reward for
each candidate choice (action value), have been used in searches for the neural correlates of computational elements in learning and
decision making. The aims of the present study are as follows: (1) to test which computational model best captures the choice learning
process in animals and (2) to elucidate how action values are represented in different parts of the corticobasal ganglia circuit. We
compared different behavioral learning algorithms to predict the choice sequences generated by rats during a free-choice task and
analyzed associated neural activity in the nucleus accumbens (NAc) and ventral pallidum (VP). The major findings of this study were as
follows: (1) modified versions of an action-value learning model captured a variety of choice strategies of rats, including win-stay-lose-
switch and persevering behavior, and predicted rats’ choice sequences better than the best multistep Markov model; and (2) information
about action values and future actions was coded in both the NAc and VP, but was less dominant than information about trial types,
selected actions, and reward outcome. The results of our model-based analysis suggest that the primary role of the NAc and VP is to
monitor information important for updating choice behaviors. Information represented in the NAc and VP might contribute to a choice

mechanism that is situated elsewhere.

Introduction

The theory of reinforcement learning (Sutton and Barto, 1998)
plays a key role in understanding the choice behavior of animals
and humans, and the function of the basal ganglia (for review, see
Daw and Doya, 2006; Corrado and Doya, 2007; O’Doherty et al.,
2007). According to the most basic reinforcement learning algo-
rithm, the Q-learning model, the subject learns a reward-
maximizing behavior by repeating three steps: (1) predicting the
future rewards obtained by taking each candidate action, referred
to as an “action value”; (2) selecting an action stochastically so
that actions with higher action values are selected with higher
probability; and (3) updating the action value according to the
difference between the predicted and actually obtained reward.
This difference is termed the “temporal difference (TD) error.”
The firing activity of midbrain dopamine neurons (Schultz et al.,
1997) and the blood oxygen level-dependent signal from the stri-
atum (O’Dobherty et al., 2003; Tanaka et al., 2004; Daw et al., 2006;
Hampton et al., 2006) both show activity patterns that are anal-
ogous to TD errors. Since the striatum is the major target of
dopaminergic projection, these findings suggest that the striatal
dopamine system is the most likely neural substrate of TD error-
based learning (step 3) (Houk et al., 1995; Montague et al., 1996;
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Doya, 1999, 2000). The neural substrates of action values (step 1)
and action selection (step 2), in contrast, are less clear. Recent
neural recording studies in monkeys have found action value-like
neuronal activity in the dorsal striatum (Samejima et al., 2005;
Lau and Glimcher, 2007, 2008; Pasquereau et al., 2007). How-
ever, the findings of a large number of lesion studies in rats sug-
gest that the nucleus accumbens (NAc) plays a major role in
choice learning, especially from stochastic and delayed rewards
(Cardinal and Cheung, 2005; Cardinal and Howes, 2005; Cardi-
nal, 2006). Action value-like firing has also been found in the
globus pallidus (Pasquereau et al., 2007) and other cortical areas
(Platt and Glimcher, 1999; Dorris and Glimcher, 2004). One
difficulty in identifying the neural loci of action valuation and
selection arises from different researchers using different learning
algorithms to analyze neural activity. These differing algorithms
include the Q-learning model (Samejima et al., 2005), a modified
version of the Q-learning model (Barraclough et al., 2004), and
the local matching law (Sugrue et al., 2004).

The aims of this study are as follows: (1) to test which compu-
tational model best captures the choice learning process in ani-
mals; and (2) to elucidate how action values and action selection
are realized in different parts of the corticobasal ganglia circuit.
To this end, we compared different behavioral learning algo-
rithms to predict choice sequences of rats during a free-choice
task. Moreover, we analyzed associated neural activity in the NAc
and a downstream structure, the ventral pallidum (VP). The ma-
jor findings of this study were that (1) modified versions of the
Q-learning model assuming variable parameters can capture a
variety of choice strategies, including win-stay—lose-switch and
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persevering actions, and (2) there are re- A
markably few neurons coding action val-
ues in the NAc and VP. [1] [c] [R]

Materials and Methods

Subjects

Male Long—Evans rats (n = 6 rats; 250-350 g
body weight) were housed individually under a [0]
reversed light/dark cycle (lights on at 8:00
P.M.; off at 8:00 A.M.). Experiments were per-
formed during the dark phase. Food was pro-
vided after training and recording sessions so
that body weights dipped no lower than 90%
of the initial level. Water was supplied ad
libitum. The Okinawa Institute of Science
and Technology Animal Research Commit-
tee approved the study.

Figure 1.
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A, Schematic llustration of the experimental chamber. The chamber was equipped with three holes for nose poking
(L, left hole; C, center hole; R, right hole) and a pellet dish (D) on the opposite wall. B, Schematic representation of conditional
free-choice task. After a rat maintained a nose poke in the center hole for 500 —1000 ms, one of two discriminative stimuli, tone A

ortone B, was stochastically chosenand presented. For tone A presentation, the rat was required to performaleft or right nose poke

Apparatus

All training and recording procedures were
conducted in a 35 X 35 X 35 cm experimental
chamber placed in a sound-attenuating box
(Ohara). The chamber was equipped with
three nose poke holes on a wall and a pellet dish
on the opposite wall (Fig. 1 A). Each nose poke
hole was equipped with an infrared sensor to
detect head entry, and the pellet dish was
equipped with an infrared sensor to detect the presence of a sucrose pellet
(25 mg) delivered by a pellet dispenser. The chamber top was open to
allow connections between electrodes mounted on the rat’s head and
an amplifier. House lights, a video camera, and a speaker were placed
above the chamber. A computer program written by LabVIEW (Na-
tional Instrument) was used to control the speaker and the dispenser,
and to monitor the state of the infrared sensors.

Behavioral task

The animals were trained to perform a conditional free-choice task, a
combination of a tone discrimination task and a reward-based free-
choice task (Fig. 1) using nose poke responses. Each trial started with a
tone presentation (start tone; 2300 Hz; 1000 ms). When the rat per-
formed a nose poke in the center hole for 500—1000 ms, a cue stimulus,
tone A (4700 Hz; 1000—2000 ms) or tone B (2000 Hz; 1000-2000 ms),
was presented. These tones were presented randomly but with 75% prob-
ability for tone A and 25% probability for tone B. The rat had to maintain
the nose poke in the center hole during the presentation of the cue tone,
or the trial was ended as an error trial after the presentation of an error
tone (9500 Hz; 1000 ms).

In choice trials, after the offset of tone A, the appropriate response was
for the rat to perform a nose poke in either the left or right hole within 1
min after exiting the center hole. Otherwise, the trial was ended as an
error trial after the error tone. After a left or right nose poke was per-
formed, either a reward tone (500 Hz; 1000 ms) or a no-reward tone (500
Hz; 250 ms) was presented stochastically depending on the rat’s choice,
according to the current left-right probability block (as described be-
low). The reward tone was followed by the delivery of a sucrose pellet to
the food dish. In no-choice trials, after the offset of tone B, the appropri-
ate response was for rats not to perform a nose poke in either the left or
right hole. After 1 s of delay after the exit of the center hole, the reward
tone was presented deterministically and a sucrose pellet was delivered.
Otherwise, namely, if the rat performs a nose poke in the left or right hole
within 1 s after the exit of the center hole, the trial was ended as an error
trial after the error tone. A successful trial ended when the rat picked the
pellet on the dish or after the presentation of the no-reward tone. A new
trial started after an intertrial interval (2—4 s).

The purpose of no-choice trials (tone B) was to determine the timing
of the rats’ decision in choice trials (tone A). With a possibility of tone B,
with which a nose poke to either hole caused an error, rats had to decide
to go to one of the holes only after discrimination of tone A.

The reward probabilities for left and right nose pokes in choice trials

(choice trial). After the left or right nose poke, a sucrose pellet was delivered stochastically with a certain probability depending on
the rat’s choice (for example, 90% reward probability for the left choice and 50% reward probability for the right choice). Reward
availability was informed by different tone signals, which were presented immediately after the left or right nose poke. The reward
probability in choice trials was fixed in a block, and the block was changed to the next block with a different reward probability
when the average of the last 20 choices reached 80% optimal. One of four types of reward probability [(left, right), (90, 50%), (50,
90%), (50, 10%), and (10, 50%)] was used for each block. For tone B presentation, a pellet was delivered deterministically 1000 ms
after the exit from the center hole (no-choice trial).

were selected from four pairs [(left, right), (90, 50%), (50, 90%), (50,
10%), and (10, 50%)]. The probability pair was fixed during a block. The
same block was held until at least 20 choice trials were completed. Sub-
sequently, the reward probability setting was changed when the choice
frequency of the more advantageous side during the last 20 choice trials
reached 80%. The sequence of the reward probability pairs was given in a
pseudorandom order so that all four pairs were used in every four blocks,
and the same pair was never given consecutively. Each rat performed at
least four blocks per day.

