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To learn we must identify and remember experiences uniquely but also generalize across experiences to extract common features.
Hippocampal place cells can show similar firing patterns across locations, but the functional significance of this repetitive activity and the
role of experience and learning in generating it are not understood. We therefore examined rat hippocampal place cell activity in the
context of spatial tasks with multiple similar spatial trajectories. We found that, in environments with repeating elements, about half of
the recorded place cells showed path-equivalent firing, where individual neurons are active in multiple similar locations. In contrast,
place cells from animals performing a similar task in an environment with fewer similar elements were less likely to fire in a path-
equivalent manner. Moreover, in the environment with multiple repeating elements, path equivalence developed with experience in the
task, and increased path equivalence was associated with increased moment-by-moment correlations between pairs of path-equivalent
neurons. As a result, correlated firing among path-equivalent neurons increased with experience. These findings suggest that coordi-
nated hippocampal ensembles can encode generalizations across locations. Thus, path-equivalent ensembles are well suited to encode
similarities among repeating elements, providing a framework for associating specific behaviors with multiple locations, while neurons
without this repetitive structure maintain a distinct population code.

Introduction
The world is full of repeating elements, like city blocks or trees
evenly spread through a forest. However, we do not understand
how neural representations organize these spatial elements. On
the one hand, neurons may encode the similarities among these
elements to extract general principles about the environment. On
the other hand, neurons might encode each element very differ-
ently to easily distinguish between them and form unique associ-
ations with each element.

We know the hippocampus is required for spatial learning and
separating between and generalizing across similar experiences
(O’Keefe and Nadel, 1978; Morris et al., 1982; Nakazawa et al.,
2002; McHugh et al., 2007). Previous studies of separation and
generalization in the hippocampus have examined neural activity
as animals navigated similar but distinct environments. In some
cases, place cells have different patterns of activity in similar en-

vironments (Muller and Kubie, 1987) and can even fire differ-
ently in visually identical places (Tanila, 1999). These distinct
firing patterns have been termed “global remapping” (Leutgeb et
al., 2005b). In other cases, place cells show “rate remapping,”
where they fire at comparable locations in each environment but
at different peak rates (Lever et al., 2002; Leutgeb et al., 2004,
2005b; Wills et al., 2005). Cells can also show a mixture of rate
and global remapping (Skaggs and McNaughton, 1998).

Rate remapping appears to be very similar to a pattern of
activity termed “path equivalence,” where neurons fire in similar
locations within and across linear environments. Frank et al.
(2000) reported that entorhinal but not CA1 neurons showed
path-equivalent activity. In contrast, recent results reported this
sort of activity in both the entorhinal cortex (EC) and within the
hippocampus (Derdikman et al., 2009). These authors further
showed that this activity was associated with a resetting of the
grid-cell map at the beginning of each segment of the maze.

Although the presence of these patterns of similar coding is
established, the significance of these patterns is unknown. These
path-equivalent patterns of activity could be attributable to the
similarities in the animal’s path through space or behavior (e.g.,
running direction, turns), or similarities among the geometric
elements of the maze. Alternately, the presence of path equiva-
lence or rate remapping in the hippocampus could reflect the
animal’s inability to distinguish between the environments or
paths. Furthermore, it is not clear why these patterns appear in
the hippocampus in some cases and not others. We hypothesized
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that these similar coding patterns reflect coordinated, learned
generalizations across different places and episodes. We exam-
ined neural activity in CA3 and CA1 while animals performed
tasks that required distinguishing among similar elements. We
found that path equivalence in the hippocampus reflects learned
relationships among locations in the animal’s environment.
Moreover, we found that the firing of pairs of path-equivalent
cells was correlated across time, suggesting that they are con-
nected or receiving similar inputs. These findings point to a role
for path-equivalent ensembles in encoding and representing
learned generalizations.

Materials and Methods
We combined data from three different studies to examine path equiva-
lence in linear environments. Analyses focusing on different aspects of
some of these data were published previously (Karlsson and Frank, 2008,
2009; Singer and Frank, 2009). These studies varied the behavioral task,
the geometry of the environment, and the recording location, allowing us
to determine which factors influenced place cell activity.

Six-arm maze: pretraining and data collection. Detailed methods are
presented in Singer and Frank (2009). Briefly, three male Long–Evans
rats were handled and food deprived to 85–90% of baseline weight. Animals
were initially trained to run back and forth on a linear track between food
wells where liquid chocolate reward was delivered. Pretraining took place
in a different room from the recording room. One of the animals was
then pretrained on sequence 1 (S1) in the recording room, whereas two
animals were not exposed to the behavioral task until recording began
(see Fig. 1a; supplemental Table 1, available at www.jneurosci.org as
supplemental material). After pretraining, animals were implanted with
a microdrive array containing 16 independently movable tetrodes target-
ing CA3 [�3.6 mm anteroposterior (AP); 3.4 mm lateral (L)]. Over the
next 7–10 d, tetrodes were lowered first to CA1 and then to CA3. CA3 was
identified by depth and the characteristic EEG waveforms on each re-
cording tetrode. Tetrodes were then lowered to CA3 until the cell layer
was reached. Sharp wave ripples (ripples) and theta oscillations were
detected in CA3. For all animals a reference tetrode was positioned in the
corpus callosum. All neural signals were recorded relative to that refer-
ence to eliminate muscle artifacts from the recordings.

