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Blood Oxygen Level-Dependent Signal Variability Is More

than Just Noise
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Functional magnetic resonance imaging (fMRI) research often attributes blood oxygen level-dependent (BOLD) signal variance to
measurement-related confounds. However, what is typically considered “noise” variance in data may be a vital feature of brain
function. We examined fMRI signal variability during fixation baseline periods, and then compared SD- and mean-based spatial
patterns and their relations with chronological age (20 -85 years). We found that not only was the SD-based pattern robust, it
differed greatly, both spatially and statistically, from the mean-based pattern. Notably, the unique age-predictive power of the
SD-based pattern was more than five times that of the mean-based pattern. This reliable SD-based pattern of activity highlights an
important “signal” within what is often considered measurement-related “noise.” We suggest that examination of BOLD signal
variability may reveal a host of novel brain-related effects not previously considered in neuroimaging research.

Introduction

Within functional magnetic resonance imaging (fMRI) research,
much of what we understand about brain function is based on
average brain activation patterns. Researchers typically compute
within-subject average signals across a given time course to cap-
ture what is conceived as the most relevant brain activity (see
“Mean” in Fig. 1). This approach is steeped in statistical and
scientific traditions, in which a primary assumption is that
central tendency reflects the most representative value in a
distribution, and thus, “signal” within distributional “noise.”
However, no matter how the brain is measured, it is obvious
that the brain’s natural state is inherently variable (see “Vari-
ance” in Fig. 1) (Arieli et al., 1996; Miller et al., 2002; Laskaris
et al., 2003; Neumann et al., 2003; Huettel et al., 2004; Faisal et
al., 2008; McIntosh et al., 2008). Current evidence suggests
substantial intrasubject variability in the blood oxygen level-
dependent (BOLD) signal within and across testing sessions,
but BOLD signal variance is often discounted as merely re-
flecting issues with task, image acquisition and preprocessing,
statistical power, reliability, or other nuisance effects (Aguirre
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etal., 1998; Miller etal., 2002; Neumann et al., 2003; Huettel et
al., 2004; Smith et al., 2005; Andrews-Hanna et al., 2007; Jones
et al., 2008).

However, several other areas of research have examined di-
rectly the properties and unique functionality of variance, and
suggest that by considering rather than ignoring variance, our
ability to understand and predict several important phenomena
can improve dramatically (Stein et al., 2005; MacDonald et al.,
2006; Faisal et al., 2008). For example, recent EEG work shows
that greater brain signal variability may indicate a more sophisti-
cated neural system that can explore multiple functional states,
yields more stable behavioral performance, and may be an im-
portant index of the cognitive capacity of the human brain
(Ghosh et al., 2008; McIntosh et al., 2008). Although the concept
of variability has not completely eluded fMRI research, no study
to date has considered BOLD variance as a within-person mea-
sure with intrinsic theoretical and predictive meaning. Among
the myriad contexts where one could investigate the effect and
function of variability in BOLD signals, normal human aging is
an appropriate starting point. In many respects, aging has be-
come a model for examining generalized “noise” in both brain
and behavior (Li et al.,, 2006; MacDonald et al., 2006, 2009;
Hultsch et al.,, 2008). With regard to fMRI, however, age-related
BOLD variability requires exploration. In the current study, we
characterized BOLD variability with several novel questions in
mind: (1) Can we find spatial patterns of BOLD variability, sug-
gesting that this variability is more than just “noise” in the brain?
If so, are older or younger brains more variable, or does the
answer depend on brain region? (2) What are the similarities and
differences between mean- and variability-based spatial patterns
with age? (3) Does either BOLD mean or variability do a better
job of predicting age? (4) Can we determine whether variability
effects are due simply to confounds that influence the BOLD
signal?



Garrett et al.  BOLD Variability Is More than Just Noise

Variance

fMRI Brain Signal

Figure 1.
brain voxel.