Surgery

After rats mastered the conditional free-choice task, they were anesthe-
tized with pentobarbital sodium (50 mg/kg, i.p.) and placed in a stereo-
taxic frame. The skull was exposed and holes were drilled in the skull over
the recording site for anchoring screws. Two drivable electrode bundles
were implanted into NAc in the right hemisphere [anteroposterior (AP),
+1.7 mm; mediolateral (ML), 0.8 mm and 1.7 mm relative to the breg-
ma; dorsoventral (DV), —6.2 mm relative to a flat skull surface], and one
(two rats) or two (four rats) bundles were implanted into the VP in the
right hemisphere (AP, —0.40 mm; ML, 2.5 mm, or 2.1 and 2.6 mm
relative to the bregma; DV, —6.9 mm relative to a flat skull surface). The
electrode bundle was composed of eight Formvar-insulated, 25 wm bare
diameter nichrome wires (A-M Systems), and was inserted into a
stainless-steel guide cannula (0.3 mm outer diameter; Unique Medical).
The tips of the microwires were cut with sharp surgical scissors so that
~1.5 mm of the tips protruded from the cannula. Each tip was electro-
plated with gold to obtain an impedance of 100-200 k() at 1 kHz. The
electrode bundles were advanced by 125 wm per recording session to
acquire activity from new neurons.

Electrophysiological recording

Recordings were performed while the rats performed the conditional
free-choice task. Neuronal signals were passed through a head ampli-
fier at the head stage and then fed into the main amplifier through a
shielded cable. Signals passed through a bandpass filter (50-3000 Hz)
and were led to a data acquisition system (Power1401; CED), by
which all waveforms that exceeded an amplitude threshold were time-
stamped and saved at a sampling rate of 20 kHz. The amplitude
threshold for each channel was adjusted so that action potential-like
waveforms were not missed while minimizing triggers by noise. After
the recording session, the following off-line spike sorting was per-
formed using Spike2 (Spike2; CED): the recorded waveforms were
classified into several groups based on their shapes and a template
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Figure2. A, Representative example of a rat's performance during one session of the conditional free-choice task. The blue and red vertical lines indicate individual choices in choice trials. The
orange and black vertical lines indicate no-choice trials and error trials, respectively. The long lines and short lines represent rewarded and no-reward trials, respectively. The light blue trace in the
middle indicates the probability of a left choice in choice trials (average of the last 20 choice trials). B—E, The rat's strategy in choice trials, represented by left choice probabilities after different
experiences with 99% confidence intervals (shaded bands). B, The left choice probability for all possible experiences in one and two previous trials. Four types of experiences in one trial [left or right
times rewarded (1) or no reward (0)] are represented by different colors and types of line. For instance, left probability after RO is indicated by the right edge of a red broken line (the green
arrowhead), and left probability after RO L1 (R0 and then L1) is indicated by the right edge of a blue solid line connecting to the red broken line (blue arrowhead). €, Left choice probabilities for
frequently occurring sequences of four experiences. These patterns indicate rewarded experiences that gradually reinforce the selected action. A blue arrowhead and a blue arrow represent the same
data indicated by the blue arrow and the arrowhead in B. D, Left choice probabilities for sequences of four no-reward experiences. No-reward experiences tended to switch the rat’s choices. , Left
choice probabilities for persevering behavior. An increase in the probability of a selected action after a no-reward outcome suggests that rats tend to continue selecting the same choice regardless

of a no-reward outcome.

waveform for each group was computed by averaging. The groups of
waveforms that generated templates that appeared to be action po-
tentials were accepted, and others were discarded. We tested whether
the accepted waveforms were recorded from multiple neurons or
single neurons using principal component analysis.

Histology

After all experiments were completed, the rats were subjected to the
same anesthetization described in the surgery section, and a 10 wA
positive current was passed for 30 s through one or two recording
electrodes of each bundle to mark the final recording positions. Rats
were perfused with 10% formalin containing 3% potassium hexacya-
noferrate (II), and the brain was carefully removed so that the mi-
crowires would not cause tissue damage. Sections were cut at 60 um
on an electrofreeze microtome and stained with cresyl violet. The
final positions of the bundles of electrodes were confirmed using dots
of Prussian blue. The position of each recorded neuron was estimated
from the final position and the moved distance of the bundle of
electrodes. If the position was outside the NAc or VP, the recording
data were discarded. Tracks of accepted electrode bundles are shown
in Figure 6.

Model-free behavioral analysis

In the behavioral analysis, no-choice trials and error trials were re-
moved and the remaining sequences of choice trials were used. We
denote the action in the tth choice trial as a(t) € {L,R}, the reward as
r(t) € {0,1}, and the experience as e(t) = (a(t), r(¢)) € {L1,L0,R1,R0}.
The conditional probability of making a left choice given the preced-
ing sequence of experiences is estimated by the following:

Pla(t) = Lle(t = 1), .. ., e(t — d))

Ni(e(t = 1), ..., et — d))
se(t—d)) + Nple(t—1), ..

TNt —1), .. et —d)

(1)

where Nj(e(t — 1),...,e(t — d))and Ny(e(t — 1),...,e(t — d)) are the
numbers of occurrence of the left (L) and right (R) actions, respectively, after
e(t — d),... e(t — 1)duringablock of choice trials. The 99% confidence
interval of the estimation was given by Bayes’ inference with a constant prior.
Assuming that N (e(r 1),..,e(t — d)) and Nile(t — 1),...,
e(t — d)) were sampled from a binomial distribution with no prior knowl-
edge about }A’,‘ (constant prior), the posterior distribution of }A’,‘ is a 3 distri-
bution with parameters N(e(t — 1),...,e(t — d)) and Ngle(t — 1),...,
e(t — d)). The 99% confidence interval of P, was calculated by a function in
the MATLAB Statistics ToolBox, “betainv([0.005 0.995], Nj(e(t
—1),..,e(t = d),Ngle(t — 1),...,e(t — d))).”

Behavioral models

We considered five different models of action choice: (1) the Markov
model, (2) the local matching law (Sugrue et al., 2004), (3) the standard
Q-learning model (Watkins and Dayan, 1992; Sutton and Barto, 1998),
(4) a forgetting Q-learning model (Barraclough et al., 2004), and (5) a
differential forgetting Q-learning model.

Markovmodel. A dth-order Markov model is a purely descriptive model of
the sequence of action choice and reward outcome. Given past experiences
e(1:t—1), which is a shorthand notation for e(1),e(2), ..., e(t — 1), the
prediction of the dth-order Markov model was given by the following:
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Ny(e(t —dit—1)) + 1
N(elt—dit—1) * Ntet —dit = 1)) + 22

Pi(t) =

where N (e(t — d: t — 1)) is the number of a (L or R) after e(t — d: t — 1)
in the training data. The reason for adding one and two to the numerator
and the denominator, respectively, was to define the prediction even if
the pattern of experiences did not appear in the training data. This defi-
nition of the prediction corresponds to maximum a posteriori probabil-
ity estimation for the posterior distribution of the left choice probability
based on Bayes’ inference with a 8 distribution B(a = 2, B = 2) prior,
which has a peak at 0.5.

A dth-order Markov model has 47 free parameters because there are
four types of possible experiences in a single trial. The Markov model can
represent any sequential dynamics with a large d. Therefore, high-order
Markov models were expected to provide a good approximation of the
upper bound of the prediction accuracy if the amount of training data
was sufficient.

Q-learning models. To model rats’ choice learning processes, we took
an extension of the Q-learning model, a standard reinforcement-
learning algorithm (Watkins and Dayan, 1992; Sutton and Barto, 1998)
as follows. The action value Q,(¢), which is the estimate of the reward
from taking an action i € {L,R}, is updated by the following:

Qi(1)

(1 —a)Q(t—1) + ak, if
(1—a)Q(t—1) — ayx, if
(1 —a)Qt—1) if
(1 - a)Qt—1) if

at—1)=4,rt—1) =1
at—1)=4ir(t—1) =0,
at— 1D #i,r(t—1)=1
at— 1D #i,r(t—1)=0

(3)

where a(t) and r(t) are the action and reward at the tth trial. The param-
eter a, is the learning rate for the selected action, «, is the forgetting rate
for the action not chosen, k, represents the strength of reinforcement by
reward, and k , represents the strength of the aversion resulting from the
no-reward outcome. This can be reduced to standard Q-learning by
setting o, = 0 (no forgetting for actions not chosen) and k, = 0 (no
aversion from a lack of reward). This rule can be made equivalent to the
version of Q-learning with forgetting of the values of actions not chosen
(Barraclough et al., 2004) by setting o, = «,. For convenience, in this
paper, we refer to the three-parameter model with &, = «, as “Q-
learning with forgetting (F-Q-learning),” and the full four-parameter
model as “Q-learning with differential forgetting (DF-Q-learning).”

