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Human subjects are extremely efficient at categorizing natural scenes, despite the fact that different classes of natural scenes often share
similar image statistics. Thus far, however, it is unknown where and how complex natural scene categories are encoded and discriminated
in the brain. We used functional magnetic resonance imaging (fMRI) and distributed pattern analysis to ask what regions of the brain can
differentiate natural scene categories (such as forests vs mountains vs beaches). Using completely different exemplars of six natural scene
categories for training and testing ensured that the classification algorithm was learning patterns associated with the category in general
and not specific exemplars. We found that area V1, the parahippocampal place area (PPA), retrosplenial cortex (RSC), and lateral
occipital complex (LOC) all contain information that distinguishes among natural scene categories. More importantly, correlations with
human behavioral experiments suggest that the information present in the PPA, RSC, and LOC is likely to contribute to natural scene
categorization by humans. Specifically, error patterns of predictions based on fMRI signals in these areas were significantly correlated
with the behavioral errors of the subjects. Furthermore, both behavioral categorization performance and predictions from PPA exhibited
a significant decrease in accuracy when scenes were presented up-down inverted. Together these results suggest that a network of regions,
including the PPA, RSC, and LOC, contribute to the human ability to categorize natural scenes.

Introduction
Consider for a moment the range of images one might categorize
as a picture of a “beach.” Add to that the large number of catego-
ries we must master to function in familiar and new environ-
ments and perform critical visual tasks (Tversky and Hemenway,
1983). Although natural scene categorization is a difficult prob-
lem requiring subtle distinctions between heterogeneous sets of
images, humans are remarkably proficient at it. They can recog-
nize natural scenes with exposures as brief as 100 ms (Potter and
Levy, 1969), with processing times as short as 150 ms (Thorpe et
al., 1996; VanRullen and Thorpe, 2001), in the near-absence of
attention (Li et al., 2002; Fei-Fei et al., 2005), and with little time
to prepare for the categorization tasks (Walther and Fei-Fei,
2007). They can also access many details of natural scenes in a
single glance (Fei-Fei et al., 2007).

What is the neural basis of this astonishing feat of visual pro-
cessing? The difficulty in answering this question is due in part to
limitations of conventional univariate functional magnetic reso-
nance imaging (fMRI) analysis, in which each voxel is treated as

an independent unit, and activity is typically averaged across vox-
els. Because of the complexity of the images, natural scene cate-
gories are likely to be encoded in patterns of activation that can
only be detected using multivariate statistical techniques. In fact,
multivoxel pattern analysis (MVPA) of fMRI activity has been
used to decode representations that are distributed both within
and across brain regions (Haxby et al., 2001; Carlson et al., 2003;
Cox and Savoy, 2003), including representations that might exist
at a smaller spatial scale than the size of functional voxels (Haynes
and Rees, 2005; Kamitani and Tong, 2005). Such a technique
should therefore be well suited for identifying regions that may
contribute to natural scene categorization.

Although MVPA can potentially make predictions of natural
scene categories from fMRI activity, it does not necessarily pro-
vide evidence that the brain uses this same information in per-
forming the same categorization task. It is therefore central to our
approach that we compare the predictions from the fMRI activity
with behavioral data to identify those areas that do not simply
contain scene category-specific information but are also the most
likely to contribute to the categorization decisions made by humans.

Several areas along the visual processing pathway could po-
tentially participate in the task of natural scene categorization.
Conventional analysis of fMRI data has revealed the parahip-
pocampal place area (PPA) and the retrosplenial cortex (RSC) to
be more active for pictures of places (such as landscapes, houses,
or rooms) than for faces or isolated objects (Aguirre et al., 1996;
Epstein and Kanwisher, 1998; O’Craven and Kanwisher, 2000). It
is entirely unknown, however, whether the information repre-
sented in the PPA and RSC is sufficient to distinguish among the
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different scene categories. We use MVPA to ask whether these as
well as other brain regions contain information that not only dis-
criminates among scene categories but also correlate with human
behavioral performance on a natural scene categorization task.

Materials and Methods
Subjects. Five subjects (two females; age: 21–38 years; including three of
the authors) participated in the study, which was approved by the Insti-
tutional Review Board of the University of Illinois. All participants were
in good health with no past history of psychiatric or neurological diseases
and gave their written informed consent. Subjects had normal or
corrected-to-normal vision.

Visual stimuli and experimental design. Test stimuli consisted of 120
color images from each of six categories: beaches, buildings, forests, high-
ways, industry, and mountains (see Fig. 1 for examples) downloaded from
the Internet. Photographs were chosen to capture the high variability
within each scene category. The dataset is available for download at vision.
stanford.edu/fmriscenes/resources.html.

In the behavioral experiment, 360 of those images (60 from each cat-
egory) were presented at a resolution of 800 by 600 pixels (23° � 18° of
visual angle), centered over a 50% gray background, on a CRT monitor
running at a resolution of 1024 by 768 pixels at 89 Hz. Stimulus presen-
tation and response recording were controlled using the open source
Vision Egg package. On each trial, a fixation cross was displayed for 500
ms, followed by the brief (11– 45 ms; determined separately for each
subject) presentation of an image, which was replaced by a perceptual
mask (see Fig. 1, bottom row) for 500 ms, and finally a blank screen
appeared for 2000 ms. Subjects performed six-alternative forced-choice
categorization of the images by pressing one of six buttons on the key-
board. The mapping of categories to buttons was counterbalanced across
subjects, and subjects received training on that mapping before the stair-
casing part of the experiment.

