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Experimentally Observed Network Reorganization in a Brain
Control Task
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It has recently been shown in a brain– computer interface experiment that motor cortical neurons change their tuning properties
selectively to compensate for errors induced by displaced decoding parameters. In particular, it was shown that the three-dimensional
tuning curves of neurons whose decoding parameters were reassigned changed more than those of neurons whose decoding parameters
had not been reassigned. In this article, we propose a simple learning rule that can reproduce this effect. Our learning rule uses Hebbian
weight updates driven by a global reward signal and neuronal noise. In contrast to most previously proposed learning rules, this approach
does not require extrinsic information to separate noise from signal. The learning rule is able to optimize the performance of a model
system within biologically realistic periods of time under high noise levels. Furthermore, when the model parameters are matched to data
recorded during the brain– computer interface learning experiments described above, the model produces learning effects strikingly
similar to those found in the experiments.

Introduction
Recent advances in microelectrode recording technology make it
possible to sample the neural network generating behavioral out-
put with brain– computer interfaces (BCIs). Monkeys using BCIs
to control cursors or robotic arms improve with practice (Taylor
et al., 2002; Carmena et al., 2003; Musallam et al., 2004; Schwartz,
2007; Ganguly and Carmena, 2009), indicating that learning-
related changes are funneling through the set of neurons being
recorded. In a recent report (Jarosiewicz et al., 2008), adaptation-
related changes in neural firing rates were systematically studied
in a series of BCI experiments. In that work, monkeys used motor
cortical activity to control a cursor in a three-dimensional (3D)
virtual reality environment during a center-out movement task.
When the activity of a subset of neurons was decoded incorrectly,
to produce cursor movement at an angle to the intended move-
ment, the tuning properties of that subset changed significantly
more than for the subset of neurons for which activity was de-
coded correctly. This experiment demonstrated that motor cor-
tical neurons may be able to solve the “credit assignment”
problem: using only the global feedback of cursor movement, the
subset of cells contributing more to cursor error underwent
larger tuning changes. This adaptation strategy is quite surpris-

ing, since it is not clear how a learning mechanism is able to
determine which subset of neurons needs to be changed.

In this article, we propose a simple biologically plausible rein-
forcement learning rule and apply it to a simulated 3D reaching
task similar to the task in the study by Jarosiewicz et al. (2008).
This learning rule is reward-modulated Hebbian: weight changes
at synapses are driven by the correlation between a global reward
signal, presynaptic activity, and the difference of the postsynaptic
potential from its recent mean (Loewenstein and Seung, 2006).
An important feature of the learning rule proposed in this article
is that noisy neuronal output is used for exploration to improve
performance. We show that large amounts of noise are beneficial
for the adaptation process but not problematic for the readout
system. In contrast to most other proposed reward-modulated
learning rules, the version of the reward-modulated Hebbian
learning rule that we propose does not require any external in-
formation to differentiate internal noise from synaptic input. We
demonstrate that this learning rule is capable of optimizing
performance in a neural network engaging in a simulated 3D
reaching task. Furthermore, when compared to the results of
Jarosiewicz et al. (2008), the simulation matches the differential-
learning effects they report. Thus, this study shows that noise-
driven learning can explain detailed experimental results about
neuronal tuning changes in a motor control task and suggests
that the corresponding reward modulation of the learning pro-
cess acts on specific subpopulations as an essential cortical mech-
anism for the acquisition of goal-directed behavior.

We consider several of the sections within Materials and
Methods, below, to be crucial to understanding the results.

Received Aug. 14, 2009; revised Dec. 4, 2009; accepted Dec. 7, 2009.
This work was supported by the Austrian Science Fund FWF (S9102-N13, to R.L. and W.M.), the European Union

[FP6-015879 (FACETS), FP7-506778 (PASCAL2), FP7–231267 (ORGANIC) to R.L. and W.M.], and the National Insti-
tutes of Health (R01-NS050256, EB005847, to A.B.S.).

Correspondence should be addressed to Robert Legenstein, Institute for Theoretical Computer Science, Graz
University of Technology, Inffeldgasse 16b, 8010 Graz, Austria. E-mail: legi@igi.tugraz.at.

DOI:10.1523/JNEUROSCI.4284-09.2010
Copyright © 2010 the authors 0270-6474/10/308400-11$15.00/0

8400 • The Journal of Neuroscience, June 23, 2010 • 30(25):8400 – 8410



Materials and Methods
The Materials and Methods are structured as follows. The experiments of
Jarosiewicz et al. (2008) are briefly summarized in the following section,
Experiment: learning effects in monkey motor cortex. Simulation meth-
ods that we consider to be crucial to understanding the Results are given
in the section Simulation. Simulation details that are needed for com-
pleteness, but not necessary for all readers, are given in the section Sim-
ulation details.

Experiment: learning effects in monkey motor cortex
This section briefly describes the experiments of Jarosiewicz et al. (2008);
a more complete description can be found in the original work. To ex-
tract intended movement from recorded neuronal activity in motor cor-
tex, the firing rate of each neuron was fit as a function of movement
direction using a cosine tuning curve (Georgopoulos et al., 1986;
Schwartz, 2007). The preferred direction (PD) of the neuron was defined
as the direction in which the cosine fit to its firing rate was maximal, and
the modulation depth was defined as the difference in firing rate between
the maximum of the cosine fit and the baseline (mean). The monkey’s
intended movement velocity was extracted from the firing rates of a
group of recorded units by computing the weighted sum of their PDs,
where each weight was the unit’s normalized firing rate, i.e., by the pop-
ulation vector algorithm (Georgopoulos et al., 1988). (Note that units
represented either well isolated single neurons or a small number of
neurons that could not be reliably distinguished, but were nevertheless
tuned to movement as a group.)

