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Attention Improves Object Representation in Visual Cortical
Field Potentials
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Selective attention improves perception and modulates neuronal responses, but how attention-dependent changes of cortical activity
improve the processing of attended objects is an open question. Changes in total signal strength or enhancements in signal-to-noise ratio
have been proposed as putative mechanisms. However, it is still not clear whether, and to what extent, these processes contribute to the
large perceptual improvements. We studied the ability to discriminate states of activity in visual cortex evoked by differently shaped
objects depending on selective attention in monkeys. We found that gamma-band activity from V4 and V1 contains a high amount of
information about stimulus shape, which increases for V4 recordings considerably with attention in successful trials, but not in case of
behavioral errors. This effect resulted from enhanced differences between the stimulus-specific distributions of power spectral ampli-
tudes. It could be explained neither by enhancements of signal-to-noise ratios, nor by changes in total signal power. Instead our results
indicate that attention causes underlying cortical network states to become more distinct for different stimuli, providing a new neuro-
physiological explanation for improvements of behavioral performance by attention. The absence of the enhancement in discriminability
in trials with behavioral errors demonstrates the relevance of this novel neural mechanism for perception.

Introduction
Attending an object within a complex sensory scene is known to
improve various aspects of its perception. This includes lower
thresholds, faster responses, and better discriminability for at-
tended compared with nonattended objects. Such attention-
dependent enhancements of perceptual capabilities suggest an
improvement of the underlying neuronal representations and
processing of attended objects. Selective attention has been
shown to result in modulations— often increments— of neuro-
nal firing rate (Moran and Desimone, 1985; Motter, 1993; Treue
et al., 1996; McAdams and Maunsell, 1999a; Reynolds et al., 1999,
2000). Furthermore, neurons engaged in processing of an at-
tended object tend to organize their responses into synchronous
firing patterns (Steinmetz et al., 2000) with oscillation frequen-
cies in the gamma band (Fries et al., 2001, 2008; Bichot et al.,
2005; Taylor et al., 2005; Womelsdorf et al., 2006a,b; Lakatos et
al., 2008). Modulations of firing rate have been proposed to con-
tribute to an improved representation in several ways. In case of
multiple, nearby stimuli positioned within the same receptive
field (RF), neurons tend to respond as if only the attended stimulus
was present (Moran and Desimone, 1985; Treue and Maunsell,
1996). While this helps to disambiguate the representation with

respect to multiple nearby stimuli, it does not necessarily imply
an improved representation of a single attended stimulus com-
pared with a single nonattended stimulus without other, compet-
ing stimuli within the RF. Another approach using spike rate
modulations to explain perceptual improvements by attention is
based on attention-dependent increases of mean firing rates ob-
served in several studies. These response increments were found
to improve signal-to-noise ratios, which could provide a basis for
enhancing the discriminability of representations of different
stimuli (McAdams and Maunsell, 1999b). However, the corre-
sponding improvements of representations appear to be limited
since attention-dependent increments of firing rates f are often
small or even missing (Reynolds and Chelazzi, 2004) if attention
is moved from a stimulus outside the RF to the stimulus within.
Therefore we here investigated whether additional mechanisms
are present that could explain the rather large perceptual effects
of attention (Rock et al., 1992; Wolfe and Bennett, 1997).

Specifically, we investigated how selective attention influences
the discriminability of neuronal activity patterns in the visual
cortex of macaque monkeys that attend to one of two spatially
well separated shapes placed in the right and left visual hemi-
fields. Field potential signals were recorded from an epidural
electrode array and decomposed into their frequency compo-
nents. We used support vector machines as state of the art clas-
sifiers (Schölkopf et al., 2000, 2001) to identify the presented
objects based on the observed neuronal activity patterns. We
found a clear increase of the classification performance for at-
tended compared with nonattended stimuli. This increase was
only to a minor extent explained by an improved signal-to-noise
ratio (SNR), but mainly by stimulus-specific changes of the
power spectral amplitudes for different gamma-frequency com-
ponents, leading to a better separability of the neural activity
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patterns evoked by different shapes. Finally, we analyzed error
trials in which the monkeys failed to perform the shape recogni-
tion task correctly. We found that in such cases the discrim-
inability under attention was in most cases reduced to a level
similar to or even lower than the discriminability in the non-
attended condition.

Materials and Methods
The datasets for the study were taken from the control experiment pre-
sented in Taylor et al. (2005) (see their Fig. 8).

Behavioral training and visual stimulation. Two male rhesus monkeys
(Macaca mulatta), monkey F and monkey M, were trained to
an extended version of a delayed-match-to-sample-task. For training and
recording sessions they sat in a primate chair with the head restrained.
Visual stimuli were presented with a frame rate of 100 Hz on a 21 inch
cathode ray tube screen 81 cm in front of the monkeys’ eyes.

The monkeys started a trial (see Fig. 1) by pressing a lever after the
appearance of a central fixation point on the screen. After 650 ms, two
different stimuli with complex shape appeared at fixed positions in the
left and right visual hemifield (time period T1). The sample stimulus of
the behaviorally relevant stimulus sequence (i.e., the target sequence)
was cued within the first 200 ms of stimulus presentation by green col-
oring, which faded into white within the subsequent 400 ms. The initial
sample stimuli appeared for 1550 ms, followed by a sequence of test
stimuli presented statically for 500 ms and separated by 900 ms delay
intervals (blank screen with fixation point only). The test stimuli in each

stimulus sequence differed from each other
and were randomly selected from a set of 10.
The sample stimuli were selected from a subset
of six, and also varied from trial to trial. The
matching test stimuli of the target and the dis-
tracter sequence appeared in different, ran-
domly selected periods T3 to T6 (see Fig. 1a).
Appearance of the matching stimulus in the
initially cued target sequence required the
monkey to release the lever within 1000 ms af-
ter test stimulus onset, to be rewarded with a
drop of fruit juice. A reappearance of the initial
shape in the stimulus sequence of the distracter
had to be ignored. If monkeys broke fixation
(rectangular fixation window extending verti-
cally and horizontally by 0.75° from the fixa-
tion point), or responded too early or too late,
the trial was aborted without reward.

Each stimulus shape was defined by 12 non-
visible points interconnected by a 0.3° wide
smooth Bezier curve. They were centered to the
left and to the right of the fixation point, 0.9°
below the horizontal meridian and 2.9° aside
the vertical meridian, and covered a region of
�4° � 4°.

During recording we presented blocks of
60 –90 trials with the target stimulus on the
same side to support target cueing. Monkey M
was tested with the target position chosen ran-
domly for each trial. For partial retinotopic
mapping of the lower visual field representa-
tion of V1 and V4, small white squares (0.4° �
0.4°) were flashed at different positions in the
visual field while monkeys were engaged in a
fixation task and kept their gaze within �0.75°
around the fixation point.

