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Posterior parietal cortex has been traditionally associated with perceptual attention and sensory-motor processing, but recent studies
also indicate a potential role in episodic memory retrieval. Here, we developed a new paradigm to isolate top-down attention-related
activity directed to either memory or perceptual information. We demonstrated a robust topographic separation in human posterior
parietal cortex associated with searching for task-relevant information in episodic memory or in the environment. Control analyses
confirmed that this difference was not dependent on differences in sensory stimulation or eye movements across tasks. Notably, we
observed in memory- and perception-related regions a mechanism of reciprocal dynamic competition that was related to behavioral
performance. These results provide the first evidence for a double dissociation between parietal networks involved in top-down attention
to memory and the environment and support the idea of neural competition between perception and memory.

Introduction
The posterior parietal cortex is classically associated with visuo-
spatial and sensorimotor functions, based on neurophysiological
(Colby et al., 1996; Snyder et al., 1997) neuroimaging (Kastner
and Ungerleider, 2001; Corbetta and Shulman, 2002) and lesion
studies (Vallar and Perani, 1987; Mesulam, 1999). Nevertheless,
recent neuroimaging studies (for review, see Wagner et al., 2005;
Cabeza et al., 2008; Vilberg and Rugg, 2008) have reported the
involvement of the left posterior parietal cortex during tasks re-
quiring episodic memory retrieval, the conscious recollection of
events from one’s personal past (Tulving, 1985; Wheeler et al.,
1997). Other studies have identified parietal regions involved in
orienting visuospatial attention on the basis of short-term (Kuo
et al., 2009) and long-term memory (Summerfield et al., 2006)
representations. The function of parietal activity during episodic
memory retrieval is controversial, particularly since parietal le-
sions, compared with lesions of the medial temporal lobe (Cohen
and Eichenbaum, 1993), do not result in a severe loss of memory
function (but see Berryhill et al., 2007).

Several recent papers have proposed that left parietal activa-
tions during memory retrieval partly reflect the overlap of pari-
etal attentional functions for memory and perception (Wagner et
al., 2005; Cabeza, 2008; Cabeza et al., 2008; Ciaramelli et al., 2008;

Vilberg and Rugg, 2008). In contrast, theories that relate epi-
sodic memory retrieval to activation of the default network,
which is generally deactivated by attention to the environ-
ment, suggest that parietal memory and perceptual functions
are anatomically segregated (Buckner et al., 2008). Surpris-
ingly, a comparison of attention and episodic memory do-
mains has only been performed using across-experiment
meta-analytic techniques (Hutchinson et al., 2009). Virtually
no experimental data from the same group of subjects has
been reported concerning the overlap between parietal regions
involved in the voluntary allocation of attention to episodic
memory or to visuospatial information.

Here, we compared search for information in the environ-
ment and in episodic memory by adapting procedures that have
been widely used to separate the processing stages underlying
visual search or monitoring (Shulman et al., 2003, 2007; Silver et
al., 2007) and working memory (e.g., encoding, maintenance,
and retrieval) (Courtney et al., 1997; D’Esposito et al., 1999; Todd
and Marois, 2004). Specifically, we measured the BOLD signals
that varied with the duration of perceptual and memory search,
where each was manipulated over trials. We use the phrase mem-
ory search or memory retrieval as a proxy for a broad range of
processes that involve the “retrieval of episodic information
guided by the behavioral goal, the organization and evaluation of
the retrieved information, and the accumulation of evidence that
pointed to a particular response” (Moscovitch and Winocur,
1995; Badre and Wagner, 2007; Mecklinger, 2010). These mem-
ory search processes, which likely involved working memory as
well as long-term memory, were separated from subsequent pro-
cesses associated with the preparation and execution of the motor
response, which were named “memory detection” for consis-
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tency with the perceptual paradigm. To
obtain the necessary, large variation of
memory retrieval times, subjects were
asked true/false questions concerning two
television episodes that were viewed 1 d
before the imaging session. Perceptual
search latency was varied by controlling
the onset of target objects in similar au-
diovisual material. Using this approach,
we tested whether parietal regions in-
volved in environmentally and memory
directed attention were overlapping, in-
dependent or competing, with a particular
emphasis on the left hemisphere, since re-
trieval effects are commonly left lateralized
(Wagner et al., 2005). We found that mem-
ory and perceptual search-related regions of
the left parietal lobe were not only anatom-
ically segregated, but were organized in a
functional competition that was related to
behavioral outcome.

Materials and Methods
Subjects
Nineteen healthy right handed subjects (mean
age � 26.8 years, range 23–32 years) gave in-
formed consent in accordance with guidelines
set by the Human Studies Committee of Wash-
ington University. Each participant performed
two tasks involving audiovisual material on
different days: an episodic memory search and
a perceptual search task. The order of tasks was
counterbalanced across subjects. Exclusion cri-
teria were insufficient knowledge of the English
language and familiarity with the audiovisual
material used.

Procedure
Episodic memory search task. During the encoding session subjects
watched two episodes from an English language television sitcom (see
supplemental Methods, available at www.jneurosci.org as supplemental
material). Subjects performed the fMRI retrieval session �24 h after the
encoding session. On each trial (Fig. 1a), a sentence addressing memory
for details and events across the two episodes was presented for 4 s at the
center of the screen (e.g., “Richard mentioned his problem with alcohol
before his intimacy problem”). The sentence was followed by a retrieval
period in which a black display with a white central fixation cross was
presented. Subjects were asked to maintain fixation on the cross for the
entire run except while they were reading the sentences. Subjects were
instructed to read the sentence, wait until it disappeared and then take
the time they needed, up to 15 s, to retrieve the specific information and
provide a “Yes”/“No” judgment about the accuracy of the sentence.
Judgments were made using four buttons on the response key and the
following category-key mapping: left middle finger � Yes, high confi-
dence, left-index � Yes, low confidence, right index � No, low confi-
dence, right middle � No, high confidence. Following the subject’s
response, the fixation cross turned red, indicating the onset of a variable
intertrial interval (4.1 s, 6.2 s, 8.3 s) that preceded the next sentence.
During catch trials, the sentence was immediately followed by the black
display containing the red fixation cross. Subjects were periodically re-
minded to avoid retrieving episodic information following catch trials.
While they did not report having problems with this instruction, it is
possible that some retrieval activity occurred following the end of the
catch trial. Five runs of 20 trials pertaining to the episode encoded first
were presented, followed by five runs pertaining to the episode encoded
second. Occasionally, while subjects were answering questions concern-
ing one episode, a question was presented concerning the other episode.

We refer to these questions as “invalid questions.” However, the BOLD
responses to these questions were not the focus of the present paper and,
although they were specified in the general linear model, they will not be
discussed further.