In the learning experiments, the monkey controlled a cursor in a 3D
virtual reality environment. The task for the monkey was to move the
cursor from the center of an imaginary cube to a target appearing at one
of its corners. Each of the experiments consisted of a sequence of four
brain control sessions: calibration, control, perturbation, and washout.
The tuning functions of an average of 40 recorded units were first ob-
tained in the calibration session, where an iterative procedure was used to
obtain data for the linear regressions. These initial estimates of the PDs
were later used for decoding neural trajectories into cursor movements.
To distinguish between measured PDs and PDs used for decoding, we
refer to the latter as “decoding PDs” (dPDs). In the control, perturbation,
and washout sessions, the monkey had to perform a cursor control task in
a 3D virtual reality environment (Fig. 1 A). The cursor was initially posi-
tioned in the center of an imaginary cube; a target position on one of the
corners of the cube was then randomly selected and made visible. When
the monkey managed to hit the target position with the cursor (success),
or a 3 s time period expired (failure), the cursor position was reset to the
origin and a new target position was randomly selected from the eight

corners of the imaginary cube. In the control session, the PDs measured
during the calibration session were used as dPDs for cursor control. In
the perturbation session, the dPDs of a randomly selected subset of units
(25% or 50% of the recorded units) were altered from their control
values by rotating them 90° around one of the x, y, or z axes (all PDs were
rotated around a common axis in each experiment). In this article, we
term these units “rotated” units. The other dPDs remained the same as in
the control session. We term these units “nonrotated” units. In the sub-
sequent washout session, the measured PDs were again used for cursor
control.

In the perturbation session, the firing behavior of the recorded units
changed to compensate for the altered dPDs. The authors observed dif-
ferential effects of learning between the nonrotated and rotated groups of
units. Rotated units tended to shift their PDs in the direction of dPD
rotation, hence they compensated for the perturbation. The change of
the PDs of nonrotated units was weaker and significantly less strongly
biased toward the direction of rotation than the PDs of rotated units. We
refer to this differential behavior of rotated and nonrotated units as the
“credit assignment effect.”

Simulation
Network model. Our aim was to explain the experimentally observed
learning effects in the simplest possible model. This network model con-
sisted of two populations of neurons connected in a feedforward manner
(Fig. 1 B). The first population modeled those neurons that provide input
to the neurons in motor cortex. It consisted of m � 100 neurons with
activities x1(t), . . . , xm(t) � �. The second population modeled neurons
in motor cortex that receive inputs from the input population. It con-
sisted of ntotal � 340 neurons with activities s1(t), . . . , sntotal

(t). The dis-
tinction between these two layers is purely functional: input neurons may
be situated in extracortical areas, in other cortical areas, or even in motor
cortex itself. The important functional feature of these two populations
in our model is that learning takes place solely in the synapses of projec-
tions between these populations. In principle, the same learning is appli-
cable to multilayer networks. All of the modeled motor cortical neurons
were used to determine the monkey arm movement in our model; how-
ever, only n � 40 of these (the “recorded” subset) were used for cursor
control. The activities of this recorded subset are denoted in the following
as s1(t), . . . , sn(t). The arm movement, based on the total population of
modeled motor cortex neurons, was used to determine the PDs of mod-
eled recorded neurons.

In monkeys, the transformation from motor cortical activity to arm
movements involves a complicated system of several synaptic stages. In
our model, we treated this transformation as a black box. Experimental

Figure 1. Description of the 3D cursor control task and network model for cursor control. A, The task was to move the cursor from the center of an imaginary cube to one of its eight corners. The
target direction y*(t) was given by the direction of the straight line from the current cursor position to the target position. B, Schematic of the network model used for the cursor control task. A set
of m neurons project to ntotal noisy neurons in motor cortex. The monkey arm movement was modeled by a fixed linear mapping from the activities of the modeled motor cortex neurons to the 3D
velocity vector of the monkey arm. A subset of n neurons in the simulated motor cortex was recorded for cursor control. The velocity of the cursor movement at time t was given by the population
vector, which is the vector sum of decoding PDs of recorded neurons weighted by their normalized activities.
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findings suggest that monkey arm movements can be predicted quite well
by a linear model based on the activities of a small number of motor
cortex neurons (Georgopoulos et al., 1989; Velliste et al., 2008). We
therefore assumed that the direction of the monkey arm movement
y arm(t) at time t could be modeled in a linear way, using the activities
s1(t), . . . , sntotal

(t) of the total population of ntotal cortical neurons and a
fixed linear mapping:

yarm�t�� �
i�1

n total

si�t�qi, (1)

where qi � � 3 is the direction in which neuron i contributes to the
movement. The vectors qi were chosen randomly from a uniform distri-
bution on the unit sphere (see below, Simulation details, Determination
of input activities).

With the transformation from motor cortical neurons to monkey arm
movements being defined, the input to the network for a given desired
movement direction y* should be chosen such that motor cortical neu-
rons produce a monkey arm movement close to y*. We therefore calcu-
lated from the desired movement direction suitable input activities by a
linear transformation (see Simulation details, Determination of input
activities below). This transformation from desired directions to input
neuron activities was defined initially and held fixed during each simu-
lation because learning in response to perturbations took place in the
single synaptic stage from neurons of the input population to neurons in
the motor cortex population in our model; the coding of desired direc-
tions did not change in the input population.

Neuron model for motor cortex neurons. The total synaptic input ai(t) to
neuron i at time t was modeled as a noisy weighted linear sum of its
inputs:

ai�t� � �
j�1

m

wijxj�t� � �i�t�, �i�t� drawn from distribution D���,

(2)

where wij is the synaptic efficacy from input neuron j to neuron i. These
weights were set randomly at the beginning of each simulation, drawn
from a uniform distribution over [�0.5, 0.5]. �i(t) models some addi-
tional signal that is used for exploration (i.e., to explore possibly better
network behaviors). In cortical neurons, this exploratory signal �i(t)
could, for example, result from internal noise sources; it could be input
from other brain areas; or it could be spontaneous activity of the neuron.
At each time step, an independent sample from the zero mean distribu-
tion D(�) was drawn as the exploratory signal �i(t). The parameter �
determines the variance of the distribution and hence the amount of
noise in the neuron. We term the parameter � the exploration level.

