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Neural Ensemble Codes for Stimulus Periodicity in Auditory
Cortex
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We measured the responses of neurons in auditory cortex of male and female ferrets to artificial vowels of varying fundamental frequency
(fy), or periodicity, and compared these with the performance of animals trained to discriminate the periodicity of these sounds.
Sensitivity to f, was found in all five auditory cortical fields examined, with most of those neurons exhibiting either low-pass or high-pass
response functions. Only rarely was the stimulus dependence of individual neuron discharges sufficient to account for the discrimination
performance of the ferrets. In contrast, when analyzed with a simple classifier, responses of small ensembles, comprising 3-61 simulta-
neously recorded neurons, often discriminated periodicity changes as well as the animals did. We examined four potential strategies for
decoding ensemble responses: spike counts, relative first-spike latencies, a binary “spike or no-spike” code, and a spike-order code. All
four codes represented stimulus periodicity effectively, and, surprisingly, the spike count and relative latency codes enabled an equally
rapid readout, within 75 ms of stimulus onset. Thus, relative latency codes do not necessarily facilitate faster discrimination judgments.
A joint spike count plus relative latency code was more informative than either code alone, indicating that the information captured by
each measure was not wholly redundant. The responses of neural ensembles, but not of single neurons, reliably encoded f; changes even
when stimulus intensity was varied randomly over a 20 dB range. Because trained animals can discriminate stimulus periodicity across

different sound levels, this implies that ensemble codes are better suited to account for behavioral performance.

Introduction
Any sound will activate neurons throughout auditory cortex, but
we know little about how the activity of neural populations is
“read out.” In addition to spike rate, response latencies can en-
code sensory events (Jenison, 2000; Brugge et al., 2001; Nelken et
al., 2005), but it is unclear what would serve as a temporal refer-
ence, given that the brain has no independent measure of stimu-
lus onset. It has been suggested that single-unit spike latencies
might be referenced to the population onset response (Chase and
Young, 2007) or that the order in which neurons fire might be
important (Gautrais and Thorpe, 1998; Van Rullen and Thorpe,
2001). Relative latency codes are particularly attractive because
they could potentially facilitate rapid behavioral judgments (Van
Rullen and Thorpe, 2002; Johansson and Birznieks, 2004).
There have so far been few successful attempts to record from
sufficiently large ensembles of neurons to assess the potential of
different population codes. One criterion against which to judge
a neural code is to ask whether it provides sufficient stimulus-
related information to account for behavioral performance. Neu-
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rometric techniques have therefore been used to model sensory
discrimination abilities from the firing behavior of single neurons
(Parker and Newsome, 1998). Extending this approach to codes
carried by activity patterns distributed across neuron ensembles
may provide novel insights into the link between neural activity
and perception (Nishikawa et al., 2008; Walker et al., 2008).

Natural sounds are often periodic, and this periodicity can
evoke the percept of pitch. Therefore, examining how neurons
encode the fundamental frequency ( f,) of sounds may contribute
to our understanding of the neural basis of pitch perception. The
periodicity of the waveform of a sound is also reflected in the
harmonicity of its spectrum, and both temporal and spectral
mechanisms appear to contribute to pitch extraction (Cedolin and
Delgutte, 2005; De Cheveigne, 2005; McDermott and Oxenham,
2008).

Sound periodicity is represented by the time-locked dis-
charges of auditory nerve fibers (Javel, 1980; Winter et al., 1993;
Cariani and Delgutte, 1996) and cochlear nucleus neurons (Sayles and
Winter, 2008). In the midbrain, periodicities up to a few 100 Hz are
represented as temporal patterns of spikes, and faster periodicities
are represented with rate codes (Langner and Schreiner, 1988; Schre-
iner and Langner, 1988; Rees and Palmer, 1989). Sensitivity to f, is
found throughout ferret auditory cortex (Bizley et al., 2009), while a
specialized region of marmoset auditory cortex responds to the
missing fundamental of sounds (Bendor and Wang, 2005). How-
ever, none of the proposed coding mechanisms have been shown to
account for pitch judgments independent of changes in other pa-
rameters, such as sound intensity or spectral timbre. Thus, it is un-
clear whether, or how, the responses of cortical neurons, which are
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Table 1. Numbers of units (comprising small multiunit clusters and single units)
and neural ensembles recorded in each animal
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Table 2. Numbers of units (single units) and neural ensembles recorded in each
auditory cortical field

Animal Units Ensembles Cortical field Al AAF PPF PSF ADF
F0534 178 8 Units (single) 333 (180) 82 (20) 152 (111) 128 (78) 40 (19)
F0614 84 n Ensembles 29 5 12 7 5
Fo615 95 12
F0626 78 10
F0627 61 6 . .

and a cranial mount of bone cement with a resealable metal well was
F0634 77 6 . .
F0700 17 5 attached to the skull above the craniotomy. The cranial mount also con-

Animal F0615 was awake and passively listening to sounds. All other recordings were performed in anesthetized
animals.

typically broadly sensitive to multiple stimulus dimensions, could be
decoded to explain behavioral performance.

We compared the responses of single auditory cortical neu-
rons and ensembles of simultaneously recorded neurons to the
behavioral performance of ferrets trained on an f, discrimination
task. We examined different putative decoding strategies and
found that codes based on spike timing or count can discriminate
stimulus periodicity approximately equally well.

Materials and Methods

Animal preparation. All animal procedures were approved by the local
ethical review committee and performed under license from the United
Kingdom Home Office. Twelve pigmented ferrets were used in this
study. Five of these animals participated in behavioral testing, and elec-
trophysiological recordings were obtained from the seven others.

Electrophysiological recordings. Recordings were performed in one
awake, passively listening animal and six anesthetized ferrets (Table 1).
For the acute recordings, anesthesia was induced with medetomidine
hydrochloride (Domitor; 0.022 mg - kg ~* - h ~!) and ketamine (Ketaset;
5mg-kg ' -h~'; Fort Dodge Animal Health) and maintained with an
intravenous infusion (5 ml/h) of this mixture in physiological saline
containing 5% glucose. The ferret also received a single subcutaneous
dose of 0.06 mg-kg ' -h " atropine sulfate (C-Vet Veterinary Prod-
ucts) and subcutaneous doses of 0.5 mg/kg dexamethasone (Dexadreson;
Intervet UK Ltd.) every 12 h to reduce bronchial secretions and cerebral
edema, respectively. The animal was intubated, placed on a ventilator
(7025 respirator; Ugo Basile), and supplemented with oxygen. Body tem-
perature, end-tidal CO,, and the electrocardiogram were monitored
throughout the experiment.

The animal was placed in a stereotaxic frame, and the temporal mus-
cles on both sides were retracted. A metal bar was attached to the right
side of the skull, holding the head without additional need of a stereotaxic
frame. The left temporal muscle was mostly removed, and the auditory
cortex was exposed by a craniotomy. The dura was removed, and the
cortex was covered with silicon oil. The animal was then transferred to a
small table in an anechoic chamber (IAC Ltd.).

Recordings were made with silicon probe electrodes (Neuronexus
Technologies). In three animals, we used electrodes with eight active sites
on four parallel probes, with a vertical spacing of 150 wm. In a few
recordings in one of these animals and for all recordings in an additional
three animals, we used electrodes with 16 active sites spaced at 100 wm
intervals on each of two probes. The electrodes were positioned so that
they entered the cortex approximately orthogonal to the surface. A pho-
tographic record was made of each electrode penetration to document
their location relative to anatomical landmarks (surface blood vessels
and sulcal patterns).