Electrode positions were confirmed by histology (see Fig. 1b; supple-
mental Fig. 1, available at www.jneurosci.org as supplemental material).
For one animal, electrode lesions were made at the end of each tetrode
and later confirmed to be in the CA3 pyramidal cell layer. For two ani-
mals, the microdrive fell off before lesions could be made. In these ani-
mals, we were able to confirm that the implant site was over lateral areas
of dorsal CA3 that made it unlikely that tetrodes would pass through the
more medial dentate gyrus (supplemental Fig. 1, available at www.jneurosci.
org as supplemental material). All tetrode depths were also consistent
with CA3 recordings. Furthermore the EEG signatures characteristic of
passing through CA1 and then traveling to CA3 were similar in all ani-
mals. In particular, as tetrodes traveled to the ventral side of the CA1
layer, the EEG amplitude greatly increased (see Fig. 1c). Thus, although it
is possible that a small number of neurons were recorded from the den-
tate gyrus, we are confident that the large majority of neurons were from
CA3. Furthermore, our results were consistent across animals and te-
trodes, suggesting that they could not be explained by a small number of
neurons recorded in other regions.

Six-arm maze: behavior. These animals learned to perform a sequence-
switching task in a six-arm maze (see Fig. 1a). This task requires that the
animal remember and select a correct arm out of a set of geometrically
similar, although visually distinct arms. Correct performance in the task
is therefore indicative of the animal’s ability to distinguish between the
arms. Animals were rewarded for correct trajectories with liquid choco-
late in reward wells at the end of the arm by an electrically triggered
solenoid delivery system. The track included four sequence arms (B, C,
D, and E) and one extra arm on each end (A and F). Arms were separated
by vertical walls (0.6 cm thick, 24 cm tall, and 81 cm long). Distal cues
were visible above these walls at either end of each arm and along the
straight section connecting different arms. Circles indicate food wells

where animals received liquid chocolate reward in arms B through E.
Colored arrows indicate trajectories included in sequence 1 (purple) and
sequence 2 (orange).

The task consists of two rules. First, a visit to the home arm (arm C in
S1 and arm D in S2) was rewarded when the animal came from any other
arm (inbound trajectories). Second, a visit to an arm adjacent to the
home arm was rewarded when the animal came from the center arm after
having previously visited the opposite adjacent arm (outbound alterna-
tion). Consecutive repeat visits to the same food well were never
rewarded. Together, these rules defined a correct cyclical sequence of
food-well visits (see Fig. 1a): right, center, left, center, right, center, left,
center, etc. (Frank et al., 2000; Kim and Frank, 2009). If the animal visited
an arm not included in the rewarded sequence (e.g., arm A, E, or F for
S1), the animal was rewarded after returning to the home arm. During
the initial learning of the task, animals learned the inbound component
first and then learned to alternate on outbound trajectories. As a result,
once animals learned to perform the outbound trajectories with high
accuracy, they were generally performing the entire sequence accurately.
Rapid learning of the alternation task depends on an intact hippocampus
(Kim and Frank, 2009), as does the ability to flexibly alternate among
reward contingencies (Hsiao and Isaacson, 1971; Hirsh et al., 1978; Ainge
et al., 2007). Thus, hippocampal activity is likely to be important for
correct behavior in this task.

During each run session, the animal was placed in the home arm of the
to-be-rewarded sequence (arm C for sequence 1 and arm D for sequence
2), but no cues indicated which sequence was rewarded other than the
presence or absence of reward at the food wells. Each run session was
between 20 and 30 min long; one animal performed two sessions and two
animals performed three sessions per day. Rest sessions in a high walled
box preceded and followed each run session. Once the animal performed
S1 with 80% accuracy, measured across a run session, or had six full days
of training and was above 75% accurate, the sequence-switching phase of
the task commenced. On the first day of sequence-switching, animals first
performed one session where S1 was rewarded. Then in the second ses-
sion, reward contingencies changed such that S2 was rewarded. All
subsequent sessions alternated between rewarding S1 and S2 within
each day.

We distinguished between “accurate” responses that were consistent
with the rules of S1 or S2 and correct (rewarded) responses. This allowed
us to score behavior according to the rules of both sequences simulta-
neously. To illustrate the behavior, we plotted a 20-trial moving average
applied to all outbound trials from one animal (see Fig. 1d). We also used
a dynamic state-space smoothing algorithm (Smith et al., 2004, 2007) to
estimate the animals’ probability of an accurate response for each se-
quence on each trial and to compute confidence intervals for the esti-
mated probability (Singer and Frank, 2009). On the basis of these
estimates, we separated each session into two parts: before and after the
animals performed the rewarded sequence significantly more accurately
than the unrewarded sequence. This point was determined as the trial on
which the mode for the probability of correct performance on the re-
warded sequence is greater than the confidence bounds for the unre-
warded sequence. This allowed us to examine both times when the
animals were making many errors and times when their behavior was
consistent with the rewarded sequence.