Conceptual comparison between fMRI signal mean and variability for a random

Materials and Methods

Sample

Our sample consisted of 19 young adults (mean age = 25.79 * 3.28 years,
range 2030 years, 10 women) and 28 older adults (mean age = 66.46 =
8.25 years, range 56 —85 years, 14 women). Most participants were right
handed (3 in each group were left handed), and all were screened using a
detailed health questionnaire to exclude health problems and/or medi-
cations that might affect cognitive function and brain activity, including
strokes and cardiovascular disease. Structural MRIs also were inspected
to rule out severe white matter changes or other abnormalities. The
young adults had significantly more years of education than did the older
adults (young adults = 18.00 = 2.10 years; older adults = 15.70 = 3.10
years; t 45 = 2.80, p < 0.01). There was no age difference in mean scores
(mean scores for both groups = 29) on a test of mental status (Folstein et
al,, 1975). The present experiment was approved by the Research Eth-
ics Board at Baycrest, and all participants gave informed consent for
their participation (following the guidelines of the Research Ethics
Board at Baycrest and the University of Toronto) and were paid for
their participation.

Data of interest: fixation blocks

To maintain a simple model structure throughout, all mean and SD
analyses were performed using only volumes acquired during fixation
blocks from a broader study that also included several cognitive task
blocks randomly interspersed (Grady et al., 2010). Participants viewed a
fixation cross for the entirety of each block. On average, there were 32
fixation blocks per subject, with 10 volumes per block. This amounted to
a total average of 320 volumes per subject (640 s of fixation) at a TR =
2000 ms.

fMRI scanning

We acquired images with a Siemens Trio 3T magnet. We first obtained a
T1-weighted anatomical volume using SPGR (TE = 2.6 ms, TR = 2000
ms, FOV = 256 mm, slice thickness = 1 mm) for coregistration with the
functional images and to ensure that there were no significant brain
abnormalities in any participants. T2* functional images (TE = 30 ms,
TR = 2000 ms, flip angle = 70°, FOV = 200 mm) were obtained using
EPI acquisition. Each functional sequence consisted of twenty-eight
5-mm-thick axial slices, positioned to image the whole brain.

Data preprocessing

Common Template. For the purpose of creating an unbiased common
anatomical template for a large age range (20— 85 years), we first divided
subjects into three age groups: 20-30, 55— 65, and 66—85. For each of the
three age groups, we created an unbiased nonlinear group average ana-
tomical image (Kovacevi¢ et al., 2005; Chen et al., 2006; Levine et al.,
2008). Starting with the three group-specific average images, we then
applied the same algorithm to create a common anatomical image, which
we refer to as the Common Template. The rationale behind this two-
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Table 1. Effects of preprocessing on BOLD signal variance and age prediction

Level of R?between SD R? between mean
preprocessing Voxel SDs brain and age brain and age
Basic 0.72 (0.48) 0.39 0.60

Extended 0.36 (0.20) 0.81 0.59

"Basic” preprocessing includes typical preprocessing steps (i.e., slice timing, motion correction, and spatial normal-
ization and smoothing). "Extended” preprocessing includes independent components analysis, motion correction/
white matter/cerebrospinal fluid parameter regression, and block normalization (see Materials and Methods). We
calculated SDs over fixation blocks, and averaged them over brain and subjects. Between-subjects standard devia-
tion of voxel SDsis given in parentheses. R % values represent proportion of variance accounted for in models where
age was predicted separately by SD-based and mean-based brain scores.

stage derivation of a Common Template was to accommodate large age
differences across subjects. Brain anatomy changes significantly during
normal aging (e.g., atrophy) (Ezekiel et al., 2004), and we assume that any
individual subject registers better with subjects within the same general
age group than with subjects from other groups. On the other hand, the
three age-specific group average images are sufficiently blurry to allow
easy coregistration. The transforms obtained from the two stages were
concatenated to produce a single nonlinear transform from each subject
into the Common Template space.