Surgical preparation. Using standard surgical
techniques the monkeys were implanted with a
headpost and a thin gold ring placed between
the conjunctiva and the sclera of one eye for
measurement of gaze direction using the indi-
rect search coil method (Bour et al., 1984). Af-
ter recovery and completion of the subsequent

behavioral training, an epidural array of platinum–iridium electrodes
was placed over area V4 and parts of area V1 close to the sulcus lunatus.
Based on maps of the monkey brain (Gattass et al., 1981, 1988; Paxinos et
al., 2000), the intended position of the array was determined relative to
anatomical landmarks. Stereotactic coordinates of these landmarks were
derived from structural magnetic resonance images obtained for each
animal from a 4.7 T Bruker Biospec scanner. The precise location of the
implanted electrode array was estimated postoperatively by the stereo-
tactic coordinates determined during implantation, their comparison
with structural magnetic resonance images obtained after implantation
and morphological confirmation in one of the monkeys. The localization
of the array was further improved and confirmed by the construction of
a partial retinotopic map of area V4 and, in one monkey, area V1, based
on recordings of �-band responses to the small test stimuli described
above with the implanted electrode array (see also Taylor et al., 2005).

Recording. Using the chronically implanted epidural electrode arrays
we recorded field potentials from parts of area V4 and V1 at 36 electrode
positions in monkey M and 37 positions in monkey F. The electrode
array consisted of Teflon-coated platinum–iridium (90 Pt/10 Ir) wires
(diameter 50 �m, Science Products) inserted with a regular spacing of 3
mm into a 0.1-mm-thick sheet of silicone (Goodfellow). An uninsulated
loop (diameter 210 –220 �m) positioned parallel to the dura formed the
electrode contact. The electrode impedance was typically 25 k� at 100
Hz. Two reference electrodes (platinum–iridium wire, 150 �m diameter)
were placed frontally. In monkey F a third reference was attached to the
backside of the electrode array (0.1 mm platinum–iridium foil, 4.5 mm

Figure 1. a, Schematic illustration of the shape-tracking task. Two sequences of static shapes were presented in the left and
right hemifield of a computer screen (upper left rectangle). While the monkey was fixating on a dot in the center of the screen,
attention of the monkey was directed by a 200 ms green coloring fading out within further 400 ms to one of the initial shapes
presented during period T1—in this example, to the right-hand shape. The task for the animal was to signal the reoccurrence of
the initial shape in the attended hemifield during one of the following periods T3–T5. Here, a correct response would be during or
after presentation of shape s(T5). b, Regions of interest in V1 and V4 where the stimuli caused substantial activation (see Materials
and Methods). c, d, Examples for typical time–frequency plots on the same time axis as in a, displaying the trial-averaged,
normalized power spectral density A(t, f0) in the attended condition for an electrode over V1 (c) and over V4 (d) from monkey F.
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diameter). Recordings were referenced to the latter electrode in monkey
F and a frontal electrode for monkey M. Signals were amplified (40,000�
in monkey F, 30,000� in monkey M, 1–150 Hz bandwidth) and contin-
uously recorded at a sampling rate of 1 kHz.

The datasets used for the present study come from the animals and
recording arrays used by Taylor et al. (2005) and overlap with data used
in the previous study to control for memory-related effects. All surgical
and experimental procedures were performed in accordance with the
European Communities Council Directive of November 24, 1986 (86/
609/EEC) and with the regulations for the welfare of experimental ani-
mals issued by the Federal Government of Germany and had been ap-
proved by the local authorities.

Data analysis. For data analysis we rejected all trials in which the mon-
keys made fixation errors. For one of the monkeys some trials had to be
rejected because the signal saturated the amplifier. The field potential
signals were high-pass filtered with a digital filter (Butterworth IIR filter,
cutoff frequency 0.65 Hz at 3 dB, forward and backward filtering to avoid
phase shifts) to eliminate DC offset. To suppress the effect of the com-
mon reference and to minimize spatial smearing (Nunez et al., 1997), the
current source density (CSD) (Gevins, 1984) with unit volts per square
meter was computed. For each time bin, the second spatial derivative of
the field potentials was computed with the Laplacian operator (Perrin et
al., 1987), using Gaussian radial basis functions for interpolation
(Moody and Darken, 1989). For each electrode, the CSD yields the sig-
nals vj(t) with j denoting the trial number. These data were convoluted
with complex Morlet’s wavelets w(t, f0) (Kronlandt-Martinet et al., 1987)
to obtain the wavelet power coefficients aj(t, f0) via

aj�t, f0� � � �
��

	�

w��, f0� vj�t � �� d�� 2

. (1)

The spacing of frequency bands was logarithmic between 5 and 200 Hz,
chosen as f0(k) 
 �k �1f0(1) for k 
 1,�,17 frequency bands starting at
f0(1) 
 4.84 Hz. For a sufficiently tight coverage of frequency space, we
set � 
 1.206.

For Figure 1, c and d, we computed normalized mean spectra

A�t, f0� �

� aj�t, f0��
j

� n� f0�

n� f0�
(2)

using normalization coefficients quantifying the background activity
n( f0) obtained from n( f0) 
 1/(t2 � t1)�t1

t2�aj(t, f0)�jdt with t1 
 300 ms
and t2 
 350 ms. For all other purposes, the original, non-normalized
values were taken.

In Taylor et al. (2005), we already noticed pronounced differences in
spectral power between the attended and nonattended state. Here we
want to investigate quantitatively how well different shapes are repre-
sented in the recorded signals, and how this representation is influenced
by attention. For this purpose, classification is a quantitative method for
establishing a lower boundary for the information contained in the sig-
nals, and for identifying characteristic differences between signals caused
by different shapes. We performed classification on the power spectra,
which were averaged over suitable time intervals (detailed procedure
described later).

Classification of stimuli based on neuronal signals has been performed
in various experimental settings differing in species and neuronal mea-
sures ranging from single-unit studies to EEG recordings. Hereby the
usage of support vector machines (SVMs) (Schölkopf et al., 2000, 2001)
was established as a standard method that delivers performances superior
to linear methods, and consumes typically less resources than mathemat-
ically simpler methods or brute-force approaches like nearest-neighbor
classifiers. In short, the SVM allows to segregate the multidimensional
data space (e.g., where each axis of the data space represents the absolute
power of one frequency component of one electrode) by a hyperplane.
The resulting isolated data regions are then assigned to different classes
(like the shape or the condition of attention). Given a new data point with
unknown class, it is now possible to estimate the underlying class by

calculating to which data region this new data point belongs. One SVM
separates data space into two regions. Combining the results from more
then one SVM allows to distinguish between more then two classes.
Classification errors occur if regions spanned by the data points overlap
and it is not sure to which region one point really belongs. For extending
the possibilities of separating the whole data space into two regions by a
hyperplane, the data space is transformed into “feature space,” typically
by a nonlinear mapping using so-called kernel functions. For imple-
menting the SVMs, we used the widely used libsvm software package
(Chang and Lin, 2001), which provides convenient data preprocessing
routines automatically searching the parameter space of possible SVM
realizations, while calibrating the input data to match the abilities of the
classification algorithm. A radial basis function kernel was chosen for
classification. The software package optimizes its parameters only on the
training set of the data and tests it performance on a separate test dataset.
These datasets are never mixed.