Extracellular recordings were also performed in one ferret while it was
awake and passively listening to stimuli. A cranial mount was surgically
implanted 1 month before the first recording session. During this proce-
dure, surgical anesthesia was induced with an intramuscular injection of
medetomidine and ketamine. The animal was intubated, and anesthesia
was maintained with 1-2% isoflurane in oxygen-enriched air. It was
placed in a stereotaxic frame, and the temporal muscles were retracted
and partially removed. The auditory cortex was exposed by a craniotomy,

tained a metal fitting that allowed the head to be fixed to a solid recording
frame. During the month after implant surgery, the animal was trained
with positive food reinforcement to accept head restraint. Recordings
were performed with the head restrained using up to 5 quartz/platinum—
tungsten electrodes (Thomas Recording) lowered through the dura using
a Mini Matrix System microdrive (Thomas Recording).

Five cortical fields were investigated: two tonotopic primary fields, the
primary auditory cortex (Al) and anterior auditory field (AAF); two
tonotopic secondary fields on the posterior ectosylvian gyrus, the poste-
rior suprasylvian (PSF) and posterior pseudosylvian (PPF) fields; and
one non-tonotopic secondary area on the anterior ectosylvian gyrus, the
anterior dorsal field (ADF) (Bizley et al., 2005). The number of units
recorded in each cortical field are listed in Table 2.

Stimuli. Artificial vowel sounds were generated in MATLAB (MathWorks),
by using an algorithm adapted from Malcolm Slaney’s Auditory Toolbox
(http://cobweb.ecn.purdue.edu/~malcolm/interval/1998-010/)  to
bandpass filter click trains. The click rate determined the value of f, and
therefore the evoked pitch. The bandpass filters determined the stimulus
timbre and, in both behavioral and neurophysiological testing, were kept
constant at values corresponding to the vowel /i/ (formant frequencies
centered at 430, 2132, 3070, and 4100 Hz). The vowel sounds (150 ms in
duration, 5 ms onset/offset ramps) were normalized to have equal root-
mean-square amplitudes, and calibrations were performed to ensure that
changes in periodicity did not influence the overall sound pressure level
(SPL). At each recording site, a fixed range of f, values was presented,
from either 150 or 200 Hz to ~1900 Hz.

Pure-tone stimuli were used to obtain frequency response areas, to both
characterize individual units and determine tonotopic gradients. The latter
were used to confirm the cortical field in which the recordings were made.

Stimuli were delivered using Tucker Davis Technologies System 3 dig-
ital signal processors systems and were presented to anesthetized animals
through customized pairs of Panasonic RPHV297 earphones attached to
plastic otoscope speculae inserted into the ear canals. The earphones
were closed-field calibrated using an Ys-inch condenser microphone
(Briiel and Kjeaer). In the awake ferrets, stimuli were presented in the
free field in the same anechoic room via an Audax TWO26MO0 speaker
(Audax Industries) located ~80 cm from the animal’s head at 30° con-
tralateral to the recording chamber. The speaker was calibrated using a
Va-inch condenser microphone (Briiel and Kjer) placed near the posi-
tion of the ferret’s head within the recording setup. The speaker and
headphone calibrations were used to create inverse filters to ensure that a
flat (£5 dB) output was produced from 100 to 24,000 Hz.

In the electrophysiological studies, vowel sounds were presented in
isolation, at a rate of 1 s L. In the behavioral experiments, vowels were
presented in pairs, with a fixed “reference” f, followed by a 50 ms silent
interval and then a “target” f,. Presenting single vowels in the recording
experiments allowed us to vary which f, we chose as a reference sound in
later analysis. However, for 152 neural units, we instead collected re-
sponses to stimuli presented as reference—target pairs, matching precisely
the stimulus configuration of the psychoacoustic experiments (see be-
low). The responses recorded with vowel pairs were very similar to those
recorded with vowels presented in isolation, i.e., response functions cal-
culated for the second vowel in the pair (the target vowel) also commonly
had either high-pass or low-pass f, tuning characteristics. Two example
responses are shown in supplemental Figure 1 (available at www.
jneurosci.org as supplemental material).

Data acquisition and analysis. The electrophysiological recordings
were bandpass filtered (500—5000 Hz), amplified, and digitized at 25
kHz. Data acquisition and stimulus generation were performed using
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BrainWare software (Tucker Davis Technolo-
gies). Spike sorting was performed offline. Sin-
gle units were isolated from the digitized signal
by either manually clustering data according to
spike features, such as amplitude, width, and
area, or using an automated k-means cluster-
ing algorithm in which the voltage potential at
seven points across the duration of the spike
window served as variables. We also inspected
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electrophysiological recordings. The training
and testing methods are described fully by
Walker et al. (2009). Briefly, ferrets were
trained to lick a central “start” spout. This trig-
gered the presentation of a pair of artificial
vowel sounds. The first vowel was a reference
sound and was held at a fixed f, for each weekly
testing run. The second vowel was a target and
was either higher or lower in f; than the refer-
ence. The animal’s task was to respond to a spout located to the right of
the central spout when the target vowel was higher in pitch and to a spout
located to the left of the start spout when the target had a lower pitch then
the reference. Animals were water restricted during the testing period
and received a water reward when they responded correctly. If the animal
made an incorrect choice, then this was signaled by a brief burst of
broadband noise and a 14 s timeout. After an incorrect response, the
ferret received a correction trial in which an easier target in the same pitch
direction was presented. Correction trials served to prevent an animal
from developing a bias toward a preferred response direction and were
repeated until an animal made the correct response but were excluded
from subsequent analyses. Plots of the proportion of trials in which the
animal responded at the right spout as a function of the log of the
target f, were sigmoidal in shape and approximated a cumulative
Gaussian function. Therefore, psychometric curves were estimated by
fitting cumulative Gaussian distributions to the data using probit gener-
alized linear models. The maximum slope of the psychometric func-
tion was used to quantify performance.

Figure1.

Results

Single-neuron periodicity sensitivity

We recorded responses of ferret auditory cortical neurons to ar-
tificial vowel sounds that varied in fundamental frequency ( f;).
The power spectra of three example vowels are shown in Figure
1A. We recorded from five anesthetized animals and one awake,

Stimuli and neural responses. A, Amplitude spectra of three example vowel sounds with their fundamental frequency,
fo, hich determines the perceived pitch, indicated. B, , Spike raster plots showing the responses of two units to 150-ms-long
artificial vowel sounds with different f; values. D, E, Spike rate functions (mean == SEM, calculated over 150 ms beginning at
stimulus onset) for these two units. Typically, f,-sensitive units responded to increasing f, with a decrease (as in B and D) or
increase (Cand E) in spike rate rather than being tuned to a specific value. The unitin B was a small multiunit recorded in field PSF,
and the unit in Cwas a single unit recorded in field PSF. Both units were recorded in anesthetized animals.

passively listening animal (see Table 1). The responses of 744
single units and small multiunit clusters were analyzed from two
core and three belt areas of auditory cortex. Recordings were
assigned to cortical fields on the basis of their pure-tone tuning
characteristics and location on the ectosylvian gyrus (Bizley et al.,
2005). All the data from the awake ferret were obtained from Al,
whereas recordings were performed from all five fields under
anesthesia (Table 2). Fifty-five percent of recordings were from
single units, but, because we observed no clear differences be-
tween the periodicity sensitivity of neurometric functions for the
single units and multi-neuron clusters (Wilcoxon’s rank sum test
for single neuron vs multiunit neurometric slope, p = 0.26, across
all units; identical tests separating units into their respective cor-
tical fields yielded p values of >0.1) or between awake and anes-
thetized recordings (Wilcoxon’s rank sum test, p = 0.34), data
were combined across these groups.