The activity si(t) of neuron i at time t was modeled as a nonlinear
function of the total synaptic input:

si�t� � ��ai�t��, (3)

where �: �3� is the threshold linear activation function that assures
non-negative activities:

�� x� � � x, if x � 0
0, otherwise

. (4)

Task model. We modeled the cursor control task as shown in Figure
1A. Eight possible cursor target positions were located at the corners of a
unit cube in 3D space with its center at the origin of the coordinate
system. We simulated the closed-loop situation where the cursor moves
according to the network output during simulated sessions and weights
are adapted online. Before the simulation of a cursor control session, we
determined the preferred directions pi of simulated recorded neurons
(i � 1, . . . , n) as described below, in Simulation details, Computation of
preferred directions. In the simulated perturbation sessions, the decod-
ing preferred directions p�i of a randomly chosen subset of 25% or 50% of
the modeled recorded neurons were rotated around one of the x-, y-, or

z-axes (all PDs were rotated around a common axis in each experiment)
as in the study by Jarosiewicz et al. (2008). The dPDs of the nonrotated
neurons were left the same as their measured PDs. After the simulation of
a perturbation session, preferred directions of recorded neurons were
reestimated and compared to the original PDs.

Each simulated session consisted of a sequence of movements from the
center to a target position at one of the corners of the imaginary cube,
with online weight updates during the movements. To start a trial, the
cursor position was initialized at the origin of the coordinate system and
a target location was drawn randomly and uniformly from the corners of
a cube with unit side length. The target location was held constant until
the cursor hit the target, at which point the cursor was reset to the origin,
a new target location was drawn, and another trial was simulated.

Each trial was simulated in the following way. At each time step t, we
performed a series of six computations. (1) The desired direction of
cursor movement y*(t) was computed as the difference between the tar-
get position l*(t) and the current cursor position l(t). By convention, the
desired direction y*(t) had unit Euclidean norm. (2) From the desired
movement direction y*(t), the activities x1(t), . . . , xm(t) of the neurons
that provide input to the motor cortex neurons were computed via a fixed
linear mapping. Details on how this mapping was determined are given
below in Simulation details, Determination of the input activities. (3) These
input activities x were then used to calculate the total synaptic activities
a1(t), . . . , antotal

(t) and the resultant motor unit activities s1(t), . . . , sntotal
(t) via

Equations 2 and 3 above. (4) The activities s1(t), . . . , sn(t) of the subset of
modeled recorded neurons were used to determine the cursor velocity via
their population activity vector, described in Equation 9 below in Simulation
details, Generating cursor movements from neural activity. (5) The synaptic
weights wij defined in Equation 2 were updated according to a learning
rule, defined by Equation 16 below in Results. (6) Finally, if the new
cursor location was close to the target (i.e., if �l(t) � l*(t)� � 0.05), we
deemed it a hit, and the trial ended. Otherwise, we simulated another
time step and returned to computation step 1. In summary, every trial
was simulated as follows:

(0) Initialize cursor to origin and pick target.
(1) Compute desired direction y*(t).
(2) Determine input activities x1(t), . . . , xm(t).
(3) Determine motor cortical activities s1(t), . . . , sntotal

(t).
(4) Determine new cursor location l(t).
(5) Update synaptic weights wij.
(6) If target is not hit, set t to t � 	t and return to step 1.

Simulation details
Determination of input activities. To draw the contributions of simulated
motor-cortical neurons to monkey arm movement qi � (qi1, qi2, qi3)T for i �
1, . . . , ntotal (see Eq. 1) randomly on the unit sphere, we adopted the follow-
ing procedure. First, an angle �i was chosen randomly from the uniform
distribution on [0, 2�]. Then, qi3 was chosen randomly from a uniform
distribution on [�1, 1]. Finally, qi1 and qi2 were computed as follows:

qi1 � �1 	 qi3
2 cos��i�, qi2 � �1 	 qi3

2 sin��i�. (5)

The activities of the neurons in the input population x(t) � (x1(t), . . . ,
xm(t))T were determined such that the arm movement yarm(t) approxi-
mated the target direction y*(t). We describe in this section how this was
achieved. Let Q be the 3 
 ntotal matrix where column i is given by qi from
Equation 1 for i � 1, . . . , ntotal. First we computed the vector s̃ � Q †y*,
where Q † denotes the pseudoinverse of Q. When the activities of motor
cortex neurons are given by this vector s̃, they produce an arm movement
very close to y*. Let W total denote the matrix of weights wij before learning,
i.e., the element of W total in row i and column j is the weight from input
neuron j to neuron i in the simulated motor cortex before learning.
Since s̃ � W totalx, an input activity of x(t) � (W total)†s̃ approximately
produces an arm movement in the desired direction y*. The activities of the
input neurons were thus directly given by the following:

x�t� � crate�W
total�†Q†y*�t�, (6)

where we used the scaling factor crate to scale the input activity such that
the activities of the neurons in the simulated motor cortex could directly
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be interpreted as rates in hertz, i.e., such that their outputs were in the
range between 0 and 120. crate was determined in the first time step of
the simulation and then kept constant for all later time steps. By using the
above equation, we neglected the nonlinearity of the non-negative linear
activation function. This simple mapping can be calculated efficiently,
and the error induced by this simplification is small. In general, we have
tried different types of mappings and found that the choice of the input
coding does not have a significant impact on the learning results.

Note that this mapping was defined initially and kept fixed during each
simulation. Thus, when W total was adapted by some learning rule, we still
used the initial weights in the computation of the inputs, since we assumed
that the coding of desired directions did not change in the input coding.

Computation of preferred directions. As described above, a subset of the
motor cortex population was chosen to model the recorded neurons that
were used for cursor control. For each modeled recorded neuron i �
{1, . . . , n}, we determined the preferred direction pi � � 3, baseline
activity 
i, and modulation depth �i as follows. We defined eight unit
norm target directions y*(1), . . . , y*(8) as the eight directions from the
origin to the eight corners of an imaginary cube centered at the origin.
The activations si(1), . . . , si(8) of neuron i for these target directions
were computed without internal neural noise through Equations 2, 3,
and 6 above. The fitting was then done by linear regression, i.e., mini-
mizing the objective

�j�1

8
�si� j� 	 vi

Ty*� j� 	 
i�
2 (7)

with respect to the vector vi � (vi1, vi2, vi3)T and 
i. This is the fitting of a
cosine tuning curve, since vi

Ty*( j) is the cosine of the angle between vi

and y*( j) scaled by the L2 norm of vi. We thus obtained the baseline firing
rate 
i, the modulation depth �i � �vi�, and the preferred direction pi �
vi/�i. Neuron i was thus approximately cosine tuned to the fitted pre-
ferred direction:

si� j� � 
i � �i

y*� j�Tpi

�pi�
, for all j. (8)

After training, we reestimated the PDs and analyzed how they changed
due to learning.