Using the action values, the prediction of the choice at trial r was given
by the following:

1
PO == sl -y Y
Using the choice probability of the ratio of action values
Q.(1)
P(a(t) = L) = (5)

Qu(t) + Qg(t)

and setting the parameters to a; = «,, k; = 1, and k, = 0, the model
becomes equivalent to the local matching law (Sugrue et al., 2004).
F-Q- and DF-Q-learning models can represent “win-stay—lose-
switch” behavior with large positive k; and k,. Furthermore, they can
represent “persevering” behavior when there is a large positive k, and a
large negative k,. A negative value of k, means that even a no-food
outcome has a reinforcing effect and the rat is regarded as maximizing the
effective reward defined by the weighted sum of food and no-food out-
comes by k, and k,. Forgetting of the action value for the action not
chosen by nonzero setting of «, can be regarded as a regularization term
based on prior knowledge of possible changes in the reward setting.
Parameter fitting and model evaluation. To fit the parameters to the
rats’ choice data and evaluate the models, we used the likelihood crite-
rion, the probability that the observed data (a sequence of selected ac-
tions) was sampled from the model. For a single trial, the likelihood z(f)
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Table 1. Summary of the free parameters determined by a least-square fitting
method

No. of Averaged
parameters o, @ a, K, K, Q,  residual error
Standard Q (const) 3 037 0.00% 237 0.00° 1.00 0.0073
F-Q (const) 4 0.96 0.99 0.64 0.00 0.0010
DF-Q (const) 5 052 088 118 144 071 0.0002
Local matching law 2 0.05 1.00° 07 0.07 0.0102

const, Constant.
“Indicates fixed parameters.

for the model prediction P, () = P(a(t) = L|e(1: t — 1)) is given by the
following:

if a(t)=1L.

P(1)
if a() =R (6)

z(t) = {1 —P(t)

For the data from N sessions with T trials in the session s, the normalized
likelihood is given by the following:

7= [ﬂ[nz(z‘)] ] . )

The normalized likelihood takes a maximum value of 1 when all
predictions are deterministic [P, (f) = 0 or 1 for all ] and all of the
rat’s choices are exactly matched, and takes the value of 0.5 when
predictions are made with chance-level accuracy [P, (t) = 0.5 for all ¢].
If the animal’s choice is probabilistic with P, () = p, then the normal-
ized likelihood of the best model that exactly predicts the probability
islimited by Z .. = p” (1 — p) " ~#, which is lower than p for 0.5 < p <
1, because of choices of lower probability actions. This causes an appar-
ently low normalized likelihood; for example, Z ... = 0.606, for an ani-
mal’s probabilistic choice, with p = 0.8 and Z,,, = 0.543 for p = 0.7.

A total of 70 sessions of behavioral data recording, consisting of se-
quences of selected actions and reward outcomes in choice trials, was
divided into training (35 sessions) and test data (35 sessions). Free pa-
rameters of each model were determined so that the (normalized) likeli-
hood of the training data was maximized. The normalized likelihood of
the test data was then calculated with the determined parameters. This
was regarded as the prediction accuracy of the model. Evaluation of the
models using prediction accuracy implicitly takes into account the pen-
alty of the number of free parameters.

For the Q-learning models, we considered the cases of fixed parame-
ters and time-varying parameters. Table 2 summarizes the parameters
and variables of the models used in this study.

For the fixed parameter models, a set of parameters « |, &5, K|, and k ,
were assumed to be constant for all the sessions in the test data. For the
experience data e(1:T) of each session, the sequence action values
Q,(1:T) were computed by the update Equation 3 with the initial values
of Q;(1) = 0; the sequence of choice probability P(a(t) = L) was obtained
by Equation 4 using Q,(f). The set of parameters that maximized the
normalized likelihood of the training data was used for evaluating the test
data.

For the time-varying parameter models, parameters c |, o5, K, and k ,
were assumed to vary according to the following:

at+1)=ait) +§ for jE{1,2}

kit + 1) = k(1) + & for jE{1,2}, (8)

where {; and & are noise terms, respectively drawn independently from
the Gaussian distributions N(0, o2) and N(0, o). The predictive distri-
bution P(h(t) | e(1: t — 1)) of parameters h = [Q;, Qp, &1, 0y, K15 K]
given past experiences e(1: t — 1) was estimated using the particle filter
(see supplemental Methods, available at www.jneurosci.org as supple-
mental material) (Samejima et al., 2004). In this estimation, the initial
distributions of Q;(1), Qg(1), a,(1), and a,(1) were uniform in [0,1]
and the initial distributions of k(1) and k,(1) were uniform in [0,4].
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D In testing for reward probability, neuronal

activity in only the last 20 choice trials in each
block was tested, when the rats were assumed
to have learned the reward probability. The left
action value-coding neurons (Q  -coding neu-
rons) were defined as the neurons in which
spike counts were significantly different be-
tween blocks with a reward probability of left,
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of (10, 50%), but not significantly different be-
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10%). In the same way, the right action value-
coding neurons (Q -coding neurons) were de-
fined as the neurons in which spike counts
were significantly different between blocks
with probabilities of (50, 90%) and (50, 10%),
but not between blocks with probabilities of
(90, 50%) and (10, 50%).

Regression analysis. We used multiple linear
regression analysis to test neuronal correla-
tions with action values, and other reward-
related values, including the sum of the action
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0.25 values (i.e., “state value”), and the difference of
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4Trials the action values (i.e., “policy”).
local matching law standard Q (const) F-Q (const) DF-Q (const) To detect neuF qns ‘codmg the action Valge,
the neuronal activity in only the last 20 choice
Figure3. Modelfitting to the rats’ strategy by a least-square method. The choice probabilities predicted by the local matching trials in each block was applied using the fol-

law (A), the standard Q-learning model (B), F-Q-learning model (C), and DF-Q-learning model (D) are shown for repeated re-
warded choices, the sequences after one unrewarded choice (top panel) and repeated unrewarded choices (bottom panel). The

lowing regression model:

y(1) = By + B1Q(1) + BoQx(1),  (10)

broken lines indicate the choice probabilities of the rats (same as in Fig. 2C,D), and the solid lines indicate the choice probabilities

predicted by each model from the choice and reward sequences of the corresponding color. In the lower panel of A, the green solid
line completely overlaps with the orange solid line. The free parameters of each model were determined so that squared errors of
choice probabilities between the model and rats was minimized (Table 1). The numbers of free parameters including the initial
action value [Q, = Q,(1) = Q(1)]in local matching law, the standard Q, F-Q, and DF-Qare 2, 3, 4, and 5, respectively.

The prediction of the model at trial t was defined by the mean value of
P, (t) with respect to a joint distribution of Q, (¢) and Qg(#), so that

Py(t) = E[1/(1 + exp{—(Q.(1) — Qc())}]. 9)

Free parameters of Q-learning models with a time-varying parameter
were 0, and o,, and were determined by maximizing the likelihood of
the training data.

Neural analysis
Striatal neurons have often been classified into phasically active neurons
(PANS) and tonically active neurons (TANs) in recording studies, par-
ticularly experiments performed in monkeys. We attempted to classify
our NAc neurons into PANs and TANSs, but could not find clear criteria
for classification of firing properties. Thus, the following analyses were
performed without discriminating between PANs and TANGs.
Comparison of perievent time histograms. To test whether neuronal
activity in the NAc and VP was modulated by differences in discrimina-
tive tone, selected action, reward availability, and/or reward probability,
a Mann—Whitney U test at the 1% significance level was performed for
the 1 s time bin defined in Figure 8 A. In testing for the modulation of the
discriminative tone, the number of spikes during the 1 s after the onset of
the discriminative tone was compared between choice trials and no-
choice trials (i.e., state-coding neurons). In testing for the modulation of
action selection, neuronal activity was examined in two time bins:
during the 1 s before the exit from the center hole [delay period before
the choice (i.e., action command-coding neurons)], and during the
1 s after the exit from the center hole [choice period (action-coding
neuron)]. For these time bins, the number of spikes was compared
between left-selected and right-selected choice trials. In testing for the
modulation of reward, the number of spikes during the 1 s after the
tone presentation, informing of the reward availability, was compared
between rewarded choice trials and no-reward choice trials (i.e., reward-
coding neurons).

where y(f) was the number of spikes at trial tin
the 1 s bins defined in Figure 8 A: before nose
poking at the center hole (phase 1), after the
onset of the cue tone (phase 2), and before ini-
tiation of action (phase 3). B, is the regression
coefficient, and Q, (¢) and Q(#) are the reward
probabilities assigned for a left or right choice, respectively, in each trial
(i.e., a reinforcement learning model was not used). Left action value-
coding neurons and right action value-coding neurons (Q - and Q-
coding neurons) were defined as neurons that had significant regression
coefficients to Q but not to Q, and to Q ; but not to Q , respectively (¢
test, p < 0.01).

To detect neurons coding the sum of the action values (state value-
coding neurons) and the difference between the action values (policy-
coding neurons), an alternative regression model

y(t) = Bo + BilQr(t) + Qr(H)] + Bo[Qr(1) — Qr(H]  (11)
was used (Seo and Lee, 2007). State value-coding neurons and policy-
coding neurons were defined as neurons that, respectively, exhibited a
significant regression coefficient to [Q; + Q] but not to [Q; — Qgl,
and to [Q, — Qg] butnot to [Q; + Q] (ttest, p < 0.01).

Information analysis. To elucidate when and how much information of
each event [such as state (discriminative tone), action, reward, and action
values| was coded in the NAc and VP, the mutual information shared
between firing and each event was calculated using a sliding time window
(duration 500 ms). A measure of “mutual information” quantifies the
mutual dependence of two variables.