Sensitivity to f, was tested using both regression analysis and
ANOVA. A regression analysis of stimulus f, on spike count (cal-
culated over 150 ms beginning at stimulus onset) was performed
for each unit, and, if significant ( p < 0.05), the sign of the regres-
sion slope was used to classify each as high-pass or low-pass for f,,.
Thirty-seven percent of recordings had significant slopes, of
which half (49.7%) were classified as low pass and half (50.3%) as
high pass. To determine whether other neural units might exhibit
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a non-monotonic sensitivity to f,, we also tested the relation be-
tween f, and spike rates with a one-way ANOVA. Another 12% of
neural units were found to have their spike rate modulated by f,
in this manner, and two examples can be seen in supplemental
Figure 2 (available at www.jneurosci.org as supplemental mate-
rial). This class included nonlinear high-pass and low-pass
units, as well as a small number whose responses were band-
pass tuned or varied in a more complicated manner with f,. All
driven units were included in subsequent analysis, regardless
of whether they were classified as being significantly modu-
lated by stimulus f,.

We assessed the sensitivity of our units to the periodicity of
vowels and then compared this sensitivity with the performance
of ferrets in discriminating the direction of f, changes in the same
sounds. Periodicity-sensitive neurons were located in all five
sampled cortical fields and spanned the whole range of possible
pure-tone characteristic frequencies (supplemental Fig. 3, avail-
able at www.jneurosci.org as supplemental material). Represen-
tative examples from two such units are shown in the raster plots
in Figure 1, Band C. The first fired robustly in response to sounds
with an f; lower than ~900 Hz, but its response declined rapidly
and monotonically for f, values >1000 Hz (Fig. 1B). In contrast,
the unit in Figure 1C increased its firing rate when f, was >1200
Hz. The spike rates (=1 SEM) for these two units are shown in
Figure 1, D and E.

Psychophysics

Five ferrets were trained in a task (described above) in which they
heard two vowel sounds and were required to report whether the
second (target) sound was higher or lower in pitch than the first
(reference) sound (Walker et al., 2009). Two observations indi-
cate that the animals solved this task by judging the pitch of the
target sound rather than using other cues such as spectral or
harmonic density. First, these animals immediately transferred
pitch discrimination learning from a task using artificial vowel
sounds to one using pure tones, which have very different spectral
density (Walker et al., 2009). Second, two animals were also
tested with artificial vowels generated from temporally “jittered”
(i.e., randomized) click trains. Increasing temporal jitter disrupts
the periodicity of the sound, thus reducing pitch salience but
leaving the spectral density of the stimulus unchanged. Temporal
jitter disrupted the ferrets’ f; discrimination performance, sug-
gesting that they indeed responded to the (increasingly less sa-
lient) pitch rather than the (essentially unchanged) spectral
density of the stimuli (supplemental Fig. 4, available at www.
jneurosci.org as supplemental material). A typical psychometric
function from one animal is shown in Figure 2 A. Data from five
animals are pooled in Figure 2 B to illustrate performance across
all reference pitches, and the slopes from each animal’s individual
testing runs are plotted in Figure 2C. The slopes do not vary
significantly as a function of the reference f, within the tested
range (Kruskal-Wallis test, p = 0.077). For the purpose of com-
paring behavioral and neural discrimination measurements,
we defined the “normal” range of behavioral performance as
the 2.5th to 97.5th percentiles of the range we observed in our
trained ferrets. The median value was 34%/octave (Weber
fraction of 0.24), with lower and upper bounds of 18%/octave
(Weber fraction of 0.52) and 64%/octave (Weber fraction of
0.12), respectively.

Neurometric analysis
Having established that auditory cortical neurons are modulated
by the f, of artificial vowels, we sought to examine whether
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these responses might provide the physiological signal on which
ferrets’ pitch discrimination decisions are based. A simple
algorithm was used to estimate the f, discrimination “perfor-
mance” supported by the responses of neural units (“neuromet-
ric” performance), in a manner that could be compared with the
psychometric estimates of f, discrimination measured for ferrets
in our behavioral task. During behavioral testing, animals were
presented with a range of f; values spanning 2 octaves (£ 1 octave
from the reference frequency). Neurometric curves were gener-
ated in a similar manner from the responses of neural units ob-
tained over an f, range of *1 octave, around a particular
reference f,. Because the f; sensitivity of each unit was measured
in Y5-octave steps over an ~3 octave range, we were able to cal-
culate neurometrics over a 2-octave range for each of at least six
different f, reference values. For each reference f,, we calculated
the median spike rate of the responses to 20—40 presentations of
the corresponding artificial vowel stimulus.

We then asked whether the number of spikes evoked by each
individual response to all other vowels in the f, range was greater
than the median response to the reference. Thus, for each target
fo» we obtained a proportion of trials wherein the spike rate re-
sponse exceeded the median response to the reference f,, and this
relative spike count was used by a classifier to “guess” whether the
target was higher or lower than the reference. Responses with
spike counts that equaled the median reference response were
randomly assigned to the “target higher” or “target lower” class
with equal probability. For high-pass units, such as the one
shown in Figure 1C, when the response to the target was stronger
than the median reference response, the classifier guessed that the
target f, was higher than the reference. Conversely, for low-pass
units (Fig. 1 B), a greater target firing rate indicated that the target
was lower than the reference f,. Using this very simple firing rate
comparison to decode each of the observed responses in turn, we
obtained the percentage of “higher” responses our classifier made
for each target sound, which can be directly compared with the
percentage correct scores obtained in our behavioral pitch dis-
crimination experiments.

As with the psychometric curves, neurometric functions were
obtained by fitting cumulative Gaussian curves to the observed
proportions of “higher” responses for each target f,. In this man-
ner, we calculated neurometric functions for each of the 634 neu-
ral units at all possible reference periodicities within the tested
range. Our analysis did not assume a priori that units were either
high pass or low pass. Instead, we computed neurometric func-
tions for each unit twice, once assuming that a greater firing rate
indicated an increase in f, and once with the opposite assump-
tion. The neurometric function with a positive slope was then
selected for additional analysis. Single-neuron neurometric func-
tions derived from spike count values were calculated over 30, 75,
150, and 300 ms response windows. A response duration of 150
ms (beginning at stimulus onset) was found to provide the best
neurometric slopes for most neurons (supplemental Fig. 5, avail-
able at www.jneurosci.org as supplemental material), and there-
fore all neurometric functions reported here calculate spike
counts over this time period.

Figure 2 D shows the neurometric function obtained from the
unit in Figure 1, B and D, for a reference f; of 919 Hz and a
response window of 150 ms after stimulus onset. The neuromet-
ric function obtained for this unit at this reference f, had a slope
of 64%/octave, which is within the normal range of ferrets’ be-
havioral pitch discrimination performance. However, such high
neurometric slopes were only rarely obtained from individual
units. Also, in this instance, a reference f, of 919 Hz lies close to
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the steepest, most informative part of the
fo sensitivity curve of the unit (Fig. 1D).
Selecting reference periodicities increas-
ingly farther away from this value resulted
in a pronounced and systematic decline in
neurometric performance, as illustrated
in Figure 2E.

Only a small fraction (13 of 634) of the
units in our sample had neurometric
functions whose slopes fell within the
trained ferrets’ normal behavioral sensi-
tivity range (i.e., slope between 18 and
65%/octave), and none of our neural
units could match behavioral sensitivity
across the full range of reference f, values
tested. Thus, to distinguish upward from
downward periodicity changes on the ba-
sis of the firing rate of individual cortical
neurons, the ferret’s brain would either
need to select the “best neuron” for the
appropriate periodicity reference or, more
likely, combine information across multi-
ple neurons in the population. Neurons
throughout the CNS typically form diver-
gent and convergent connections with
many other neurons, an anatomical ar-
rangement probably more conducive to
integrating responses across sizeable en-
sembles of neurons than the targeted se-
lection of a few. We therefore developed
neurometric algorithms that combine in-
formation across ensembles of simulta-
neously recorded units to test their ability
to inform sufficiently accurate periodicity
judgments robustly over a range of refer-
ence periodicities.