In the main experiment, trials were grouped into 18 blocks of 20 im-
ages, and alternating blocks consisted of upright or inverted (reflected
about the horizontal axis) images. Subjects viewed each image once in an
upright and once in an inverted block. The duration of image presenta-
tion was adjusted for each subject with a staircasing procedure using the
Quest algorithm (King-Smith et al., 1994) on a separate set of 120 images,
which were all displayed upright. Presentation duration was staircased
for each subject individually to a classification accuracy of 65%. Staircas-
ing was terminated when the SD of the display times over a block was less
than the refresh period of the monitor (1/89 s). An 800 Hz, 100 ms tone
alerted participants to incorrect responses during staircasing. No feed-
back was given during the main experiment.

In the fMRI experiment, images (625 � 469 pixels; subtending 23 �
18° of visual angle) were presented in the center of the display, using
MR-compatible liquid crystal display goggles (Resonance Technologies)
operating at a resolution of 800 � 600 pixels at 60 Hz. Stimuli were
arranged into blocks of 10 images from the same natural scene category.
A fixation cross was presented throughout each block, and subjects were
instructed to maintain fixation. Each image was displayed for 1.6 s. A run
was composed of 6 blocks, one for each natural scene category, inter-
leaved with 12 s fixation periods to allow for the hemodynamic response
to return to baseline levels. A session contained 12 such runs, and the
order of categories was randomized across blocks. Images were presented
upright or inverted in alternating runs, with each inverted run preserving
the image and category order used in the preceding upright run. Each
subject performed two sessions (12 runs each), on separate days, of pas-
sive viewing with separate sets of images. In the fMRI experiment, sub-
jects saw each image once upright and once inverted. The behavioral
experiments were performed at least 6 weeks after the fMRI experiment
to minimize effects of image repetition and familiarity between the two
experiments.

MRI acquisition and preprocessing. Imaging data were acquired with a 3
tesla Siemens Allegra Scanner equipped for echo planar imaging. A gra-
dient echo, echo-planar sequence was used to obtain functional images
[volume repetition time (TR), 2 s; echo time (TE), 30 ms; flip angle, 90°;
matrix, 64 � 64 voxels; FOV, 22 cm; 34 axial 3 mm slices with 1 mm gap;

in-plane resolution, 3.44 � 3.44 mm). We collected a high-resolution
(1.25 � 1.25 � 1.25 mm voxels) structural scan (MPRAGE; TR, 2 s; TE,
2.22 ms, flip angle, 8°) in each scanning session to assist in registering our
echo planar imaging images across sessions.

Pattern analysis. Functional data were motion corrected and normal-
ized to the temporal mean of each run using the AFNI software suite
(Cox, 1996). No other smoothing or normalization steps were per-
formed. The 1152 brain volumes acquired during the viewing of the
scene images (2 sessions � 12 runs � 6 blocks � 10 images � 1.6 s
presentation time/2 s TR) were extracted from the time series with a time
lag of 4 s to approximate the lag in the hemodynamic response. A support
vector machine (SVM) classifier (linear kernel, using LIBSVM, Chang
and Lin, 2001; http://www.csie.ntu.edu.tw/�cjlin/libsvm/) was trained
to assign the correct scene category labels to the voxel activation patterns
of the individual brain volumes in one of five regions of interest (ROIs)
(see below) from 11 of the 12 upright runs. The data from the left-out
upright run were presented to the trained classifier, which generated
predictions of the class labels for each brain acquisition. To resolve dis-
agreements in the labeling of the eight fMRI volumes coming from the
same block, we applied a standard majority voting scheme. The label
predicted most frequently among the eight volumes was assumed as the
label for the entire block. Ties were broken by adopting the label with the
highest decision value in the SVM classifier. In 12 repetitions of this
procedure, each of the 12 upright runs was left out once (leave-one-run-
out cross validation, LORO). Accuracy of the decoding was computed as
the fraction of labels that were correctly predicted over all 12 repetitions.
One-tailed t tests were used to determine whether decoding accuracy in
the five subjects was significantly above chance level of 1/6.

The pattern analysis procedure was slightly modified for determining
the effects of scene inversion. In addition to the procedure outlined
above, the classifier trained on 11 upright runs was also tested on the
inverted run corresponding to the left-out upright run, and the differ-
ence in decoding accuracy was determined. Furthermore, to control for
the effect of having different image geometries in training and testing, a
separate classifier was trained on 11 of the 12 inverted runs and tested on
the left-out inverted run. Again, the difference in decoding accuracy with
the original classifier was computed. Significance of differences in accu-
racy was established using paired, one-tailed t tests over the five subjects.