Perceptual search task. On each trial (Fig. 1b), a sentence instructing
subjects to search for a specific target that could appear at any time and
location in a subsequent video-clip was presented at the center of the
screen for 4 s (e.g., “Can you detect a man standing on the street wearing
red pants?”). Next, a video clip was presented at the center of a black
display for 12 s, followed by a variable intertrial interval (�4.1 s, �6.2 s,
�8.3 s) in which a central red fixation cross was presented. Clips, ex-
tracted from four movies, covered �8.7 degrees of visual angle on the
horizontal axis and were presented with the associated soundtrack. A
central white fixation cross was superimposed over the clip. Three kinds
of clips were presented: clips containing the target (“target”), clips con-
taining an oddball target (“oddball”) and clips not containing any target
(“non-target”). While standard targets were either specific objects or
characters, the oddball target consisted of a transient (500 ms), visual
perturbation superimposed over the video clip (see supplemental Meth-
ods, Study materials section, available at www.jneurosci.org as supple-
mental material). Like in the memory task, subjects were asked to
maintain fixation on the center cross except when they were reading a
sentence. Subjects were instructed to read the sentence and search for the
specific visual target in the upcoming video clip. When either the target
or the oddball target was detected, subjects had to press one of the two
Yes keys, depending on their confidence, as quickly as possible. If a target
was not detected, subjects had to press one of the two No buttons, de-
pending on their confidence, at the end of the clip. Response confidence
was rated with the same category-key mapping used for the memory task.

Figure 1. Tasks and behavioral results. a, Trial structure in the memory search task. Subjects read a sentence describing a
specific detail of a previously encoded episode from a television series. At the offset of the sentence, they were instructed to retrieve
episodic information to judge the accuracy of the sentence. After subjects’ response, a variable intertrial interval (ITI) was inter-
posed before the next sentence was presented. b, Trial structure in the perceptual search task. A sentence instructed subjects to
search for a specific target (object or character) that could appear at any time in the upcoming 12 s video-clip. Subjects searched for
the target while fixating a central cross and pressed a button as soon as the target was detected. After display offset, a variable ITI
was interposed before the next sentence was presented. c, The significant effect of response confidence (high, low) on behavioral
performance (mean accuracy across subjects) in both the memory and the perceptual task. Error bars indicate SEM. d, The distri-
bution of trials (mean across subjects) for each time bin (1 s) of the allowed response time (15 s). The graph shows the distribution
of all trials (solid black), correct trials (solid gray), and incorrect (broken gray) trials. The asterisks indicate time bins in which
performance was significantly different from chance (one-sample t test against the chance level of 0.5). e, The distribution of Hit
target trials (mean across subjects) in the perceptual task (solid gray) superimposed over the distribution calculated for the correct
trials in the memory task (broken gray, same as in d).
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Subjects knew that targets could appear only once during the clip and
they were instructed to passively watch the end of the clip after a target
had been detected. Responses were categorized in four classes: “Hit,” if
one of the Yes buttons was pressed during either a target or an oddball
trial, within a time window starting at target onset and ending 1.5 s after
target offset; “Miss,” if one of the No buttons was pressed at the end of
either a target or an oddball trial; Correct Rejection (CR), if one of the No
buttons was pressed at the end of a non-target trial; False Alarm (FA) if
one of the Yes buttons was pressed outside the time window during a
target or oddball trial, or during a non-target trial. A total of 10 runs, each
containing 25 trials, were conducted.

The scanning sessions for the perception and memory tasks were con-
ducted in different sessions. As a result, subjects did not have to con-
stantly switch between tasks, allowing a consistent task set to be adopted
(e.g., a constant retrieval mode during the episodic memory task). In
addition, by running the two tasks in different sessions, a large number of
memory trials could be collected that nonetheless involved a roughly
constant encoding-retrieval interval. An alternative solution to the sec-
ond problem was to mix the two tasks in each of two sessions and show
one TV episode before each session. However, subjects might have en-
coded the second episode differently if they had already experienced the
memory task in the scanner in the first session as part of a mixed design.
Moreover, memory retrieval in the scanner for the second episode would
have suffered unequal interference from the first episode. Finally, in a
mixed design it would not have been possible to present “invalid” trials
during the memory task in the first session, since invalid trials could only
be presented if subjects had viewed both episodes (although as noted
above, the results for these trials are not presented here). The Discussion
considers potential effects on the results of blocking the memory and
perception tasks.

fMRI apparatus
Stimuli were presented with an Intel Core-2-duo laptop running Mi-
crosoft Windows XP. E-Prime2 Professional (Psychology Software
Tools) software was used for stimulus presentation and response collection.
Visual stimuli were projected to the head of the bore of the scanner via a
liquid crystal display (LCD) projector (Sharp LCD C20X) and viewed with a
mirror attached to the head coil. Auditory stimuli associated with the video-
clips were delivered using a pneumatic headset designed to minimize inter-
ference from scanner noise. A magnet-compatible fiber optic key-press
device recorded the subject’s responses. Eye position was measured with an
ISCAN ETL-200 system.

Imaging methods and preprocessing of BOLD images
Images were acquired with a Siemens Allegra 3T scanner. Structural
images were obtained during the first scanning session using a sagittal
MPRAGE T1-weighted sequence (TR � 1810 ms, TE � 3.93 ms, flip
angle � 12°, TI � 1200 ms, voxel size � 1 � 1 � 1.25 mm) and a
T2-weighted spin-echo sequence (TR � 3800 ms, TE � 90 ms, flip an-
gle � 90°). Blood oxygenation level-dependent (BOLD) contrast func-
tional images were acquired with a gradient echo echoplanar sequence
(TR � 2064 ms, TE � 25 ms, flip angle � 90°, 32 contiguous 4 mm axial
slices, 4 � 4 mm in-plane resolution). For the memory task, a variable
number of frames was acquired on each run, depending on subject’s
performance (range � 124 –197 frames, �4 –7 min). During the percep-
tual task, a total of 256 frames (�9 min) were acquired on each run.

The preprocessing and statistical analysis of fMRI data were per-
formed using in-house software. The first four frames of each BOLD run
were discarded from the analysis. Preprocessing included motion correc-
tion, within and between runs, slice scan-time correction and whole
brain normalization, applied to each run. The whole brain normalization
corrected for changes in overall image intensity between BOLD runs.
Importantly, since the same normalization factor was uniformly applied
to all MR frames within a BOLD run, the normalization could not result
in artifactual deactivations (Aguirre et al., 1998). Functional images were
resampled at a voxel size of 3 � 3 � 3 mm and warped into a standardized
atlas space (Talairach and Tournoux, 1988).

Linear modeling
Data were analyzed using two general linear models (GLMs). The overall
approach has been described and validated in several previous studies
(Shulman et al., 1999, 2003, 2007; Ollinger et al., 2001a,b). Supplemental
Figure 1 (available at www.jneurosci.org as supplemental material) illus-
trates the linear modeling method that was used for the analysis of the
perceptual and the memory task.