Generating cursor movements from neural activity. In the simulated
perturbation session, the decoding preferred directions p�i of a randomly
chosen subset of 50% of the modeled recorded neurons were rotated
around one of the x-, y-, or z-axes (all PDs were rotated around a com-
mon axis in each experiment). The dPDs of the nonrotated neurons were
left the same as their measured PDs. The dPDs were then used to deter-
mine the movement velocity of the cursor as in the study by Jarosiewicz et
al. (2008) by the population vector algorithm (Georgopoulos et al.,1988):
The cursor velocity was computed as the vector sum of the dPDs
weighted by the corresponding normalized activities:

y�t� � ks

d

n�
i�1

n
si�t� 	 
i

�i
p'i, (9)

where d is the movement dimensionality (in our case 3), n is the number
of recorded neurons, and the constant ks converts the magnitude of the
population vector to speed. To set this speed factor in accordance with
the experimental setup, we had to take the following temporal and geo-
metrical considerations into account. In the study by Jarosiewicz et al.
(2008), the cursor position was updated every 30 Hz. Hence, a time step
in our simulation corresponded to 1/30 s in biological time. The imagi-
nary cube in the study by Jarosiewicz et al. (2008) had a side length of 11
cm, whereas we used a cube with unit side length in our simulations. We
therefore used a speed factor of ks � 0.03, which corresponds to a factor
100 mm/s used by Jarosiewicz et al. (2008).

Finally, this velocity signal was integrated to obtain the cursor
position l(t):

l�t � 	t� � l�t� � 	ty�t�, (10)

where 	t � 1 in our simulations.

Fitting of neuronal noise and learning rate to experimental data. To
simulate the experiments as closely as possible, we fit the noise in our
model to the experimental data. To obtain quantitative estimates for the
variability of neuronal responses in a cursor control task, we analyzed the
12 cursor control experiments in the study by Jarosiewicz et al. (2008), in
which 50% of the neurons were perturbed (990 presented targets in
total). We calculated for each recorded neuron the mean and variance
of its firing rate over all successful trajectories with a common target.
The firing rate was computed in a 200 ms window halfway to the
target. This resulted in a total of 3592 unit-target location pairs. To
smooth the data, running averages were taken of the sorted mean
activities r and variances v:

r� i �
1

� � 1�k�i
i�� rk (11)

v� i �
1

� � 1�k�i
i�� vk. (12)

We used a smoothing window of � � 10. Mean rates varied between 0 and
120 Hz with a roughly exponential distribution such that mean rates of
�60 Hz were very rare. In Figure 2, the smoothed variances v� were
plotted as a function of the smoothed means r�. Since some recorded units
can represent the activity of several neurons, this procedure may overes-
timate the amount of variability. This analysis was done on data from
trained monkeys that have fairly stable movement trajectories. We thus
obtained an estimate of neuronal firing rate variability for a given target
direction.

The variance of the spike counts scaled approximately linearly with the
mean spike count of a neuron for a given target location. This behavior
can be obtained in our neuron model with noise that is a mixture of an
activation-independent noise source and a noise source where the vari-
ance scales linearly with the noiseless activity of the neuron. In particular,
the noise term �i(t) of neuron i was drawn from the uniform distribution
in [��i(x(t)), �i(x(t))] with an exploration level �i in hertz that was given
by the following:

i� x�t�� � � 1 � ���� �
j�1

m

wijxj�t��� . (13)

Recall that the input activities xj(t) were scaled in such a way that the
output of the neuron at time t could be interpreted directly as its firing
rate. This noisy neuron model fits the observed variability of activity
in motor cortex neurons well for constants � �10 Hz and � � 0.0784 s
(Fig. 2).

Having estimated the variability of neuronal response, the learning
rate � (see Eq. 16 in Results) remained the last free parameter of the
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Figure 2. Experimentally observed variances of the spike count in a 200 ms window for
motor cortex neurons and noise in the neuron model. For a given target direction, the variance
of the spike count for a unit scales approximately linearly with the mean activity of the unit in
that direction with a bend at 5 spikes (20 Hz) in a monkey experiment (gray dashed line; data
smoothed, see Materials and Methods). Similar behavior can be obtained by an appropriate
noise distribution in our neuron model with non-negative linear activation function (black line).
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model. No direct experimental evidence for the value of � exists. We
have therefore chosen the value of � such that after 320 target presenta-
tions, the performance in the 25% perturbation task approximately
matched the monkey performance. In the study by Jarosiewicz et al.
(2008), the performance was measured as the deviation of the cursor
trajectory from the ideal straight line measured when the trajectory was
halfway to the target. In the 25% perturbation experiment, the monkey
performance after 320 target presentations was 3.2 mm. By constrain-
ing this parameter according to the experimental data, we ensured that
the model did not depend on any free parameter. We note that with this
learning rate, the performance of the model was superior to monkey
performance in the 50% perturbation experiment (see below).

Determination of trajectory deviation. To compute the deviation of the
trajectory from the ideal one, trajectories were first rotated into a com-
mon frame of reference as in the study by Jarosiewicz et al. (2008). In this
reference frame, the target is positioned at (1, 0, 0)T, movement along the
x-axis represents movement toward the target, movement along the
y-axis represents deviation in the direction of the applied perturbation,
and movement along the z-axis represents deviation orthogonal to the
applied perturbation. See Jarosiewicz et al. (2008) for the detailed trans-
formation. The trajectory deviation in the perturbation direction halfway
to the target is then given in this reference frame by the y-value of the
rotated trajectory when its x-value crosses 0.5. We scaled the results to a
cube of 11 cm side length to be able to compare the results directly to the
results of Jarosiewicz et al. (2008).