Functional data. Functional data were slice-time corrected using AFNI
(http://afni.nimh.nih.gov/afni) and motion corrected using AIR
(http://bishopw.loni.ucla.edu/AIR5/) by registering all functional vol-
umes to the 100th volume within run. By averaging all functional vol-
umes within a motion-corrected run, we calculated mean functional
volumes. For each run, mean functional volume was registered with each
subject’s structural volume using a rigid body transformation model.
After appropriate transform concatenations, from initial volume to the
100th volume within run, from mean run volume to structural volume,
and from structural volume into the Common Template space, we ob-
tained a direct nonlinear transform from each initial f{MRI volume into
the Common Template space. We then applied the FSL/FNIRT registra-
tion algorithm to find a nonlinear transform between our anatomical
Common Template and MNI 152_T1 provided with FSL software (www.
fmrib.ox.ac.uk/fsl). Data were smoothed using an 8 mm Gaussian kernel.
The steps outlined above comprised our “basic” preprocessing steps (i.e.,
slice timing and motion correction, spatial normalization, and smooth-
ing) (Table 1).

We performed several additional preprocessing steps aimed at reduc-
ing data artifacts (termed “extended” preprocessing in Table 1). Func-
tional volumes in the Common Template space were first corrected for
artifacts via independent component analysis (ICA) within separate
runs, as implemented in FSL/Melodic (Beckmann and Smith, 2004).
Voxel time series were further adjusted by regressing out motion correc-
tion parameters, white matter (WM), and CSF time series. For WM and
CSF regression, we extracted time series from unsmoothed data within
small ROIs in the corpus callosum and ventricles of the Common Tem-
plate, respectively. ROIs were selected such that they were deep within the
each structure of interest (corpus callosum and ventricles) to avoid signal
contamination from external tissues due to misregistration. The ratio-
nale for using small ROIs and unsmoothed data was to ensure that the
ROIs would not contain any signal of interest (i.e., gray matter signal) for
any of the subjects. The choice of a single 4 mm? voxel within corpus
callosum for WM and a same-size voxel within one lateral ventricle for
CSF was based on our experience in having excellent registration of these
structures across all ages. With a large age span in our data, it would be
easy to introduce age-related bias if larger ROIs or smoothed data were
used. Spatial smoothing mixes signals from neighboring voxels on one
hand, and registration errors during spatial normalization on the other;
both factors can contaminate WM and CSF time series due to the close
proximity of gray matter voxels. Although we used nonlinear registration
to adjust for age related differences in anatomy (atrophy, in particular), it
is still likely that residual differences remained such that, e.g., larger CSF
ROIs would have residual small, yet biased, age-dependent contributions
from GM signal.

To localize regions from our functional output, we submitted MNI
coordinates to the Anatomy Toolbox in SPM8, which applies probabilis-
tic algorithms to determine the cytoarchitectonic labeling of MNI coor-
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Figure 2.  Example result of block normalization on a single voxel time series (shown in
gray), obtained by concatenating 16 fixation blocks from two randomly selected runs (horizon-
tal black lines represent mean block levels). Our experiment contained 32 blocks, but 16 are
shown here for descriptive purposes, both before (a) and after (b) block normalization.

dinates (Eickhoff et al., 2005, 2007). Regions not labeled using this
method were located manually using the Atlas of the Human Brain (Mai
etal., 2008) after transforming MNI coordinates to Talairach space with
the Nonlinear Yale MNI to Talairach Conversion Algorithm (Lacadie et
al., 2008) and associated online Java-based applet. Supplemental Tables 1
and 2 (available at www.jneurosci.org as supplemental material) contain
peaks of activation for SD- and mean-based measures for clusters com-
prised of at least 10 contiguous voxels, and associated peak bootstrap
ratios of 3.00 or greater (for details, see Data analysis, Partial least-
squares analysis of relations between BOLD SD and age, and BOLD mean
and age).

Data analyses

Calculation of BOLD signal mean and SD. To calculate mean signal dur-
ing fixation at each voxel, we first expressed each signal value as a per-
centage change from its respective block onset value, and then calculated
amean percentage change within each block (10 volumes per block) and
averaged across all blocks (32 blocks, for a total of 320 volumes per
subject). To calculate BOLD SDs during fixation, we performed an ad-
ditional block normalization procedure. As an example, Figure 2a shows
the time series from one voxel obtained by concatenating values across
fixation blocks. We can see that large block offsets are present, likely due
to residual low-frequency artifacts. To correct for this, we first normal-
ized all fixation blocks such that the overall four-dimensional mean
across brain and block was 100. For each voxel, we then subtracted the
block mean and concatenated across all blocks (see Fig. 2b for an exam-
ple). Finally, we calculated voxel SDs across this concatenated mean-
block corrected time series.