Three-arm maze: pretraining and data collection. The three-arm maze
data were recorded from animals 5, 6, and 7 of Karlsson and Frank
(2008). Briefly, three male Long–Evans rats (500 – 600 g) were food de-
prived to 85–90% of their baseline weight and trained to run on a linear
track with one reward well at each end of the track. Linear track pretrain-
ing was performed in a different room from the recording experiments.
After the animals were accustomed to behaving for liquid reward (sweet-
ened condensed milk), they were implanted with a microdrive array
containing 30 independently movable tetrodes. After 5– 6 d of recovery,
animals were once again food deprived to 85% of their baseline weight.
The tetrodes were arranged bilaterally in two 15-tetrode groups centered
at �3.7 mm AP and �3.7 mm mediolateral. Each group was located
inside an oval cannula whose major axis was oriented at a 45° angle to the
midline with the more posterior tip of the oval closer to the midline.
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Tetrodes in the anterior and lateral portions of each group targeted lat-
eral CA3 and more posterior and medial tetrodes targeted CA1.

Three-arm maze: behavior. Each recording day consisted of two or
three 15 min run sessions in W-shaped tracks, with rest sessions in a black
box before and after each run. The two tracks were geometrically identi-
cal but visually distinct and were open to the room but separated from
one another by a black barrier (see Fig. 2a). The tracks had one reward
well at the end of each arm, and animals learned to perform the same
continuous alternation task described above where, starting from the
center arm, they alternated visits to each outer arm for liquid reward
(center, left, center, right, and so on) (Frank et al., 2000, 2004; Kim and
Frank, 2009). The correct alternation sequence in the three-arm maze
was therefore identical to S1 or S2 in the six-arm maze. Errors were not
rewarded, and after an incorrect choice of an outer arm, no rewards were
given until the animal returned to the center arm. Animals were pre-
trained on track 1 (T1) for six days and then ran on both T1 and track 2
(T2) from days 7 onward. Recordings began on day 7. These animals’
familiarity with T1 was similar to the animals on the six-arm maze’s
familiarity with that track, and T2 was initially novel.

Multiple-U maze: pretraining and data collection. Two male Long–
Evans rats were handled and food deprived to 85–90% of baseline weight
and trained to run on an exposed tabletop for liquid chocolate reward.
Pretraining took place in the same room used for recording. After the
animals were accustomed to behaving for liquid reward on the exposed
tabletop, they were trained on the multiple-U maze (see Fig. 2b). The
arms of each U were separated by a unique divider, and each U was
scented uniquely to ensure that the animals could distinguish between
them. Based on our experience, the multiple-U task is quite difficult for
animals to learn quickly. We therefore introduced the animals to a very
short multiple U (50 cm long) (data not shown) and then expanded the
environment in two stages. We trained the animals according to a 12 d
protocol, and on each day the animal ran for either two or three 20 min
sessions on the track, and rested in a black box before and after each run
session. Days 1– 4 of training consisted of two 20 min runs on the shortest
version of the multiple U. Days 5–8 consisted of one session on the shortest
configuration of the multiple U, a second session on the medium-
length configuration (100 cm long), and a final session on the shortest
configuration. On days 9 –12, the animals ran the first session on the
medium-length configuration, the second session on the longest config-
uration (150 cm long), and the final session on the medium-length con-
figuration (see Fig. 2b).

After pretraining, animals were implanted with a microdrive array
containing 16 independently movable tetrodes targeting CA1 (�3.6 mm
AP; 2.2 mm L) using previously described methods (Karlsson and Frank,
2008). Over the next 7–10 d, the tetrodes were lowered to CA1. Seven
days after the electrodes were implanted, the animals were run on the
open table for liquid chocolate reward until they would eat continuously
for two 5 min sessions. We began the experiment after the animals
reached this behavioral criterion and the electrodes reached the cell layer.
Tetrode positions were adjusted after daily recording sessions for all
tetrodes that had poor unit recordings. On rare occasions, some tetrodes
were moved before recording sessions, but never within 4 h of recording.

Multiple-U track: behavior. On each recording day, the animals ran for
three 20 min sessions in the medium–long–medium configuration (see
Fig. 2b). The first session was the medium-length configuration, the
second was the longest configuration, and the third was the medium-
length configuration. All data included for analysis were from the long
configuration. The animals were allowed to rest in a black box for 20 min
before and after each session, and we recorded continuously through the
rest and behavioral sessions.

Data collection and processing. All data were collected using the NSpike
data acquisition system (L. M. Frank, J. MacArthur, Harvard University
Instrument Design Laboratory, Cambridge, MA). The animal’s position
was tracked with an infrared diode array attached to the animal’s pream-
plifier and was reconstructed using a semiautomated analysis of a digital
video of the experiment with custom-written software. Spike data were
sampled at 30 kHz and digitally filtered between 600 and 6 kHz (two-pole
Bessel for high and low pass), and threshold crossing events were saved to
disk. Continuous local field potential data from all tetrodes were sampled

at 1.5 kHz, digitally filtered between 0.5 and 400 Hz, and saved to disk.
Ripples were identified as described previously (Cheng and Frank, 2008).