Results
Adaptation with the EH learning rule
We model the learning effects observed by Jarosiewicz et al.
(2008) through adaptation at a single synaptic stage, from a set of
hypothesized input neurons to our motor cortical neurons. Ad-
aptation of these synaptic efficacies wij will be necessary if the
actual decoding PDs p�i do not produce efficient cursor trajecto-
ries. To make this more clear, assume that suboptimal dPDs
p�1 , . . . , p�n are used for decoding. Then for some input x(t), the
movement of the cursor is not in the desired direction y*(t). The
weights wij should therefore be adapted such that at every time
step t, the direction of movement y(t) is close to the desired
direction y*(t). We can quantify the angular match Rang(t) at time
t by the cosine of the angle between movement direction y(t) and
desired direction y*(t):

Rang�t� �
y�t�Ty*�t�

�y�t��
. (14)

This measure has a value of 1 if the cursor moves exactly in the
desired direction, it is 0 if the cursor moves perpendicular to the
desired direction, and it is �1 if the cursor movement is in the op-
posite direction. The angular match Rang(t) will be used as the reward
signal for adaptation below. For desired directions y*(1), . . . , y*(T)
and corresponding inputs x(1), . . . , x(T), the goal of learning is
hence to find weights wij such that

Rbatch �
1

T�
t�1

T

Rang�t� (15)

is maximized.
The plasticity model used in this article is based on the as-

sumption that learning in motor cortex neurons has to rely on a
single global scalar neuromodulatory signal that carries informa-
tion about system performance. One way for a neuromodulatory
signal to influence synaptic weight changes is by gating local plas-
ticity. In the study by Loewenstein and Seung (2006), this idea
was implemented by learning rules where the weight changes
were proportional to the covariance between the reward signal

R and some measure of neuronal activity N at the synapse,
where N could correspond to the presynaptic activity, the
postsynaptic activity, or the product of both. The authors
showed that such learning rules can explain a phenomenon
called Herrnstein’s matching law. Interestingly, for the analy-
sis of Loewenstein and Seung (2006), the specific implemen-
tation of this correlation-based adaptation mechanism is not
important. From this general class, we investigate in this arti-
cle the following learning rule:

EH-rule: 	wij�t� � �xj�t��ai�t� 	 a� i�t���R�t� 	 R� �t��, (16)

where z�(t) denotes the low-pass filtered version of some variable
z with an exponential kernel; we used z�(t) � 0.8z�(t � 1) � 0.2z(t).
We call this rule the exploratory Hebb rule (EH rule). The im-
portant feature of this learning rule is that apart from variables
that are locally available for each neuron (xj(t), ai(t), a� i(t)), only a
single scalar signal, the reward signal R(t), is needed to evaluate
performance (we also explored a rule where the activation ai is
replaced by the output si and obtained very similar results). This
reward signal is provided by some neural circuit that evaluates
performance of the system. In our simulations, we simply use the
angular match Rang(t), corresponding to the deviation of the in-
stantaneous trajectory from its ideal path to the target, as this
reward signal. The rule measures correlations between deviations
of the reward signal R(t) from its mean and deviations of the
activation ai(t) from the mean activation and adjusts weights
such that rewards above mean are reinforced. The EH rule ap-
proximates gradient ascent on the reward signal by exploring
alternatives to the actual behavior with the help of some explor-
atory signal �(t). The exploratory signal could, for example, be
interpreted as spontaneous activity, internal noise, or input from
some other brain area. The deviation of the activation from the
recent mean ai(t) � a� i(t) is an estimate of the exploratory term
�i(t) at time t if the mean a� i(t) is based on neuron activations
�j wijxj(t�), which are similar to the activation �j wijxj(t) at time t.
Here we make use of (1) the fact that weights are changing very
slowly and (2) the continuity of the task (inputs x at successive
time points are similar). If conditions 1 and 2 hold, the EH rule
can be seen as an approximation of the following:

	wij�t� � �xj�t��i�t��R�t� 	 R� �t��. (17)

This rule is a typical node-perturbation learning rule (Mazzoni et
al., 1991; Williams, 1992; Baxter and Bartlett, 2001; Fiete and
Seung, 2006) (see also the Discussion) that can be shown to ap-
proximate gradient ascent (see, e.g., Fiete and Seung, 2006). A
simple derivation that shows the link between the EH rule and
gradient ascent is given in the Appendix.

The EH learning rule is different from other node-
perturbation rules in one important aspect. In standard node-
perturbation learning rules, the noise needs to be accessible to the
learning mechanism separately from the output signal. For exam-
ple, in the studies by Mazzoni et al. (1991) and Williams (1992),
binary neurons were used and the noise appears in the learning
rule in the form of the probability of the neuron to output 1. In
the study by Fiete and Seung (2006), the noise term is directly
incorporated in the learning rule. The EH rule instead does not
directly need the noise signal, but a temporally filtered version of
the activation of the neuron, which is an estimate of the noise
signal. Obviously, this estimate is only sufficiently accurate if the
structure of the task is appropriate, i.e., if the input to the neuron
is temporally stable on small timescales. We note that the filtering
of postsynaptic activity makes the Hebbian part of the EH rule
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reminiscent of a linearized BCM rule (Bienenstock et al., 1982).
The postsynaptic activity is compared with a threshold to decide
whether the synapse is potentiated or depressed.

Comparison with experimentally observed learning effects
We simulated the two types of perturbation experiments re-
ported by Jarosiewicz et al. (2008) in our model network with 40
recorded neurons. In the first set of simulations, we chose 25% of
the recorded neurons to be rotated neurons, and in the second set
of simulations, we chose 50% of the recorded neurons to be ro-
tated. In each simulation, 320 targets were presented to the
model, which is similar to the number of target presentations in
the study by Jarosiewicz et al. (2008). The performance improve-
ment and PD shifts for one example run are shown in Figure 3. To
simulate the experiments as closely as possible, we fit the noise
and the learning rate in our model to the experimental data (see
Materials and Methods). All neurons showed a tendency to com-
pensate the perturbation by a shift of their PDs in the direction of
the perturbation rotation. This tendency is stronger for rotated
neurons. The training-induced shifts in PDs of the recorded neu-
rons were compiled from 20 independent simulated experi-
ments, and analyzed separately for rotated and nonrotated
neurons. The results are in good agreement with the experimen-
tal data (Fig. 4). In the simulated 25% perturbation experiment,

the mean shift of the PD for rotated neu-
rons was 8.2 � 4.8°, whereas for nonro-
tated neurons, it was 5.5 � 1.6°. This is a
relatively small effect, similar to the effect
observed by Jarosiewicz et al. (2008),
where the PD shifts were 9.86° for rotated
units and 5.25° for nonrotated units. A
stronger effect can be found in the 50%
perturbation experiment (see below). We
also compared the deviation of the tra-
jectory from the ideal straight line in ro-
tation direction halfway to the target
(see Materials and Methods) from early
trials to the deviation of late trials. In
early trials, the trajectory deviation was
9.2 � 8.8 mm, which was reduced by
learning to 2.4 � 4.9 mm. In the simu-
lated 50% perturbation experiment, the
mean shift of the PD for rotated neurons
was 18.1 � 4.2°, whereas for nonrotated
neurons, it was 12.1 � 2.6°. Again, the
PD shifts are very similar to those in the
monkey experiments: 21.7° for rotated
units and 16.11° for nonrotated units.
The trajectory deviation was 23.1 � 7.5
mm in early trials, and 4.8 � 5.1 mm in
late trials. Here, the early deviation was
stronger than in the monkey experi-
ment, while the late deviation was
smaller.