Partial least-squares analysis of relations between BOLD SD and age, and
BOLD mean and age. For each of the two fMRI signal measures, SD and
mean, we performed separate partial least-squares (PLS) analyses (be-
havioral PLS) (Mclntosh et al., 1996). PLS allows the identification of
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multivariate patterns of brain activity. This type of analysis begins with
the correlation matrix between age and each voxel’s signal, where corre-
lations are calculated across subjects. The correlation matrix is decom-
posed using singular value decomposition (SVD) to produce latent
variables, consisting of the correlation strength on one hand (i.e., the
singular value), and a so-called “brain saliences” on the other (i.e., a
weighting or loading pattern across brain voxels that optimally expresses
the correlation). In the present study, because we had only one behav-
ioral variable (age), only one latent dimension was possible for each PLS
analysis. The effect of SVD in this simple case produces brain saliences
that reflect the original voxelwise correlations with age, but are scaled to
be unit length. We then calculated so-called “brain scores” (akin to com-
ponent scores in principal component analyses) by taking the dot prod-
uct of the brain saliences and a given subject’s brain measures. Thus, in a
single measure, a brain score indicates the degree to which a subject
expresses the multivariate spatial pattern captured by an age-driven la-
tent variable.

Significance of detected relations between multivariate spatial patterns
and age was assessed using 1000 permutation tests of the singular value. A
subsequent bootstrapping procedure revealed the robustness of voxel
saliences across 1000 bootstrapped resamples of our data. By dividing
each voxel’s bootstrap mean salience by its SE, we obtained so called
“bootstrap ratios” as normalized estimates of robustness. We thresh-
olded bootstrap ratios at a value of 3.00, which is approximately equiva-
lent to a 99% confidence interval.

Predicting age from mean- and SD-based brain scores. By construction,
brain scores from the above analyses can be used to predict chronological
age. Using each subject’s mean- and SD-based brain scores, we examined
joint and unique relations with chronological age using hierarchical lin-
ear regression. We emphasize that this statistical test was done to contrast
the relative contributions of mean- and SD-based measures to the pre-
diction of age, rather than to test the significance of prediction, which was
done using 1000 permutation tests in the PLS analysis. We also per-
formed an outlier analysis using Mahalanobis and Cook’s distances fol-
lowing our regression model runs. Neither index revealed evidence for
multivariate outliers in our data.

Effect of preprocessing on SD estimation, and its impact on relations with
age. To illustrate the overall effects of preprocessing on our age-based
variability effects, we first calculated average temporal signal variance
across fixation scans within one run (run 1). To do so, for each brain
voxel, we calculated the SD of the time series obtained by concatenating
fixation blocks within the run. We then averaged the SD estimate across
brain voxels and subjects. More extensive preprocessing yielded more
conservative brain SD estimates, indicating we were successful in remov-
ing unwanted variance due to artifacts. To evaluate the statistical effect of
successive preprocessing on the relations between SD brain and age, we
calculated two multiple linear regression models, each regressing age
onto SD brain scores calculated from basic and extended preprocessing
steps. Similarly, we then evaluated the effect of preprocessing on the
relation between mean brain and age (see Table 1). Our final results
reported in the current study (in the first three sections of Results) reflect
all preprocessing steps discussed in Table 1.