After neural data were collected, individual units were identified by
clustering spikes using peak amplitude and spike width as variables. All
spike sorting was done using custom software (MatClust; M. Karlsson).
It was generally possible to use a single set of cluster bounds defined in
amplitude and width space to isolate units across an entire recording
session. In the minority of cases where there was a slight shift in ampli-
tudes across time, units (putative single neurons) were clustered only
when that shift was coherent across multiple clusters and where plots of
amplitude versus time showed a smooth shift. Only well-isolated cells
with tightly clustered spikes and clear refractory periods were included.
We did not attempt to match cells across days, so in some cases the same
cell may have been recorded across multiple days. To help control for the
increase in sample size that would result from repeated recordings, we
also carried out the main analyses with data from either a single day or
data from every other day of recording. All analyses were restricted to
putative principal neurons identified using standard criteria (Fox and
Ranck, 1981; Frank et al., 2001). The total number of cells recorded was as
follows: for the six-arm maze during the switching phase of the task, n �
100, 42, and 128 for animals 1, 2, and 3, respectively; during the initial
learning of sequence 1, n � 92 and 160 for animals 2 and 3, respectively;
for the three-arm maze, n � 407, 607, and 33 cells for animals 5, 6, and 7,
respectively; for the multiple-U track, n � 22 and 13 cells for animals
MU1 and MU2, respectively.

To visualize neural activity across the environments, two-dimensional
occupancy-normalized spatial rate maps were constructed with 1 cm
square bins of spike count and occupancy, both smoothed with a two-
dimensional Gaussian kernel (1.5 cm SD). These maps include times
when the animals traveled in both directions in each arm, and were used
for visualization only.

For analysis of place field activity, we calculated the “linearized” activ-
ity of each cell. Only times when animals were running forward at least 3
cm/s were included. The behavioral data were separated into different
spatial trajectories (e.g., A to B, B to A, B to C, etc.), and the animal’s
linear position was measured as the distance in centimeters along the
track from the reward site on the start arm. All the trials when the animal
was on that trajectory were included to calculate occupancy-normalized
firing rate maps. We used 2 cm spatial bins and smoothed with a 4 cm
standard deviation Gaussian curve with a total extent of 20 cm. Bins with
an occupancy of �0.1 s were excluded. Cells with a peak linearized firing
rate of �3 Hz were considered to have a place field on the track and
included in additional analyses (cells with place fields, n � 107 cells in the
six-arm maze during the switching phase of the task; n � 108 cells in the
six-arm maze during initial learning of sequence 1; n � 130 cells in T1 in
the three-arm maze; n � 131 cells in T2 in the three-arm maze; n � 24
cells in the multiple-U maze).

We performed a number of analyses to compare single cells’ firing in
different trajectories. For the three- and six-arm mazes, only correct trials
were included. Results were similar if all trials were included. For all
mazes, only trajectories in the same turn direction were compared (e.g.,
right turn trajectories or left turn trajectories) because these are the most
similar. This also eliminates the problem of comparing trajectories where
the animal crosses the same place in the same direction for one of the
arms in the trajectories, as is the case for trajectories that either both start
or both terminate in the center arm of the sequence.

To determine whether place fields occurred in similar locations in
multiple trajectories, we computed the spatial autocorrelation of each
cell’s linearized firing. Linearized firing on each trajectory was first nor-
malized by its area so that firing on each trajectory had a total area of one.
This allowed us to detect similarities in firing location regardless of ab-
solute rate. Trajectories in the same turn direction were concatenated,
and the autocorrelation was calculated. Each correlation was scaled such
that the autocorrelation at zero was one.

To determine confidence bounds for these autocorrelations, we com-
puted the cross-correlation between the concatenated normalized linear-
ized firing rate of different cells recorded in the same session. If
trajectories had excluded bins in the linearized firing because of low
occupancy, they were excluded from the analysis. We computed the

11588 • J. Neurosci., September 1, 2010 • 30(35):11586 –11604 Singer et al. • Coordinated Hippocampal Activity in Related Places



mean and 90% confidence bounds for the cross-correlations at each
spatial lag. To determine whether cells had peaks in the autocorrelation
away from zero, we determined which spatial lags had autocorrelation
values above the confidence bounds of the cross-correlations. By defini-
tion, a place cell will have a peak in the autocorrelation at lags near zero,
so we identified significant lags �60 cm or less than �60 cm to detect
peaks not attributable to autocorrelation near zero lag for each cell. For
each cell, two autocorrelations were computed, one for right-turn trajec-
tories and one for left-turn trajectories. Significant lags were identified on
both autocorrelations to ensure that periodic cells that had directional
firing were properly identified as periodic. Cells with peaks that occurred
at lags within �20 cm of the length of a trajectory (140 –180 cm in the
six-arm maze and 150 –190 cm in the three-arm maze) in either of the
two autocorrelations (left-turn or right-turn trajectories) were consid-
ered “periodic” because these cells had firing peaks at distances similar to
the length of trajectories in the environment. Cells with significant peaks
�60 cm but outside of the periodic range were deemed “aperiodic,”
whereas cells with no significant peak �60 cm in both autocorrelations
were categorized as “single-peak” cells. When computing the proportion
of periodic cells per session, only sessions with at least five isolated cells
with place fields on the track were included and all sessions per day were
included. When computing the proportion of periodic cells per tetrode,
only tetrodes with at least four isolated cells with place fields on the track
were included.

To determine the number of significantly path-equivalent trajectory
pairs per cell in the six-arm maze, we examined firing on all task-relevant
trajectories (trajectories from arm B to C, C to B, C to D, D to C, D to E,
and E to D). We compared trajectories in the same turn direction, creat-
ing a total of six trajectory pairs. For each pair, the autocorrelations were
computed as described above. Pairs with a significant peak in the periodic
range were considered path equivalent.