Ensemble neurometrics

Simultaneous recordings from multiple
neural units (“ensembles”) were obtained
by recording with multisite electrodes
(typically 32 channels, configured as 4 X 8
site linear arrays or 2 X 16 channel linear
arrays; for details, see Materials and Meth-
ods). Our sample of 744 units could there-
fore be grouped into 58 ensembles, each of
which reflects the activity recorded with
one 32-channel array. In some fortuitous
cases, we obtained acoustically driven ac-
tivity at all 32 recording sites and it was
possible to discriminate more than one
spiking unit from many of the recording
sites, whereas at other penetrations only a
few of the recording sites yielded neural
responses. Consequently, the number of
simultaneously recorded units in these
ensembles varied from one penetration to
the next (maximum of 61; mean * SD,
15.3 £ 13.2). Thirty-nine of the 58 re-
corded ensembles were tested across a
wide enough range of stimulus periodici-
ties to analyze performance across multi-
ple reference values, and results from
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Figure2.  Psychometricand neurometric periodicity discrimination performance. 4, Psychometric function from one ferret. The
raw data (crosses) and fitted function (red line) are shown, with the circle indicating the , of the reference sound. This comprised
~900 trials (30 per data point) collected over 10 twice-daily testing sessions. The percentage correct scores for each frequency
were fitted with a cumulative Gaussian, resulting in the plotted psychometric function. B, Psychometric data pooled from five
animals across a range of reference f, values, indicated by the circle plotted in a matching color. €, The slope of the psychometric
function can be used as a measure of performance. Slopes of psychometric functions for five ferrets across a range of reference f,
values. Heavy dashed line indicates the median level of performance with 5% confidence intervals (2.5th and 97.5th percentiles)
indicated from the stippled lines. D, Neurometric function for one cortical unit. Classifications at each target f, are indicated by the
crosses, and the line shows the fitted neurometric function. The slope of this neurometric is 65%/octave. Because this was a
low-pass unit, a trial in which the spike count was higher than the reference signaled that the target f, was lower than the
reference. The “% Responses higher pitch” on the y-axis therefore reflects the proportion of trials in which the spike count was
lower than the median spike count in response to the reference f,. E, Neurometric functions for the same unit across a range of
reference f, values. Each function is colored separately with a matching circle to indicate the value of the reference f,. Note that, as
the reference f, decreases, the capacity of the neural response to discriminate between the target sounds decreases to chance
levels.
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space,” and the average response to a par-

ticular sound can be thought of as the cen-

ter of that cloud. If neural responses to

repeated presentations of the same stimu-

ol ] lus are highly variable, then they scatter

. o Low pitch widely throughout the space (the cloud is
2 diffuse), but if responses are more repro-
ducible, then the region occupied by the
responses will be more compact. The re-
gions of spike rate space occupied by the
responses to stimuli of different f;, might
= be quite distinct, making classification
and stimulus decoding relatively easy, or
they could be partly or wholly overlap-
B ping, making classification more difficult.

. We decoded the response of each en-
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semble in a two-stage process. First, we
asked whether the ensemble activity could
distinguish between the reference and tar-
get sounds. For each presentation of the
target, we asked whether the response on
that particular trial was closer to (i.e., had
a smaller Euclidean distance from) the av-
erage response to the reference or to the
average response to target sounds of the
same f,. If the response to the target was
closer to that of the reference, the two
sounds were deemed to be indistinguish-
able, and such trials were randomly classi-
fied as either higher or lower with equal
probability. More commonly, however,
the response on an individual trial was
closer to other responses to the same tar-
get than to the average reference response,
and the decoding algorithm then made a

493 602 735 245 403

f0 (Hz)

Figure 3.

neurometric of the same 26 units tested over six different reference f, values.

these 39 are reported here. Although the simultaneously recorded
units could come from sites separated on the cortical surface by up to
600 wm, we ensured that these were always within a single cortical
field.

We implemented a novel decoding method in which re-
sponses were classified based on the pattern of activity across each
ensemble. We first calculated the number of spikes in the re-
sponse of each units on each trial over a specified time window
(30, 75, 150, or 300 ms). The array of spike counts across the
ensemble on a single trial could then be described as a point in a
high-dimensional space, in which each dimension corresponded
to the spiking response of each individual unit. Thought of in this
way, the ensemble responses to repeated presentations of the
same stimulus form a “cloud” in this high-dimensional “spike rate

fo (Hz)

Deriving neurometrics from ensembles of neurons. A, Schematic showing the mean spike rates of 26 simultaneously
recorded units in response to a reference f of 919 Hz (middle column) and to f, values one octave below (low) or above (high) the
reference sound. The color scale indicates the spike rate calculated overa 75 ms window. B, The colored diamonds show individual
responses of the same ensemble of 26 units to 30 repetitions of each of the high (red), low (blue), and reference (green) f sounds.
To facilitate visualization, the spike count vectors for these units were projected onto the first two principal components (PC). The
average response to each is represented by the appropriately colored cross. €, Spike rate neurometrics are shown in red for each of
the 26 simultaneously recorded units in the same ensemble. Overlaid in black is the ensemble neurometric computed using our
pattern recognition algorithm. The slope of this neurometric function lies within the range of psychometric performance thresh-
olds for ferrets in this task. The performance of the ensemble also exceeds that of any of the individual units. D, The ensemble

665 10'97 18‘08 high/low periodicity judgment by deter-
mining whether this target response was
more similar to the average response to the
highest target in the f, range or the lowest f,
response (i.e., vowels 1 octave above or be-
low the reference). The proportions of trials
classified in this manner as higher than the
reference f, were then fitted with a cumula-
tive Gaussian function to obtain the ensem-
ble neurometric function.

Figure 3A illustrates schematically the
mean spike rates from one ensemble,
comprising 26 neural units, in response to
a single presentation of the reference
sound and sounds with f, values 1 octave above and below the
reference. It is clear that some units are rather uninformative,
given that their spike rate changes little over the three conditions
shown, whereas others modulate their spike rate appreciably as a
function of f,, as indicated by the change in color. The individual
responses of these same 26 units to 30 presentations of the refer-
ence and the highest and lowest targets are shown in Figure 3B
where, for visualization purposes only, the spike rate vectors are
plotted in principal components space. These data suggest that
the responses should be relatively easily classifiable: the responses
to the high (red) and the low (blue) periodicity sounds are well
separated, and the responses to the reference f, (green) lie be-
tween the two. Figure 3C shows, in black, the neurometric curve
for this ensemble of 26 units, overlaid on the neurometrics ob-



5084 - ). Neurosci., April 7, 2010 - 30(14):5078 -5091

2500
2000
= 1500
>
o
© 1000
500
5 15 25 35 45 55
Slope (% / octave)
B
70
i<
>
@)
o

5 15 25 35 45 55
Slope (% / octave)

Figure 4.  Distribution of slopes of the neurometric functions. 4, Distribution of individual
unit neurometric slopes (all units, all reference £, values). B, Distribution of ensemble neuro-
metric slopes (all ensembles, all reference £, values).

tained for each individual unit in the dataset (shown in red). The
slope of the ensemble neurometric exceeds that of all of the indi-
vidual neurometric functions (ensemble neurometric, 50.5%/oc-
tave; individual unit neurometrics, mean of 14%/octave,
maximum of 37%/octave) and lies within the normal range of
psychometric function slopes for this task.