The EH rule falls into the general class
of learning rules where the weight change
is proportional to the covariance of the
reward signal and some measure of neu-
ronal activity (Loewenstein and Seung,
2006). Interestingly, the specific imple-
mentation of this idea influences the
learning effects observed in our model.
We performed the same experiment

with slightly different correlation-based rules:

	wij�t� � �xj�t�ai�t��R�t� 	 R� �t�� (18)

and

	wij�t� � �xj�t��ai�t� 	 a� i�t��R�t�, (19)

where the filtered postsynaptic activation or the filtered reward was
not taken into account. Compare these to the EH rule (Eq. 16). These
rules also converge with performance similar to the EH rule. How-
ever, no credit assignment effect can be observed with these rules. In
the simulated 50% perturbation experiment, the mean shift of the
PD of rotated neurons (nonrotated neurons) was 25.5 � 4.0°
(26.8 � 2.8°) for the rule given by Equation 18 and 12.8 � 3.6°
(12.0 � 2.4°) for the rule given by Equation 19 (Fig. 5). Only
when deviations of the reward from its local mean and devia-
tions of the activation from its local mean are both taken into
account do we observe differential changes in the two popu-
lations of cells.

In the monkey experiment, training in the perturbation session
also resulted in a decrease of the modulation depth of rotated neu-
rons, which led to a relative decrease of the contribution of these
neurons to the cursor movement. A qualitatively similar result
could be observed in our simulations. In the 25% perturbation
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simulation, modulation depths of rotated
neurons changed on average by �2.7 �
4.3 Hz, whereas modulation depths of
nonrotated neurons changed on average
by 2.2 � 3.9 Hz (average over 20 indepen-
dent simulations; a negative change indi-
cates a decreased modulation depth in the
perturbation session relative to the con-
trol session). In the 50% perturbation
simulation, the changes in modulation
depths were on average �3.6 � 5.5 Hz for
rotated neurons and 5.4 � 6.0 Hz for non-
rotated neurons (when comparing these
results to experimental results, one has
to take into account that modulation
depths in monkey experiments were
around 10 Hz, whereas in the simula-
tions, they were 25 Hz). Thus, the rel-
ative contribution of rotated neurons
on cursor movement decreased during
the perturbation session.

It was reported by Jarosiewicz et al.
(2008) that after the perturbation session,
PDs returned to their original values in a
subsequent washout session where the
original PDs were used as decoding PDs.
We simulated such washout sessions after
our simulated perturbation sessions in the
model and found a similar effect (Fig.
6A,B). However, the retuning in our sim-
ulation is slower than observed in the
monkey experiments. In the experiments,
it took about 160 target presentations un-
til mean PD shifts relative to PDs in the
control session were around zero. This
fast unlearning is consistent with the
observation that adaptation and dead-
aptation in motor cortex can occur at
substantially different rates, likely re-
flecting two separate processes (David-
son and Wolpert, 2004). We did not
model such separate processes; thus, the
timescales for adaptation and deadapta-
tion are the same in the simulations. In a simulated washout
session with a larger learning rate, we found faster convergence of
PDs to original values (Fig. 6C,D).

The performance of the system before and after learning is
shown in Figure 7. The neurons in the network after training are
subject to the same amount of noise as the neurons in the net-
work before training, but the angular match after training shows
much less fluctuation than before training. We therefore conjec-
tured that the network automatically suppresses jitter in the tra-
jectory in the presence of high exploration levels . We quantified
this conjecture by computing the mean angle between the cursor
velocity vector with and without noise for 50 randomly drawn
noise samples. In the mean over the 20 simulations and 50 ran-
domly drawn target directions, this angle was 10 � 2.7° (mean �
SD) before learning and 9.6 � 2.5° after learning. Although only
a slight reduction, it was highly significant when the mean angles
before and after learning were compared for identical target di-
rections and noise realizations ( p � 0.0002, paired t test). This is
not an effect of increased network weights, because weights in-
creased only slightly and the same test where weights were

normalized to their initial L2 norm after training produced the
same significance value.

Psychophysical studies in humans (Imamizu et al., 1995) and
monkeys (Paz and Vaadia, 2004) showed that the learning of a
new sensorimotor mapping generalizes poorly to untrained di-
rections with better generalization for movements in directions
close to the trained one. It was argued by Imamizu et al. (1995)
that this is evidence for a neural network-like model of sensori-
motor mappings. The model studied in this article exhibits sim-
ilar generalization behavior. When training is constrained to a
single target location, performance is optimized in this direction,
while the performance clearly decreased as target direction in-
creased from the trained angle (Fig. 8).

Tuning changes depend on the exploration level
When we compare the results obtained by our simulations to
those of monkey experiments [compare Fig. 4 to Jarosiewicz et al.
(2008), their Fig. 3], it is interesting that quantitatively similar
effects were obtained with noise levels that were measured in the
experiments. We therefore explored whether the fitting of pa-
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rameters to values extracted from experimental data was impor-
tant by exploring the effect of different exploration levels and
learning rates on performance and PD shifts.

The amount of noise was controlled by modifying the explo-
ration level � (see Eq. 13). For some extreme parameter settings,
the EH rule can lead to large weights. We therefore implemented
a homeostatic mechanism by normalizing the weight vector of
each neuron after each update, i.e., the weight after the tth update
step is given by the following:

wij�t � 1� � ��
k

wik�t�2
wij�t� � 	wij�t�

��
k

�wik�t� � 	wik�t��2
. (20)

Employing the EH learning rule, the network converged to
weight settings with good performance for most parameter set-
tings, except for large learning rates and very large noise levels.
Note that good performance is achieved even for large explora-
tion levels of � � 60 Hz (Fig. 9A). The good performance of the
system shows that already a very small network can use large
amounts of noise for learning, while this noise does not interfere
with performance.