The autocorrelation analysis provides a measure to assign cells to path-
equivalent (periodic) or non-path-equivalent (nonperiodic) classes, but
it does not provide an obvious way to measure changes in strength of
path-equivalent coding over time. We therefore calculated the place field
overlap for pairs of cells. Overlap was calculated according to a previously
established method (Battaglia et al., 2004). We also calculated normal-
ized overlap where each cell’s linearized firing on each trajectory was
normalized by its area, and the overlaps between trajectories in the same
turn direction were computed. This revealed similarities in firing loca-
tion in related trajectories regardless of firing rate. Normalized overlap
values close to one indicate very similar firing locations, whereas values
close to zero indicate very different firing locations. To define cases when
firing on two trajectories was in similar locations, we examined trajecto-
ries for which the normalized overlap for a pair of linearized firing rates
was �0.3. We selected 0.3 as a cutoff value because the distributions of
normalized overlaps of linearized firing rate from the same cell and dif-
ferent cells cross at this point (see Fig. 3i), but our results were similar for
a cutoff value of 0.805, which was the value representing the beginning of
the top 5% of the same cell distribution.

To examine differences in firing rate, we computed the peak firing rate
of the linearized firing of each trajectory. The smaller firing rate was
divided by the larger firing rate to create a peak firing rate ratio. Ratios
close to one had very similar peak firing rates, whereas ratios close to zero
had very different peak firing rates in the compared trajectories. We
computed the normalized overlap and peak rate ratio between trajecto-
ries in the same turn direction.

We used the normalized overlap measure to examine path equivalence
during the initial training on S1 and the first days of exposure to S2 in the
six-arm maze. For two animals we recorded neural activity when the
animals initially learned S1 from their first exposure to the track until
they reached criterion before the sequence-switching phase of the task.
During this initial learning period, animals did not know the correct
sequence and performed poorly. We therefore included all task-relevant
arms and both incorrect and correct trials. We also examined the distri-
butions of normalized overlap for the first days of exposure to T2 in the
three-arm maze. In both cases we compared trajectories in the same turn
direction.

In addition, we examined the spatial information of place field activity.
For each trajectory, we calculated the number of bits per spike according
to the formula of Skaggs et al. (1993):

�
i

Pi� Ri

R� log2 �Ri

R� ,

where i indexes over the spatial bins in the trajectory, Pi is the probability
that the animal was in bin i, Ri is the mean firing rate in bin i, and R is the
mean firing rate over the trajectory. Only trajectories with a peak linear-
ized firing rate of at least 3 Hz were included to reduce noise caused by
low spiking activity. Only the central trajectories that overlapped in both
sequences were included to control for potential differences in trajectory
sampling between sequences.

We examined moment-by-moment variability in pairs of cells to de-
termine whether there was evidence for sets of path-equivalent cells firing
together in organized ensembles. To determine whether neurons’ trial-by-
trial variability was correlated, we adapted an approach from Schoppik et al.
(2008) where we examined the “noise” correlations defined as the corre-
lations of firing rate residuals. The residuals were calculated as the differ-
ence, in each 500 ms window, between the predicted number of spikes
from the linearized place field and the actual number of spikes recorded
(see below). This approach has a number of advantages over standard
cross-correlation techniques. In particular, by examining the correla-
tions of the residuals, we avoid misclassifying increases in overall firing
rate caused by place field shape as correlated firing. Instead, measuring
the correlation of the residuals of firing asks whether the fluctuations of
each neuron about its mean rate are related, as would be the case if the
neurons were part of a functional ensemble that receives common inputs.

We divided each recording session into 500 ms bins, and for each cell
we calculated the expected number of spikes in each bin, excluding spikes
present during ripples. The expected number of spikes was calculated by
first computing the expected firing rate in 33 ms bins based on the ani-
mal’s location and the linearized firing curves, and then integrating that
rate across each 500 ms bin. The 500 ms bin size was chosen to be large
enough to effectively average over variability caused by short-time-scale
bursting and the modulation of the �8 Hz theta rhythm.

We then calculated the residuals: the difference between the expected
number of spikes and the actual number of spikes recorded in each time
bin. Only bins where the expected firing rate exceeded 0.5 Hz were in-
cluded. This cutoff was chosen to avoid floor effects associated with
locations where few or no spikes were observed. We computed the cor-
relation between residuals of cell pairs for each trajectory or for the entire
session (all trajectories) when animals were running at �3 cm/s and no
sharp wave ripples were detected on any tetrode in CA3. Correlations
were only computed if there were at least 10 s of data to correlate, e.g.,
�20 bins in which both cells’ expected firing rate was �0.5 Hz. Residual
correlations were compared to the overlap between the cells’ linearized
firing rates in each trajectory. We also determined whether there was a
relationship between the residual correlation for the entire session and
the number of trajectories in which two cells overlapped. To compute the
number of trajectories in which the cells overlapped, we counted the
number of trajectories with an overlap of �0.3. In all other trajectories
that were not deemed overlapping (e.g., did not have overlap of �0.3),
overlap had to be low, defined as �0.2. Cells that had trajectories with
overlaps in between these criteria (0.2– 0.3) were excluded from this
analysis to allow us to classify cell pairs as having either high or low
overlap on each trajectory. Finally, to control for possible contamination
caused by clustering errors, we repeated all of these residual correlation
analyses for cells recorded on different tetrodes. We found similar results
with these more restricted data.