ROIs. We identified five regions of interest: V1, PPA, RSC, the fusi-
form face area (FFA), and the lateral occipital complex (LOC). Area V1
was identified as a region spanning the calcarine fissure delineated by a
representation of the vertical meridian, which forms the border of V1 and
V2. The vertical meridian was determined using a rotating hemifield
procedure (Schneider et al., 2004) in a separate scanning session. The
four other ROIs were identified from linear contrasts in separate localizer
scans as sets of contiguous voxels that responded preferentially to faces,
scenes, and objects. Briefly, localizer scans consisted of blocks of face,
object, scrambled object, landscape, and cityscape images. Each block
consisted of 20 images presented for 450 ms each with a 330 ms inter-
stimulus interval. Each of the five types of stimuli was presented four
times during a run, with 12 s fixation periods after two or three blocks.
Participants completed two runs, performing a one-back task during the
localizer by pressing a button every time an image was repeated. The PPA
and the RSC were identified in both hemispheres by a (cityscapes and
landscapes) � (objects and faces) contrast. The FFA was identified by a
faces � (objects, cityscapes, and landscapes) contrast, and the LOC by an
objects � scrambled objects contrast. For all localizer contrasts, a maxi-
mum threshold of p � 2 � 10 �3 (uncorrected) was applied. Stricter
thresholds were used when necessary to break clusters. There was no
overlap between any of the ROIs, and all ROI voxels were used for the
pattern analysis without any further voxel selection.

Whole-brain analysis. To explore brain regions outside of our predefined
ROIs, we performed a searchlight analysis (Kriegeskorte et al., 2006) of
the whole brain. For this purpose, we defined a spherical template (di-
ameter of 5 voxels), which contained 81 voxels, making it similar in size
to the ROIs obtained from localizer scans. We centered the template on
each voxel in turn and performed the same LORO cross-validation pro-
cedure as above on the 81 voxels in the template. Voxels that fell outside
the brain were omitted from the analysis. The decoding accuracy for each
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template location was stored at the center voxel. By repeating this process
for every voxel, we obtained a brain mask of decoding accuracies for each
subject. For group analysis, we registered the decoding accuracy maps
into Montreal Neurological Institute (MNI) space using FLIRT (Jenkin-
son et al., 2002) and smoothed them with a Gaussian kernel (full-width at
half-maximal � 8 mm). We tested whether decoding accuracy was above
chance (1/6) with a voxelwise t test, thresholded at p � 0.01 (uncor-
rected), and then corrected for multiple comparisons at the cluster-level
( p � 0.05). The minimum cluster size of 19 voxels, estimated with Al-
phaSim from the AFNI toolbox (Cox, 1996), accounted for voxel depen-
dencies present in the data due to the nature of the hemodynamic signal
or introduced by the smoothing process. The resulting regions were
transformed back into individual subject space, in which their overlap
with the individual ROIs was computed as percentage of ROI voxels that
are part of the searchlight regions.

Image analysis. To assess the physical similarity of the images used in
our experiments, we subsampled the images to a resolution of 320 � 240
pixels and computed the pixel-wise correlations of each pair of RGB
images. We arrived at a correlation matrix for image categories by aver-
aging over the correlation coefficients for all pairs of images representing
any given pair of categories. We then computed the correlation between
the off-diagonal elements of this correlation matrix and the off-diagonal
elements of the confusion matrices derived from the decoding analysis in
the ROIs.

Results
Subjects were scanned while passively
viewing real-world photographs of six
natural scene categories (beaches, build-
ings, forests, highways, industry, and
mountains) (Fig. 1). To determine whether
it was possible to make predictions of the
natural scene category from a particular
ROI, we used fMRI voxels from function-
ally defined ROIs as the input to a “de-
coder” for natural scene categories. The
decoder was constructed by training a
SVM classification algorithm to assign the
correct category labels to the fMRI data in
an LORO cross-validation procedure (see
Materials and Methods for details).

We used separate localizer and retino-
topic mapping scans (see Materials and
Methods) to identify five ROIs: the PPA
(90 � 23 voxels), the RSC (60 � 19 vox-
els), the LOC (100 � 74 voxels), the FFA
(67 � 64 voxels), and the primary visual
cortex (V1; 447 � 121 voxels). However,
unlike traditional univariate methods of
analysis, which ask whether the average
activity level in a ROI differs as a function
of category, we were interested in category-
dependent differences of patterns of re-
sponses within these areas.

The LOC, which has been shown to be
sensitive to a variety of objects (Malach et
al., 1995), was included in the analysis, be-
cause natural scenes can be thought of as
compositions of objects. Although origi-
nally identified as an area specifically se-
lective for faces (Kanwisher et al., 1997),
the FFA has also been reported to be acti-
vated for other kinds of objects (Grill-
Spector et al., 1999; Gauthier et al., 2000;
Tarr and Gauthier, 2000; Haxby et al.,
2001). We therefore include it as yet another

ROI associated with processing complex visual information and
hence potentially involved in natural scene classification.

Scene categories may also differ in the global distribution of
spatial frequencies in the image (Oliva and Torralba, 2001) or
distributed local feature information such as oriented textures
(Fei-Fei and Perona, 2005; Bosch et al., 2006). Thus, with its
selectivity for specific orientations and spatial frequencies
(Hubel and Wiesel, 1962; De Valois and De Valois, 1980), we
selected V1 as another region that might participate in the repre-
sentation of scene categories.