Results

Spatial patterns and age-related differences in

BOLD variability

First, we examined the existence of age-related differences in
voxel SDs. We used PLS (McIntosh et al., 1996) to calculate the
presence and strength of multivariate spatial patterns of brain
variability, and found a very strong relation with age (R* = 0.81,
permuted p < 0.0001) (Fig. 3a). This relation was robust based
on a bootstrapped estimated confidence interval (CI; 95% CI for
R* = 0.57, 0.93). A robust pattern of voxels with age differences
in BOLD SDs is shown in Figure 4a, with each voxel surpassing a
bootstrap ratio threshold of 3.00 (approximating a 99% confi-
dence interval; see Materials and Methods for further details).
The bootstrapped pattern exhibited a distributed set of regions,
including several that increased in variability with age (e.g., supe-
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Figure 3.  Zero-order relations between age and brain scores from SD- (a) and mean- (b)
based analyses. We have deliberately used correlational analyses here, despite what appears to
be an extreme group design. In initial model runs, we ran SD- and mean-based analyses with a
dichotomous young/old variable, instead of a continuous measure of age. The use of dichoto-
mous and continuous age variables yielded nearly identical results for each brain measure
(withinan R% of 1.00%). Thus, we elected to maintain the use of continuous age to allow better
visualization of scatter around lines of best fit.

rior frontal gyrus, inferior temporal gyrus, cerebellum; shown in
red), and many others that decreased in variability with age (e.g.,
lingual gyrus, middle temporal gyrus, supplementary motor area;
shown in blue). This pattern suggests bidirectionality in voxel
variability patterns; that is, although 33% of voxels increased in
variability, the majority of brain voxels decreased in variability
with age (67%). See supplemental Table 1 (available at www.
jneurosci.org as supplemental material) for peak MNI coordi-
nates, bootstrap ratios, and cluster sizes for each reliable cluster.

Similarities and differences between mean- and SD-based
spatial patterns with age

Our mean-based PLS analysis also revealed a sizable relation with
age (R = 0.59, permuted p < 0.0001, 95% bootstrapped CI =
0.48, 0.62), but far less so than our SD-based results (R* = 0.81)
(Fig. 3b). Bootstrap results revealed a multivariate pattern (Fig.
4b), including one area that increased (i.e., middle temporal gy-
rus; shown in red) and several that decreased in mean activity
with age [e.g., superior parietal lobule, inferior temporal gyrus,
inferior frontal gyrus (shown in blue); see supplemental Table 2
(available at www.jneurosci.org as supplemental material) for
MNI coordinates, bootstrap ratios, and cluster sizes for reliable
clusters]. Of critical importance in Figure 4, a and b, is that the
mean- and SD-based patterns appear clearly distinct, which sug-
gests that the two brain measures (mean and SD) revealed very
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different brain effects with age. To better characterize differences
and similarities between these brain patterns, we computed over-
lay plots using only robust bootstrapped voxels (Fig. 4c,d). This
analysis revealed remarkably different, virtually non-overlapping
spatial patterns, despite the fact that mean- and SD-based mea-
sures were each highly related to age.

To quantify the lack of spatial overlap on a whole-brain level,
we computed the dot product of mean- and SD-based brain sa-
liences across all voxels and subjects (not just those voxels that
surpass a bootstrap threshold of 3.00 or more); we then com-
puted a bootstrapped 95% confidence interval around this dot
product value. The dot product is equivalent to the cosine angle
between two unit length vectors. Since brain saliences are unit
length vectors by construction, the dot product can be taken as a
similarity measure between mean- and SD-based saliences, with
values ranging from —1.00 to 1.00. We found very weak spatial
overlap (dot product = 0.11) between mean- and SD-based brain
measures, with a bootstrap confidence interval that not only
spanned zero, but remained weak at both ends (bootstrap CI =
—0.25, 0.33). These results provide direct evidence that there is
very little topographical overlap between age-based mean- and
SD-brain patterns, and whatever overall similarity does exist is
highly unreliable.

Which BOLD measure better predicts age?

Any conclusions about the utility of SD-based approaches rest
partially on the ability of variance measures to add new informa-
tion about the brain beyond that learned from assessing mean
signals. Above, we found that spatial patterns using these two
measures were markedly different, and that relations with age
were stronger in our SD-based analyses. However, demonstrating
the relative ability of each measure to predict age will better char-
acterize unique contributions to modeling age-related brain dif-
ferences. To do so, we extracted “brain scores” from the SD and
mean-based analyses; these scores represented each participant’s
expression of the multivariate spatial pattern identified by each
analysis. We then used both sets of brain scores (mean- and SD-
based) to predict age using hierarchical linear regression. Our
results revealed a sizable shared effect across both measures (R> =
0.54). However, mean-based brain scores revealed only a very
small unique contribution to age (R?hange = 0.05), whereas the
unique contribution of SD-based brain scores to age was 5.19
times larger (R%,,nge = 0.27) (Fig. 5). This suggests that our SD-
based analysis yielded substantial predictive utility over and
above mean-based effects.