We determined the extent to which the hippocampal representation of
space preserved information about the uniqueness of each trajectory
using population vector correlations (Leutgeb et al., 2005b; Derdikman
et al., 2009). Each trajectory was divided into 10 cm spatial bins, and a
population vector of the linearized firing rate for all cells was created. For
each animal, recording days were grouped into pairs of consecutive days.
Cells from each pair of days in that group were concatenated in the same
vector to include more data to compute the correlation. Population vec-
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tors from corresponding spatial bins in different trajectories were corre-
lated. Only trajectories in the same turn direction were compared (e.g.,
trajectory B–C was compared to C–D and C–B was compared to D–C for
S1). The resulting correlations from all bins in a pair of trajectories were
averaged. We compared these correlations to cases when the cell identity
in the population vector was shuffled or the same trajectory was com-
pared across sessions. Only correct trials were included, though results
were similar if all trials were included.

Statistics. The measures discussed above tend to produce non-
Gaussian distributions, so rank-sum tests were used for pairwise statisti-
cal tests unless otherwise noted. Similarly, the nonparametric
Spearman’s correlation was used for all correlation analyses unless oth-
erwise noted. Standard ANOVAs were used when the distribution of the
data was not different from a Gaussian distribution (Lillie test, p � 0.05);
otherwise, a Kruskal–Wallis one-way nonparametric ANOVA was used.

Results
We recorded hippocampal neural activity in a six-arm maze (Fig. 1),
a three-arm W-shaped maze (Fig. 2a) (Karlsson and Frank, 2008),
and a multiple-U track (Fig. 3).

Six-arm maze behavior
Animals were trained to perform two alternation sequences in a
six-arm environment. Rapid learning of the alternation sequence
requires the hippocampus (Kim and Frank, 2009); therefore, hip-
pocampal activity is likely involved in performing the six-arm
task. Animals first learned a spatial alternation sequence (S1) to
criterion and then learned to switch between this sequence and a
second alternation sequence (S2) (see Materials and Methods).
All six arms remained available for exploration. We initially fo-
cused our analysis on the sequence-switching phase of the task,
where the entire environment was familiar. When animals
switched between sequences, we found that they were using a
place-centered strategy as opposed to a body-centered strategy.
At the beginning of each session, animals were placed in the cen-
ter arm of the to-be-rewarded sequence. We found that when
animals were first placed in the center arm of S2 they immediately
performed the previously rewarded S1. This can be seen in a
quantification of behavior from the first 10 trials in the first ses-
sion of S2, where animals were more likely to perform S1 than S2
(Fig. 1d,e). Thus, animals used environmental cues and an allo-
centric reference frame to perform the task, rather than remem-
bering a series of right or left turns based on their body reference
frame. These results indicate that the animals were able to distin-
guish between the different arms of the environment and used
this information to perform the task. Thus, when the animal
correctly performs the task, similarities in neural coding between
arms cannot be explained by a failure to distinguish among sim-
ilar locations. During this first session on S2, animals executed S1
for several trials and then changed their behavior, eventually
learning to perform S2. By the last 10 trials of the session, animals
performed S2 with a high degree of accuracy (Fig. 1d,f). Addi-
tional quantification of the animals’ behavior is presented in
Singer and Frank (2009).

Path-equivalent coding in CA3 in the six-arm maze
The sequence-switching task requires animals to accurately rep-
resent their location to receive a reward. We therefore asked
whether hippocampal path equivalence was present while ani-
mals were learning and performing this task. We examined neu-
ral activity in CA3 and restricted our analysis to correct trials. We
found that many single cells fired in similar locations across mul-
tiple arms in the six-arm environment. We observed path-
equivalent activity from single cells in both two-dimensional and

linearized firing plots (Fig. 3a,b). Repetitive firing in different
arms and trajectories became more obvious when firing rate
maps were scaled so that all firing above 3 Hz is shown in the same
color or, in the case of the linearized firing, when rates were scaled
to the peak firing on each trajectory. This scaling emphasizes
firing location and disregards peak or total firing.

We found that many cells fired at regular spatial intervals of
about the length of a single trajectory. To quantify this activity for
each cell (n � 107 cells with place fields on the track), we com-
puted an autocorrelation of the cell’s linearized firing rate. We
normalized the linearized firing rate on each trajectory by its area
and then concatenated the linearized firing for trajectories in the
same turn direction. The resulting autocorrelations had peaks at
zero and for many cells, at about the length of a single trajectory
in the environment (�160 cm) (Fig. 3c). Cells fired at the same
spatial separations even though they fired at many different
locations in the track. For instance, some cells fired at turns
(Fig. 3a– c, left), and other cells fired near reward wells (Fig.
3a– c, middle), but in both cases these cells fired at �160 cm
separations.