For classifying the data according to the presented shapes, we used two
procedures. For monkey F, we divided each of the analyzed datasets
corresponding to a behavioral condition like “attended” or “nonat-
tended” with N trials into two subsets of approximately equal size, by
alternately assigning trials to one training subset and to one test subset in
an interleaved manner. Typically test and training sets contained up to
�1400 trials each. The data were measured within 11 session for monkey
F and five sessions for monkey M. Data from different sessions were
pooled for each monkey separately. Given the good stability of recordings
from day to day, we did not attempt to remove putative nonstationarities
between sessions. For monkey M (except for the section “Characteriza-
tion of stimulus-specific signals” because of computational reasons), we
used a “leave-one-out” scheme, in which the SVM was trained on N � 1
trials, with up to �800 trials, and with the remaining trial acting as the
test set. This procedure was repeated such that each single trial was used
once as the test trial, and the resulting single classification performances
were averaged. It provides better generalization properties of the learned
SVM at the price of being numerically more expensive, by a factor of
�4 N. The reason for using two different procedures was the lower num-
ber of total trials of monkey M (approximately one-third). The classes to
be learned were defined by the shapes sj(k) presented to the monkeys in
selected intervals k � {T1, T2, T3,�} of the stimulus sequence (see Fig. 1a)
displayed in the visual hemifield contralateral to the recordings during
trial j. In total, there were six shape classes s � {1,�,6} used as targets in the
trials. In the following description, where necessary, we will use the index
s to distinguish variables, which were computed using only wavelet coef-
ficients from trials j in which the shape shown in interval k 
 T1 was s,
i.e., sj(T1) 
 s. Likewise, we will distinguish data from trials where atten-
tion was directed to the visual hemifield represented in the recorded
brain region with a superscript A (attended), while using a superscript N
(not attended) otherwise.

We then trained SVMs on the training sets, and estimated their classi-
fication performance on the test sets. Performance P was measured as the
total percentage of shapes classified correctly by the SVM in the test sets.
The chance level Pchance was computed as the ratio of the occurrences of
the most frequently presented pattern in the training set to the total
number of trials in this set. An increase (decrease) in performance P
above chance level was considered to be significant as soon as the prob-
ability to obtain an equal or higher (equal or lower) performance by
drawing from a binomial distribution around Pbinom 
 Pchance was
smaller than p 
 0.02, respectively. A difference in performance P A � P N

was considered significant as soon as the probability to draw P A and P N

in two binomial experiments was smaller than p for any putative under-
lying probability Pbinom.

From all coefficients aj(t, f0) obtained within a period T for the center
frequency f0, we selected a subset of a’s equally spaced in time and com-
puted averaged coefficients �aj( f0). The spacing was adjusted to approxi-
mately twice the period 1/f0, which is sufficient to capture the typical rate
of change in wavelet-analyzed signals. Averaging led to a large decrease in
computational complexity for the training of the SVMs. Numerous test
simulations with the original, full set of coefficients yielded no substantial
difference in classification performance (data not shown); thus, we pro-
ceeded using average coefficients only.
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Analysis of the residual eye movements within the fixation area
revealed small statistical differences between the attended and the non-
attended condition. Further tests on selected subsets of our data (see
supplemental material, available at www.jneurosci.org) excluded the
possibility that differences in classification performances could be ex-
plained by these unequal statistical properties.

To determine the influence of the SNR on the classification perfor-
mance, the SNR � 
 �/� was computed as the quotient of mean � 
 ��aj�
and standard deviation � 
 ���aj���. Using the individual means �s and
standard deviations �s computed for the different shapes s, we used two
procedures to created surrogate data (Theiler et al., 1992; Schreiber and
Schmitz, 1996; Kaplan, 1997) by scaling the original wavelet coefficients
such that either (I) only the changes in SNR were reproduced, or (II) only
the changes in mean values were reproduced, when going from one to
another attentional condition. This scaling could be applied in two di-
rections, creating a quasi-attended condition from nonattended data, or
creating a quasi-nonattended condition from attended data, as explained
in the following paragraphs.

Procedure I. We computed the first “quasi”-attended dataset aj,s
A(I)( f0),

having the same means as the real nonattended dataset, but the original SNRs
from the real attended dataset, via

aj,s
A(I)� f0� � �s

N� f0� � �aj,s
N � f0� � �s

N� f0�� �s
N� f0�

�s
A� f0�

. (3)

Similarly, the first “quasi”-nonattended dataset aj,s
N(I)( f0), having the

same means as the real attended dataset, but the original SNRs from the
real nonattended dataset, was computed via

aj,s
N(I)� f0� � �s

A� f0� � �aj,s
A � f0� � �s

A� f0�� �s
A� f0�

�s
N� f0�

. (4)

Procedure II. We computed the second “quasi”-attended dataset aj,s
A(II)( f0)

having the same SNRs as the real nonattended dataset, but the original means
from the real attended dataset, via

aj,s
A(II)� f0� � �s

A� f0� � �aj,s
N � f0� � �s

N� f0�� �s
A� f0�

�s
N� f0�

. (5)

Similarly, the second procedure yields the second “quasi”-nonattended
dataset aj,s

N(II)( f0) having the same SNRs as the real attended dataset, but
the original means from the real nonattended dataset, via

aj,s
N(II)� f0� � �s

N� f0� � �aj,s
A � f0� � �s

A� f0�� �s
N� f0�

�s
A� f0�

. (6)

Results
To investigate the effect of selective attention on stimulus speci-
ficity of neural activity patterns in visual cortex, two macaque
monkeys were trained to perform a delayed-match-to-sample
task. Multiple test stimuli were to be compared with an initial
sample stimulus (Fig. 1a). This task required animals to direct
their covert attention to one of two stimulus sequences simulta-
neously presented to the right and to the left of the fixation spot.
During the 1550 ms of the initial sample presentation period, the
shape at the behaviorally relevant location was cued by an initial
green coloring lasting 200 ms that faded out within 600 ms after
stimulus onset. Subsequently, on each side two to five test stimuli
were shown sequentially for 500 ms periods, each preceded by a
900 ms delay period in which only the fixation point remained
visible. The animals were required to release a lever as soon as a
test stimulus identical to the cued sample appeared at the
previously cued location. During task performance the epi-
dural electrode array recorded field potentials from V4 and V1
(Fig. 1b). We refer to recorded activity patterns induced by the
cued stimulus sequence as the “attended condition” (a-C) in con-

trast to the “nonattended condition” (n-C), where the recorded
activity patterns were induced by the uncued stimulus sequence.