There is a possibility that differences in predictive utility be-
tween means and SDs could reflect differences in measure reli-
ability rather than validity (Schmiedek et al., 2009). To ascertain
whether differences in reliability were present, we compared dis-
tributions of mean- and SD-based bootstrapped SEs for all voxels
(total voxel count = 14,346; from our PLS analyses). We found
that these distributions were virtually identical in both shape and
central tendency (both with average SEs = ~0.14). Thus, the
advantage in predictive power of our SD-based analysis is not
attributable to differences in reliability between mean- and SD-
brain measures.

Can we show that the SD-based measure is not unduly
influenced by confounds that affect the BOLD signal?

Aging is associated with several possible confounds in fMRI data,
the most notable of which includes various alterations in neuro-
vascular coupling and vascular dynamics. Such confounds may
yield a narrower dynamic range of BOLD signal responses, more
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Figure 4.

PLS brain patterns and overlay plots. a, Yellow/red regions indicate robust age-related increases, and blue regions indicate age-related decreases, in BOLD SDs. b, Yellow/red regions

indicate robust age-related increases, and blue regions indicate age-related decreases, in BOLD means. In both a and b, all robust areas surpassed a thresholded bootstrap ratio (salience/SE) of
=3.00 (for yellow/red regions) or = —3.00 (for blue regions). Darker colors indicate greater robustness. ¢, Overlay plot highlighting differences between age-based SD- and mean-brain spatial
patterns. Red, Mean increase, no SD effect; blue, mean decrease, no SD effect; green, SD increase, no mean effect; yellow, SD decrease, no mean effect. d, Overlay plot highlighting similarities
between age-based SD- and mean-brain spatial patterns. Blue, mean and SD both decrease with age; green, mean decrease, SD increase. All images represent every other slice in z-direction.

or less variable BOLD responses, and decreased signal-to-noise
(Huettel et al.,, 2001; D’Esposito et al., 2003; Gazzaley and
D’Esposito, 2005; Andrews-Hanna et al., 2007; Handwerker et
al., 2007). Even though these (and other) confounds may affect
any fMRI study of aging and are not easily controlled (D Esposito
et al., 2003; Gazzaley and D’Esposito, 2005; Handwerker et al.,
2007), we argue against the substantial influence of these con-
founds on our variability-based results for two reasons. First,
recent efforts to account for vascular confounds in fMRI research
on aging assume these effects are essentially global (and thus
unidirectional) in nature (Handwerker et al., 2007). However,
the largely bidirectional pattern of age differences in variability
seen in Figure 4a suggests that any “global” or unidirectional
confound cannot account easily for our results. Second, if we are
at risk of having “junk noise” drive our SD-based age effects

(whatever the source), we should notice decreases in the ability of
this measure to predict age with more extensive preprocessing.
Importantly, we found that the opposite was true (see Table 1).
After ICA denoising, white matter/CSF/motion parameter re-
gression, and block normalization [which together reduced voxel
SDs to 50% of the SD level found using more typical preprocess-
ing steps (see Materials and Methods for a list of these steps)], the
R?%in age doubled, from 0.39 to 0.81. Conversely, mean-based
relations were relatively unaffected by more extensive prepro-
cessing (R* = ~0.60 at most stages of preprocessing).