Decoding accuracy
Applying the LORO cross-validation procedure to the PPA vox-
els in the upright runs resulted in a decoding accuracy of 31%
(i.e., rate of correctly predicting the scene categories shown to
subjects from the pattern of voxel activity), which is significantly
above the chance level of 1/6 (t5 � 4.17; p � 0.0070). Decoding
from RSC, although less accurate (27%) than decoding from
PPA, was still significantly better than chance (t5 � 3.24, p �
0.016). In other words, we show that information about the cat-
egory being viewed is present in the pattern of activity across
voxels in both PPA and RSC (Table 1, first column).

Figure 1. Example images of the six natural scene categories used in this study (from top to bottom): beaches, buildings,
forests, highways, industry, and mountains, as well as four randomly selected examples of the perceptual masks used in the
behavioral experiments (bottom row).
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We were also able to decode scene category from activity in the
object-sensitive area LOC with 24% accuracy (t5 � 2.27; p �
0.043). One possible explanation is that LOC may contribute to
the categorization of natural scenes by detecting objects that are
consistent with a particular type of scene. Such objects have been
shown to improve fast recognition of scenes (Davenport and
Potter, 2004), and LOC was also shown to be involved in the
processing of visual context (Bar and Aminoff, 2003).

Although PPA, RSC, and, to some extent, LOC were included
as likely candidates for contributing to natural scene categoriza-
tion, we also asked whether some information regarding scene
categories might be contained within FFA. However, decoding
accuracy in the FFA was not significantly above chance (22%; t5 �
1.73), consistent with the claim that it pri-
marily encodes faces.

Decoding accuracy from area V1 was
significantly above chance at 26% (t5 �
2.64; p � 0.029), leaving open the possi-
bility that scene categories could be distin-
guished on the basis of low-level features
computed in V1. This finding is also con-
sistent with recent data showing that the
identity of individual natural images can
be successfully decoded from V1 voxel ac-
tivity (Kay et al., 2008). We note, however,
that decoding the category of an image is
a very different process from decoding
the identity of an image (as a specific
image). Images belonging to the same
scene category (e.g., a beach) can display
distinctively different color, texture, illu-
mination, spatial layout, individual object
components, and so forth. Such geometric and photometric
variability requires a more abstract representation of scene
categories; that is, the decoder must extract the information that
distinguishes a beach from a forest across multiple and variable
instances of beaches and forests. In short, although individual
instances of a category may be easily distinguishable in V1, it is
more remarkable that patterns of activity in V1 can reliably pre-
dict the general category.

To exclude the possibility that differences in decoding accu-
racy are due to different numbers of voxels in the ROIs, we re-
peated the analysis with 20 randomly drawn voxels from each
ROI. The mean decoding accuracy over 20 independent random
draws was significantly above chance in all ROIs, except for the
FFA, confirming the pattern of results obtained from the full
ROIs.

Correlation of error patterns with behavior
Having found that information relevant to scene categories is
contained within PPA, RSC, LOC, and V1 voxels, we can ask
whether human subjects use that same information for scene
categorization. To address this question, we compared decoder
performance with that of human subjects categorizing the same
scenes in a separate experiment. Subjects were asked to indicate
the category of briefly presented (11– 45 ms, followed by a per-
ceptual mask) scenes by pressing one of six buttons. Subjects
identified the correct scene categories in this fast six alternative
forced-choice behavioral task with 77% accuracy, which is signif-
icantly above the chance level of 1/6 (t5 � 20.32; p � 0.00002).
Moreover, categorization accuracy was significantly above
chance (t5 � 8.0; p � 0.001) for each of the six categories.

Although presentation times in the behavioral experiment
were considerably shorter than in the fMRI experiment, if both
experiments rely on the same category-specific signal in the
brain, we should see a correspondence between the errors that the
humans make and the errors made by the decoder. The weaker or
less distinct this signal is, the more errors the humans should
make and the harder it will be to read it out with fMRI, leading to
more decoding mistakes.

Not surprisingly, categorization accuracy by human subjects
is much higher than from fMRI decoding, presumably because of
the limited spatial resolution of the fMRI signal and the limited
number of voxels used. In contrast, the behavioral decision is
likely to be affected by the firing patterns of neurons below the
resolution of our decoder, and these neural signals are presum-
ably not restricted to local ROIs. But humans were not perfect in
their behavior, and their pattern of errors can be captured in a
confusion matrix (Fig. 2). The rows of this matrix indicate the
image category presented in the experiment. The cells in each row
contain the proportion of trials in which subjects responded with
the category indicated by the column. The diagonal entries in this
matrix are correct responses, and the off-diagonal entries are
erroneous responses. The errors in the fMRI analysis can be sum-
marized by a similar confusion matrix with the scene categories
presented to the subjects in the rows and the categories predicted
by the fMRI decoder in the columns.