We investigated the influence of learning on the PDs of circuit
neurons. The amount of exploration and the learning rate � both
turned out be important parameters. The tuning changes re-

ported in neurons of monkeys subsumed under the term “credit
assignment effect” were qualitatively met by our model networks
for most parameter settings (Fig. 9), except for very large learning
rates (when learning does not work) and very small learning rates
(compare panels B and C). Quantitatively, the amount of PD shift
especially for rotated neurons strongly depends on the explora-
tion level, with shifts close to 50° for large exploration levels.

To summarize, for small levels of exploration, PDs change
only slightly and the difference in PD change between rotated and
nonrotated neurons is small, while for large noise levels, PD
change differences can be quite drastic. Also the learning rate �
influences the amount of PD shifts. This shows that the learning
rule guarantees good performance and a qualitative match to
experimentally observed PD shifts for a wide range of parameters.
However, for the quantitative fit found in our simulations, the
parameters extracted from experimental data turned out to be
important.

Discussion
By implementing a learning rule that uses neuronal noise as an
exploratory signal for parameter adaptation, we have successfully
simulated experimental results showing selective learning within
a population of cortical neurons (Jarosiewicz et al., 2008). This
learning rule implements synaptic weight updates based on the
instantaneous correlation between the deviation of a global error
from its recent mean and the deviation of the neural activity from
its recent mean; all of these parameters would be readily accessi-
ble in a biological system. Strikingly, it turns out that the use of
noise levels similar to those that had been measured in experi-
ments was essential to reproduce the learning effects found in the
monkey experiments.

Jarosiewicz et al. (2008) discussed three possible strategies that
could be used to compensate for the errors caused by the pertur-
bations: reaiming, reweighting, and remapping. With reaiming,
the monkey would compensate for perturbations by aiming for a
virtual target located in the direction that offsets the visuomotor
rotation. The authors identified a global change in the measured
PDs of all neurons, indicating that monkeys used a reaiming
strategy. Reweighting would reduce the errors by selectively sup-
pressing the use of rotated units, i.e., a reduction of their modu-
lation depths relative to the modulation depths of nonrotated
units. The same reduction was found in the firing rates of the
rotated neurons in the data. A remapping strategy would selec-
tively change the directional tunings of rotated units. As dis-
cussed above, rotated neurons shifted their PDs more than the
nonrotated population. Hence, the authors found elements of all
three strategies in their data. We identified in our model all three
elements of neuronal adaptation, i.e., a global change in activity
of neurons (all neurons changed their tuning properties; reaim-
ing), a reduction of modulation depths for rotated neurons (re-
weighting), and a selective change of the directional tunings of
rotated units (remapping). This modeling study therefore sug-
gests that all three elements could be explained by a single learning
mechanism. Furthermore, the credit assignment phenomenon
observed by Jarosiewicz et al. (2008) (reweighting and remap-
ping) is an emergent feature of our learning rule.

Although the match of simulation results to experimental re-
sults is quite good, systematic differences exist. The change in
simulated modulation depth was approximately twice that found
in the experiments. It also turned out that the model produced
smaller trajectory deviations after learning in the 50% devia-
tion experiment. Such quantitative discrepancies could be at-
tributed to the simplicity of the model. However, another
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factor that could systematically contrib-
ute to all of the stronger effects could be
the accurate reward signal modeled at
the synapse. We did not incorporate
noisy reward signals in our model, how-
ever, because this would introduce a free
parameter with no available evidence
for its value. Instead, the parameters of
the presented model were strongly con-
strained: the noise level was estimated
from the data, and the learning rate was
chosen such that the average trajectory
error in the 25% perturbation experi-
ment was comparable to that in experi-
ments after a given number of trials.

Comparison of the EH rule with other
learning models
Several reward-modulated Hebbian learn-
ing rules have been studied, both in the
context of rate-based (Barto et al., 1983;
Mazzoni et al., 1991; Williams, 1992; Baxter and Bartlett, 1999;
Loewenstein and Seung, 2006) and spiking-based (Xie and
Seung, 2004; Fiete and Seung, 2006; Pfister et al., 2006; Baras and
Meir, 2007; Farries and Fairhall, 2007; Florian, 2007; Izhikevich,
2007; Legenstein et al., 2008) models. They turn out to be viable
learning mechanisms in many contexts and constitute a biologi-
cally plausible alternative to the backpropagation-based mecha-
nisms preferentially used in artificial neural networks. Such
three-factor learning rules are well studied in corticostriatal
synapses where the three factors are presynaptic and postsyn-
aptic activity and dopamine (see, e.g., Reynolds and Wickens,
2002). The current conclusion drawn from the experimental
literature is that presynaptic and postsynaptic activity is
needed for plasticity induction. Depression is induced at low
dopamine levels, and potentiation is induced at high dopa-
mine levels. The EH rule is in principle consistent with these
observations, although it introduces an additional depen-
dency on the recent postsynaptic rate and reward, which has
not been rigorously tested experimentally.

Reinforcement learning takes place when an agent learns to
choose optimal actions based on some measure of performance.
To improve performance, the agent has to explore different be-
haviors. In neuronal reinforcement learning systems, exploration
is often implemented by some noise source that perturbs the
operation to explore whether parameter settings should be ad-
justed to increase performance. In songbirds, syllable variability
results in part from variations in the motor command, i.e., the
variability of neuronal activity (Sober et al., 2008). It has been
hypothesized that this motor variability reflects meaningful mo-
tor exploration that can support continuous learning (Tumer
and Brainard, 2007). Two general classes of perturbation algo-
rithms can be found in the literature. Either the tunable param-
eters of the system (weights) are perturbed (Jabri and Flower,
1992; Cauwenberghs, 1993; Seung, 2003) or the output of nodes
in the network are perturbed (Mazzoni et al., 1991; Williams,
1992; Baxter and Bartlett, 2001; Fiete and Seung, 2006). The latter
have the advantage that the perturbation search space is smaller
and that the biological interpretation of the perturbation as an
internal neural noise is more natural. Another interesting idea is
the postulation of an “experimenter,” that is, a system that injects
noisy current into trained neurons. Some evidence for an exper-
imenter exists in the song-learning system of zebra finches

(Fiete et al., 2007). For the EH learning rule, the origin of the
exploratory signal is not critical, as long as the trained neurons are
noisy. The EH learning rule is in its structure similar to the rule
proposed by Fiete and Seung (2006). However, while it had to
be assumed by Fiete and Seung (2006) that the experimenter
signal [�i(t) in our notation] is explicitly available and distin-
guishable from the membrane potential at the synapse, the EH
rule does not rely on this separation. Instead it exploits the tem-
poral continuity of the task, estimating �i(t) from activation
history.