Ensemble neurometrics are more sensitive and robust across
a wider range of stimulus parameters

Figure 4 shows the distribution of slopes computed using indi-
vidual unit neurometrics (A) and population neurometrics (B).
The mean individual unit neurometric performance is 4.6%/oc-
tave, with only 3.8% of units having slope values that exceeded
the lower limit of performance we observed in trained ferrets
(slopes >18%/octave). In contrast, the mean ensemble neuro-
metric slope is 16.3%/octave, and approximately one-third
(35.2%) of all groups of simultaneously recorded units yielded
neurometric curves that fell within the behavioral range.

We also examined how well our ensembles performed relative
to individual units across a range of reference f, values. Figure 3D
plots the ensemble neurometric functions across reference f, for
the same set of 26 units shown in Figure 3A. This sample ensem-
ble gave a particularly stable neurometric performance. In gen-
eral, the ensemble neurometrics were less affected by changes in
the reference f, than individual unit neurometrics (compare with

Bizley et al. @ Neural Correlates of Periodicity Perception

Fig. 2E). To assess this, we took a robust encoding of stimulus f,
to mean that the neural sensitivity, as assessed by the slope of the
neurometric curve, should reach or exceed the “minimal psycho-
physical performance criterion” for a wide range of reference f,
values. The minimum behavioral criterion here corresponded to
a neurometric slope of 18%/octave, corresponding to the 2.5th
percentile of the slopes of the observed psychoacoustic functions.
Twenty-five of our neural ensembles yielded neurometrics that
reached the behavioral criterion for at least some reference f,
values. For these 25 ensembles, we simply counted the number of
reference f, values for which either the ensemble neurometric or
the neurometrics of any of the individual units exceeded the 18%/
octave criterion. Ensemble neurometrics yielded exceeded the
behavioral criterion for a larger number of reference f, values
than single neuron neurometrics in 22 of these 25 ensembles. In
the remaining three ensembles, the count was equal. In no case
did single units yield supra-criterion neurometrics over a wider
range of f, reference values than ensembles.

To further demonstrate that the neurometric discrimination
indeed used the pattern of activity across units and was not sim-
ply dominated by one or very few highly selective units, we re-
computed the ensemble neurometrics repeatedly, on each
occasion excluding a different unit. This had a negligible effect on
the resulting neurometrics (i.e., the observed neurometric based
on the whole population always fell within the 95th percentile of
the bootstrapped values based on ensembles made by excluding
one neuron). Two examples are shown in supplemental Figure 6
(available at www.jneurosci.org as supplemental material). As an
additional control, we also tested ensembles in which the best
unit was excluded from the ensemble, then the top two units, the
top three, and so on (supplemental Fig. 7, available at www.
jneurosci.org as supplemental material). This revealed a gradual
decrease in performance consistent with ensemble neurometric
performance being based on the distribution of activity across a
number of units rather than merely reflecting the performance of
just the best unit.

Reading the code: alternative neural response measures
Potentially, several aspects of the neural discharge patterns could
carry information. So far, we have only considered spike rate.
Neural responses to different f, values tended to show similar
discharge patterns, but sometimes differed in their onset latencies
(Fig. 1B, C). We therefore investigated whether the relative tim-
ing of spikes across the ensemble carried information about stim-
ulus f,. For each ensemble, we extracted the first time a spike
occurred, across all units, after the stimulus onset. We then com-
puted the first spike latency of all other units relative to this first
ensemble spike. In this manner, we obtained vectors of relative
spike latencies for the ensemble, which were then decoded using
the same pattern-matching algorithm described for spike counts.
Spikes were considered across different response durations (30,
75, 150, or 300 ms), beginning at stimulus onset. Trials in which
a unit failed to fire at any point during the response window were
assigned a latency value that was 1 ms greater than the maximum
response duration under consideration. We also considered a
reduced spike count code, which simply asked whether or not a
spike occurred during the response window. This was essentially
a binary “spike or no-spike” code. A final, fourth code repre-
sented ensemble responses by the order in which the units fired.
All of the spike latencies occurring within a trial were ranked, and
these ranks were used as the input to the decoder.

The choice of code made very little difference to the slope of
the neurometric functions. Figure 5 shows the four alternative
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with relative latency, 24% with reduced
spike count, and 16% with the spike-order
code. When the slope values are compared
at this duration (supplemental Fig. 5B,
available at www.jneurosci.org as supple-
mental material), those units that per-
formed best with the relative latency code
had significantly greater slopes than those
performing best with the spike count code
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Combined count and latency coding

To examine the extent to which these cod-
ing strategies were redundant, we also
considered a code that used both spike
count and relative latency information.
Joint count/latency ensemble decoding
was performed by first normalizing the
relative latency and spike count values
separately to their maximum and then us-
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classifier. Each neuron in the ensemble is
therefore represented by a 2N-element
vector, containing N normalized spike
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(spike count and latency values were sep-
arately normalized to the maximum
count or latency observed across all trials
and units in the ensemble). This joint
code produced a small but significant im-

0 0 0 provement in performance when com-
303 05(2|_? ) 919 528 f09(1|'s|;) 1599 230 f04(0|—(|) ) 696 pared with either the spike count or
f 4 z z relative latency code alone, indicating that

s SPike rate

— relative latency
= reduced spike count
r— spike order

Figure 5.

codes (shown in green, blue, red, and magenta, respectively).

ensemble neurometrics along with their single-unit neurometrics
from nine example ensembles. These nine represent three of the
best (Fig. 5A-C), three average (Fig. 5D-F), and three of the
worst (Fig. 5G-I) ensembles in our dataset. Supplemental Figure
7 (available at www.jneurosci.org as supplemental material)
shows, schematically (as in Fig. 3A) the behavior of three different
ensembles (comprising 35, 3, and 26 units, respectively) when
decoded with each of the four neural codes.

The “best code” for each ensemble was defined as the response
code that resulted in the steepest neurometric function. Across all
penetrations, response durations, and reference periodicities, the
best code was distributed relatively equally between the four can-
didate codes (spike count, 298; relative latency, 289; binary
count, 291; spike order, 246), and there were, overall, no signifi-
cant differences in the sensitivity (i.e., average neurometric slope)
between these alternative codes (Kruskal-Wallis test, p = 0.077).
However, if only the longer response durations were considered,
then there were small but statistically significant differences in the
performance of each of the decoding strategies (Kruskal-Wallis
test, p < 0.0001). For example, with a 150-ms-wide response win-
dow, 32% of units performed best with the spike count code, 28%

Exploring alternative neural codes. A-I, Nine examples of ensemble neurometric functions obtained using different
decoding strategies. A-C represent three of the best performing ensembles, DF lie in the midrange of performance, and G-/ are
some of the more poorly performing examples. In each case, individual unit spike-rate neurometrics are plotted in gray, with the
colored lines illustrating the ensemble neurometric derived from the spike rate, relative latency, reduced count, and spike order

both codes carry independent informa-
tion (Kruskal-Wallis test for slope values
at 150 ms, p < 0.01; Tukey—Kramer post
hoc comparisons, p < 0.05 for both joint
code-count and joint-latency compari-
sons). Figure 6 A illustrates this by show-
ing the average (and the 25th and 75th
percentile) performance for ensemble
spike count, relative latency, and the joint
count/latency codes. For all three (combined, count, and relative
latency) codes, performance initially increases equally rapidly as
the response window is increased from 10 ms but then reaches a
maximum near 75 ms. The joint code provides ~10% better
periodicity discrimination than either the spike count or relative
latency codes by themselves. A two-way ANOVA showed signif-
icant effects of both response duration and code type (response
window duration, F = 104, p < 0.0001; code choice, F = 18.0,
p < 0.0001). Additional analysis of the effect of response window
length on all four codes is included in supplemental Figure 5, C
and D (available at www.jneurosci.org as supplemental material).
The proportion of ensemble-reference combinations that ex-
ceeded the behavioral threshold was calculated for each of the
four codes and the joint count-latency code (Fig. 6 B).