The patterns of behavioral as well as decoding errors offer us
an opportunity to correlate the MVPA results with human behav-
ior. A comparison of the confusion matrices in Figure 2 shows
some interesting similarities. Specifically, the confusion matrix
for analyzing PPA activity (Fig. 2, right) indicates a high number
of misclassifications of industry and buildings, buildings and

Figure 2. Confusion matrices for behavioral responses (left) and decoder predictions of fMRI activity in PPA (right). The rows of
this matrix indicate the scene categories presented to the subjects (ground truth), and the columns the subjects’ behavioral
response (left) and the predictions by the decoder (right). An ideal confusion matrix would have 1 everywhere on the diagonal
(correct classifications) and 0 in the off-diagonal entries (errors). Frequent confusions are highlighted in yellow.

Table 1. Summary of main results

ROI Decoding accuracy Error correlation
Image similarity
correlation Inversion effect

V1 26%* 0.21 0.46** 0%
FFA 22% 0.10 0.03 2%
LOC 24%* 0.42* �0.22 3%
RSC 27%* 0.34 † �0.24 2%
PPA 31%** 0.57** �0.07 7%*

Decoding accuracy is measured in percentage of blocks predicted correctly, and significance is assessed relative to
chance (17%). Error correlation establishes a correlation between misclassifications (off-diagonal entries in the
confusion matrices) (Figs. 2, 3) between decoding from ROIs and human behavior. Image similarity correlation
correlates the image similarities matrix with the confusion matrix from fMRI decoding. The inversion effect is
defined as the difference in accuracy of a decoder trained and tested with upright versus trained and tested with
inverted scene presentations. PPA shows significant effects in all analyses except for the image similarity correlation.
�p � 0.05; ��p � 0.01; †p � 0.069.
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highways, mountains and forests, beaches and mountains, and
beaches and highways. Some of the confusions, such as between
buildings and highways or between beaches and highways, may
reflect similarities in the image structure and low-level image
statistics (large, horizontally oriented areas, sky-quality textures).
Other confusions, for example, between mountains and forests
or between industry and buildings are particularly understand-
able given that these pairs of categories not only share low-level
image statistics but also substantial semantic overlap in the form
of wooded mountains and industrial buildings, respectively. Im-
portantly, we observe some of the same confusions in the behav-
ioral results (Fig. 2, left), albeit with lower values because of
higher overall decoding accuracy.

We can quantify the similarity of the decoding and behavioral
error patterns by computing the pairwise correlation of the errors
(off-diagonal elements of the confusion matrices) from the fMRI
results for each ROI with the behavioral results (Fig. 3). The
Pearson correlation coefficient was significant for PPA (r � 0.57;
p � 0.0011) and LOC (r � 0.42; p � 0.021), marginally signifi-
cant for RSC (r � 0.34; p � 0.069), but not significant for V1 (r �
0.21; p � 0.21) and FFA (r � 0.10; p � 0.60). That is to say, the
error patterns of the decoder using voxels from the PPA, LOC,

and, to a lesser extent, RSC were similar to
the error patterns of our human subjects
in the behavioral paradigm (Table 1, sec-
ond column).

We would like to note that it is rather
remarkable that we see a significant corre-
lation between behavior and activity in
our local regions at all. As noted before,
the human is almost certainly arriving at
his or her decision using neural activity
patterns distributed across the entire
brain, many of which will be below the
resolution of the decoder. To our knowl-
edge, this is the first evidence of a positive
correlation between the complex error
patterns of humans categorizing six classes
of natural scenes and those of a decoder
classifying fMRI activity, although similar
methods have been applied to other visual
tasks (Aguirre, 2007; Williams et al., 2007;
Haushofer et al., 2008).

Having established the compatibility
of the scene category-specific neural sig-
nal in our later ROIs (PPA, RSC, and
LOC) with human behavior, we can also
test to what extent both the neural signal
and human behavior are accounted for by
the physical similarity of the stimuli. To
investigate this issue, we computed the
pixel-wise correlations of all image pairs
and sorted and averaged them according
to their category pair (e.g., beaches vs for-
ests). As a result, we obtain a correlation
matrix for image category similarity. In-
terestingly, the off-diagonal elements of
this image similarity matrix are not corre-
lated with the behavioral errors (r � �0.11;
p � 0.55), suggesting that behavioral im-
age categorization is not primarily driven
by physical similarity. Comparisons of
image similarity with the fMRI error pat-

terns did, however, show a highly significant correlation with
decoding from V1 but not with any of the later visual areas (Table
1, third column). Together with the fact that error patterns in V1
did not correlate with behavioral confusions, a picture of natural
scene categorization emerges in which V1 preserves the physical
similarity relations among the images, whereas the later areas,
in particular LOC, RSC, and PPA, contain information more
compatible with human categorization behavior.

Scene inversion
To strengthen our findings that PPA, RSC, and LOC may con-
tribute to natural scene categorization, we performed a second
experiment to further substantiate the relationship between
fMRI decoding and the behavior of the subjects: the experiment
and procedures were identical to those just described except that
the same images were presented inverted (i.e., mirrored across
the horizontal axis). The images were presented in alternating
upright and inverted blocks, in both the imaging and behavioral
experiments. Our expectation was that subjects would find in-
verted images more difficult to categorize than upright images.
We would then ask whether we see a similar decrease in decoding
accuracy for inverted images in our ROIs. As predicted, subjects
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Figure 3. Correlations of error patterns. The 30 off-diagonal entries (errors) in the fMRI-decoding confusion matrices (Fig. 2) are
plotted over the errors in the behavioral experiment. The dashed lines show least-squares fits of linear relationships. Agreement of
the error patterns was assessed with the Pearson product–moment correlation coefficient. High correlation was found for PPA,
RSC, and LOC. �p � 0.05, ��p � 0.01, †p � 0.069.