About half of the cells with place fields on the track had path-
equivalent activity as assessed by the autocorrelation measure. To
determine that proportion, we compared each cell’s autocorrela-
tion to 90% confidence bounds derived from the distribution of
cross-correlations between the linearized firing rates of different
cells. Autocorrelations were computed separately for right-turn
and left-turn trajectories. We identified the peak of regions where
the autocorrelation exceeded the upper 5% confidence bound
and plotted a histogram of peak locations (Fig. 3d). About half of
the cells had significant peaks in either of the two autocorrelo-
grams at lags corresponding to the length of a single trajectory
(140 –180 cm), and we categorized these cells as “periodic” (Fig.
3e). The rest of the cells were either aperiodic, having a significant
peak in either autocorrelogram at lags �60 cm but not near the
length of a single trajectory, or single peak, having no significant
peaks in either autocorrelogram at lags �60 cm. Thus, cells with
a single peak for one autocorrelegram but with a significant peak
in the other autocorrelegram were classified as either periodic or
aperiodic depending on whether the significant peak occurred
within the periodic range. These findings indicate that about half
of the cells with place fields in the environment showed path-
equivalent coding.

This mixture of path-equivalent and non-path-equivalent
coding was present within each session on the track and within
individual tetrodes, indicating that cells with different firing
patterns were present simultaneously (Fig. 3f,g). Thus, path-
equivalent and non-path-equivalent cells are found in the same
locations in the hippocampus. This analysis included only correct
trials, but path-equivalent activity persisted when we included
both correct and incorrect trials (data not shown). To determine
the number of trajectories in which a cell’s firing was path equiv-
alent, we examined all task-relevant trajectories, both correct and
incorrect (see Materials and Methods). During the initial learn-
ing of the sequence-switching phase of the task, animals generally
explored the six task-relevant trajectories that included all S1 and
S2 trajectories, resulting in a total of six trajectory pairs with the
same turn direction. Cells most often showed path-equivalent
coding in two or fewer trajectory pairs (Fig. 3h), indicating that
individual cells were active in a subset of the possible path-
equivalent locations. We also found that path equivalence could
extend to the outer arms of the six-arm environment (supple-
mental Fig. 2, available at www.jneurosci.org as supplemental
material).
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Path equivalence was not attributable
to general trends in place field locations
(e.g., place fields from many cells congre-
gating around features like turns). We
first noted that if path-equivalent activity
could be explained by general trends in
place field locations, the cross-correlation
of concatenated linearized firing from dif-
ferent cells would also show peaks of ac-
tivity at lags corresponding to the length
of a trajectory. This would have broad-
ened the confidence bounds of the distri-
bution, making the threshold for
significant autocorrelation peaks higher at
the length of a trajectory, and therefore
decreased the number cells with this peri-
odic structure.

We also examined this issue by com-
puting the normalized overlap, a measure
of the degree of overlap between place
field locations, and therefore the degree of
path equivalence, as opposed to categoriz-
ing the cells as either path equivalent or
not. Normalized overlap reflects the sim-
ilarity of the firing location regardless of
firing rate. High normalized overlap oc-
curs when cells fire in very similar loca-
tions, whereas low normalized overlap
occurs when cells fire in very different lo-
cations. We computed the normalized
overlap between linearized firing rates for
the same cell in two different trajectories
and compared that to the normalized
overlap of different cells in two different
trajectories. We found that the normal-
ized overlap of linearized firing from the
same cell between different trajectories
was much higher than between different
cells on different trajectories using the
same set of trajectories in both cases (Fig.
3i) ( p � 10�10; n � 210 same-trajectory
pairs, 998 different-trajectory pairs; medi-
ans, 0.5574 and 0.1661 from the same cell
or different cells, respectively). Hence, the
presence of path-equivalent firing could
not be explained by the clustering of place
fields around particular features or more
generally by many different cells firing in
similar locations in different trajectories.

Furthermore, these analyses also sug-
gest that our results cannot be attributed
to poor isolation of single cells. Although
poor clustering could produce putative
single units that were actually multiple
cells, place fields from these cells are not
generally present in related locations
(Redish et al., 2001), so these multiple
fields would not tend to be path equiva-
lent. However, there is one report of ana-
tomical clustering in a very well learned
task (Hampson et al., 1999), and it is pos-
sible that we would have found clustering
if animals had been trained for weeks or

Figure 1. Task design and behavioral performance. a, Overhead view of the behavioral apparatus with rewarded sequences
indicated by colored arrows (purple, S1; orange, S2). Brown circles indicate the location of food wells; reward was delivered in arms
B–E. Dashed lines indicate walls. b, Histology showing the hippocampus and tetrode locations. Arrows indicate lesion at the end of
a tetrode and the tetrode track. The white outline encompasses the estimated recording area. c, All animals showed characteristic
EEG signatures (top 3 traces) with large amplitude theta modulation. For comparison, we included a recording from CA1 from the
three-arm maze (bottom trace) that is much smaller in amplitude with less prominent theta modulation. Each trace is a total of 1 s
plotted on the same vertical scale. d, Twenty-trial moving average of correct responses for one animal when switching between
performing S1 (purple) and S2 (orange). Background color indicates which sequence was rewarded. Dark black lines separate
recording days. The top graph shows all sequence-switching days, and the bottom graph shows the first day of switching. Chance
performance on this task was assumed to be �0.2 because there are five arms the animal can choose from when leaving one arm.
This value for chance performance is only an approximation because it assumes that the animal was equally likely to sample each
arm. e, Proportion of the first 10 trials that were correct according to the rules of S1 (left bar) or S2 (right bar) in the first session
animals were exposed to S2. f, Proportion of the last 10 trials that were correct according to the rules of S1 (left bar) or S2 (right bar)
in the first session animals were exposed to S2. Trials from all animals were included in e and f.
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months on the task. Finally, we noted that
because we did not attempt to determine
whether we recorded the same cell over
multiple days, it is possible that our data
include some cells more than once. This is
akin to sampling with replacement, and
has complex effects on statistical signifi-
cance. There are no generally accepted
methods for determining whether a re-
corded neuron is the same across days, so
we repeated the normalized overlap anal-
ysis for single days or every other day of
recording to ensure that our results hold
for smaller datasets with fewer cells re-
corded more than once. These analyses
produced similar results to those that
included all cells across all days: the dis-
tribution of normalized overlaps of lin-
earized firing from the same cell on two
different trajectories was higher than that
of different cells ( p values �10�5, rank-
sum tests).