Often perturbation algorithms use eligibility traces to link
perturbations at time t to rewards delivered at some later point in
time t� � t. In fact, movement evaluation may be slow, and the
release/effect of neuromodulators may add to the delay in re-
sponse imparted to neurons in the trained area. For simplicity, we
did not use eligibility traces and assumed that evaluation by the
critic can be done quite fast.

The EH rule falls into the general class of learning rules where
the weight change is proportional to the covariance of the reward
signal and some measure of neuronal activity (Loewenstein and
Seung, 2006). Interestingly, the specific implementation of this
idea influences the learning effects observed in our model. In
particular, we found that the implementations given by the rules
in Equations 18 and 19 do not exhibit the reported credit assign-
ment effect.

The results of this modeling paper also support the hypotheses
introduced by Rokni et al. (2007). The authors presented data
suggesting that neural representations change randomly (back-
ground changes) even without obvious learning, while systematic
task-correlated representational changes occur within a learning
task. They proposed a theory based on three assumptions: (1)
representations in motor cortex are redundant, (2) sensory feed-
back is translated to synaptic changes in a task, and (3) the plas-
ticity mechanism is noisy. These assumptions are also met in our
model of motor cortex learning. The authors also provided a
simple neural network model where the stochasticity of plasticity
was modeled directly by random weight changes. In our model,
such stochasticity arises from the firing rate noise of the model
neurons, and it is necessary for task-dependent learning. This
neuronal behavior together with the EH rule also leads to back-
ground synaptic changes in the absence of obvious learning (i.e.,
when performance is perfect or near-perfect).
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Conclusion
Reward-modulated learning rules capture many of the empirical
characteristics of local synaptic changes thought to generate goal-
directed behavior based on global performance signals. The EH
rule is one particularly simple instance of such a rule that empha-
sizes an exploration signal, a signal that would show up as “noise”
in neuronal recordings. We showed that large exploration levels
are beneficial for the learning mechanism without interfering
with baseline performance, because of readout pooling effects.
The study therefore provides a hypothesis about the role of
“noise” or ongoing activity in cortical circuits as a source for
exploration used by local learning rules. The data from
Jarosiewicz et al. (2008) suggest that the level of noise in motor
cortex is quite high. Under such realistic noise conditions, our
model produces effects strikingly similar to those found in the
monkey experiments, which suggests that this noise is essential
for cortical plasticity. Obviously, these learning mechanisms are
important for neural prosthetics, since they allow closed-loop
corrections for poor extractions of movement intention. In addi-
tion, these learning mechanisms may be a general feature used for
the acquisition of goal-directed behavior.

Appendix: Theoretical Link between the EH Rule
and Gradient Ascent
In the following, we give a simple derivation that shows that
the EH rule performs gradient ascent on the reward signal
R(t). The weights should change in the direction of the gradi-
ent of the reward signal, which is given by the chain rule as
follows:

�R�t�

�wij
�

�R�t�

�ai�t�

�ai�t�

�wij
�

�R�t�

�ai�t�
xj�t�, (A1)

where aj(t) is the total synaptic input to neuron j at time t (see Eq.
2 in the main text). We assume that the noise � is independently
drawn at each time and for every neuron with zero mean and
variance � 2, hence we have 	�i(t)
 � 0, and 	�i(t)�j(t�)
 �
� 2�ij�(t � t�), where �ij denotes the Kronecker delta, �(t � t�)
denotes the Dirac delta, and 	�
 denotes an average over trials. Let
R0(t) denote the reward at time t that would be delivered for a
network response without noise. The deviation of the reward R(t)
from R0(t) can be approximated to be linear in the noise for small
noise:

R�t� 	 R0�t� � �
k

�R�t�

�ak�t�
�k�t�. (A2)

Multiplying this equation with �i(t) and averaging over different
realizations of the noise, we obtain the correlation between the
reward at time t and the noise signal at neuron i:

��R�t� 	 R0�t���i�t�� � �
k

�R�t�

�ak�t�
��k�t��i�t�� � �2

�R�t�

�ai�t�
.

(A3)

The last equality follows from the assumption that the noise sig-
nal is temporally and spatially uncorrelated. Hence, the derivative
of the reward signal with respect to the activation of neuron i is as
follows:

�R�t�

�ai�t�
�

1

�2��R�t� 	 R0�t���i�t��. (A4)

Since 	�i(t)
 � 0, we find the following:

ai�t� 	 �ai�t�� � �
j�1

m

wijxj�t� � �i�t� 	 �
j�1

m

wijxj�t� 	 ��i�t��

� �i�t�, (A5)

and we can write Equation A4 as follows:

�R�t�

�ai�t�
�

1

�2��R�t� 	 R0�t���ai�t� 	 �ai�t����. (A6)

We note that the following is true:

��R�t� 	 R0�t���ai�t� 	 �ai�t���� � �R�t�ai�t��

	 �R�t���ai�t�� � ��R�t� 	 �R�t����ai�t� 	 �ai�t����. (A7)

Using this result in Equation A1, we obtain the following:

�R�t�

�wij
�

1

�2��R�t� 	 �R�t����ai�t� 	 �ai�t����xj�t�. (A8)

In our implementation, the EH learning rule estimates 	ai(t)

(that is, the neuron activation averaged over different realizations
of the noise for a given input) and 	Ri(t)
 by temporal averages
a� i(t) and R� i(t). With these temporal averages, the EH rule approx-
imates gradient ascent on R(t) if the noise signal can be estimated
from ai(t) � a� i(t) (i.e., if the input changes slowly compared to
the noise signal). We further note that for a small learning rate
and if the input changes slowly compared to the noise signal, the
weight vector is self-averaging, and we can neglect the outer av-
erage in Equation A8.
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