Walther et al. • Natural Scene Categories J. Neurosci., August 26, 2009 • 29(34):10573–10581 • 10577



were significantly less accurate at identifying natural scene cate-
gories (t5 � 6.07; p � 0.0019) for inverted than for upright scenes.

We probed for an inversion effect in the fMRI analysis in two
ways. The first possibility is to test the decoder, which was trained
on all but one of the upright runs, on the inverted run corre-
sponding to the left-out upright run in the LORO cross-
validation procedure. In other words, we asked how well the
decoder trained on upright runs would transfer to inverted runs
(Fig. 4). We found decreased decoding accuracy for inverted
scenes in PPA (t5 � 2.10; p � 0.052), V1 (t5 � 2.23; p � 0.045),
and, marginally, in RSC (t5 � 1.81; p � 0.072), but not in the FFA
(t5 � 1.33; p � 0.13) and LOC (t5 � 1.45; p � 0.11). However, this
result can be interpreted as reflecting the fact that the global
image statistics between the training (upright) and testing (in-
verted) stimuli differ (e.g., sky in the top half versus sky in the
bottom half), rather than because of inversion per se.

To control for this confound, we compared the performance
of a decoder trained and tested on upright runs with a decoder
trained and tested on inverted runs, thus equating global image
statistics across training and testing (Fig. 4). If the quality of the
category representation in our ROIs suffered as a result of inver-
sion, then the decoder should do less well when it only had access
to inverted images than when it only had access to upright im-
ages. Again, we found a significant drop in decoding accuracy for
inverted scenes compared with upright scenes in the PPA (t5 �
2.33; p � 0.040), but not in V1 (t5 � 1), FFA (t5 � 1), LOC (t5 �
1.24; p � 0.14), or RSC (t5 � 1). It should be noted that finding a
significant decrease of decoding accuracy for inverted scenes is to
some extent contingent on finding high decoding accuracy for
upright scenes. It is therefore conceivable that the inversion effect
for LOC, for instance, might have reached significance had de-
coding accuracy been higher to begin with.

The different patterns of results for the two inversion analyses
underscore the importance of the second analysis. In area V1, for
example, we found a significant drop in accuracy when training
the decoder on the fMRI activity acquired during the presenta-
tion of upright scenes and testing on inverted scenes. This result is
consistent with the view of V1 as a retinotopic area whose neural
representation reflects the orientation of the visual input, leading
to poor transfer from training the decoder on upright to testing it

on inverted images. There was no difference in accuracy, how-
ever, when training and testing on inverted scenes, indicating that
the representation in V1 is indifferent to the correct orientation
of the scenes, leading to good decoder accuracy as long as the
decoder was trained and tested on the same image orientation.

The only region to continue to show a significant inversion
effect when test and training were better matched was the PPA
(Table 1, fourth column). Only the PPA showed a similar sensi-
tivity to scene inversion as the human subjects, once again impli-
cating the PPA in the human ability to categorize natural scenes.
We note that the decrease in decoding accuracy for inverted
scenes is not because of differences in the general activity level of
voxels in the PPA. Unlike a previous study (Epstein et al., 2006),
we did not find a significant difference in the mean voxel activa-
tion between upright and inverted scenes in any of the ROIs (t5 �
1). Instead, this effect was only apparent in the pattern of activity
in PPA.

It could be argued that the inversion effect might be due in
part to the repetition of stimuli, since the blocks with inverted
images were always shown after the blocks with upright images.
Such an adaptation effect, however, should be observable in a
higher mean activity level for upright than for inverted scenes
within our ROIs. As mentioned above, we did not find any such
difference in mean activity level.

Whole-brain analysis
To explore brain regions that might be involved in natural scene
categorization beyond our predefined ROIs, we performed a
whole-brain analysis. To this end, we defined a spherical “search-
light” region similar in size to the ROIs (81 voxels) that we posi-
tioned at all possible locations in the brain (Kriegeskorte et al.,
2006). Within each local region, we performed the same LORO
cross-validation procedure as for the ROIs and stored the decod-
ing accuracies in a brain map. Group analysis over the decoding
accuracy maps of the individual subjects yielded a map with mean
decoding accuracies as well as a map of t values for testing
whether decoding accuracies are above chance. After thresh-
olding at p � 0.01, we performed a cluster-level correction for
multiple comparisons, resulting in a minimum cluster size of 19
voxels (obtained using � probability simulation). Figure 5 shows
the resulting brain maps in yellow.

Decoding accuracy was significantly above chance in a large
cluster of voxels in the right ventral visual cortex, including the
right parahippocampal and fusiform cortex, and extending later-
ally and posteriorly from there. The left parahippocampus was
also active, but to a lesser extent than the right parahippocampal
activity. We found other visually active areas showing high de-
coding accuracy in the left occipital cortex, in the right precu-
neus, and in the left inferior temporal gyrus. Interestingly, we also
found activity in frontal regions, most prominently in both infe-
rior frontal gyri, encompassing Brodmann areas 44 and 45. This
region is also known as Broca’s area, which is credited with lan-
guage processing (Geschwind, 1970; Grodzinsky and Santi,
2008). Although subjects were not instructed to name the natural
scene category that they were viewing, subvocalization of the cat-
egory name may be automatic and unavoidable, possibly explain-
ing activity in Broca’s area.