For instance, to evaluate the mutual information shared between the
firing of a neuron and selected actions, we used data from the choice trials
in the session in which the activity of the neuron was recorded. The
number of spikes in a certain time window in a trial was defined as a
random variable F, taking the value f;, which represented a class of the
number of spikes 1, where i is the index of the class satisfying N; = n <
Nis1(i = 1...Ng). Ngis the number of the classes, and we chose N, =
41n this analysis. N; is the border between the classes, which was determined
for each neuron so that the variance of the members in the classes was min-
imized, namely,
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{N, .., N}= arg min E(L — (L)), A(L RI=(90.50) (50.90)
o Nshi=
(12)
where L, is the number of f,, (L) is the average of J ’
o

L, over i, and {N,, . . ., N} are the optimized
{N,, ..., Ns}, which were used for calcula-
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(10,50) : (50,10) (10,50)

ting the mutual information. Practically, 0
{N}, ..., Ni} were obtained by testing all pos- C
sible combinations of the values. The reason

for this binning was to reduce the bias of esti-

mated mutual information. The action was de-

fined as a random variable X taking the value x; )
(j = 1...Ny),where Nywas2,andx, and x, &
correspond to left and right, respectively.

L
il

F-Q (variable)

The mutual information between F and X g g
was defined by the following: E
Nfr Nx
p(fi %)
I(F, X 5 xi) lo
( ) = EEEP(f i) gp(f)p(x)
i=1j=1 Ty 1
(13) *

0 DF-Q (variable)

where p( f;, x;) was the joint probability distri-

bution functlon of Fand X, and p(f;) and p(x;) G @ - F-Q (variable)

were the marginal probability distributions of = PEQ (arabl)

F and X, respectively. Although we could not 0

determine these probability distributions ex- -

actly, the mutual information could be approx- 1

imated by the following: - — o

N Ny M. M.M 0 0 L]

4 _ ij ij

I(F, X) = Z ]:E] R vAYS . Lo )
2 2p== 1
) K4 0 \-\“.

o (Ux — Up — Ux + 1), (14) % ; _2 B :
2Mlog2 * ¥ F X ’ 180 200 220 240 260 Trials 380 400 420 440 460 Trials

where M; is the number of the pairs of fand x; ~ Figure4. Example of trial-

by-trial predictions of rats’ choices based on reinforcement learning algorithms. A-F, Representa-

in the sess1on M, and M;. are the sums over z tive examples of trial-by-trial predictions using the standard Q-learning model (4, B), F-Q-learning model (C, D), and DF-Q-
and j of My, respectlvely M is the sum over  learningmodel (E, F). Inall models, parameters were assumed to be variable (see Materials and Methods). In the panels of the left
both iand j, corresponding to the total number  sideand the rightsides, different choice data were applied. The probability that a rat would select left at trial  was estimated from

of trials. Upy is the number of nonzero M,-j for  therat'spastexperiencese(1), ...

e(t — 1) and plotted at trial . The actual rat's choice at each trial is represented by a vertical line.

all i and j, U is the number of nonzero M.;  The top lines and bottom lines indicate left and right choices, respectively. The black and gray colors indicate rewarded and
for all 4, and Uy is the number of nonzero M,;  no-rewarded trials, respectively. G, H, Estimated model parameters of F-Q- (broken lines) and DF-Q-learning model (solid lines)

for all j. The first term represents the direct  during the predictions.
approximation of I(F, X ). This term is, how-

ever, a biased estimator. To correct this bias,

the second term, the first-order approximation of the bias, was sub-
tracted from the direct approximation (Panzeri and Treves, 1996).

To calculate the mutual information between neuronal firing ( f;) and
action (x| = left; x, = right) or reward (x ; = rewarded; x, = no reward),
we used the data from choice trials in the session in which the activity of
the neuron was recorded. For calculating the mutual information be-
tween neuronal firing and the discriminative tone (x, = tone A; x, =
tone B), data from both choice and no-choice trials were used. For
calculating the mutual information of action values, first, Q and Q in
choice trials estimated by an F-Q-learning model with a time-varying
parameter were binarized: Q,(¢) values larger than the median of Q, were
set to x; and the rest were set to x,. The binarized action values were then
used to calculate mutual information.

Mutual information per second for each neuron was calculated using a
sliding time window (duration, 500 ms; step size, 100 ms), which was set
based on the onset time of tone A or B, or the exit time of the center hole.
Finally, the averages of the mutual information over all neurons in the
NAc and VP were obtained.

To test whether the obtained mutual information was significant, the
threshold indicating significant information ( p < 0.01) was obtained in
the following way: a binary event, x, or x,, was generated randomly for
each trial, and the averaged mutual information between this random

st Markov model(4) -

2nd Markov model(16) -
ard Markov model(64) .
4th Markov model(256) -

standard Q (const)(2) **
F-Q (const)(3) -
DF-Q (const(4) w
local matching law(1) o

standard Q (variable)(2) 0.5304 -
F-Q (variable)(2) 0.5375
DF-Q (variable)(2) 05368

05 0505 051 0.515 052 0525 0.53 0.535 0.54
normalized likelihood

Figure5.  Accuracyof each modelintrial-by-trial prediction of rats’ choice. The prediction accuracy
was defined by the normalized likelihood of test data. The free parameters of each model were deter-
mined by the maximization of the likelihood of training data. Numbers followed by the name of
models indicate the numbers of free parameters of each model. “const” means that the parameters of
the model, suchas the learning rate, was assumed to be constant for all sessions, and “variable” means
that the parameters were assumed to be variable. The double and single asterisks indicate a significant
difference from the prediction accuracy of F-Q-leaming model (variable); p << 0.01and p << 0.05in
paired-sample Wilcoxon's signed rank tests, respectively.
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Table 2. Summary of the free parameters used in each model to predict rats’
choices

No.of parameters o, «, «k; K, O o

Standard Q (const) 2 0.45 0.00° 125 0.00°

F-Q (const) 3 0.55 125 0.55

DF-Q (const) 4 060 045 120 045

Local matchinglaw 1 0.01 1.007 07
Standard Q (variable) 2 0.005 0.10
F-Q (variable) 2 0.005 0.07
DF-Q (variable) 2 0.010 0.07

The parameters were determined so that the likelihood of the training data was maximized. const, Constant.
“Indicates fixed parameters.

Table 3. Summary of the average =+ SD of the parameters estimated by the
Q-learning models across all data (both the training data and test data)

ay @, K K,

Standard Q (variable)
F-Q (variable)
DF-Q (variable)

“Indicates fixed parameters.

1.86 = 0.68  0.00°
161077 110 £ 0.87
169 £0.77 124 +0.92

045 +023 0.0
0.47 £0.25

0.45*+0.19 046 £0.19

event and spikes were obtained for the NAc and VP using the same
method described above. This calculation was repeated 100 times with
new random events. The second largest mutual information for each
time window was then regarded as the threshold indicating whether or
not information was significant.

Results

Behavioral data

In the conditional free-choice task, a rat chose an action of nose
poking through the left hole [a(¢) = L] or the righthole [a(#) = R]
after tone A presentation. A food reward was given stochastically
depending on the choice. The reward probabilities for the left and
right choices were chosen from four left-right probability pairs
[(90, 50%), (50, 90%), (50, 10%), and (10, 50%)] and were fixed
during a block of trials until the choice probability of the more
advantageous action in the last 20 choice trials reached 80%.
Figure 2 A shows a representative example of a rat’s performance
during 10 consecutive blocks of trials. The choice probability of
the rat changed according to the experience of rewarded and
nonrewarded actions. The choice trials were interspersed with
no-choice trials in 25% of the block, so as not to allow the rat to
prepare an action before presentation of the choice tone. On
average, 105.6 trials were required in one block, and 8.1 blocks
(from 5 to 12 blocks) were performed in one session. Here, we
report the results of all 60,221 trials in 70 recording sessions
performed by six rats, consisting of 39,175 choice trials (65.1%),
12,707 no-choice trials (21.1%), and 8329 error trials (13.8%).

Behavioral analysis

Reaction time and tone discrimination

In the choice trials, the appropriate response was for rats to per-
form a nose poke to left or right hole within 1 min after exiting the
center hole. In no-choice trials, the appropriate response was for
rats not to perform a nose poke in either the left or right hole to
obtain a food pellet 1 s after exiting the center hole.

The reaction time in the choice trials, the time period from the
exit of the center hole to the entry of the left or right hole, was <1
sin 72% of the trials and had a median of 0.75 s. The errors in the
choice trials, in which rats did not perform any nose pokes within
1 min for tone A presentation, were only 0.39% of the choice
trials. The errors in no-choice trials, in which rats performed a
nose poke at the left or right hole within 1 s for tone B presenta-
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tion, were 0.73% of the no-choice trials. These data show that the
rats discriminated the tones well and responded differently to
each.