The “process” regression model. The aim of the first regression model
was to separately estimate the BOLD signal for the different task pro-
cesses that temporally overlapped in the course of a trial. For example, in
the perceptual task, BOLD signals in a particular cortical region could be
affected by sentence reading (Sentence), by visual and auditory stimula-
tion (Display), by search for a target (Search), by target detection and
response (Detection), or by a combination of these processes. Analo-
gously, in the memory task, BOLD signals in a particular region could be
affected by sentence reading (Sentence), by search in memory (Search),
by responding to the question (Detection), or by a combination of these
processes. A multiple parameter regression model was created that spec-
ified the effects of the various task processes on the observed BOLD time
course. The model assumed that the observed BOLD response on each
trial was the sum of the hemodynamic responses that were generated by
the above processes, and was used to identify the voxels that were acti-
vated or deactivated by each process. The assumed response for each
process was generated by convolving a function representing the dura-
tion of the process (rectangle functions for sustained processes, delta
functions for transient processes) with a standard hemodynamic re-
sponse function (Boynton et al., 1996). The experiment was specifically
designed to enable the separation of the component processes by the
process model. The sentence-reading phase was separated using a “catch-
trial” technique (Shulman et al., 1999; Ollinger et al., 2001a,b), in which
on a random 20% of the trials, the trial ended following the sentence-
reading phase. This technique has been validated and widely used to
separate the BOLD signals to a cue from the signals to subsequent events.
The display, search, and detection processes were separated by arranging
for them to have very different temporal profiles, which decorrelated the
corresponding regressors in the linear model. While the display duration
was always 12 s, the search duration could vary over trials from 1 to 12 s.
Similarly, while the display and search components were sustained pro-
cesses that always began at display onset, the detection process was a
transient event that randomly occurred at very different times following
display onset.

For the perceptual task, a sustained “Sentence” parameter modeled the
4 s reading time. A sustained “Display” parameter modeled the 12 s of audio-
visual stimulation presented on each trial. Six versions of the “Search” pa-
rameter specified different search outcomes [“Search-Hit-HC” (high
confidence), “Search-Hit-LC” (low confidence), “Search-Miss,” “Search-
FA,” “Search-CR,” “Search-No-Response”]. The duration of the search
process varied across trials depending upon the target onset and the
subject’s response. Transient BOLD responses related to the detection-
response phase of the trial were estimated with separate parameters (see
supplemental Methods, available at www.jneurosci.org as supplemental
material). For the memory task, two sustained Sentence parameters
modeled the 4 s reading time for valid or invalid questions. Four
Search parameters [Search-Corr-HC (correct high confidence), Search-
Corr-LC (correct low confidence), Search-Inc-HC (incorrect high con-
fidence), Search-Inc-LC (incorrect low confidence)] separately coded for
searches with different outcomes while a fifth parameter modeled trials
in which subjects did not press any key (Search-No-response). Transient
BOLD responses related to the detection-response phase of the trial were
estimated with separate parameters (see supplemental Methods, avail-
able at www.jneurosci.org as supplemental material).

The “frame-by-frame” regression model. While the previous model es-
timated the selective contribution of each process to the observed BOLD
response, it involved assumed response functions. To examine the overall
time course of BOLD activity for different types of trials (e.g., “early hit”
trials versus “late miss” trials), which reflects the sum of the BOLD signal
for the processes operative on those trials, a second GLM was created that
made no assumption about the shape of the hemodynamic response.
This frame-by-frame model provided an unbiased estimate of the time
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course for each trial type (Ollinger et al., 2001a,b), generating separate
delta function regressors for each MR frame up to �30 s after trial onset.
For the perceptual task, we estimated the time course for 13 types of trials:
sentence reading, three Hit-target, three Hit-oddball, and three Miss
types of trials, depending on the interval of target presentation (early,
middle, late), and CR, FA and trials in which subjects did not press any
key. For the memory task, we estimated 8 types of trials: sentence reading,
three correct and three incorrect response trials (early, middle, late), and
trials in which subjects did not press any key. For both tasks, the sentence
only trials (catch trials) allowed us to separately estimate the time course
for sentence reading so that the BOLD responses for sentence reading
were not included in the modeled BOLD time courses for the task events
that followed the sentence (“within-trial” model; see supplemental
Methods, available at www.jneurosci.org as supplemental material)
(Shulman et al., 1999; Ollinger et al., 2001a,b). We also created an addi-
tional version of the frame-by-frame GLM, aligning trials on sentence
onset (the “between-trial” model; see supplemental Methods, available at
www.jneurosci.org as supplemental material).

fMRI statistical analysis
Using the process regression model, voxelwise z-maps were computed
for each parameter in the model (e.g., the search parameter for high
confidence hits). Single subject and group statistical maps were Monte
Carlo corrected over the brain for multiple comparisons (cluster size �
17, z � 3, corresponding to p � 0.05, corrected). Group voxelwise statis-
tical maps were obtained in which subject was treated as a random effect.
One-sample voxelwise t tests were conducted to determine voxels in
which a parameter was significantly different from zero, while paired t
tests were used to test for significant differences between parameters.

Regions of interest (ROIs) were created using a peak-search algorithm
that identified peaks in the uncorrected z-map and consolidated foci
closer than 12 mm by coordinate averaging. Spherical ROIs of 9 mm
radius were formed, centered on the consolidated foci, that excluded
voxels not contained in the multiple-comparison corrected z-map. Time
courses of BOLD activity for early, middle and late Hit trials in the
perceptual task and for early, middle and late correct trials in the memory
task were obtained using the frame-by-frame regression model. One sub-
ject was excluded from this analysis since she did not provide answers in
the shortest interval.

For the analysis of the relation between BOLD search-related activity
and behavioral performance, all search parameters were collapsed in each
task (with the exception of the false alarms in the perceptual task). One
subject was excluded from the analysis since he did not provide a suffi-
cient number (�10) of low confidence responses in the memory task. We
then selected ROIs from the map of the contrast between all memory
search parameters versus all perceptual search parameters. Two-tailed
paired t tests were performed to determine whether the Search-Hit-HC
parameter differed significantly from the Search-Miss parameter (per-
ceptual task) and whether the Search-Corr-HC parameter differed from
the Search-Corr-LC parameter (memory task). For the time course
analysis of the catch sentence trials, a two-way ANOVA [task (mem-
ory, perceptual) � time (11 frames)] was performed to assess across
task differences while a one-way ANOVA [time (11 frames)] was
performed to assess the significant difference of each time course
from zero.

Results
Subjects performed two tasks involving either perceptual or
memory search. In the memory task, subjects judged the accuracy
of sentences describing specific details about one of two movies
that had been previously viewed, while maintaining central fixa-
tion (Fig. 1a). In this task, the source of search duration variabil-
ity was the subject’s decision time, reflecting the time needed to
retrieve the critical information and answer the question. In the
perceptual task, visually presented sentences instructed partici-
pants to search for a visual target that could be presented at any
time during the upcoming 12 s video clip, while maintaining
central fixation (Fig. 1b). We manipulated search time by varying

the onset of the target, allowing us to separate the neural signals
associated with search from signals related to the sensory display,
whose duration was constant across trials, and from the signals
that occurred at or after target presentation, such as those related
to detection and response execution (see Materials and Methods)
(Shulman et al., 2003). Similar audiovisual material was used in
both tasks to minimize the possibility that differences in hemi-
spheric lateralization across tasks were related to stimulus differ-
ences rather than to the search domain (Cabeza, 2008). Several
controls discussed below addressed remaining differences be-
tween the two tasks, such as the presence of visual stimulation
during perceptual search but not memory search.