Average behavioral performance of monkeys during record-
ing sessions was estimated from all but the longest trials in which
a response would have been always correct. Disregarding fixation
errors, the monkeys performed correct for 83.1% (monkey M)
and 73.4% (monkey F) of the trials. Correct responses occurred
467 ms (M) and 418 ms (F) after target stimulus onset (median
values). Errors were distributed approximately similarly over dif-
ferent initial figures.

Stimulus specificity of responses
In both monkeys the stimuli presented in the visual hemifield
contralateral to the implanted array induced local field-potential
responses recorded from visual areas V4 and V1 (Fig. 1b). The
time–frequency plots in Figure 1, c and d, show that the increase
of normalized power due to the stimuli depends on the frequency
band and is most pronounced between 40 and 100 Hz.

To estimate the amount of information about the presented
stimuli contained in the recorded data, we trained SVMs to dis-
criminate the stimuli from the neuronal signals in individual
trials (a-C). We based our estimate on the signal strengths com-
puted by a wavelet analysis in 17 different logarithmically scaled
frequency bands between 5 and 200 Hz (In the following we will
denote the number of used frequencies by NFreq and the number
of used electrodes by NElec. Furthermore we denote by pChance the
probability that the shown performance is explained by chance).
Using from each electrode the wavelet coefficient averaged over
the sample period (650 –2200 ms after trial start) allowed us to
identify 93.1% (NFreq 
 17; NElec 
 37; pChance 
 1 � 10�325) of
the initial stimuli correctly for monkey F and 89.1% (NFreq 
 17;
NElec 
 36; pChance 
 1 � 10�325) for monkey M in test datasets
(see Materials and Methods). The chance levels for six different
initial shapes were 18.1% for monkey F and 18.5% for monkey M,
respectively. Inspection of classification performance of signals
from individual electrodes revealed major contributions from
two clusters of electrodes (Fig. 2; supplemental Fig. S1, available
at www.jneurosci.org as supplemental material). One was located
over area V4 and the other over area V1. Separate analysis of both
clusters in the attended condition revealed that the most discrim-
inative set of four electrodes in V4 (marked by yellow crosses in
Fig. 2a) provided a classification rate of 64.2% (NFreq 
17; NElec 
4;
pChance 
 5 � 10�313) for monkey F and 54.8% (NFreq 
 17; NElec 

4; pChance 
 5 � 10�229) for monkey M. Selecting the electrode
cluster over V4 according to anatomical properties (by excluding
the electrodes covering V1 and its proximity as defined by the
measured retinotopic map) led to similar results. Within V1 a
corresponding set of three electrodes (marked by green crosses in
Fig. 2a) allowed for classification rates of 85.6% for monkey F
(NFreq 
 17; NElec 
 3; pChance 
 1 � 10�325) and 81.6% for
monkey M (NFreq 
 17; NElec 
 3; pChance 
 1 � 10�325). Signals
of individual electrodes in V4 reached classification rates of up to
42.2% (NFreq 
 17; NElec 
 1; pChance 
 1 � 10�96; monkey F)
and 35.8% (NFreq 
 17; NElec 
 1; pChance 
 2 � 10�59; monkey
M), and in V1 up to 67.8% (NFreq 
 17; NElec 
 1; pChance 
 1 �
10�325; monkey F) and 49.1% (NFreq 
 17; NElec 
 1; pChance 

2 � 10�168; monkey M). Similar results were observed during
presentation of the test stimuli following the sample stimulus.

Training the SVMs to classify whether the stimulus was at-
tended or not resulted in a performance of 77.4% (NFreq 
 17;
NElec 
 4; pChance 
 6 � 10�191; monkey F) and 77.0% (NFreq 

17; NElec 
 4; pChance 
 7 � 10�99; monkey M) for the V4 elec-
trode combination (chance levels were 50% for monkey F, and

Rotermund et al. • Attention Improves Object Representation J. Neurosci., August 12, 2009 • 29(32):10120 –10130 • 10123



51% for monkey M). We used only data from 1400 to 2250 ms
after trial onset for excluding influences from tagging the behav-
iorally relevant shape with green color in the beginning of the
initial period. Taking these results together, the approach using
SVMs demonstrates that field potentials recorded at the surface
of the dura are highly specific for the individual stimuli processed
in the cortical columns underneath the electrodes.

Attention improves classification performance
Comparison of the classification performance obtained for at-
tended and nonattended stimuli revealed a clear difference in
favor of the attended condition in area V4. For the selected combi-
nation of four electrodes, the classification rate raised significantly
with attention during the initial period, from 55.5% (NFreq 
 17;
NElec 
 4; pChance 
 3 � 10�220) to 64.2% (NFreq 
 17; NElec 
 4;
pChance 
 5 � 10�313) ( pDifference 
 3 � 10�6, binomial test) and
from 45.8% (NFreq 
 17; NElec 
 4; pChance 
 4 � 10�119) to
54.8% (NFreq 
 17; NElec 
 4; pChance 
 5 � 10�229) ( pDifference 

5 � 10�4) in monkeys F and M, respectively. For the most dis-
criminative signal from a single V4 electrode, classification per-
formance increased from 35.4% (NFreq 
 17; NElec 
 1; pChance 

4 � 10�56) to 42.2% (NFreq 
 17; NElec 
 1; pChance 
 1 � 10�96)
( pDifference 
 3 � 10�4) in monkey F. In monkey M, classification
increased from 29.2% (NFreq 
 17; NElec 
 1; pChance 
 1 �
10�19) by 6.65% ( pDifference 
 6 � 10�3) at one V4 electrode
providing a peak performance of 35.8% (NFreq 
 17; NElec 
 1;
pChance 
 2 � 10�59). The absolute difference in classification
performance for all single electrodes is shown in Figure 2b (and
for monkey M, in supplemental Fig. S2a, available at www.
jneurosci.org as supplemental material). Significant differences
cluster around the highly discriminative region in V4. A few scat-
tered electrodes also reach significant differences, but only for
very low classification rates close to chance levels. No significant
differences were observed for electrodes located over V1.