Correlated firing can limit performance

Correlations in neural responses have been shown previously to
limit neurometric performance in some cases (Zohary et al.,
1994; Walker et al., 2008) and to improve it in others (Wang et al.,
2007). To examine the effects of “noise correlations” (i.e., corre-
lated background activity) on performance, we recomputed the
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Figure 6. A, Joint count and relative latency coding. Average neurometric performance as a
function of the analysis time window (time after stimulus onset) is shown for all ensembles at all
reference periodicities. Additional response time windows were considered for the relative
latency, spike count, and joint codes to explore the timescales over which each code became
informative. The saturated lines show the mean, and the faint, unsaturated lines show the 25th
and 75th percentiles. Values for the spike count code are plotted in green, the relative latency
code in blue, and the joint spike count/relative latency code in red. B, Proportion of ensemble—
reference combinations that exceed the minimum behavioral threshold of 18%/octave for each
code type. The proportion of ensembles that exceeded this level with any code (including the
joint count—latency code), spike count (C), relative latency (RL), reduced count (RC), spike order
(0), and joint count—latency code (JCL).

ensemble neurometrics after randomizing (i.e., shuffling) the or-
der of stimulus presentations independently for each unit in an
ensemble, so that any correlations in neural responses that might
be attributable to common fluctuations in background activity
were removed. This procedure was repeated 100 times, and the
5th and 95th percentiles of the shuffled neurometric slopes were
used to estimate significance limits. Figure 7, A and B, illustrates
the results of performing this shuffling procedure on two ensem-
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Figure7.  Effects of correlated noise and response duration on neurometric functions. 4, B, Neu-
rometric functions from two ensembles, before (black lines) and after shuffling of the responses
to desynchronize the ensemble response (gray regions indicate 5th to 95th percentiles of the
shuffled responses). 4, An example in which the ensemble neurometric curves derived from
asynchronously recorded responses were slightly steeper (5th percentile bootstrapped slope,
45.5%/octave; 95th percentile, 55.2%/octave) than that obtained from the synchronous re-
cording (43.2%/octave), indicating that correlated noise in the neural ensemble limited perfor-
mance by a small, but significant, amount. B, A more extreme example, in which removing the
noise correlations markedly increased performance (simultaneous recording slope, 50.4%/oc-
tave; 5th percentile bootstrapped slope, 67%/octave; 95th percentile, 78%/octave).

bles in which the neurometric curves derived from shuffled data
were steeper than from the synchronized data.

In total, 20.9% of comparisons (based on 39 penetrations and
all reference f, values tested) showed a significant limiting effect
of correlated noise (i.e., the neurometric computed from the si-
multaneously recorded ensemble had a slope value that was
smaller than the fifth percentile of the shuffled data). These shuf-
fling effects were found in 21 of our 39 ensembles and occurred
across several reference periodicities. In contrast, only 5.8% of all
shuffled versus synchronized neurometric comparisons yielded a
significant decrease in their slopes when the responses were shuf-
fled, and these changes were smaller on average. In comparisons
in which shuffling significantly impaired neurometric perfor-
mance, the average difference between shuffled and synchronized
neurometric slopes was 4.8%/octave, but ensembles that pro-
vided better neurometrics when shuffled showed an 11.9%/oc-
tave slope increase. An identical analysis performed on ensembles
decoded with a relative latency code yielded quite different re-
sults: whereas 12% of ensemble—reference combinations showed
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crease with ensemble size and then as-
ymptote (Fig. 8A,B for spike count and
latency, respectively). Figure 8, C and D,
shows the same data but focuses on the
smaller subpopulation (n < 20), plotted
relative to the best unit in the population
and in E and F, plotted as improvement in
slope, relative to the average unit perfor-
mance. It is clear from these figures that
even small subpopulations can substan-
tially improve on the average unit perfor-
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Figure8. A-D, Slopes of neurometric functions derived from subsets of increasing size for all ensembles of >10 units in total.
The average performance of all possible subsets of a given size, or 500 randomly chosen ones, are plotted. The black diamond
symbols plot the best individual unit neurometric in each ensemble. In 4 and (, ensemble activity is decoded with a spike count
code and Band D with a relative latency code. Cand D represent the same data in A and B but focuses on ensembles of <<20 units.
In E and F, the effect of population size is represented by plotting the increase in ensemble slope relative to the average unit
neurometric. Ensemble activity in E is decoded with the spike count code and F with the relative latency code.

a significant limiting effect of noise, a far greater proportion of
ensembles (57%) showed a significant decrease in performance
after shuffling compared with the synchronous case. Ensemble—
reference combinations that had better spike count neurometric
performance when shuffled always also showed better perfor-
mance when their relative latencies were shuffled. Most of the
cases that showed a limiting effect of noise correlations for rela-
tive latency decoders also showed this effect with spike count. The
largest differences between the effects of shuffling on spike count
and relative latency decoding were in the number of populations
that decreased in slope when responses were decorrelated and the
magnitude of this effect, which was greater (—10.8% compared
with 4.8%) for spike count. The effect of noise correlations on
both codes for smaller sub-ensembles is considered in supplemen-
tal Figure 8 (available at www.jneurosci.org as supplemental
material).

Ensemble size

We considered how neurometric performance was affected by
ensemble size. To do this, we recalculated the neurometric slopes
from increasingly large subsets of simultaneously recorded units.

Subpopulation Size

mance and that the improvement with
increasing population size is rapid.

Ensemble activity encodes periodicity
across a range of sound intensities
Perceptual features of sound tend to vary
little with sound level, and, during our be-
havioral testing of periodicity discrimina-
tion, sound levels roved randomly over a
15 dB range. Any neural code capable of
supporting this discrimination behavior
should therefore be capable of operating
over a similar range of sound levels. In a subset of recordings (7
ensembles, 81 units), we presented vowel stimuli at three sound
levels (65, 75, and 85 dB SPL), allowing us to examine how robust
the neural representation of f; is when sound levels change. For
each of these seven ensembles, we constructed neurometric func-
tions at the best reference periodicity and sound level of each
ensemble (i.e., the combination of level and f; that produced the
steepest slope value). Six ensembles had slope values above the
lower bound of the behavioral range (i.e., >18%/octave) and
were therefore analyzed further. For each of these ensembles, we
then constructed neurometric functions from all of the re-
sponses, pooling across all three sound levels at each f, value. We
compared the slope of this neurometric function with that ob-
tained with the best f;—level combination.

The two ensembles with the steepest neurometric functions
(47.2 and 49.0%/octave, respectively) performed similarly when
sound levels varied across this 20 dB sound level range (mixed
sound level neurometrics were 46.9 and 50.3%/octave, respec-
tively, i.e., performance was 99.4 and 102.7% of the best single
level neurometric). Two ensembles showed only very modest de-
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Figure 9.  Periodicity discrimination across varying sound levels. Ensemble (black line) and
unit (gray lines) neurometric functions for periodicity discrimination at 85 dB SPL (4), 75 dB SPL
(B), 65 dB SPL (€), or mixed (65— 85 dB SPL; D) sound levels. Ensemble neurometrics robustly
encode periodicity information across this range of sound levels.

creases in performance when three sound levels were introduced
(from 44.3 to 37.1%/octave and 42.7 to 38.3%/octave, i.e., per-
formance with randomized sound intensity was 83.8 and 89.7%
of their best intensity slope value). Of the remaining two ensem-
bles, one dropped from 26 to 16%/octave and the other from 32
to 5%/octave. Very similar results were observed with the relative
spike latency code: the mixed-level neurometric slope values were
86 * 10% (mean * SD) of the best periodicity—level combina-
tions, across the six ensembles.