Behavior
Both tasks were difficult, with an overall level of accuracy of
0.73 � 0.1 and 0.69 � 0.1 for the memory and the perceptual task,
respectively. This difference was not statistically significant (t(18) �
2.10, p � 0.50, two-tailed paired t test). Accuracy for the percep-
tual task was calculated as the average of target (0.62 � 0.2) and
non-target (0.91 � 0.1) trials, while oddball trials (0.94 � 0.1)
were not considered for the present analysis (see Materials and
Methods).

Accuracy was much greater for high confidence than low con-
fidence judgments (Fig. 1c): 0.81 � 0.2 for high and 0.63 � 0.2 for
low confidence trials in the memory task (t(18) � 7.40, p � 0.001,
two-tailed paired t test) and 0.79 � 0.2 for high and 0.39 � 0.2 for
low confidence trials in the perceptual task (t(18) � 10.72, p �
0.001). Subjects gave fewer low-confidence responses in the per-
ceptual task than in the memory task (28% and 42% of the total
number of responses, respectively; t(18) � 2.93, p � 0.01, two-
tailed paired t test).

A crucial analysis focused on reaction time (RT) distributions
for the two tasks, since an adequate variability in RT was required
to isolate the search process. It was particularly important to
demonstrate this variability for the memory paradigm, in which
retrieval duration was not controlled by the presentation of the
target as in the perceptual task. Figure 1d shows that the paradigm
successfully varied the duration of memory retrieval. Because
very few responses occurred in the 12 to 15 s interval and perfor-
mance at two time points was at chance, trials in this interval were
excluded from the subsequent fMRI analysis. The remaining tri-
als were divided into three bins (early: 0 – 4 s, middle: 4 – 8 s, late:
8 –12 s) as in the perceptual paradigm. The difference in the de-
tailed shape of the two RT distributions for correct trials, shown
in Figure 1e, is due to the fact that in the perceptual paradigm
targets were placed within a window centered on each 4 s interval
to maximize the signal-to-noise ratio in the fMRI analysis, while
retrieval times were more continuously distributed. For each task
we calculated performance corresponding to the three 4 s bins
(supplemental Fig. 2, available at www.jneurosci.org as supple-
mental material). Memory trials showed a progressive decrease in
accuracy (0.82 � 0.01, 0.73 � 0.02 and 0.67 � 0.02, respectively)
(F(2,34) � 85.25, p � 0.001, one-way ANOVA). Accuracy on
target-present trials in the perceptual task increased from the
early to middle bin followed by a drop at the late bin [early (0 – 4
s) � 0.55 � 0.02, middle (4 – 8 s) � 0.68 � 0.02, late (8 –12 s) �
0.64 � 0.02; F(2,36) � 23.72, p � 0.001, one-way ANOVA], pos-
sibly reflecting an increase in the hazard function over the trial
and a greater probability on late-target trials of committing a false
alarm before target presentation.

Overall, both tasks showed a large spread of reaction times and
high levels of difficulty.
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fMRI
Because the behavioral results showed a strong effect of confi-
dence on performance in both tasks, only correct high confidence
trials were analyzed in most fMRI analyses, therefore emphasiz-
ing activations related to optimal performance. BOLD data were
analyzed using two types of general linear models (GLM). A GLM
that used an assumed hemodynamic response function pro-
vided separate voxelwise maps of the BOLD activity associated
with each process within a trial (e.g., in the perceptual task:
sentence reading, visual stimulation, search, detection), similar
to previous decompositions of search and working memory tasks
(Courtney et al., 1997; D’Esposito et al., 1999; Shulman et al.,
2003). The time course of BOLD activity was determined using a
GLM that did not assume a specific shape for the hemodynamic
response function (see supplemental Fig. 1, available at www.
jneurosci.org as supplemental material and supplemental mate-
rial for more information on the linear decomposition of
different task processes).

The distribution of memory and perceptual search-related
activity in the parietal lobe
The search component of the memory and perceptual tasks acti-
vated distinct regions of the left parietal lobe (Fig. 2; supplemental
Tables 1 and 2, available at www.jneurosci.org as supplemental ma-
terial; see supplemental Fig. 3, available at www.jneurosci.org as
supplemental material for right hemisphere). Memory search-
related activations (Fig. 2a, red/yellow) were observed in the an-
gular gyrus (AG), extending rostrally toward the supramarginal
gyrus (SMG) and dorsally toward the lateral bank of the in-
traparietal sulcus (IPS), and in regions of precuneus (PreCu)

and posterior cingulate cortex (PCC), extending ventrally toward
retrosplenial cortex. Regions of search-related deactivation
(green/blue colors) were identified in parietal operculum and in
the ventral bank of IPS. Conversely, perceptual search-related
activations (Fig. 2b) were observed along the ventral and the
medial banks of posterior IPS and in regions of the superior
parietal lobule (SPL). These parietal perceptual search regions
were very similar to those that have been identified in a large
number of studies concerned with attention to spatial location
and attention to visual features, both in the presence and absence
of visual stimulation (Kastner et al., 1999; Shulman et al., 1999;
Corbetta et al., 2000; Hopfinger et al., 2000; Yantis et al., 2002;
Serences and Boynton, 2007). Search-related deactivations were
located bilaterally in SMG, and in AG and PCC regions that fall
within the default network (Shulman et al., 1997; Raichle et al.,
2001).

Additional analyses showed there was little or no overlap in
the significant activations for the search parameter in the two
tasks (Fig. 2c). A tiny sliver of overlap (yellow color) was present
along the IPS, with a second sliver in dorsal precuneus. Even less
overlap was found in the right parietal lobe (supplemental Fig. 3c,
available at www.jneurosci.org as supplemental material). The
minimal overlap in the group-averaged image also held for rep-
resentative individual subjects (Fig. 2d). The degree of overlap
over all subjects was quantitatively determined within the bor-
ders of Brodmann’s area 7 (BA7) (defined from the surface bor-
ders of the PALS Atlas, Caret 5.5 software (Van Essen, 2005) that
contained the bulk of adjacent activation in the two conditions.
For each subject, the percentage of overlapping and nonoverlap-
ping voxels was calculated among all the voxels that were signif-

Figure 2. Memory and perceptual search-related BOLD activity in the left parietal lobe. a, Multiple-comparison corrected group z-map showing search-related BOLD activations (red to yellow)
and deactivations (light to dark blue) with respect to the baseline in the memory task. The search parameter was obtained with the process regression model for trials in which subjects provided
correct, high confidence responses. The voxelwise map is superimposed over the left hemisphere inflated surface of the PALS Atlas (Caret 5.5 Software) (Van Essen, 2005). The lateral (top row) and
medial views (bottom row) of the left parietal lobe are shown. Dark lines represent borders of Brodmann’s areas (BA7, 23, 31, 39, 40, indicated in c) and are intended to be used as landmarks to
compare activations. b, Multiple-comparison corrected group z-map showing search-related BOLD activations and deactivations in the perceptual task. The search parameter was obtained using
high confidence hit trials. c, Conjunction map showing the superimposition of group search-related activations for the memory (red) and the perceptual (green) task to reveal regions of overlap
(yellow). d, Same as in c, but obtained in four representative individuals. e, Frequency map representing, in each voxel, the number of subjects showing overlap between memory and perceptual
search-related activations.
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icantly activated in either of the two tasks. These percentages were
then averaged over subjects. On average, only 13.4% of the voxels
activated by the two tasks overlapped in BA7. Finally, the consis-
tency across individuals of the anatomical location of these over-
lapping voxels was then determined. A frequency map was
created (Fig. 2e) in which each voxel was given a color according
to the number of individuals who showed an overlap of signifi-
cant search-related activity in the two tasks. Regions of overlap
along the lateral bank of IPS were not spatially consistent across
subjects, although a somewhat more consistent region was found
in dorsal precuneus [peak voxel � 8 of 19 subjects (x � �7, y �
�60, z � 57)]. However, while similar precuneus activations
have been observed in studies of attentional switching (Yantis et
al., 2002), studies of episodic memory retrieval have generally
reported activity in more ventral regions of the medial parietal
lobe (Vilberg and Rugg, 2008).