In line with the enduring requirement to attend to all stimuli
in a sequence, an attention-dependent increment of classification
performance in V4 was present not only in the initial period, but

was found similarly during all test stimulus presentations. For the
final test period, which is associated with a correct response, clas-
sification performance (V4 electrode combination) estimated in
a 400 ms window starting with stimulus onset rose from 40.6%
(NFreq 
 13; NElec 
 4; pChance 
 3 � 10�46) to 49.1% (NFreq 

13; NElec 
 4; pChance 
 8 � 10�152; monkey F) ( pDifference 
 2 �
10�4) and from 27.7% (NFreq 
 13; NElec 
 4; pChance 
 2 �
10�9) to 40.5% (NFreq 
 13; NElec 
 4; pChance 
 8 � 10�92;
monkey M) ( pDifference 
 2 � 10�5). Chance levels were similar
to those in the initial period. No such differences were found
during delay periods.

The stability of stimulus-specific information and its
attention-dependent enhancement over time is demonstrated by
the time course of classification performance (see Fig. 3; supple-
mental Fig. S2, available at www.jneurosci.org as supplemental
material). In particular, for the attended condition there is little
indication that stimulus onset or offset contain much more in-
formation on stimulus identity than the static periods between
them. This shows that stimulus-specific activity patterns occur
continuously while stimuli are presented and are not specifically
related to the transient caused by stimulus onset or offset. This
raises the question of whether the specific signal patterns, which
support identification of a presented stimulus from the recorded
activity, are similar throughout the trial or whether they change
over time. We investigated this issue by testing whether SVMs can
successfully classify data from a period of the trial, which was not
their training period. Therefore a first SVM was trained for the
first 400 ms following initial stimulus onset, and a second one for
a corresponding period following the onset of the last test stim-
ulus preceding the repetition of the initial stimulus, which re-
quired the monkey’s response. The results (Table 1) show that
successful classification is possible not only for test data taken
from the same period as the training data, but also for data from
trial periods far apart in time. In general, the performance for
different training and classification periods is comparable but
somewhat smaller compared with the performance achieved with
test and training data from the same period. This indicates that

Figure 2. a, Classification performance P of the initial shape s(T1) (presented from t 
 650 ms to t 
 2200 ms, cf. Fig. 1a) for monkey F in the attended condition. P is shown in dependence on
the position of the electrodes in the array (small circles). The performance level is color coded according to the bar shown to the right of the array. For the gray colored squares, classification
performance did not differ significantly ( p 
 0.02) from the chance level of 18% (indicated by the black horizontal line in the color bar). Classification performance reaches peak values of 67.8%
(N

Freq

 17; NElec 
 1; pChance 
 1 � 10 �325) and 42.4% (NFreq 
 17; NElec 
 1; pChance 
 2 � 10 �96) in two regions corresponding to areas V1 and V4, respectively (cf. Fig. 1b). Gray arrows mark

the “main” V4 electrode showing the highest performance. The combinations of electrodes in V4 selected for our further computational analysis are marked with yellow crosses (V1, green crosses).
b, Difference in classification performance between attended and nonattended stimuli, same display as in a. The gray squares indicate electrodes where either the differences in performance
deviated not significantly from zero, or where the performance under attention was not significantly different from chance level ( p 
 0.02).
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the characteristics of the signals supporting stimulus identifica-
tion are stable over time.

If this attention-dependent enhancement of the discrim-
inability of cortical states is of behavioral relevance, we would
expect that behavioral errors may result from failures of such
enhancements. We tested this hypothesis by training a SVM and
estimating the classification performance in trials, which ended
with a behavioral error. For trials in which monkeys responded to
a wrong test stimulus or failed to respond to the test stimulus
matching the sample, classification performance in the stimulus
period immediately preceding the erroneous response fell signif-

icantly under the level achieved in correct trials. In monkey F,
classification performance for the electrode combination in V4
was reduced significantly from 49.1% (NFreq 
 13; NElec 
 4;
pChance 
 8 � 10�152) to 36.2% (NFreq 
 13; NElec 
 4; pChance 

1 � 10�9) ( pDifference 
 1 � 10�5), which is even less than the
40.6% observed for correct trials in which no attention was paid
to the stimulus. Similarly in monkey M, classification perfor-
mance fell from 40.5% (NFreq 
 13; NElec 
 4; pChance 
 8 �
10�92) to 21.6% (NFreq 
 13; NElec 
 4; pChance 
 4 � 10�1)
( pDifference 
 2 � 10�5). No significant difference in classifying
nonattended shapes was found between the trials with correct
and wrong responses (monkey F). Performance for nonattended
stimuli in trials with a correct response in monkey M was 27.7%
(NFreq 
 13; NElec 
 4; pChance 
 8 � 10�15) and again there was
no significant difference to performance in error trials.

A similar reduction of the classification performance in error
trials was found also for the temporally much earlier initial pe-
riod. Here performance reduced from 64.2% (NFreq 
 17; NElec 

4; pChance 
 5 � 10�313) to 51.9% (NFreq 
 17; NElec 
 4; pChance 

1 � 10�43) ( pDifference 
 5 � 10�6) and from 54.8% (NFreq 
 17;
NElec 
 4; pChance 
 1 � 10�325) to 41.5% (NFreq 
 17; NElec 
 4;
pChance 
 6 � 10�11) ( pDifference 
 2 � 10�3) in monkeys F and M,
respectively. These findings indicate a close relation between
attention-dependent enhancements of the discriminability of the
cortical states associated with different stimuli and the behavioral
performance in the delayed-match-to-sample-task.

Characterization of stimulus-specific signals
To identify the signal components, which allow for discrimina-
tion between different stimuli we analyzed their distribution over
different frequency bands. Based on data from the selected elec-
trode combination over V4 of monkey F during presentation of
the initial stimulus, we analyzed how the accuracy of classifica-
tion depends on a selected interval of the frequency spectrum.
Each entry in the matrix in Figure 4a and supplemental Figure
S3a (available at www.jneurosci.org as supplemental material)
reports the classification performance achieved for a given num-
ber of wavelet-coefficients (vertical axis) from a continuous
frequency band terminating at the frequency indicated on the
horizontal axis. The analysis reveals that most information on

Figure 3. a, Time course of classification performance for the selected electrode combination above V4 (cf. Fig. 2a, yellow crosses), shown for the attended (red dotted line) and for the
nonattended condition (blue dotted line) in monkey F. Data for the power coefficients in a frequency range between 5 and 200 Hz was taken from a range starting 200 ms before, and ending 200
ms after the times marked with the red and blue crosses, respectively. The black circles indicate a significant difference between the performances in both conditions ( p 
 0.02), while solid lines
depict the chance level for the corresponding condition. In a, the SVMs were trained to classify the initial shape s(T1) presented to the monkeys during the period T1 shaded in light gray. Time t is
measured relative to trial onset. In b and c, the SVMs were trained to classify the second-to-last and the last shape (target) displayed in the sequence, respectively (stimulus display periods are again
shaded in light gray). Time t is measured relative to the onset of the second-to-last shape in b, and relative to the onset of the target shape in c.