In contrast, single-unit neurometrics were much more heavily
affected by changes in sound level. Of the 72 units that comprised
these six ensembles, 10 had slopes at their best sound level—peri-
odicity combination that exceeded 20%/octave (mean of 30 =
5%/octave). For these units, the mixed-level neurometric slope
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Figure 10.  Ensemble neurometrics. A, Neurometric function slopes for each of the 58 en-
sembles at all reference periodicities using the relative latency code and a response window of
75 ms. Ensembles from different cortical fields are shown using different symbols. The mean
psychometric performance of four ferrets is overlaid in black, whereas the dotted lines mark the
20-70%/octave range within which the psychometric function slopes are normally found.
B, Box plot illustrating the range of slopes obtained in each cortical field. The average slope
(across all reference periodicities) for each penetration was used to examine inter-area differ-
ences. Total ensembles in each cortical field: A1, 10; AAF, 6; PPF, 10; PSF, 6; ADF, 7.

value was on average only one-third (33.5 = 33.2%, mean * SD)
of that at the best periodicity—level combination. There were only
two neurons whose slope value for the mixed sound level neuro-
metrics was >75% of the best-level neurometric, and both of
these had a very modest slopes to begin with (23 and 27%/octave,
i.e., only just above our lower threshold). Figure 9 illustrates the
neurometrics from one ensemble and each of its units, at each of
the three sound levels (A—C), calculated across the three sound
levels (D). Overall, the ensemble performance is substantially
more robust to changes in sound level than single-unit perfor-
mance, whether ensembles are decoded using spike counts or
relative latencies.

Distribution of ensemble performance across cortical fields
Figure 10 A plots the slopes of the neurometric functions for all 39
ensembles, at each f; tested, using the relative latency code and a
response window of 75 ms. Also shown for comparison are the
mean and range of psychometric performance from the five
trained ferrets. Across the full range of reference f, values, neural
ensemble neurometrics are often within the range of the behav-
ioral performance of the ferrets. At most reference frequencies,
some ensemble neurometric functions were as steep as the best
psychometric functions.

Ensembles from different cortical fields are plotted with dif-
ferent symbols in Figure 10 A, showing that all five fields contain
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ensembles that represent sufficient information about f, to ac-
count for the behaviorally assessed perceptual decisions. Figure
10 B illustrates the distribution of neurometric slopes (across all
reference f, values) for penetrations in each of the cortical fields.
Figure 10, A and B, suggests a trend for field PSF to be the most
informative area for periodicity-direction discrimination, but
this trend was not statistically significant ( p = 0.058, Kruskal—
Wallis test). However, a sample of 39 ensembles may not be large
enough to reveal possible subtle inter-area differences. This issue
is addressed in more detail in supplemental Figure 10 (available at
www.jneurosci.org as supplemental material).

Distribution of ensemble performance through cortical depth
Because recordings were made with multisite silicon electrodes,
we often sampled across multiple cortical depths at the same
time. Previously, we demonstrated that units recorded in super-
ficial cortical layers had a higher pitch sensitivity than those re-
corded in deeper layers (Bizley et al., 2009). To examine whether
the ability of neurons to encode the direction of a pitch change
varied across cortical depth, recording sites were divided into
“superficial” and “deep” locations according to whether they
were within 800 wm of the cortical surface. This depth marks the
approximate location of the ventral border of layer IV of the ferret
auditory cortex (Dahmen et al., 2008). We compared the single-
unit neurometric slopes of superficial and deep units. There was
no statistically significant difference between the neurometric
slopes of deep and superficial layers (Wilcoxon’s rank sum test,
p = 0.1244). We then divided all ensembles into two sub-
ensembles comprising only superficial/deep units and computed
ensemble neurometric functions (with spike counts calculated
over a 75 ms window). Again, the superficial and deep ensemble
neurometrics were not significantly different ( p = 0.76, Wilcox-
on’s rank sum test), and there was no difference between the
slopes derived from either subgroup and the full ensemble slope
(p = 0.19, Kruskal-Wallis test). We repeated this procedure
while decoding responses with the relative timing measure and
this time found that the slopes differed significantly across layers
(Kruskal-Wallis test for slope values from the full ensemble, su-
perficial, deep, p = 0.038). Post hoc tests showed that this differ-
ence was based on the comparison between the full ensemble
slope and the neurometric slopes of the deep units, in which the
latter were significantly shallower.

Alternative decoding methods
We tested a range of methods for decoding individual unit and
ensemble responses in addition to those reported above. Unit
responses were also decoded with pattern recognition algorithms
(using methods similar to those reported by Walker et al., 2008),
but these did not differ quantitatively from simple spike count
measures. Ensemble responses were also decoded using linear
discriminant analysis, a simple perceptron learning model, a dot-
product classification (which classified responses along vectors
that pointed from the responses to the reference to the target
directions), and, finally, using the Euclidean pattern-matching
algorithm described but using either transformed (cube-rooted)
spike counts or spike counts summarized using principal com-
ponents analysis. These methods are conceptually similar to the
algorithm we used to obtain the results described above, and they
generally yielded very similar, although typically slightly worse,
results.

We considered one last decoding strategy motivated by our
finding that we were unable to distinguish between the possibil-
ities that ferrets compared the target and reference sounds on
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each trial or, alternatively, built up an internal representation of
either the reference or the highest and lowest targets and then
compared individual target sounds with this internal representa-
tion (discussed by Walker et al., 2009). We therefore assessed
neurometric performance for ensembles while excluding the first
stage of the decoding strategy (i.e., we did not first ask whether
the response to the target f, was differentiable from the response
to the reference sound). Omitting this step produced a significant
decrease in performance (paired ¢ test, p << 0.01). However, the
magnitude of these differences was very small, with only 5% of
ensembles neurometrics having slope values for the single step
algorithm that were >8%/octave poorer than the two-step algo-
rithm. We reported findings based on the two-step algorithm
because it was slightly more effective than omitting this first stage,
but our results do not substantially differ when we use the one-
step method or any of the other alternative neurometric algo-
rithms mentioned above. For individual neurons and ensembles,
there were often occasions in which one of the alternative meth-
ods was at least as successful as those we ultimately used. Thus,
overall, the simple two-step neurometric approach described
produced better results (i.e., steeper neurometric slopes) than the
alternatives tested.

Discussion

We recorded responses to artificial vowel sounds of varying pe-
riodicity in five auditory cortical fields and compared them with
the performance of ferrets trained to discriminate the pitch of
these sounds. Temporal acuity decreases above the cochlear nucleus
with a progressive increase in a rate-based representation of tempo-
ral information, including stimulus periodicity, at higher levels of the
auditory pathway (Wang et al., 2008). The importance of auditory
cortex in pitch extraction is illustrated by human imaging studies
showing cortical activation by pitch-evoking sounds (Patterson
et al., 2002; Penagos et al., 2004). Moreover, cats with bilateral
auditory cortex lesions are impaired in a missing-fundamental
pitch task (Whitfield, 1980).