To summarize, memory and perceptual search-related (top-
down) processes activated distinct regions of parietal cortex, both
at group and individual levels of analysis.

Perceptual search-related activity does not reflect the mere
presence of sensory stimulation.
The two search tasks differed in the amount of sensory stimula-
tion, since in the perceptual task a video-clip was presented for
12 s while in the memory tasks subjects were instructed to fixate a
white cross that was centered on a black screen. We conducted
two controls for this problem. First, the design of the perceptual
search experiment allowed us to separate activations related to
the presence of the display from activations related to searching
the display. The key design feature was that the duration of the
display was the same on every trial (12 s) while the duration of
search varied over a wide range across trials (1–12 s). This large
difference in the temporal profiles of the search and display pro-
cesses decorrelated the corresponding regressors (see also supple-
mental Fig. 1, available at www.jneurosci.org as supplemental
material). Any component of the BOLD activation that depended
on the duration of search did not reflect the presence of the phys-
ical display, but reflected attention to the display and/or the mod-
ulation of display-evoked activity by attention. Conversely, any
component of the BOLD activation that was independent of
search duration reflected the sensory stimulation from the phys-
ical display. A single region might show neither, one, or both
types of BOLD components.

In parietal cortex, the voxelwise map for the sensory stimula-
tion or display parameter (Fig. 3a) was almost coextensive with
the map for the search parameter (Fig. 3b), but in early visual
cortex only the display parameter was significant. The overlap in
parietal cortex replicated an earlier study using a similar meth-
odology (Shulman et al., 2003) and was expected based on the pre-
vious literature, since many studies have demonstrated that parietal
regions show both attentional modulations and responses to passive
visual stimulation (Bushnell et al., 1981; Corbetta et al., 1993; Colby
et al., 1996; Swisher et al., 2007). A recent mapping study, for exam-
ple, that used passive visual stimulation demonstrated five separate
topographic maps along the full extent of IPS (Swisher et al., 2007).

The time course of the BOLD signal in parietal cortex (e.g.,
pIPS, Fig. 3c) was consistent with the presence of signals related to
sensory- and attention-related activity. On an early target trial,
the BOLD signal fell off sharply relative to a middle or late target
trial, reflecting the search component of the BOLD signal. Any
regions whose activity was solely dependent on sensory stimula-

tion would not have shown this marked fall-off. However, the
signal did not immediately return to baseline, reflecting a sus-
tained component of the BOLD signal that was related to the
presence of the display. Therefore, the time course closely fit the
profiles that were expected based on the significance of both
the display and search parameters in the assumed response
model. This impression was confirmed by both the excellent
overall fit (adjusted R 2 � 0.96) of the model and the significant
contribution of both Display (� � 0.22) and Search (� � 0.40)
parameters. The presence of both sensory responses and atten-
tional modulations in parietal cortex contrasted sharply with re-
gions in early visual cortex, which showed only display activity
(Fig. 3b). Correspondingly, the time course of activity on early,
middle and late target trials was highly similar, with almost no
fall-off of activity on early-target trials (Fig. 3c, early visual cor-
tex), as expected from the assumed response model (overall
model fit, R2 � 0.99; Display � � 1.23; Search � � 0.12).

The strong contrast between the occipital and parietal time
courses illustrates that the observed parietal activity was not sim-
ply caused by the presence of the display but reflected a strong
top-down search component. Later in Results, we present a sec-
ond control for sensory activity in which activity in the perceptual
and memory tasks was compared under conditions that held sen-
sory stimulation constant.

Figure 3. Difference between the display and the search parameters in the perceptual task.
a, Multiple-comparison corrected group z-map showing BOLD activations (red to yellow) and
deactivations (light to dark blue) related to the presentation of the visual display in the percep-
tual task. b, The superimposition of group activations for the display parameter (red) and the
search parameter (green) to reveal regions of overlap (yellow). c, Time courses of BOLD activity
for perceptual hit trials belonging to early (dotted), middle (broken), and late (solid) intervals.
Time courses were obtained from a region located in the pIPS showing activity for both the
display and the search parameter (1) and from a region of the early visual cortex showing only
activity for the display parameter (2).
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Functional properties of memory and perceptual
search-related regions
A direct contrast comparing search-related responses in the two
tasks showed that regions in AG, lateral IPS and PCC-PreCu were
significantly more activated during memory than perceptual
search, while medial-posterior IPS and SPL were significantly
more activated during perceptual than memory search (Fig. 4a;
supplemental Table 3, available at www.jneurosci.org as supple-
mental material). This double dissociation rules out any explana-
tion based on overall differences in task difficulty or arousal.

The analysis of the signal time course in the perception- and
memory-search regions revealed a task-dependent competitive
mechanism between the two systems. BOLD time courses were
extracted from two regions showing a perceptual search prefer-
ence (Fig. 4b, regions 1, 2) and four regions showing a memory
search preference (Fig. 4b, regions 3– 6). Left parietal perceptual
regions showed a sustained positive response during visual
search. The time of peak activation and offset of the response
shifted predictably with the presentation of the target, consistent
with the idea that these regions were involved in actively search-
ing the display until the target was detected. In contrast, during
the memory task these parietal perceptual areas were deactivated
at the onset of memory search, with the duration of deactivation
increasing with retrieval time (Shulman et al., 2003). The BOLD
signal rose above baseline only at the end of the memory search
period, before the motor response. A search-dependent, BOLD
signal suppression in these areas was also observed when aligning

trials on the onset of the sentence reading
phase (between-trial model, see supple-
mental Methods, available at www.
jneurosci.org as supplemental material)
without separating the sentence reading
from the search phase of the memory task
(supplemental Fig. 4a,b, available at www.
jneurosci.org as supplemental material).
In particular, the BOLD signal fell off
more steeply on memory-retrieval trials
than on catch trials, consistent with an
active suppression of the BOLD signal
during memory-retrieval, and this sup-
pression was greater for longer memory-
retrieval durations.

In contrast, regions more activated by
memory than perception search showed
the opposite pattern: a sustained activa-
tion during memory trials and a sustained
deactivation during perceptual trials. There-
fore, search-related activations for one task
were mirrored by search-related deactiva-
tions for the other task.