Discussion

In the current study, we attempted to characterize how variability
in BOLD activity differs by age. First, we confirmed the presence
of a robust age-related effect in a multivariate pattern of regions
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Figure5. Relative contributions of SD- and mean-based brain measures for predicting chro-
nological age. Values represent unique percentage variance accounted for (unique R2 X 100) in
chronological age. “Shared” represents predictive overlap between mean- and SD-based mea-
sures; “Unknown” represents variance not accounted for by either mean- or SD-based mea-
sures. We found no interaction between the effects of mean and SD on age.

measured by BOLD variability. Notably, this suggests that spatial
patterns exist across the brain when assessing what is typically
considered “noise,” and that these patterns can differentiate
younger and older adults. We found also a bidirectional pattern
of variability across regions, suggesting that age-related differ-
ences in variability are both spatially and directionally specific.
Insofar as young adults represent an “optimal” system to which
older adults can be compared, our bidirectional pattern suggests
that even in young adults, variability is heterogeneous across the
brain during fixation.

Second, we compared age-related SD- and mean-based mul-
tivariate patterns. Our mean-based PLS results revealed robust
relations with age, but less so than for BOLD variability. Also, SD-
and mean-based spatial patterns were essentially non-over-
lapping, despite the robust relation of each to age. This suggests
that assessing the stability of the age-related BOLD signal reveals
a highly distinct brain pattern not captured by mean-based ap-
proaches. Third, we expanded our comparison between SD- and
mean-based measures to gauge unique variance accounted for in
age. Examining BOLD variability would hold little value if it of-
fered only marginal utility above that provided by the BOLD
mean. Surprisingly, mean-based brain scores made only a very
small unique contribution to age, whereas SD-based brain scores
uniquely predicted age by more than five times the amount of-
fered by the mean. This result should not be taken lightly. The
zero-order mean-based effect was itself highly robust (R* =
0.58); however, simultaneously modeling the effect of SD-brain
eliminated the majority of mean-based predictivity. We thus ar-
gue that, based on the combination of a distinct multivariate
spatial pattern and heightened predictive ability, SD-based anal-
yses may provide a novel window into the aging process. Further,
although our results revealed a sizable shared relation between
both brain measures and age (R* = 0.54), the brain regions iden-
tified by each measure were virtually non-overlapping at a ro-
bustness threshold of 3.00 or more. A dot product analysis using
all voxels similarly revealed no reliable spatial overlap. It thus
appears that even shared statistical relations between each mea-
sure and age (via our regression analyses) represent very different
views of brain function.

Our final goal in the present study was to provide evidence
that confounds that may influence the BOLD signal in older
adults (and in general) cannot easily account for our findings.
Although it is possible that global (and presumably unidirec-
tional) vascular confounds may affect neurovascular coupling,
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vascular dynamics, and signal-to-noise ratios (D’Esposito et al.,
2003; Gazzaley and D’Esposito, 2005; Handwerker et al., 2007),
the bidirectional nature of our SD-based pattern suggests that
such global confounds cannot render our effects untenable. In
fact, far more voxels demonstrated reduced variability (67%)
than increased variability (33%) with age, which argues against
our result being due solely to an age-related decrease in “signal-
to-noise” (see supplemental Table 1, available at www.jneurosci.
org as supplemental material). As a more stringent test of the
effect of various confounds, we also assessed the influence of
preprocessing on the ability of mean and SD measures to predict
age. We found that even though greater preprocessing substan-
tially reduced voxel SDs (Huettel et al., 2004; Jones et al., 2008),
the prediction of age dramatically increased to twice the level
found when only basic preprocessing was applied. This suggests
that greater age-related “signal” was revealed by voxel SDs as we
removed further systematic sources of BOLD error variance.
Based on these results, the removal of confounds may serve to
further enhance, rather than reduce, SD-based age effects in fu-
ture research.

What might brain variability reflect?

Several accounts offer insight into the dynamics and purpose of
brain variability. Across a sample of children and young adults,
McIntosh et al. (2008) found that greater multichannel EEG sig-
nal variability revealed a more sophisticated neural system that
can explore multiple functional states. Importantly, the authors
also found that signal variability was highly correlated with more
consistent reaction time and more accurate performance, reveal-
ing an example of the potential real-world benefits of brain fluc-
tuations. Others have suggested that substantial trial-to-trial
brain variability derives from coherent spontaneous oscillations
throughout the cortex (Laskaris et al., 2003; Fox et al., 2006; Nir et
al., 2008). From this perspective, BOLD variability may reflect
greater coherence between regions. Parga and Abbott (2007)
found that under various conditions, neural networks can spon-
taneously and synchronously transition between up and down
states. Interestingly, this ability is driven in part by a positive
relation between excitatory and inhibitory membrane conduc-
tances; in a natural balance, excitation and inhibition may work
together to produce neural function that is inherently variable.
Notably, the authors also found that varying the external noise
applied to such networks can modulate transitions between up
and down states, thus enabling or inhibiting coherent fluctua-
tions within a network.