We used neurometric techniques to compare the discrimina-
tion performance afforded by single units and ensembles of si-
multaneously recorded units with that of trained ferrets in a
periodicity discrimination task. The f, spike rate functions of a
few individual neurons provided sufficient information to ac-
count for the animals’ discrimination judgments but only over a
very limited range of periodicity values. However, the response
patterns of small ensembles of simultaneously recorded neu-
rons typically discriminated stimulus periodicity with greater
accuracy and over a wider range of values than those of indi-
vidual neurons. Furthermore, ensemble codes for the vowel f,
were robust to changes in sound intensity and could be read
out in at least four alternative ways, based on either spike
count or relative latencies.

To decode ensemble responses, we implemented a pattern
classification algorithm that took, as its input, one of four differ-
ent spike summary statistics: spike count, relative spike latency, a
reduced “binary” response code, or a first-spike-order code. Sim-
ilar Euclidean-distance-based metrics have been used previously
to decode activity patterns of individual neurons and ensembles
recorded either nonsimultaneously (Schnupp et al., 2006; Engineer
etal., 2008) or simultaneously (Walker et al., 2008). We also tried
other classification algorithms, most of which did not sub-
stantially alter the performance of the ensembles. Other stud-
ies have emphasized the potential role of spike latency codes
(deCharms and Merzenich, 1996; Jenison, 2000; Thorpe et al.,
2001; Van Rullen and Thorpe, 2002; Johansson and Birznieks,
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2004; Nelken et al., 2005; Gollisch and Meister, 2008). However,
attempts to examine ensemble coding have either focused on
pairs of simultaneously recorded units or simulated ensemble
activity from single-unit recordings. Here we recorded simulta-
neously from sizeable ensembles of neurons, allowing us to test
different population coding strategies in the presence of real neu-
ral correlations.

The neurometric performance of ensembles, whether based
on spike counts or latencies, was often within the normal range of
ferret psychometric performance in our pitch discrimination
task. However, spike count and latency codes were not entirely
redundant, because a joint count-and-latency code performed
~10% better than the codes based on either spike count or la-
tency alone. Previous studies of auditory cortex have shown that
optimal decoding might be achieved with a combined spike
count and mean response latency code (Nelken et al., 2005), by
patterns of spikes across an ensemble (Furukawa et al., 2000), or
by combining information about the precise temporal pattern of
spiking relative to the phase of ongoing oscillations (Kayser et al.,
2009). We believe this to be the first time, however, that a relative
spike latency code has been compared with psychophysical per-
formance in the same species.

The finding that combining spike count and relative latency
information provided the most accurate way of inferring stimu-
lus periodicity from neuron ensembles is consistent with recent
evidence for “multiplexing” of neural codes in monkey auditory
cortex (Kayser et al., 2009). These authors found that the com-
bined information available from pairs of well separated neurons
was complementary and essentially independent. Although we
did not investigate low-frequency oscillations, it would be inter-
esting to examine whether the relative timing of action potentials
and the local field potential might provide additional informa-
tion. One potential problem for decoding relative latencies across
neural ensembles is the possibility that spike times might be
erroneously measured relative to spontaneous, rather than
stimulus-evoked, events. Information about spike timing relative
to the power and phase of the local field potential might allow
such occasions to be disambiguated.

Relative timing codes could provide a biologically plausible
mechanism for reading out ensemble activity, enabling rapid re-
sponse times (Van Rullen and Thorpe, 2002; Johansson and
Birznieks, 2004; Masquelier et al., 2008), because there is no re-
quirement to integrate or count spikes over a particular time
window. However, we found that spike count and latency-based
ensemble decoding allowed equally rapid and accurate periodic-
ity judgments, reaching optimal performance within 75 ms of
stimulus onset. These population response integration times are
also shorter than the optimal response window required for sin-
gle units, which was found to be 150 ms. Combining information
across neurons therefore allowed information to be decoded
more rapidly. The finding that the combined count-latency code
only exceeds either code alone from 50 to 75 ms suggests that the
information in each evolves over a similar timescale. Relative
latency and rank-order coding could both be achieved physiolog-
ically via shunting inhibition (Thorpe et al., 2001). However, it is
interesting to note that our spike-order code performed more
poorly than the relative latency code, suggesting that the actual
spike times are more informative than simply the order in which
the neurons fired.

Inboth human listeners (Moore, 2004) and our trained ferrets
(Walker et al., 2009), pitch discrimination judgments are unaf-
fected by large trial-to-trial fluctuations in sound intensity. Any
neural correlate of this discrimination task should therefore show
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a similar invariance across sound levels. However, both firing
rates and spike latencies tend to change systematically with sound
level (Heil, 1997a,b), implying that neural coding of f;, might not
be level invariant. Nevertheless, we found that ensemble re-
sponses to sounds that vary in both f, and intensity can be accu-
rately decoded using either spike counts or relative latencies. The
presence of approximately equal numbers of neurons that mono-
tonically increase or decrease their firing rates with increasing f,
could help to generate an ensemble periodicity representation
that is invariant across sound level. Within a neural population, a
change in sound intensity will likely alter the absolute number of
spikes but not the pattern of activation across balanced popula-
tions of high-pass and low-pass neurons, allowing information
about stimulus f, to be disambiguated from changes in sound
level.

Our finding that correlated noise can impair performance
when decoded with a spike count code, even in small ensembles
of simultaneously recorded neurons, supports previous work
demonstrating that weak correlation between neurons can limit
the coding capacity of a neuronal pool (Zohary et al., 1994). In
contrast, the predominant effect of decorrelating responses when
decoded with a spike latency code was for performance to decline.
This suggests that trial-to-trial correlations enhance this relative
latency code. It is possible that selecting the optimal combination
or differential weighting of neurons within the pool might im-
prove performance even further, but such analyses were not at-
tempted here.

Based on the location of neurons that were tuned to a partic-
ular periodicity even when the f, was omitted from the spectrum
of the sound, Bendor and Wang (2005) described the presence of
a pitch center in marmoset auditory cortex. We might therefore
expect the optimal ensemble size for representing stimulus peri-
odicity to vary across different fields in ferret auditory cortex.
However, we found that the general sensitivity to f, observed in all
five fields investigated is sufficient to support periodicity discrim-
ination behavior. Stimulus periodicity is one of the key acoustic
determinants of the perceptual quality of pitch. Many spectrally
different sounds can elicit the same pitch percept, and a neural
substrate for pitch perception should show invariance not just to
sound level but also across a range of spectrally different stimuli.
Showing that neurons modulate their firing rates in response to
changes in periodicity and that these changes correlate with psy-
chophysical performance is not, by itself, sufficient to demon-
strate pitch selectivity. Nevertheless, our data suggest that
sensitivity to one of the key determinates of pitch is distributed
throughout auditory cortex.

Simultaneous recordings of neural responses and behavioral
measurements would show more directly that the neural coding
strategies explored here are actually used by the brain as it solves
perceptual tasks. Such studies have been performed successfully
in other sensory modalities. For example, Luna et al. (2005)
found that vibrotactile stimuli could be discriminated on the
basis of five different neural codes but showed, using trial-to-trial
correlations between neuronal responses and behavior, that only
a spike count code could account for the animals’ discrimination
ability. Although there is evidence that behavioral context does
not alter the tuning of auditory cortical neurons, suggesting that
responses observed in passive listening conditions provide a valid
measure of the representation of sound properties (Scott et al.,
2007), other studies have shown that engaging in a task can sup-
press auditory responses (Otazu et al., 2009) and alter receptive
field structure (Fritz et al., 2003). Examining neural coding and
behavioral discrimination simultaneously in the same animal is
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therefore likely to be essential to our ultimate goal of identifying
the neural basis of perceptual judgments.
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