Behavioral significance of memory and
perceptual search-related signals
The competitive interaction between
perceptual and memory search-related
regions was quantitatively assessed in re-
lation to behavioral performance. Both
“enhancement” effects (larger BOLD acti-
vations associated with better perfor-
mance) and “suppression” effects (larger
BOLD deactivations associated with bet-
ter performance) were observed, suggest-
ing that the degree of competition was

related to the efficiency with which each task was performed.
To avoid any bias associated with region selection, ROIs were

created from a voxelwise z-map (Fig. 5a) contrasting memory
and perceptual search-related activations in which search pro-
cesses followed by different outcomes were collapsed in each task
(see Materials and Methods). The magnitudes of the search pa-
rameters for trials with different behavioral outcomes were com-
pared within a task (perception or memory), not across tasks.
Confidence was used as the critical behavioral variable for the
memory task, since a strong effect on accuracy was observed be-
tween low and high confidence judgments (Fig. 1c). On average,
each subject contributed 70 � 14 correct-high confidence and
41 � 17 correct-low confidence trials. Because of the very small
number of low confidence hit trials, the difference between hits
(high confidence) and misses was used as the behavioral variable
in the perceptual task (Shulman et al., 2007). On average, each
subject contributed 64 � 17 (mean � SD) Hit-high confidence
and 35 � 11 Miss trials. Separate ANOVAs were conducted for
the enhancement and suppression effects for each task for mem-
ory and perception regions, with Region (e.g., SPL vs pIPS for
perception regions) and Condition (high vs low confidence cor-
rect for memory, and hits vs misses for perception) as factors.

During the perception task (Fig. 5b, blue bars), perception-
search regions (SPL, pIPS) showed a significant enhancement
effect (F(1,17) � 6.02, p � 0.025), with no interaction with Region
(F(1,17) � 2.18, p � 0.1), while memory-search regions (AG-
SMG, AG, AG-latIPS) showed a significant suppression effect

Figure 4. Time courses of activity from ROIs showing search-related difference between the memory and the perceptual task.
a, Multiple-comparison corrected group z-map showing the direct contrast between the memory (correct, high confidence) and
the perceptual (hit, high confidence) search-related parameters. Voxels showing significantly greater memory � perceptual (red
to yellow) and perceptual � memory parameters (light to dark blue) are shown. b, Time courses of BOLD activity extracted from
six ROIs obtained using the map of the direct contrast between memory and perceptual search related (upper left). The frame-by-
frame regression model (within-trial model) was used to estimate time courses for early (dotted), middle (broken), and late (solid)
intervals on memory correct (red lines) and perceptual hit trials (blue lines). Regions of left parietal lobe (1, 2) more activated by
perceptual search revealed sustained activations during perceptual trials and sustained deactivations during memory trials that
scaled with the duration of the search process. Regions of the lateral (3, 4 ) and medial (5, 6 ) left parietal lobe more activated by
memory search revealed sustained activations during memory trials and sustained deactivations during perceptual trials that
scaled with the duration of the search process.
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(F(1,17) � 7.31, p � 0.015), with a marginal
interaction with Region (F(2,34) � 2.86, p �
0.07) (see Fig. 5b for separate t tests on
each region). During the memory task
(Fig. 5b, red bars), memory-search re-
gions showed a significant enhancement
effect during the memory task (F(1,17) �
5.96, p � 0.026, with no interaction with
Region (F(2,34) � 0.33), while percep-
tion-search regions showed a marginally
significant suppression effect (F(1,17) � 4.27,
p � 0.054), with a significant interaction of
the suppression effect with Region (F(1,17) �
5.58, p � 0.03).

These findings indicate that search-
related BOLD signals in parietal perception-
search and memory-search regions were
related to performance on both tasks, and
support the hypothesis that these regions
were not independently modulated but
showed a competitive interaction.

Differences in perception- and
memory-task activations during
sentence reading
If these two sets of regions in posterior
parietal cortex were indeed specialized for searching in the envi-
ronment or memory, then a similar topographic segregation
might be observed during the sentence reading phase of the tasks.
For example, during the memory task subjects might have re-
trieved relevant information from episodic memory as they read
or finished reading the sentence, particularly since the 4 s dura-
tion of the sentence phase was chosen based on pilot work that
established the maximum reading time across sentences and sub-
jects. Importantly, during the sentence reading phase of the task,
the sensory stimulation in the memory and perception tasks was
equated, allowing activations from each task to be compared with
sensory stimulation controlled. Figure 6 shows the BOLD re-
sponse during sentence reading for the memory (Fig. 6a) and the
perceptual task (Fig. 6b). In parietal perceptual search regions,
significant voxelwise activity during sentence reading was ob-
served in both memory and perception tasks, which was expected
since in both tasks subjects attended to the sentence display (al-
though in regional analyses, the magnitude of activity varied be-
tween tasks, as shown below). However, in memory search
regions, voxelwise activity from sentence reading was not only
significantly stronger during the memory than perception tasks
(Fig. 6c), but was not even evident during the perception task.

The time courses of BOLD activity during sentence reading
were extracted from regions showing significantly greater activity
during the search phase of the perception (regions 1–2) or mem-
ory (regions 3– 6) tasks (i.e., same regions as in Fig. 4). Impor-
tantly, these time courses were obtained from trials in which the
cue sentence was not followed by the search task (catch trials,
between-trial model, see supplemental Methods, available at
www.jneurosci.org as supplemental material). A two-way ANOVA
[task (memory, perceptual) � time (11 frames)] on the sentence
reading time courses yielded a significant task by time difference
in all regions. The SPL (F(10,170) � 3.38; p � 0.0001) and pIPS
(F(10,170) � 4.24; p � 0.0001) ROIs showed higher activity for
perceptual compared with memory sentence reading. The signal
enhancement during the perception task may have reflected pre-
paratory feature-based attention for the object described in the

sentence or preparatory spatial-based attention to the area of the
display containing the video clip. Conversely, the left parietal
regions significantly more activated by memory than perceptual
search were also more activated by sentence reading in the mem-
ory than perception tasks (AG: F(10,170) � 16.78; p � 0.0001;
AG-latIPS: F(10,170) � 4.53; p � 0.0001; PCC-PreCu: F(10,170) �
32.37; p � 0.0001; PCC: F(10,170) � 15.82; p � 0.0001). Finally,
consistent with the search results, the BOLD signal in memory
regions (regions 3,5,6) went significantly below baseline in the
perception task [AG: F(10,170) � 3.38, p � 0.0001; PCC-PreCu:
F(10,170) � 3.68, p � 0.0001; PCC: F(10,170) � 3.39, p � 0.0001;
one-way ANOVA (time)].

Therefore a double dissociation between the perception and
memory tasks was demonstrated in parietal cortex (i.e., SPL and
pIPS, perception � memory; AG, AG-latIPS, PCC-PreCu, PCC,
memory � perception) under conditions in which sensory stim-
ulation for the two tasks was equated. Interestingly, these results
also show that parietal memory search regions were not activated
by lexical, syntactic, or semantic processes, since these regions
were not activated during the sentence-reading phase of the per-
ception task (Fig. 6d). Finally, the results indicate that memory
retrieval likely began during the 4 s sentence-reading phase of the
memory task since regions that were strongly activated during the
memory retrieval phase of the task were also significantly acti-
vated during the memory task by sentence reading (for further
evidence, see supplemental Fig. 4c–f, available at www.jneurosci.
org as supplemental material, which shows the time course of the
BOLD signal over an entire memory trial, i.e., from the onset of
the sentence).