As a quantification of the agreement of the searchlight analysis
with the ROI-based analysis we computed the percentage of vox-
els in each ROI that overlap with the searchlight analysis. Since
location and shape of ROIs tend to differ between subjects, we
performed this analysis for each subject individually. Table 2
shows the summary statistics over five subjects, and Figure 5
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Figure 4. Effects of scene inversion. A decoder that was trained on fMRI activity from upright
scenes showed significantly lower accuracy when decoding fMRI activity from inverted (light
gray bars) than upright (dark gray bars) scenes in V1, PPA, and, marginally, RSC. When compar-
ing the upright decoder tested on activity from upright scenes (dark gray bars) with a decoder
that was trained and tested on fMRI activity from inverted scenes (white bars), only PPA showed
a significant decrease in decoding accuracy. Error bars are SEM over five subjects. �p � 0.05,
��p � 0.01, ���p � 0.001, †p � 0.052, and ††p � 0.072.
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shows the overlap for one subject. Not surprisingly, the ROIs with
the highest decoding accuracies in the ROI-based analysis (PPA
and RSC) also show the largest amount of overlap with the
searchlight analysis. Variability in the location and extent of the
ROIs between subjects leads to large variations in the overlap
with the searchlight analysis. Furthermore, a searchlight region
located near the edge of an ROI includes some voxels belonging
to the ROI but also many voxels from outside the ROI. Thus, we
would not expect perfect agreement between the results of the
searchlight group analysis and ROIs determined individually for
each subject in separate localizer sessions.

Discussion
We used multivoxel pattern recognition to move beyond the
question of whether a brain region is sensitive to images of natu-
ral scenes and ask whether these regions contain information that
can discriminate between different categories of natural scenes.
We found that activity in V1, PPA, RSC, and LOC allowed us to
predict the categories of previously unseen images significantly
above chance (Table 1). This above-chance performance is even
more remarkable given the great variability in the appearance of
exemplars from natural scene categories (e.g., Fig. 1). Indeed,
despite four decades of research into the features that may distin-
guish natural scene categories (Potter and Levy, 1969; Biederman,
1972; Delorme et al., 2000; Oliva and Torralba, 2001), we still
know very little about the critical features that the human uses to
make such categorizations, presumably because of the high di-
mensionality and complex nature of the feature space.

One of the concerns with pattern recognition techniques is
that there is no guarantee that the algorithm is using the same
information that is used by the humans. Knowing that the infor-
mation is present in the brain, however, gets us one step closer to
this goal. We still do not know, of course, if a particular pattern is
ultimately contributing to the human subject’s ability to catego-

rize scenes. We take a further step to guard
against this concern by correlating decod-
ing performance with human behavior.
The response patterns of PPA, and to a
slightly lesser extent RSC and LOC, agreed
with behavioral scene categorization by
human subjects in two ways (Table 1).
First, the erroneous categorizations made
by the decoder in these regions were cor-
related with the errors made by subjects
when categorizing briefly presented
scenes. Second, in parallel with the behav-
ioral results, the accuracy of decoding
scenes from PPA was lower for inverted
than for upright scenes. RSC and LOC,
however, failed to show such an inversion
effect.

In contrast, physical similarity of the
images was strongly correlated with the
error pattern in V1 but not with other ar-

eas or with behavior. This implies that V1 preserves the similarity
relations between images, but that representation of scenes in
higher visual areas, namely PPA, RSC, and LOC, more closely
tracks human behavior rather than physical similarity.

These results are not only compatible with the preference of
PPA and RSC for natural scenes as opposed to faces or other
objects (Aguirre et al., 1996; Epstein and Kanwisher, 1998;
O’Craven and Kanwisher, 2000; Yi et al., 2006), but they further
suggest that PPA and RSC play a role in categorizing those scenes.
At first glance, this may seem at odds with the data of Epstein and
Higgins (2007), which showed less activity in PPA when subjects
categorized natural scenes (e.g., this is a parking lot) than when
they identified them (e.g., this is the Franklin Building). How-
ever, as we have argued earlier, information regarding the cate-
gory of a natural scene may reside in the pattern of activity in the
PPA rather than the mean level of activity. Furthermore, as sub-
jects were identifying known landmarks in the identification task
in the Epstein and Higgins (2007) study, the greater activity in
PPA may also have reflected greater familiarity with the stimuli
used in the identification task.

The lower decoding accuracy from the PPA that we observed
for inverted than for upright scenes is consistent with the PPA’s
role in scene layout (Aguirre et al., 1996; Epstein et al., 2007; Park
et al., 2007), which is considerably disrupted by scene inversion.
In contrast, V1 showed high decoding accuracy without regard to
the image orientation as long as training and test data had the
same orientation, which is consistent with V1’s role in represent-
ing the spatial distribution of local features rather than global
scene layout. Interestingly, RSC, which is thought to be involved
in navigation (Maguire, 2001) and placing objects within a visual
context (Bar and Aminoff, 2003), does not show this same scene
inversion effect.