History dependence of action choice

In the following behavioral analysis, no-choice trials and error
trials were removed and the remaining sequences of choice trials
were used. We first analyzed the conditional probability of mak-
ing a left choice given preceding experiences of actions and re-
wards (Fig. 2 B-E). There were four possible types of experiences
in each trial: L1, L0, R1, and RO, where L or R denotes left or right
choice, respectively, and 1 or 0 denotes rewarded or nonrewarded
trials, respectively. Both the experience L1 and R0 in the previous
trial increased the probability of a left choice in the current trial
[Fig. 2B, green arrow, P(L|L1) = 0.68; green arrowhead,
P(L|RO) = 0.62]. The left choice probability after L1 was signifi-
cantly higher than after RO (Mann—Whitney U test, p < 0.0001).
Equally, both the experience of R1 and L0, which are symmetri-
cally opposite experiences of L1 and R0, decreased the probability
of aleft choice in the current trial (that is, increased the probability of
a right choice). The left probability after R1 was significantly lower
than after LO [Fig. 2 B, brown arrow, P(L|R1) = 0.30; brown arrow-
head, P(L|L0) = 0.39] (Mann-Whitney U test, p < 0.0001). These
results indicate that the choice probability was modulated by expe-
rience in previous trials and that this modulation was stronger after
rewarded experience than after nonrewarded experience.

Experiences before the previous trial were also found to affect
current choices. Figure 2 B shows the probabilities of making a
left choice in the current trial after all combinations of types of
experience in one and two previous trials. For instance, the con-
ditional probability P(L|RO L1) = 0.66 (Fig. 2B,C, blue arrow-
head), which is the probability of a left choice (at trial ) after RO
(at trial # — 2) and L1 (at trial £ — 1), significantly differs from
P(L|L1L1) = 0.72 (Fig. 2B,C, blue arrow), the probability of a left
choice after L1 and then L1, even though the experience in one of
the previous trials was the same in both conditions (Mann—
Whitney U test, p < 0.0001). This result suggests that the differ-
ent effects of the experiences RO and L1 before the previous trial
still affected the current choice. We examined the effects of the
experiences of up to four previous trials (Fig. 2C-E). Among
4*/2 = 128 combinations of four consecutive experiences in
which left-right sequences were symmetrical, the sequence L1 L1
L1 L1 and R1 R1 R1 R1 was observed most frequently (6.87% of
all observed sequences of four trials). The sequence RO L1 L1 L1
and LO R1 R1 R1 was observed second most frequently (2.87%).
Figure 2C shows the left choice probabilities after the subse-
quences of these cases. For instance, for the pattern L1 L1 L1 L1,
the left choice probabilities, namely P(L|L1), P(L|L1 L1), P(L|L1
L1 L1), and P(L|L1 L1 L1 L1), increased with the number of
L1 experiences and converged around 0.75. A comparison of the
left choice probabilities for L1 L1 L1 L1 and RO L1 L1 L1 results
indicated that the effects of L1 and RO were gradually reduced by
following the sequence of L1. There was no significant difference
between P(L|L1 L1 L1 L1) = 0.74 and P(L|RO L1 L1 L1) = 0.74
(Mann—Whitney U test, p = 0.94). These features were also ob-
served in the symmetrically opposite patterns R1 R1 R1 R1 and
LO R1 R1RI.

The sequences RO LO RO L0 and L0 RO LO RO were observed
third most frequently (2.55%). Figure 2 D shows the probabilities
of left choices after these subsequences. These results illustrate
that there was a “switching” behavior in which rats tended to
choose the other action after one action was not rewarded. The
responses to certain sequences were surprising. Figure 2 E shows
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the left choice probability for the subse- A

quences LO LO LO L0 and RO RO RO RO, S AP e e S

which consisted of 1.28% of all observed
sequences across the four trials. The prob-
ability of a left choice gradually increased
after two or more left choices with no re- =
ward. In particular, P(L|LO LO L0) and /
P(L|LO LO L0 L0) were both >0.5. This
indicates that rats sometimes persevered
with one choice even after repeated nonre-
warded trials. This behavior would be ex-
pected to be maladaptive for adapting to a
new setting, but adaptive if the best choice
produced only sparse rewards.

In summary, these results demon-
strated the following: (1) rewarded expe-
riences gradually reinforced the selected
action, like the update rule in reinforce-
ment learning algorithms; (2) nonre-
warded experiences led rats to switch their
choice; and (3) rats sometimes persevered
with one choice even after repeated non- iy
rewarding outcomes. ‘

Modeling rats’ strategies with a
reinforcement learning model N
To examine the extent to which differ- /Of}\h gz
ent learning models can represent rats’ .
strategies, four different models were
fitted to the choice sequence data shown
in Figure 2, C and D, by a least-squares
method.

Q-learning models update two action
values, Q, () and Q(t), according to action and reward experi-
ences. The probability of an action choice is given by a sigmoid
function of the difference of the two action values, namely, the
following:

Figure 6.

P(a(t) = Lle(1), . . ., e(t — 1))

1
T 1+ exp{—(Qu) - Q)Y

where e(t) can take one of four values {L0, L1, RO, R1}. The
most generalized model, Q-learning with differential forget-
ting (DF-Q), had four parameters: a,, the learning rate for the
chosen action; «,, the forgetting rate for the actions not chosen;
K, the reinforcing strength of a reward; and k,, the aversive
strength of a no-reward outcome. By fixing ., = k, = 0, this rule
becomes the standard Q-learning model. By fixing a; = a,, it
becomes the Q-learning with forgetting (F-Q) model. By fixing
o, = a,, Kk, = 1,and k, = 0, and using the choice probability by
the ratio of action values

(15)

Q.(1)
Q (1) + Qg(t)

the DF-Q model is equivalent to the local matching law (Sugrue
et al., 2004).

Choice probabilities were updated using the local matching
law, and the standard Q-, F-Q-, and DF-Q-learning models,
according to the six sequences of four experiences shown in
Figure 2, C and D. The free parameters of each model were
determined so that squared errors of choice probabilities be-

P(a(t) = Lle(1), ..., e(t— 1)) = (16)
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Tracks of accepted electrode bundles for all rats are illustrated by rectangles. Each diagram represents a coronal
section referenced to the bregma (Paxinos and Watson, 1998). Data recording from the sites in A and B were treated as neuronal
activity in the NAcand VP, respectively. core, Nucleus accumbens core; sh, nucleus accumbens shell; VP, ventral pallidum.

tween the model and rats was minimized (Table 1). Since the
initial action value [Q, = Q. (1) = Q(1)] was also treated as
a free parameter, the numbers of free parameters in the local
matching law, the standard Q, F-Q, and DF-Q were 2, 3, 4, and
5, respectively. Figure 3 shows the predicted action choice
probabilities of the four models after optimization of the free
parameters. The results showed that the local matching law
(Fig. 3A) and the standard Q-learning model (Fig. 3B) were
not able to represent switching behavior, whereas the F-Q-
and DF-Q-learning models were (Fig. 3C,D). The averaged
residual errors of the local matching law, the standard Q, F-Q,
and DF-Q models were 0.0102, 0.0073, 0.0010, and 0.0002,
respectively.

Although the characteristics of each model were clarified by
fitting these models, this comparison may not be equivalent
because the number of free parameters was not considered.
Generally, a model with a larger number of free parameters
shows a better fit to data, although this sometimes results in
overfitting, which suggests that the model can no longer fit to
new data. Therefore, a strict comparison is necessary to mea-
sure the accuracy of the models in predicting new data.

Prediction of choices by models

We then examined which computational model most accurately
captured the rats’ choice behaviors on the basis of the accuracy of
prediction of rats’ choices. This examination compared the
Markov model, the standard Q-learning model, the F-Q-learning
model, and the DF-Q-learning model with constant or time-
varying parameters.
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Figure 7.  Examples of neuronal activity in the NAc (4, ¢, E) and VP (B, D, F) modulated by various task events. 4, B, D, and E
were neuronal responses recorded in the same session. Of these, A and E are data from the same neuron. 4, B, Examples of neuronal
activity modulated by the selected action (action-coding neurons). Top (bottom) rasters show spikes and events on choice trials in
which a left (right) nose poke was selected. The perievent time histograms in the bottom panels are aligned with the exit from the
center hole. €, D, Examples of neuronal activity modulated by the availability of reward (reward-coding neurons). The perievent
time histograms are aligned with the onset of a reward tone or no-reward tone. E, F, Examples of neuronal activity coding reward
probability for one of two actions (action value-coding neurons). The perievent time histograms for last 20 choice trials in four
different blocks are shown by different colors. E, The histograms were aligned with entry to the center hole. There is a significant
difference in the activity between block (50, 10) and block (50, 90), but no difference between block (90, 50) and block (10, 50)
around the entry (yellow bins, p << 0.01, from —1to 1s). This suggests that the activity codes the reward probability for right
action. Because this neuron also coded the selected action (as shown in A), the firing rates were significantly different between (90,
50)and (10, 50), and between (50, 90) and (50, 10), 3 s after the entry to the center hole (pink bins). F, The histogram were aligned
with the exit from the center hole. This VP neuron coded the reward probability for left action. The yellow bins indicated a
significant difference in the firing rate between block (10, 50) and block (90, 50) ( p << 0.01) and no difference between blocks (50,
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The Markov model estimates the con-
ditional probability of an action choice
given the action and reward experiences
in the last d trials, namely, the following:

P(a(t) = Lle(t — d), . . ., e(t — 1)).
(17)

The conditional probabilities are esti-
mated from the occurrence frequency of
action and reward sequences.