No differences in eye movements during the perception and
memory tasks
We checked whether the greater activation of dorsal posterior
parietal regions during the perception task could have reflected a
greater number of eye movements compared to the memory task.
In fact, these regions are part of the dorsal attention network
which is known to be activated by both covert and overt shifts of
attention (Corbetta, 1998). Sixteen of the 19 subjects had eye

Figure 5. Relation between behavioral performance and search-related activity in the left parietal lobe. a, Multiple-comparison
corrected z-map of the contrast between memory and perceptual search-related activity, in which the search parameters corre-
sponding to different behavioral outcomes were collapsed, avoiding ROI selection biases. b, Graphs showing the BOLD percentage
signal change for search parameters corresponding to different behavioral outcomes: high (full bar) and low (empty bar) confi-
dence correct trials in the memory task (red bars), hits and misses in the perceptual task (blue bars). These parameter magnitudes
were obtained from a. Regions of the left parietal lobe (illustrated in a, 1–5) more activated by perceptual (1, 2) and by memory
(3–5) search are presented. Error bars indicate SEM. Asterisks represent the significance of the two-tailed paired t test between
search parameters in the same task.
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movement records of sufficient quality in both tasks in at least
half of the scanning runs. The SD of the eye movement position
(supplemental Fig. 5a, left bars, available at www.jneurosci.org as
supplemental material) and the amount of time the eyes were
positioned outside of a 1° radius window (supplemental Fig. 5b,
left bars, available at www.jneurosci.org as supplemental mate-
rial) were the same during the sentence reading phase of the
memory and perception tasks. Similarly, the analogous quantities
were also the same during the search phase of the two tasks (sup-
plemental Fig. 5a,b, right bars, available at www.jneurosci.org as
supplemental material). A two-way ANOVA [task (memory, per-
ceptual) � phase (sentence, search)] yielded only a significant
main effect of phase, for both the measure of SD (F(1,15) � 12.60,
p � 0.005) and time outside 1° threshold (F(1,15) � 8.44, p � 0.05).
Similar results were obtained with a 2° window except that the
overall time spent outside the window was smaller. The figures
show the analysis of the eye movements along the x-axis since
the x-axis was the most relevant axis for the sentence-reading
phase of the task and the y-axis data were noisier. However, no
differences between memory and perceptual search were ob-
served when the analysis combined the x-axis and y-axis.
Therefore, the observed differences between the memory and
perception tasks were not due to differences in eye movements.

Discussion
We investigated the BOLD activity in the human parietal lobe
associated with searching for task-relevant information in epi-
sodic memory or in the environment to test the anatomical and
functional overlap of top-down attentional networks across do-
mains. The results showed that adjacent yet clearly distinct re-
gions of the parietal lobe were activated in a “push-pull” manner
by top-down, search-related processes in episodic memory and
perception. Again, we use the term memory search to indicate an
ensemble of processes, including the retrieval of episodic infor-
mation guided by the behavioral goal the organization and eval-
uation of the retrieval information, and the accumulation of

evidence that pointed to a particular response (Moscovitch and
Winocur, 1995; Badre and Wagner, 2007; Mecklinger, 2010).
Moreover, depending on the sentence query, part or all of this
process may be repeated several times in a dynamic fashion. By
memory detection we instead refer to the subsequent processes
related to preparation and execution of the motor response.

Memory-related activity was observed in left lateral parietal
cortex, primarily angular gyrus and lateral IPS, and in midline
structures, primarily precuneus, posterior cingulate and retro-
splenial cortex (Fig. 2a). These regions overlap with regions of the
default mode network (Shulman et al., 1997; Raichle et al., 2001;
Buckner et al., 2008), and are similar to those showing old/new
differences in item recognition studies (cf. Wagner et al., 2005;
their Fig. 1), encompassing both dorsal and ventral parietal re-
gions that have been associated with effects of familiarity and
recollection, respectively (Vilberg and Rugg, 2008). A very similar
pattern was observed in the right hemisphere (supplemental Fig.
3a, available at www.jneurosci.org as supplemental material), al-
though, qualitatively, memory-related activations were generally
more extensive in the left hemisphere.

Memory-search regions were adjacent to but anatomically
distinct from regions activated by perceptual search, which were
located in medial IPS and SPL, between the lateral and medial
clusters of memory-related activations (Fig. 2c; supplemental Fig.
3c, available at www.jneurosci.org as supplemental material).
These regions have been consistently reported in studies of top-
down attention to spatial location, visual features, and objects
and correspond to the dorsal frontoparietal attention network.
Consistent with this result, search-related activations during the
perceptual task were also observed in frontal eye field (FEF; data
not shown), the second major component of the dorsal attention
network (Kastner and Ungerleider, 2001; Corbetta and Shulman,
2002).

No consistent overlap between search-related regions for the
memory and perception tasks was observed along IPS, either in

Figure 6. Task differences in the cue sentence reading phase. a, Multiple-comparison corrected z-map showing BOLD activations (red to yellow) and deactivations (light to dark blue)
corresponding to the sentence reading parameter in the memory task. b, Group z-map showing search-related BOLD activations and deactivations for the sentence reading parameter in the
perceptual task. c, Group z-map of the direct contrast between memory and perceptual sentence reading. d, Time courses of BOLD activity in response to catch sentence trials in regions showing
search-related differences (same regions as in Fig. 4, superimposed on the inflated left hemisphere of Fig. 6c), using the frame-by-frame model (between-trial model). Time courses were extracted
from regions more activated by either perceptual search (1, 2) or memory search (3– 6 ).
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group or in single-subject analyses. This result is consistent with
the topographic segregation of dorsal attention and default mode
network in studies of functional connectivity at rest (Fox et al.,
2005). The overall pattern of results agrees with a recent meta-
analysis of the memory and attention literatures, which reported
a similar dissociation between the neural correlates of top-down
attention in the visuospatial and the episodic memory domain
(Hutchinson et al., 2009), the difference being particularly evi-
dent in the lateral/medial axis.

Methodological controls
The segregation of regions activated by memory and perceptual
search did not reflect passive sensory responses in the perception
task. First, a double dissociation in the activity of search-related
regions was observed for perception and memory tasks during
the sentence-reading phase of the tasks, in which sensory stimu-
lation was equated. Second, activity in parietal search regions
during the search phase of the perception task reflected atten-
tional modulations rather than pure sensory activity, since this
activity strongly depended on the duration of perceptual search
under conditions in which sensory stimulation was held con-
stant. Consistent with this result, these perceptual search activa-
tions occurred in regions (medial IPS and SPL) that have shown
attentional modulations in many previous studies, both in the
presence and absence of sensory stimulation, as well as responses
to passive sensory stimulation (Kastner et al., 1999; Shulman et
al., 1999; Corbetta et al., 2000; Hopfinger et al., 2000; Yantis et al.,
2002; Serences and Boynton, 2007). Importantly, memory search
regions were not activated by the sentence-reading phase of the
perception task (in fact, some regions were deactivated), indicat-
ing that they were not involved more generally in semantic pro-
cessing, but were specifically activated by tasks involving episodic
memory.