Although such accounts help us conceptualize why greater
variability in neural function is not simply noise, our bidirec-
tional pattern suggests that older and younger adults differ in
which regions demonstrate relatively higher or lower variability.
If our young adults indeed represent an “optimal” system, a “so-
phistication” or “coherence” argument cannot easily account for
areas where variability is less in young than in older adults (see
red areas in Fig. 4a). Our older adults exhibited less variability
overall, possibly reflecting less network complexity and integra-
tion, or greater white matter or synaptic loss that typifies the
aging process (Sullivan and Pfefferbaum, 2006). However, what
do we make of those regions where older adults exhibited more
variability? Could these reflect compensatory processes that serve
to counteract reduced network complexity and integration with
age, or alternatively, could these reflect some form of dysfunc-
tional signal variability? Stochastic resonance research suggests
there is an optimal level of noise that facilitates neural function,
and too little or too much noise results in a less efficient system
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(Laurienti et al., 2006; Li et al., 2006; Parga and Abbott, 2007;
Lugo et al., 2008; McDonnell and Abbott, 2009). Future work
could address precisely to what “optimal” refers in an aging
context.

Relatedly, another interesting computational account reflects
exchanges between noise and neuronal output with age. Li et al.
(2006) suggest that aging neurons produce less output per unit of
input (so-called “gain”), and even the presence of ideal noise
levels (yielding the benefits of stochastic resonance on signal de-
tection) is not enough to overcome this neural inefficiency. The
model of Li et al. (2006) also demonstrates that younger neurons
require less noise to produce peak neural output, revealing a
more efficient system. However, the authors used an external
noise source to model the effects of SR with age. To the extent that
internal noise sources may operate in a similar manner (i.e., pro-
ducing the benefits of SR), their findings suggest that older neu-
rons may benefit to some extent from internal variability, but not
nearly to the same extent that young systems can. Should regions
that show age-related increases in brain variability reflect a com-
pensatory mechanism to counteract reduced neural efficiency
with age, this may represent systemic efforts to induce SR-type
benefits in the presence of neural inefficiency. Areas that show
age-related decreases in BOLD SDs may then represent reduc-
tions in optimal variability levels with age (Fig. 4a).

Finally, it may simply be that greater variability is required
naturally in some neural regions for optimal function, but not in
others. Other researchers controlling for BOLD variability (as a
confound) revealed that some regions show greater variability,
some regions show reduced variability, and other regions show
no difference across age groups (Andrews-Hanna et al., 2007).
Perhaps spatially distinct variability is itself a proxy for the func-
tional substrate of an “optimal” system, and only when optimal
variability patterns are disrupted can age-related effects become
evident.

Conclusion

BOLD variability exhibits a spatially coherent pattern, highly dif-
ferentiates from the BOLD mean, and robustly relates to age.
Representing a more dynamic view of brain function, examining
BOLD variability is a novel approach that can be easily integrated
into any fMRI research design. Given our results, we find no
reason to simply consider BOLD variability as “noise.” As Faisal
et al. (2008) appropriately state, “. .. to understand the nervous
system we have to distinguish variability from noise by account-
ing for its sources and appreciate the way in which it influences
the brain’s structure and function” (p. 300). Variance-based
measures may in fact reveal a host of novel brain-related effects
not previously considered in fMRI research, while simulta-
neously bridging to other research areas in which neural variabil-
ity is expected and even functional (Stein et al., 2005; Faisal et al.,
2008; McIntosh et al., 2008). Indeed, it seems that BOLD variabil-
ity provides a new “signal” that deserves careful consideration.
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