The parameters of the Q-learning
models, such as «, a5, Kk, and k,, were
assumed to be either fixed during a ses-
sion, or to slowly vary with two drift-rate
parameters o, and o .. The time course of
the action values and the time-varying pa-
rameters were estimated from the experi-
mental data using the method of particle
filtering (Samejima et al., 2004, 2005) (see
Materials and Methods; supplemental
Methods, available at www.jneurosci.org
as supplemental material).

A total of 70 sessions of behavioral data
was divided into training data (35 ses-
sions; 19,986 choice trials) and test data
(35 sessions; 19,186 choice trials). Free pa-
rameters of each model were determined
so that the likelihood of the predictions by
the models of the training data was maxi-
mized. The normalized likelihood of the
predictions by the models of the test data
was used as the measure of model perfor-
mance (see Materials and Methods).

Figure 4 A—F shows representative ex-
amples of trial-by-trial prediction of the
standard Q (Fig. 4A,B), F-Q (Fig. 4C,D),
and DF-Q (Fig. 4E,F) models with vari-
able parameters. Estimated action values
Q. Qg and the parameters of F-Q and
DEF-Q are shown in Figure 4, G and H. In
Figure 4, A, C, and E, the predictions by
these three models were almost the same
during the (50, 90%) reward probability
block, when the rats predominantly chose
the right hole. However, after the reward
setting was changed to (10, 50%), the rats
started to adopt a win-stay—lose-switch-
like strategy; selecting the same action
after a rewarded trial, and switching the

<«

90) and (50, 10). The green bands in the rasters show the time
of presentation of tone A. The pink bands behind green bands
represent the time periods of center nose pokes. The blue and
red bands represent left and right nose pokes, respectively.
The green and black diamonds indicate the onset of reward
and no-reward tones, respectively. The red triangles indicate
the time of a rat’s picking up a sucrose pellet from the pellet
dish. Each perievent time histograms were constructed for 100
ms bins (A-D) or 500 ms bins (E, F). The yellow bins in the
histograms show significant differences in firing rate (Mann—
Whitney U test, p < 0.01).
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action after a no-rewarded trial. This be-
havior was captured by the F-Q- and DF-
Q-learning models, with both models
showing an increase in the nonreward
aversion parameter k , close to the reward
reinforcement parameter k ,, which caused
nearly symmetric ups and downs in the
Q. and Qg (Fig. 4G). This change, in turn,
caused rapid swings in choice probability
(Fig. 4C,E). However, the standard
Q-learning model, with fixed parameters
a, = Kk, = 0, continued to predict higher
choice probability for the right-hand ac-
tion (Fig. 4A). Thus, the F-Q- and DF-Q-
learning models predicted the switching
of choice better than the standard
Q-learning model (Fig. 4A).

Figure 4, B, D, and F, shows an exam-
ple for persevering behavior, when the rat
continued to choose the less advantageous
left action in a (10, 50%) block. The F-Q
and DF-Q models captured this behavior
by exhibiting a negative value for the aver-
sion parameter k, (Fig. 4H), with which
both reward and no-reward outcomes are
positively reinforced. The standard Q
model, however, could not predict left ac-
tion choice.

These results illustrate that the F-Q-
and DF-Q-learning models are able to
capture the actual rats’ behaviors, includ-
ing win-stay—lose-switching and perse-
vering behaviors, which the standard
Q-learning model could not. Moreover,
the performance of the F-Q and DF-Q
models were remarkably similar.

Figure 5 shows a comparison of the
prediction performance of different mod-
els using the normalized likelihood of the
model for 35 sessions of test data. The free
parameters of each model were given by
the maximal likelihood estimate from 35
sessions of training data (listed in Table
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Figure8. Information coded in the NAcand VP. A, Time bin neuronal activity was examined as follows: for 15 before the onset
of the a nose poke at the center hole (phase 1), after the onset of the cue tone (phase 2), before initiation of action (phase 3), after
the action onset (phase 4), after the onset of the reward or no-reward tone (phase 5). B, The population of neurons that showed
significant selectivity (Mann—Whitney Utest, p << 0.01) for each event. State-coding neurons are defined as neurons that showed
asignificantly different firing rate in choice and no-choice trials for 1 after the onset of the cue tone (phase 2). The neurons coding
action values for left or right choices (Fig. 7£,F) were detected for three different time bins, phases 1-3. QLn and QRn indicate the
action values for left and right during phase n, respectively. Note that these action value-coding neurons were detected by simple
comparisons of firing rate in different blocks, not using computational models. Action command (AC)-coding neurons are defined
as neurons that showed an action selectively during the 1 s before initiation of action (phase 3). Action-coding neurons are the
neurons showing action selectivity during 15 after the action onset (phase 4) (Fig. 74,B). Reward-coding neurons are the neurons
that showed different firing rate between rewarded trials and no-reward trials during 1 s after the onset of the reward or no-reward
tone (phase 5) (Fig. 7C,D). C, The population of neurons coding the action values detected by a linear regression analysis. The
reward probabilities for left and right were used as regressors (a model-free analysis). The neurons with a significant coefficient for
the reward probability for either left or right were defined as the action value-coding neurons for left and right, respectively. QLn
and QRn indicate the action values for left and right during phase n, respectively. D, The population of neurons coding the state
value and the policy detected by a linear regression analysis. The sum of the reward probabilities for both actions and the difference
of them were used as regressors (a model-free analysis). The neurons with a significant coefficient for ether the sum or the
difference were defined as the state value and the policy-coding neurons, respectively. Vn indicates the state value during phasen,
and Pn the policy during phase n. All populations were significantly larger than the chance level (binomial test, p < 0.01). The
single and double asterisks indicate significant differences in the percentages of coding neurons between the NAcand VP; p << 0.05
and p << 0.01, respectively, in Mann—Whitney U test.

2). The normalized likelihood of the first-order Markov model
was 0.528, which can be regarded as the baseline performance for
a prediction model. The normalized likelihood for the second-
and third-order Markov models increased to 0.532 and 0.534,
respectively. Note that, when an animal’s choice is probabilistic,
the normalized likelihood for even the best model becomes close
to 0.5 (see Materials and Methods). The normalized likelihood of
0.534 for the third-order Markov model is equivalent to that of
the optimal model for action choice probability ( p = 0.68). The
performance of the fourth-order model was 0.532, lower than
that of the third-order model, presumably because of overfitting
of its 256 free parameters.

Predictions by the standard Q-, F-Q-, and DF-Q-learning
models with constant parameters (o and k) were much better
(0.527,0.531, and 0.531, respectively) than the predictions of the
local matching law (0.508), but poorer than that of the first- or
second-order Markov models. One of the reasons for the lower
prediction accuracies of the local matching law and the standard
Q model with constant parameters is that neither model could
represent the switching behavior that rats often exhibited (Fig. 3).

With time-varying parameters, the performance of the stan-
dard Q, F-Q, and DF-Q models improved (0.5304, 0.5375, and
0.5368, respectively). The F-Q-learning model with time-varying
parameters produced the best prediction performance. The aver-
ages and SDs of the estimated parameters are summarized in
Table 3. The values of the normalized likelihood of the models
may appear low, but this is an expected consequence if rats them-
selves make stochastic action choices (see Materials and Meth-
ods). If we take binary predictions from the choice probability
[left for P, (1) > 0.5, right for P, (t) < 0.5], the average percentage
of correct predictions over 35 test sessions is 68%. Furthermore,
the meaningful performances of the standard Q, F-Q, and DF-Q
models were also conformed by plotting the actual left-choice
probability for the difference between Q and Qy (supplemental
Data 1, available at www.jneurosci.org as supplemental material).

A statistical test for the likelihood of each session in the test
data showed that the prediction accuracies of both the F-Q- and
DF-Q-learning models with time-varying parameters were sig-
nificantly higher than those of all other models (paired-sample
Wilcoxon’s signed rank test, p < 0.05 for third Markov model,
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perievent histograms in C—F are shown in
supplemental Data 2, available at www.
jneurosci.org as supplemental material)
shows representative examples of these
neurons. The colors in the raster plots
show the timing of different task events,
and the yellow bands in the perievent
histogram plot show the time bins in
which the firing rates showed significant
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differences (Mann—Whitney U test, p <
0.01). The activity of the neurons illus-
trated in Figure 7, A and B, changed with
the rat’s choice during movement to per-
form nose pokes at the left or right holes,
indicating that they were action-coding
neurons. The neurons illustrated in Fig-
ure 7, C and D, showed different firing

patterns between rewarded and nonre-
warded trials after the onset of the reward

or no-reward tone, informing rats of re-

ward availability, indicating that they
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were reward-coding neurons.
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Figure 9.

pokes at C, L, and R, presentation of tone A, and the sensor for detecting a pellet on the dish.

p < 0.01 for other models). There was no significant difference
between these two models (paired-sample Wilcoxon’s signed
rank test, p = 0.067). Considering the number of the internal
parameters of the F-Q model («,, k|, and k) is less than that of
the DF-Q model (a;, a5, k, and k), the F-Q-learning model
can be regarded as the better model. These results show that the
F-Q- and DF-Q-learning models performed better than the best
Markov model, a descriptive model generated purely from the
rats’ choice behaviors. Note that high-order Markov models were
expected to provide a good approximation of the upper bound of
the prediction accuracy (see Materials and Methods).