Differences in the activations for each task were also not
caused by differences in the pattern of eye movements, which
were very similar across tasks during the sentence reading and
search phases. Finally, activation differences were not due to
the presence, during the memory but not perception task, of
trials in which the order of events or the number of events was
queried. As shown in Results, similar activations in the mem-
ory task were obtained when the analysis was repeated using
only trials concerning single events (supplemental Fig. 6,
available at www.jneurosci.org as supplemental material), al-
though we acknowledge that this analysis had less power due
to the use of fewer trials.

The memory and perception tasks were conducted in different
sessions. A positive feature of this design is that subjects did not
have to constantly switch between tasks, allowing a consistent
task set to be adopted (e.g., a constant retrieval mode during the
episodic memory task). This design also enabled a large number
of memory trials to be collected with a roughly constant
encoding-retrieval interval. However, there were several poten-
tial limitations associated with comparing BOLD activity across
tasks performed in different sessions. First, the signal-to-noise of
the two sessions might have differed due to variability in the
scanner, the degree of subject movement, or the subject’s overall
arousal. However, while these factors might have produced an
overall decrease in the activation for one task relative to the other
task across all regions, they could not explain the critical result
reported in the paper; namely the double dissociation in the ac-
tivity of different parietal regions across tasks. Second, the results
were not due to effects of task order since order was counterbal-
anced across participants. Finally, consistent differences in the

locus of activations between tasks were not an artifact of inaccu-
racies in across-session registration. First, our alignment proce-
dure put scans that were collected on different days into the same
space with sub-voxel precision (�0.2 mm at the cortical surface).
Second, differences in across-session registration would not have
produced consistent changes in activation loci between tasks
(e.g., memory task activations in AG, and perceptual task activa-
tions in IPS/SPL). Instead, registration errors would have pro-
duced the opposite result, i.e., they would have reduced the
consistency of differences in the locus of activation between tasks,
particularly since task order was counterbalanced. Therefore, we
strongly believe that the current results cannot be attributed to
artifacts from testing each task in a different session.

Task-relevant stimuli such as targets activate a ventral atten-
tion network comprising right temporoparietal junction and
ventral frontal cortex, along with the dorsal attention network
(Corbetta and Shulman, 2002). During perceptual search of non-
target items, before target onset and detection, the ventral atten-
tion network is deactivated (Shulman et al., 2003). Some theories
of episodic memory retrieval have suggested that a similar ventral
network is activated by the retrieval of salient or vivid memories,
even if task-irrelevant (Cabeza et al., 2008). Although the present
experiment was not designed to test these theories and the results
do not bear on their validity, it has to be noted that vivid memo-
ries may have been retrieved at unpredictable times during the
memory task. However, these memories would not have replaced
the need for sustained goal-directed memory search based on the
specific information indicated by the sentence cue. Moreover,
vivid memories would not necessarily have occurred at a constant
time relative to sentence onset, while top-down search was initi-
ated by the sentence cue and was sustained over the interval be-
fore the subject’s response. Therefore, the present results do not
simply reflect retrieval of vivid memories.

Episodic memory and perceptual search networks
dynamically compete
A key finding of the present study is that the parietal networks
activated by memory and perceptual search, while anatomically
segregated, showed a pattern of dynamic competition at the func-
tional level. Regions that were more activated by one task were
deactivated by the other task and these deactivations varied with
the duration of search. The deactivation of parietal memory
search regions during perceptual search is consistent with sugges-
tions that the default system plays an important role in episodic
memory (Buckner et al., 2005, 2008), since deactivation during
goal-driven behavior to environmental stimuli is a defining fea-
ture of the default system (Shulman et al., 1997; Raichle et al.,
2001). However, we are not aware of previous studies that have
shown the converse relationship, in which attending to memory
deactivated parietal regions that were activated by attention to
the environment (i.e., the dorsal attention network). Impor-
tantly, both signal enhancement of the task-preferred network as
well as signal suppression of the opposite network were function-
ally significant, i.e., were related to behavioral performance.

These results could reflect competitive interactions between
perceptual and memory mechanisms, in line with standard as-
sumptions about the neural and functional correlates of BOLD
signal activations and deactivations (i.e., more activation 3
more task involvement, more deactivation3 less task involve-
ment) (see Logothetis, 2008, for caveats). Greater deactivation of
memory regions might have produced better performance on the
perception task by reducing interference from irrelevant memory
representations. Conversely, the search-related deactivations
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observed in posterior IPS during memory search may have pre-
vented irrelevant perceptual information from disrupting mem-
ory retrieval. In other words, dynamic competition could reflect a
task-specific suppression that reduces crosstalk between net-
works. This interpretation is consistent with the idea that success-
ful performance is associated with the activation of task-relevant
regions and the simultaneous deactivation of task-irrelevant ones
(Hester et al., 2004; Weissman et al., 2006). A recent study
showed that across subjects the strength of the negative correla-
tion between the default system and task-positive networks was
significantly related to performance on a flanker task (Kelly et al.,
2008).

An alternative interpretation reflects a different assumption
concerning BOLD signal deactivations. For example, a region of
deactivation may correspond to an overall decrease in local field
potential that may coexist with more selective responses (Hayden
et al., 2009) or a change in directional interaction of a subpopu-
lation of neurons within the region. Instead of indicating disen-
gagement from the current task, they may indicate more selective,
task-relevant responses. For instance, Shulman and colleagues
(Shulman et al., 2003) reported during a demanding visual
identification task both search-related activations in dorsal
parietal regions, similar to those recruited in this study, as well
as search-related deactivations in temporoparietal junction
(TPJ), the core region of a ventral attention network for stimulus-
driven reorienting (Corbetta et al., 2008). The degree of search-
related deactivation in TPJ predicted the successful identification
of subsequently presented targets (Shulman et al., 2007). The
authors suggested that top-down signals (activations) from dor-
sal parietal and other regions filtered the input to TPJ so that
reorienting only occurred to a restricted set of task-relevant stim-
uli. This filtering deactivated TPJ and enabled more selective,
task-relevant responses. According to this view, activated and
deactivated regions may both play critical roles within the same
task (see also Mayer et al., 2010). We think that the latter hypoth-
esis is unlikely in the present case, since regions of the same
network would have to reverse their functional role according
to the nature of the information (mnemonic, perceptual) be-
ing processed. Recent computational studies suggest that
large-scale system dynamics based on competitive interactions
enable functional networks to be quickly activated by small
modulations of sensory or internal signals (Deco et al., 2009).
Interestingly, dorsal attention and default networks have been
reported to be in competitive interaction not only during task
performance, as in this study, but also at rest (Fox et al., 2005).
This relationship between task and rest dynamics indicates a
potentially fundamental, and yet unknown, link between on-
going cortical states and their recruitment during attention to
memory and the environment.
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