Table 1. Similarity of stimulus-specific activity patterns supporting classification
along trials

The table shows classification performance for data from the period for which the SVM was trained, compared with
classification performance on data from a different period (shaded in grey) obtained from the selected V4 electrode
combination (a-C, monkey F). Corresponding values for monkey M (a-C) are shown in parentheses.

Rotermund et al. • Attention Improves Object Representation J. Neurosci., August 12, 2009 • 29(32):10120 –10130 • 10125



stimulus shape is contained in the fre-
quency range above 40 Hz, while almost
no information is contained in lower fre-
quency bands. Close to maximal classifi-
cation rates of 64.6% (NFreq 
 6; NElec 

4; pChance 
 1 � 10�317) correct are al-
ready possible if only six wavelet coeffi-
cients between 38 Hz and 122 Hz are used,
and �59% (NFreq 
 2; NElec 
 4; pChance 

1 � 10�251) correct classification is still
possible with the three coefficients hav-
ing their center frequencies at 61, 76,
and 96 Hz. The same pattern of results
was found in both animals for the at-
tended as well as for the nonattended
condition (see supplemental data). The
attention-dependent enhancement (Fig.
4b; supplemental Fig. S3b, available at
www.jneurosci.org as supplemental ma-
terial) is largest within the same frequency
range.

To test whether most of the informa-
tion about different stimuli is contained
in signal energy, we normalized the wave-
let power coefficients from the V4 main
electrode by their sum over all frequen-
cies. In monkey F, classifying on the re-
maining features reduced performance
from 42.2% (NFreq 
 17; NElec 
 1; pChance


 6 � 10�96) to 40.7% (NFreq 
 17, nor-
malized; NElec 
 1; pChance 
 8 � 10�86)
in the attended condition [n-C: 35.4%
(NFreq 
 17; NElec 
 1; pChance 
 1 �
10�55) to 35.4% (NFreq 
 17, normalized;
NElec 
 1; pChance 
 1 � 10�55)]. In mon-
key M, performance was reduced from
35.8% (NFreq 
 17; NElec 
 1; pChance 

6 � 10�59) to 30.3% (NFreq 
 17, normal-
ized; NElec 
 1; pChance 
 1 � 10�29) in
the attended condition [n-C: 29.2%
(NFreq 
 17; NElec 
 1; pChance 
 7 �
10�20) to 24.3% (NFreq 
 17, normalized; NElec 
 1; pChance 

3 � 10�6)]. These numbers demonstrate that the major part of
information about the shapes is preserved when removing all
information about total signal energy. This leaves the possibilities
that this information is either contained in total signal power of a
specific frequency band or distributed differentially in spectral
signal power.

We therefore quantified next how much information is con-
tained in signal energy when selecting the most informative fre-
quency range in terms of this feature. Thoroughly exploring all
frequency intervals like in Figure 4, this range turned out to span
from 61 to 96 Hz in monkey F, and from 76 to 122 Hz in monkey
M. Classifying only on the total energy within these ranges re-
duced performance for monkey F from 42.2% (NFreq 
 17; NElec 

1; pChance 
 6 � 10�96) to 28.8% (NFreq 
 1; after summation
NElec 
 1; pChance 
 1 � 10�22) in the attended condition [n-C:
35.4% (NFreq 
 17; NElec 
 1; pChance 
 1 � 10�55) to 29.0%
(NFreq 
 1; after summation NElec 
 1; pChance 
 2 � 10�25)]. No
such reduction was observed for both conditions in monkey M.

In summary, these results demonstrate that the discernability
of field potentials caused by different stimuli is based on
stimulus-dependent differences of spectral activity patterns

and overall energy in the gamma-band. In monkey F, infor-
mation in the spectral patterns is even predominant over in-
formation in signal energy, while in monkey M, total signal
energy selected from the frequency band 76 to 122 Hz is suf-
ficient to explain shape classification performance.

In addition to the spectral distribution of information about
shape, we also find a spatial distribution of information over
electrode positions, as can be expected from a retinotopic map-
ping of a stimulus. To quantify this effect, we first removed spec-
tral information by computing the average power amplitudes
over all frequencies in selected frequency bands and classified the
resulting data. For this purpose we whitened the power spectra by
normalizing the power amplitudes by their grand averages over
all experimental conditions. This prevents noise from the low-
frequency channels to mask information in higher frequencies
with lower spectral amplitudes. Second, we removed spatial in-
formation by computing the average power amplitudes over all
electrodes in our selected set and again classified the resulting
data. For monkey F, removing spectral information decreased
classification performance from 64.2% to 35.7% (monkey M:
54.0% to 29.9%), while removing spatial information lead to a
decrease from 64.2% to 40.8% (monkey M: 54.0% to 34.2%).

Figure 4. a, Classification performance P for monkey F, using different subsets of the power coefficients from the selected V4
electrode combination obtained during the initial period T1 (650 –2200 ms after trial onset) under attention. Each square shows in
color code the SVM’s performance on a combination of successive frequency bins, whose total number is indicated by the index on
the vertical axis, while their highest frequency bin is indicated with the horizontal axis. For example, the performance value shown
in the square marked with a white circle was obtained using data from six frequency bins starting at 38 Hz, and ending with 122 Hz
(white rectangle). The performance shown in the square marked with a gray cross was obtained using data from only three
frequency bins at 61, 76, and 96 Hz (gray rectangle). b, Percentage of increase in classification performance under attention, for the
same combinations of frequency bands as in a.

Figure 5. Examples for classification problems in a two-dimensional data space spanned by the variables a( f1) and a( f2),
which could represent the wavelet coefficients for two different frequency bands. The regions indicated by the blue ellipsoids in a
symbolize data from two shapes A and B. In our case, these two shapes would correspond to ensembles of data points obtained by
the repeated presentation of two shapes A and B, respectively. When a new data point in the shaded region is observed (green
cross), any classifier trained on the previously observed data is likely to make an error because the data may belong to either of the
two shapes. The total number of errors thus corresponds to the relative size of the shaded region where these shapes overlap. b, If
attention would decrease the SNR, as indicated by the shape boundaries shrinking around their centers (red ellipsoids), the same
observation could now unambiguously be attributed to shape A, thus reducing the classification errors (shaded region). c, If instead
attention shifts the region centers (arrows), this change can also disambiguate the classification problem and reduce the number
of errors (shaded region)— even when the SNR remains constant.
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Thus information is contained in both frequency and space, in an
approximately equal proportion. The difference in information
between the attended and nonattended condition follows the
same scheme: For monkey F, removing spectral information de-
creased attentional classification gain from 8.7% to 5.2%, while
removing spatial information lead to a decrease to 5.9%. For
monkey M, the loss of spectral information decreased attentional
classification gain from 12.4% to 6.2%, while removing spatial
information lead to a decrease to 4.7%.