Neuronal recording data

Neuronal activity in the NAc and VP was recorded using three or
four drivable bundles of eight microwires each. These bundles
were advanced between recording sessions so that data from new
neurons were acquired in each session. Tracks of electrode bun-
dles are shown in Figure 6. Subsequent analysis was performed
for a total of 148 NAc neurons and 66 VP neurons from six rats
during 70 sessions.

Neuronal activity in the NAc and VP

VP neurons showed a higher firing rate than NAc neurons over-
all. The average and SD of the firing rate of VP neurons and NAc
neurons during the task were 10.2+9.1 and 2.6*2.6 Hz,
respectively.

In both the NAc and VP, a large number of neurons changed
their activity depending on the type of cue tone (supplemental
Data 2, available at www.jneurosci.org as supplemental material),
the action choice, the reward outcome, and/or the reward
probability for one of two actions. Figure 7 (rasters for

onset of action

Information coded in the NAcand VP. The mutual information per 1 between firing and each event was calculated
using a sliding time window (duration, 500 ms; step size, 100 ms) and averaged across all neurons recorded in the NAcand VP. The
mutual information on action values (QL and QR) was calculated using the estimated action values based on F-Q-learning model
with time-varying parameters. A and B are aligned with the onset of the discriminative tone and the initiation of action (exit time
from the center hole), respectively. The black lines close to the horizontal axes show a threshold indicating significant information
(p<<0.01). The bottom panels show the normalized distribution of onset time (solid lines) and offset time (broken lines) for nose

Figure 7, E and F, shows examples of
neurons that appeared to represent action
values, namely, the reward probability for
one of two action candidates (Samejima et
al., 2005). The activity of these neurons
was compared in different blocks. For the
NAc neuron shown in Figure 7E, the firing
rate around the time of nose poking at the
center hole was significantly different be-
tween the (50, 10%) and (50, 90%) blocks
(Mann—Whitney U test, p < 0.01), where the reward probability
of only the right action changed. However, the firing rate was not
significantly different between the (90, 50%) and (10, 50%)
blocks, where only the left reward probability was different.
Therefore, this neuron can be considered to code the reward
probability for the choice of right hole (i.e., the right action
value). The VP neuron shown in Figure 7F can be considered to
code the reward probability for a left action, because there was a
significant difference in the firing rate between (10, 50%) and (90,
50%) blocks (Mann—Whitney U test, p < 0.01) and no difference
between (50, 90%) and (50, 10%) blocks.

Figure 8 B shows the percentage of neurons that encoded dif-
ferent variables at different timings within a trial, as shown in
Figure 8 A. Before the onset of the nose poke action at the center
hole (phase 1), the percentage of Q -coding neurons in the NAc
was 6% (9 of 148), and 11% (7 of 66) in the VP. The activity of
these neurons was correlated with the left but not with right
reward probability. The percentage of Q r-coding neurons in the
NAc was 7% (11 of 148), and 11% (7 of 66) in the VP. After the
onset of the cue tone (phase 2), 54% (80 of 148) of NAc neurons
and 50% (33 of 66) of VP neurons showed different firing pat-
terns in response to the choice tone and the no-choice tone,
suggesting that they were state-coding neurons. The percentage
of Q-coding neurons in the NAc was 8% (12 of 148) and 18%
(12 of 66) in the VP. The percentage of Q z-coding neurons in the
NAc was 8% (12 of 148) and 9% (6 of 66) in the VP. Before the
initiation of action (phase 3), Q;-coding neurons represented
7% (11 of 148) of the neurons in the NAc and 21% (14 of 66) of
those in the VP. Q g-coding neurons represented 5% (8 of 148) of
the neurons in the NAc and 11% (7 of 66) of those in the VP.
Neurons encoding the action to be chosen before execution rep-
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resented 11% (17 of 148) of the neurons in the NAc and 18% (12
of 66) of those in the VP (action command-coding neurons).
After the action onset (phase 4), the proportion of action-coding
neurons increased to 41% (61 of 148) in the NAc and 39% (26 of
66) in the VP. After the onset of the reward tone or no-reward
tone (phase 5), 63% (93 of 148) of NAc neurons and 68% (45 of
66) of VP neurons coded reward availability.

Comparison of the percentages of coding neurons in the NAc
and VP revealed no differences with trial type, action command,
chosen action, and reward outcome (Mann—Whitney U test, p =
0.59, p = 0.19, p = 0.80, and p = 0.45, respectively). Surprisingly,
the percentages of Q-coding neurons both after cue onset
(phase 2) and before action initiation (phase 3) were significantly
higher in the VP than in the NAc (Mann—Whitney U test, p =
0.03 < 0.05, p = 0.004 < 0.01, respectively), whereas those of
Qr-coding neurons were not significantly different between ar-
eas at the two different times (Mann—Whitney U test, p = 0.81,
and 0.17).

Of the state-coding neurons, 48% (38 of 80) in the NAc and
36% (12 of 33) in the VP showed a greater response to tone A than
to tone B. Of the action command-coding neurons, 53% (9 of 17)
in the NAcand 50% (6 of 12) in the VP showed greater activity in
left-selected trials than in right-selected trials. In the action-
coding neurons, 57% (35 of 61) in the NAc and 50% (13 of 26) in
the VP showed greater activity in left-selected than in right-
selected trials. All of these populations were not significantly
different from 50% (Wilcoxon’s signed rank test, p > 0.05).
However, 73% (68 of 93) of the reward-coding neurons in the
NAc showed a larger response to the no-reward than to the re-
ward tone. This percentage of cells was significantly larger than
the 50% predicted by chance (Wilcoxon’s signed rank test, p <
0.0001). The percentage of reward-coding neurons in the VP
(56%; 25 of 45), however, was not significantly different from
50% (Wilcoxon’s signed rank test, p > 0.05).

In addition, to examine whether neurons in the core or shell of
the NAc had different properties, we separated NAc neurons into
tentative “core” and “shell” groups based on the positions of the
electrodes. The same analysis described above found no signifi-
cant differences between core and shell neurons (supplemental
Data 3, available at www.jneurosci.org as supplemental material).

In addition to the action value-coding neurons, differential
action value-coding neurons (policy-coding neurons) and
action-independent value-coding neurons (state value-coding
neurons) were also found in the NAc and VP using regression
analysis (see Materials and Methods). Action value-coding neu-
rons had already been detected by a comparison of perievent
time histograms (Fig. 8 B) and were also detected in a regres-
sion analysis conducted to compare the policy-coding neurons
and value-coding neurons as described below (Fig. 8C). Q.-
coding neurons, which were found to have a significant regres-
sion coefficient to Q (# test, p < 0.01) but not to Qy, were
present in percentages of 9, 10, and 7% in the NAc, and 15, 24,
and 26% in the VP for different time bins (Fig. 8 A, phases 1-3).
In phases 2 and 3, there were significant differences in the size of
the population of Q; -coding neurons in the NAc, and in the VP
(p = 0.007 and 0.0001 < 0.01, Mann—Whitney U test). Q-
coding neurons, which were found to have a significant regres-
sion coefficient to Qy (¢ test, p < 0.01) but not to Q were
present in percentages of 11, 9, and 6% in the NAc, and 9, 17, and
14% in the VP. These regression analysis results were consistent
with those obtained by comparing the perievent time histograms
(Fig. 8 B). However, the number of the detected action value-
coding neurons was slightly larger in Figure 8 C than in Figure 8 B.
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State value-coding neurons, which were found to have a signifi-
cant regression coefficient to [Q,(#) + Qg(#)] butnot to [Q, () —
Qg(1)], were present in percentages of 12, 8, and 8% in the NAc,
and 18, 20, and 20% in the VP (Fig. 8 D). In phases 2 and 3, these
differences between the sizes of the populations in the NAc and
VP were significant (p = 0.02 and 0.02 < 0.05, respectively;
Mann-Whitney U test). Policy-coding neurons, which were
found to have a significant regression coefficient to [Q.(f) —
Qr(t)] butnotto [Q, () + Qg(#)], were present in percentages of
10,9,and 7% in the NAc,and 11, 15, and 14% in the VP (Fig. 8 D).
All percentages shown in Figure 8 were significantly larger than
those predicted by chance ( p < 0.01, binomial test).

To elucidate when and how much information about each
event was represented in the NAc and VP, the amount of mutual
information shared between neuronal firing and each event was
calculated using a sliding time window (duration, 500 ms; step
size, 100 ms). Figure 9 shows the average amount of mutual in-
formation for all neurons in the NAc and VP aligned at the time
of cue tone onset and action onset, respectively. The information
coding state in the NAc and VP (green lines) increased immedi-
ately after the onset of the cue tone, and again after exiting from
the center hole. Whereas the second activation peak during ac-
tion may reflect the different movements (heading to the left or
right holes, or heading directly to the food dish), the first peak
may reflect the different strategy the rat adopts after the tone
offset. Information related to action choice was very weak in both
the NAc and VP before the onset of the choice (before the exit of
the center hole), but increased rapidly after the choice onset, and
showed a peak around the time of entry to the left or right hole.
Information related to the reward started to increase at the pre-
sentation of reward/no-reward tone, which was presented at the
time of entry to the left or right hole. The reward information
gradually decreased, but was sustained until the subsequent trial
(previous reward shown in Fig. 8C,D).