The pattern of results in the LOC is also noteworthy. It showed
both significant decoding accuracy and a clear correlation with
behavior. The role typically attributed to the LOC is the repre-
sentation of objects (Malach et al., 1995; Grill-Spector et al.,
1999). How might the LOC relate to scene categorization then?
In many instances, objects can indicate particular scene catego-
ries (Hollingworth and Henderson, 2002; Davenport and Potter,
2004). For instance, the presence of a car could indicate a highway
and the presence of trees a forest. In fact, activity in LOC was
previously reported in a comparison of strong versus weak asso-
ciations between objects and scenes (Bar and Aminoff, 2003).

a b

Figure 5. Axial (a) and sagittal (b) view of the whole-brain searchlight analysis. Areas in yellow show decoding accuracy
significantly above chance ( p � 0.01, corrected at the cluster level). Localizer-based ROIs from a single subject are marked in red,
and overlap between the searchlight result and ROIs is shown in orange. In addition to visual areas around the PPA and the right
fusiform gyrus (rFs), the inferior frontal gyrus (IFG) showed decoding accuracy significantly above chance.

Table 2. Percentage overlap of ROI voxels with searchlight activity

ROI Mean SD

V1 12.3% 3.7%
FFA 6.5% 14.6%
LOC 3.4% 3.3%
RSC 60.0% 13.8%
PPA 39.7% 13.1%
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However, the gist of a scene is also thought to provide context for
object detection (Biederman, 1972; Bar, 2004), suggesting that a
top-down signal originating in scene-sensitive regions such as the
PPA and RSC might modulate neural activity in object-selective
regions such as the LOC in ways consistent with the scene cate-
gory. It is therefore possible that the sensitivity of LOC voxels for
natural scene categories is because of this modulation signal
rather than the computations originating in LOC itself. Further
experiments will be necessary to determine the relative contribu-
tions and the nature of the information flow between these areas.

It is important to note that not all ROIs tested were able to
discriminate natural scenes successfully. We did not decode nat-
ural scene categories significantly above chance from the face-
sensitive FFA, suggesting that it does not play an important
role in scene categorization. This negative result for FFA fur-
ther highlights the importance of PPA, RSC, and LOC in scene
categorization.

We were able to decode scene categories from the fMRI
activity in V1 significantly above chance. Given V1’s retino-
topic organization and sensitivity to local orientations and
spatial frequencies (Hubel and Wiesel, 1962; De Valois and De
Valois, 1980), this finding could be interpreted as evidence for a
representation of scene categories based on the global distribu-
tion of spatial frequencies in the image (Oliva and Torralba,
2001) or distributed local feature information such as oriented
textures (Fei-Fei and Perona, 2005; Bosch et al., 2006). Indeed,
such an early representation could explain the speed with
which scene categorization is accomplished (Thorpe et al.,
1996; VanRullen and Thorpe, 2001). However, our results show
that scene categories as experienced by human observers go be-
yond low-level, V1-like features. The pattern of decoding errors
in V1 did not correlate with behavioral errors by human subjects.
We conclude that fMRI activity patterns in V1, while enabling the
decoding of scene category significantly above chance, play a less
direct role in humans’ ability to categorize natural scenes than the
activity patterns in PPA, RSC, and LOC, at least in the case of the
relatively long presentation durations (1.6 s) used in the fMRI
design.

A whole-brain searchlight analysis of decoding accuracy largely
confirmed the involvement of PPA and RSC in natural scene cate-
gorization and showed regions in visual cortex extending beyond
these narrowly defined ROIs. Above-chance decoding accuracy
in Broca’s area could be because of subjects subvocalizing the
names of natural scene categories during the passive-viewing
fMRI experiment.

In summary, our findings suggest that scene categorization
depends on a hierarchy of multiple regions within visual cortex.
Scene categories differ as early as V1, because of differences in the
distribution of spatial frequencies and orientations in the images.
However, the scene category information present in the PPA,
RSC, and LOC are more closely related to the ultimate behavior
of the human. On the basis of the previously suggested functions
of the PPA and RSC, we propose that they are responsible for
extracting differences in spatial layout among different categories
of scenes. LOC, however, may play a role in extracting scene
specific objects, which can then bias scene categorization in other
regions. Ultimately, the information in the PPA, RSC, and in the
LOC is presumably passed on to higher-level areas involved in de-
cision making. More work will be needed to verify these roles, as well
as to illuminate the specific flow of information between regions. But
at least now we have a rudimentary knowledge of a network of re-
gions that participate in natural scene categorization.

Finally, the methods presented here have implications beyond
the question of natural scene categorization. We expect our mul-
tivoxel pattern recognition methods to be useful in identifying
neural representations in a variety of other contexts previously
thought to be beyond the resolution of fMRI. Going beyond re-
ports of generally high activity in particular brain regions, our
procedure of correlating differences in patterns of activity with
human behavior allows us to not only determine brain regions
that contain information relevant to a complex visual behavior,
but also whether the information contained within those areas
are likely to contribute to the observed behavior.
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