How did the signals change to become more distinct under
conditions of selective attention? Distinguishing between two
stimulus categories (termed “classes” in machine learning litera-
ture) is only possible when the recorded signals evoked by theses
classes occupy different regions in data space. The number of
errors made during a classification is related to the relative over-
lap between these regions (Fig. 5a). Errors can be reduced when
the regions shrink in diameter (Fig. 5b), or when the distance
between the centers of the regions increases (Fig. 5c). The first
effect can be mediated by increasing the SNR, while the second
effect can be achieved by a class-specific multiplicative scaling of
the data during which the SNR remains constant. Of course these
two effects and also more complicated statistical changes in the
data could be combined to further reduce the number of classi-
fication errors, but it turns out that it suffices to quantify these
two basic effects to explain most of the effects of attention in the data.

Investigating the wavelet coefficients we observe both small
changes in the SNRs, �, and in the mean values �. For the SNRs,
we find an average change of �� A/� N � 1� 
 4 � 7% (F) and
�1 � 9% (M), and for the mean values an absolute average
change of ��� A/� N � 1�� 
 14.9 � 10.4% (F) and 3.3 � 4.2% (M)
(A: attended, N: not attended; averages ��� are taken over all fre-
quency bands and shape classes) (compare also to supplemental
Fig. S4a– c, available at www.jneurosci.org as supplemental ma-
terial). Following our theoretical argument outlined above (cf.
Fig. 5), both changes may be responsible for the enhanced per-
formance under attention. However, from the average values it is
not clear to which extent the small changes in mean SNR can
explain the full attentional gain, and whether the class regions are
really shifted away from each other rather than toward each
other.

To quantify the effects of the changes in SNR and mean values
separately, we thus performed two tests on the nonattended data-
set: In the first test, we only changed the SNRs such that they
matched the SNRs of the attended dataset, while holding the
mean values of the dataset constant. A SVM was then trained and
tested on this “quasi”-attended dataset to quantify how the sep-
aration of the shape classes improved through this transforma-
tion. In the second test, we only changed the mean values such
that they matched the mean values of the attended dataset, while
holding the SNRs of the dataset constant. Again we trained and
tested a SVM on this second, “quasi”-attended dataset for quantify-
ing the resulting improvement in shape discrimination (for details of
this procedure, see Materials and Methods). For confirmation, a
similar, “inverse” test was performed on the attended dataset. These
data were transformed into two “quasi”-nonattended datasets,
for which a successive SVM classification then quantified the
resulting degradation in performance. Improvements and degra-
dations in performance were finally compared with the real dif-
ference in classification performance on the original data, and
expressed in percentages of these original differences being ex-
plained by the two scaling procedures.

For the V4 electrode combination scaling the SNR explained
only 1.6% (F) and 28.7% (M) of the original increase in perfor-

mance under attention, while scaling the mean values was capa-
ble to explain 108.4% (F) and 50.2% (M), respectively (compare
also to the frequency-resolved plots in supplemental Figs. S6, S7,
available at www.jneurosci.org as supplemental material). For
the used epidural local field potentials, the result clearly indicates
that attentional gain in performance is only to a minor extent
caused by changes in SNR, but is to a large extent explained by
shape-specific differential scaling of frequency components ren-
dering the neural activity for different shapes more distinct from
each other (cf. supplemental Fig. S4d–f, available at www.
jneurosci.org as supplemental material). This finding reveals a
new effect of attention acting on coherent neuronal activity in
area V4.

Discussion
The present study has three main results: (1) Processing of differ-
ent shape stimuli results in activity patterns that in single trials are
surprisingly well distinguishable in the local field potential of area
V4. (2) Selective attention substantially enhanced the stimulus-
dependent differences of these neural activity patterns for the
attended stimulus. (3) Behavioral failures went along with a re-
duction of classification performance. The components of the
signal most discriminative for different shapes were contained in
the �-band above 40 Hz and their stimulus-specific characteris-
tics stayed similar during different stimulation periods in a trial.
The attention-dependent enhancement of stimulus discrim-
inability cannot be explained by a simple increase of the SNR, but
turns out to be most strongly related to a stimulus-specific differ-
ential scaling of the frequency components. This scaling results in
an enhanced separation between the characteristic frequency pat-
terns in the �-band for different stimuli.

The enhanced discriminability under conditions of attention
could in principle be traced back to two different changes in the
signals. First, there is a small but statistically significant improve-
ment of the signal-to-noise ratio. This finding is in line with a
study by Mitchell et al. (2007) finding a small decrease in variance
for inhibitory neurons in macaque area V4, and a study by Mc-
Adams and Maunsell (1999b) describing an attention-dependent
improvement of the SNR for spike count data from area V4. In
their data, the rise of the SNR resulted from the attention-
dependent increase of stimulus responses together with a less
than proportional increase of the standard deviation, which rises
approximately only as the square root of the response. Together
with the enhanced absolute difference between the responses for
different stimuli being amplified by a stimulus-independent gain
factor, the increased SNR resulted in an improved orientation
discriminability. In contrast, increases of the SNR for the field
potential data in the present study explained only a minor part of
the entire enhancement of shape discriminability under atten-
tion. The major part of the effect is based on an attention-
dependent increase of differences between responses to different
stimuli, which allow for improved stimulus discriminability even
though SNRs increased only very little.

Our results indicate that attention changes the spectral com-
position and spatial distribution of the coherent neural signals in
different ways for different stimuli. Not only were these changes
different for different stimuli, but in addition their direction was
such as to increase distinctiveness of the respective neural activity
patterns (in spatial and frequency composition) (see Fig. 5 for
illustration). Arbitrary directions of changes would not necessar-
ily have caused an improvement of stimulus discriminability.
Thus the major part of the effect is therefore not explained by a
uniform, stimulus-independent effect as in gain models for
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single-cell firing rate data, but by more complex changes in the
composition and distribution of neural activity. While the under-
lying neuronal mechanisms are not known, two attention-
dependent effects might be considered to contribute to such
changes: (1) Feature-specific changes in attentional modulation
have been observed in area MT (Martinez-Trujillo and Treue,
2004), which could play a significant role in scaling neural signals
differentially depending on stimulus shape. However, such
feature-based attention effects were measured for a different ex-
perimental design analyzing solely neuronal responses to the dis-
tracter (Martinez-Trujillo and Treue, 2004). In contrast to these
experiments, our experimental design (but not the pattern of
results) directly corresponds to studies, which observed explicitly
no differential effects but a homogeneous gain effect for the ori-
entation tuning of responses in the spike rate of single neurons
(McAdams and Maunsell, 1999a). Consequently these known
feature-based effects at the single neuron level are not expected to
occur in the present paradigm and are therefore unlikely to be the
bases of the differential effects observed. (2) Recruiting addi-
tional neuronal populations to encode a stimulus by dynamically
changing their receptive field properties (Connor et al., 1997;
Womelsdorf et al., 2006a) could also render signals from the
neural population for different shapes more distinct from each
other and change dynamic properties of the activated network. In
any case, it must be noted that changes of firing rate of individual
neurons do not simply translate into changes of oscillatory fre-
quency in the local population (Gray et al., 1990).