Q. and Qg values estimated by the F-Q-learning model were
used to calculate information about action values. Information
regarding action values Q and Qy in the NAc and VP were
found to be larger than the threshold values, indicating a signifi-
cant level of information (p < 0.01) (see Materials and Meth-
ods). However, this level of information was still relatively low
and without clear peaks, whereas information about state, action,
and reward was robustly represented in the NAc and VP.

Discussion

In this study, we analyzed rats’ choice strategy and neural coding
in the basal ganglia during a free-choice task with stochastic re-
ward. In a model-free statistical analysis of the choice and reward
sequence, we verified that a rats’ choice probability of an action
increases with a reward outcome and decreases, albeit to a lesser
degree, with a nonreward outcome (Fig. 2B). Moreover, we
found that this effect persists until at least three trial steps in the
future (Fig. 2C). However, the results showed that rats sometimes
adopt a win-stay—lose-switch strategy (Fig. 2C,D) or a persever-
ing behavior in which a nonrewarding action is continued persis-
tently (Fig. 2E). Using model-based prediction of rats’ choice
from the preceding sequence of actions and rewards, we showed
that the F-Q-learning model (Barraclough et al., 2004) and the
DF-Q-learning model with forgetting rate and no-reward aver-
sion parameters were able to predict the rats’ choice sequence
better than the best multistep Markov model (Fig. 5). Consider-
ing that the number of the parameters of F-Q-learning model
(a;, k1, and k,) is less than that of the DF-Q-learning model («,
a5, K, and k,), the F-Q model is regarded as superior to the
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DF-Q model. The F-Q- and DF-Q-learning models with time-
varying parameters not only served as the best descriptive models
of rats’ choice strategies, but also serve as normative models that
explain “why” rats adopt such strategies (Corrado and Doya,
2007).

The results of the current study suggested that neurons in the
NAc and VP code different types of information during different
phases of behavior. We found evidence that the trial type was
coded after the cue tone onset, action values for the choices were
coded before and after action initiation, the action was coded
after action initiation, and the reward was coded from the
reward-tone onset to the start of the next trial. The coding of
action values was less dominant, but a significant amount of in-
formation regarding action values was observed throughout the
trial (Fig. 9).

Modeling rats’ choice behavior

A major goal of this study was to formulate a dynamic choice
learning model that could describe actual animals’ choice behav-
iors, and also have the ability to normatively explain the aim or
goal of the processes described previously (Corrado and Doya,
2007). We started from statistically analyzing rats’ choice and
reward sequences. This analysis clarified that rats’ strategies often
change, for example to a win-stay—lose-switch strategy (Fig.
2C,D) or a persevering strategy (Fig. 2E).

The DF-Q-learning model we propose here has the basic goal
of maximizing the acquired reward, but is general enough to
accommodate the different ways that the values of nonchosen
actions and nonrewarded actions are reinforced. Introduction of
two additional parameters to the typical Q-learning model, the
forgetting rate (a,) and the impact of a no-reward event (k,),
enabled the model to represent win-stay—lose-switch behavior
when there is a large positive k, (Fig. 3), and to represent perse-
vering behavior when there is a large negative k ,.

The estimation of time-varying parameters during sessions
(supplemental Methods, available at www.jneurosci.org as sup-
plemental material) (Samejima et al., 2004, 2005) enabled the
model to predict choices when strategies are changeable. We
compared the trial-by-trial choice prediction performance of this
model with versions of the Markov model with different orders.
The results showed that the DF-Q-learning model with time-
varying parameters predicts rats’ choices more accurately than
the best descriptive model for choice and reward sequences,
namely, the third-order Markov model. Surprisingly, introduc-
ing the constraint that the forgetting rate a, was equal to the
learning rate o, (F-Q) did not degrade the prediction accuracy,
suggesting that rats’ strategies are changeable, but within a sub-
space of strategies that the F-Q model can represent.

Information coding in NAc and VP

The activity of NAc neurons modulated by types of discrimina-
tive tones (state-coding neurons) may code either the difference
in expected reward (i.e., one pellet for the no-choice tone, and
less than one pellet for the choice tone) or the difference in be-
haviors after the tone. The activity of these state-coding neurons
is consistent with previous reports of a subset of NAc neurons
that fire selectively to discriminative stimuli in discrimination
tasks (Setlow et al., 2003; Nicola et al., 2004a; Wilson and Bow-
man, 2005). The activity of NAc neurons modulated by different
actions during the execution of the poking (action-coding neu-
rons) might code either differences in the physical movements or
differences in the spatial position of rats. This notion is consistent
with previous reports showing that the responses of a subset of
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NAc neurons changed with different choices of actions in dis-
crimination tasks and a spatial-delayed matching-to-sample task
(Chang et al., 2002; Kim et al., 2007; Taha et al., 2007). In the
current study, we found evidence that information related to
action lasted beyond the timing of reward delivery after the
choice. This finding is consistent with the finding of long-lasting
representations of past choices in the ventral striatum, including
in the NAc (Kim et al., 2007). Information related to reward in
the NAc showed a peak immediately after presentation of the
tone associated with reward availability. This activity gradually
decreased but lasted until the next trial. This finding is consistent
with previous studies reporting that neurons in the NAc and the
amygdala, which has a projection to the NAc, respond to reward-
predictive stimuli and also consummatory behavior itself
(Schoenbaum et al., 1999; Setlow et al., 2003; Nicola et al., 2004b;
Wilson and Bowman, 2004, 2005; Wan and Peoples, 2006).

There are few reports of VP recording during learning behav-
iors compared with the large number of NAc studies. However, a
study by Tindell et al. (2004) showed that VP neurons responded
to both a conditioned stimulus and a reward-unconditioned
stimulus in a pavlovian conditioning paradigm. In the present
study, we found that VP neurons coded state information and
action information as well as reward information. Notably, the
populations of VP neurons coding state, action, and reward in-
formation were almost same as those of NAc neurons. This sug-
gests that the NAc and VP might work together, rather than hav-
ing clearly disparate roles.

Information regarding state, action, and reward is important
for updating a behavioral choice. The various representations in
the NAc and VP found in this study could be summarized as
information necessary for updating a choice behavior. In partic-
ular, we showed that a representation of information regarding
action in the NAc and VP lasted beyond the peak of information
regarding reward (Fig. 9). This simultaneous representation of
action and reward information might be necessary to modulate
neuronal circuits related to action selection.

The neuronal representation of action value, state value, and
policy as well as action and reward have been previously found in
the dorsal striatum (Samejima et al., 2005; Lau and Glimcher,
2007, 2008; Pasquereau et al., 2007), the globus pallidus (Pasque-
reau et al., 2007), and other cortical areas (Platt and Glimcher,
1999; Dorris and Glimcher, 2004). In this study, we found similar
value coding in the NAc and VP of rats. Interestingly, the popu-
lation of left action value-coding neurons and state value-coding
neurons in the VP was significantly larger than that in the NAc
(Fig. 8). In our experiments, all VP and NAc neurons were re-
corded from the right hemisphere. Therefore, VP neurons coding
action values for contralateral poking behavior were predomi-
nant. However, it is still unclear why the representation of action
values for the left was not predominant in the NAc.

Although action value-coding neurons exist in the NAc and
VP, their population size and information content were relatively
small compared with those of the state-, action-, and reward-
coding neurons. In addition, the time course of information
regarding action value was almost flat (Fig. 9). This finding con-
flicts with the results of a recent recording study in the caudate
nucleus of monkeys, which found a gradual increase in the pop-
ulation size and averaged firing rate of action value-coding neu-
rons toward the onset of action execution (Lau and Glimcher,
2008). Furthermore, information regarding action commands
was relatively small in both areas. Similarly, recent rat studies
reported that there were few action command-coding neurons in
the NAc in discrimination tasks (Kim et al., 2007; Taha et al.,



9874 - ). Neurosci., August 5, 2009 - 29(31):9861-9874

2007). Considering these relatively minor representations of the
action value and the action command, the action evaluation and
action selection might not be the primary role of NAc and VP. In
any case, these areas might represent state, action, and reward
information that can be useful for action evaluation and learning.

In previous studies, action value-coding neurons have been
found in the dorsal striatum of monkeys (Samejima et al., 2005;
Pasquereau et al., 2007; Lau and Glimcher, 2008). The represen-
tation of action values might be dominant in the dorsal rather
than the ventral striatum. This would be consistent with the re-
sults of a lesion study in rats, which suggested that the dorsome-
dial striatum is involved in action—outcome learning (Yin et al.,
2005). Moreover, a functional magnetic resonance imaging study
in humans also suggested that the dorsal striatum contributes to
action selection, whereas the ventral striatum contributes to re-
ward expectation (O’Doherty et al., 2004).
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