What do these findings imply with respect to cortical stimulus
processing and its dependence on attention? Classification in the
present study depends on the pattern of frequencies in the local
field potential caused by neural processing of different stimuli.
While oscillatory field potential responses clearly lack the speci-
ficity of information contained in the activity of the contributing
single neurons, they reflect a synchronized part of neuronal ac-
tivity patterns (Elul, 1971; Nunez, 1995; Robbe et al., 2006). Syn-
chronous activity is known to be particularly effective in driving
other neurons (Segev and Rall, 1998; Usrey et al., 2000; Azouz and
Gray, 2003; Bruno and Sakmann, 2006) and has therefore been
implicated in structuring effective connectivity (Aertsen et al.,
1989; Fries, 2005; Womelsdorf et al., 2007) and defining in a
transient and flexible manner neuronal assemblies (von der
Malsburg, 1985; Aertsen et al., 1986; Abeles, 1991; Singer and
Gray, 1995; Kreiter and Singer, 1996). Previous studies already
demonstrated that attention enhances specifically such oscilla-
tory activity in the visual system (Fries et al., 2001, 2008; Bichot et
al., 2005; Taylor et al., 2005; Womelsdorf et al., 2006a,b; Lakatos
et al., 2008). In addition, our results show that with attention the
structural organization of field potentials systematically changes,
indicating an attention-dependent change of the dynamic state in
the network of synchronized neurons processing the stimulus in
area V4. The more distinct patterns of neural activity associated
with processing of an attended compared with nonattended
stimuli suggest a more differentiated and specific composition
and state of synchronous neuronal assemblies if they process
shape under conditions of attention. Such indications for en-
hanced modes of processing of attended stimuli are well in line
with psychophysical findings demonstrating improved pro-
cessing of attended stimuli and the particular importance of
attention for shape perception (Rock and Gutman, 1981; Rock
et al., 1992).

Further evidence for the behavioral relevance of the attention-
dependent changes of cortical processing reflected by the ob-
served changes in the pattern of field potentials comes from the

reduced discriminability of signals preceding behavioral errors.
In fact, our findings imply that one could predict the occurrence
of behavioral errors from such less distinct signals. In summary,
the present data provide evidence that selective attention im-
proves processing of attended stimuli by enhancing the distinc-
tiveness and discriminability of cortical network states involved
in the representation and processing of individual stimuli already
in cortical area V4.

While attention caused a clear improvement of the stimulus
classification achieved for field potentials recorded from area V4,
no significant effect was found for area V1. A likely reason for this
lack of effect is the very high classification performance observed
for the V1 recording sites already without attention. This very
high performance is based on the much higher resolution in vi-
sual space achieved also by recording gamma-band responses in
field potentials recorded over V1 compared with V4. Since all
shape stimuli approximately fit into the RFs of V4 neurons, dif-
ferent stimuli cause only moderate differences of average activity
in the stimulus driven, local V4 population. In contrast the RF
size for gamma-band responses in the local field potentials of V1
(Eckhorn et al., 1993) is much smaller than the stimuli, even if
recorded above the cortex (Rols et al., 2001). Together with the
large cortical magnification factor of �3 mm/deg for V1, the
activity induced by the different loops of a stimulus is spread out
over multiple, spatially well separated columns with separate RFs
for which independent gamma-band responses can be recorded
from V1. Evidence for high spatial specificity of field potentials
and in particular gamma-band responses has been provided pre-
viously with intracortical recordings indicating an extent of only
a few hundred micrometer over which field-potentials are inte-
grated (Engel et al., 1990; Liu and Newsome, 2006; Katzner et al.,
2009; Nauhaus et al., 2009). It is therefore not surprising that
epicortical recordings with a spacing of 3 mm can provide largely
independent signals. This high spatial resolution of the shape
stimuli in V1 allows for massive, shape-dependent differences in
the coverage of separate RFs by different stimuli. Consequently
strong differences of the overall activation of the cortical columns
underneath a V1 electrode allow distinguishing stimuli very
reliably, even if they are not attended. This high stimulus discrim-
inability was in addition confirmed by a receiver operating char-
acteristic analysis testing how well pairs of two stimuli can be
distinguished by a single frequency component from one elec-
trode (for details see supplemental Fig. S5, available at www.
jneurosci.org as supplemental material). Performing this analysis
for all possible combinations of stimulus pairs and frequency
components for V1 revealed that almost 30% (monkey F) or 17%
(monkey M) of combinations permitted a 90 –100% correct dif-
ferentiation between two stimuli. The presence of these simple,
almost perfectly discriminative signals already in the nonat-
tended condition strongly reduces the possibility to observe in V1
any further attention-dependent classification enhancements
based on different, more complex indicators of attention-
dependent changes in cortical network states. In contrast, in V4
there was no combination, which allowed for such a high classi-
fication performance, which leaves room to observe substantial
attention-dependent improvements of classification. Thus our
results do not exclude the possibility that similar changes as in V4
could also be observed for V1, if stimulus size would be as similar
with respect to the small V1 RFs as it was with respect to the large
RFs of V4.

The high stimulus discriminability achieved with local field
potentials recorded from the surface of the dura is also of interest
in the context of brain–machine interfaces (BMIs). In our study
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the electrode arrays were carried over years and recordings were
pooled from recording sessions over several weeks. While BMIs
based on single-unit or multiunit recordings (Wessberg et al.,
2000; Taylor et al., 2002) typically need an initial calibration for
each session, the recordings for the present study are sufficiently
stable to allow for demanding stimulus discriminations with the
same classifier over months. This is even more remarkable since the
stimuli were not constructed to be easily distinguishable, but to re-
quire considerable effort by the monkeys for successful discrimina-
tion. The findings therefore suggest that the comparatively simple
shapes of letters and many symbols could be detected with high
reliability in the spatial distribution of field potentials recorded from
visual cortex.
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