Path equivalence increases with
experience
The presence of path equivalence during
the spatial alternation task in the six-arm
maze shows that path equivalence is not
attributable to an animal’s failure to dis-
tinguish between locations, but it is still
unclear whether this pattern of firing is
likely to serve a functional purpose. If
path-equivalent activity reflects the en-
coding of common behavioral associa-
tions across related locations (Frank et al.,
2000), we would expect that the strength
of path equivalence would increase with
experience. Indeed, we found that path
equivalence increased with experience re-
lating the paths, both when the environ-
ment was novel and when it was more
familiar.

We first found that the prevalence of
path equivalence increased with experi-
ence during the initial training on S1. Be-
cause animals did not know the correct
sequence and performed poorly, we in-
cluded both incorrect and correct trials on
trajectories in S1, comparing trajectories in the same turn direc-
tion. On days 2 through 5, path equivalence for individual neu-
rons, measured as the normalized overlap of linearized firing
across different trajectories, increased as animals became more
familiar with the environment and learned S1 (Fig. 4a) (Kruskal–
Wallis one-way ANOVA, � 2

(4,115) � 17.46, p � 0.005; day 2 was
significantly less than days 4 and 5, p � 0.05, Tukey–Kramer post
hoc test). Thus, path equivalence increased as animals learned the
initial sequence. Animals did not traverse the task arms enough
on day 1 to compute linearized firing rates and normalized
overlaps.

Similarly, the prevalence of path equivalence also increased
when animals learned the new sequence (S2) in the now familiar
environment. During learning of S2, the entire environment and
all of the task trajectories were familiar, as the animals fully ex-

plored the environment when initially learning S1. Thus, the CA3
place field map would be expected to be stable (Leutgeb et al.,
2004; Karlsson and Frank, 2008). However, some of the task tra-
jectories are specific to S2 and are never rewarded during the
initial learning of S1 (trajectories from arm D to E and E to D). As
a result, these trajectories do not initially have the same task
relevance during the initial learning as trajectories that are in-
cluded in S1. We examined the normalized overlap between dif-
ferent sets of trajectories during sessions in which S2 was
rewarded. Because animals were learning to switch between S1
and S2, they traversed all trajectories in both S1 and S2. We found
that the distribution of normalized overlaps for S2 trajectories
increased with experience (Figs. 4b, left, c) (Kruskal–Wallis one-
way ANOVA; � 2

(2,199) � 13.06; p � 0.005). In contrast, the nor-
malized overlaps of pairs of S1 trajectories did not show any

Figure 2. Three-arm maze and multiple-U track. a, Overhead view of the two three-arm W-tracks. Gray circles denote the
location of food wells. Gray arrows indicate trajectories in the rewarded sequence. Animals were rewarded for performing the same
continuous alternation task as in the six-arm maze, which involved the following sequences of arms: center, left, center, right,
center, and so on. b, Overhead view of the medium and long configurations of the multiple-U track. Animals ran first on the
medium configuration, then on the long configuration, and then on the medium configuration with 20 –30 min rest sessions in
between. The arms of each U were separated by a unique divider, and each U was scented uniquely to ensure that the animals could
distinguish between them. The odors were no scent, bergamot (indicated with light gray symbol above track), cinnamon (dark
gray symbol), and lavender (black symbol). Gray circles denote the location of food wells. Gray arrows indicate trajectories in the
rewarded sequence.
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Figure 3. Path-equivalent coding in the six-arm maze. a, Spatial firing rate maps of three cells scaled to the cells’ peak firing rate (above) or scaled so that all firing �3 Hz is red (below). Cells on
the left and in the center show path-equivalent firing patterns, whereas the cell shown on the right does not. Only times when the animal was running �3 cm/s are included. b, Occupancy-
normalized firing rates on each linearized trajectory for the same three cells shown in a. All trials when the animal traveled on each trajectory are included together to create the linearized firing rates.
c, Autocorrelation of the linearized firing for the same three single cells shown in a and b (red lines). Linearized firing rates on trajectories in the same turn direction were normalized by their area
and then concatenated (inset). Top graphs show right-turn trajectories as the animal moves from the left to the right (light and dark green arrows and curves), and bottom graphs show left turns
as the animal moves from the right to the left (pink and purples arrows and curves). The peak in the autocorrelation (single-headed black arrow) indicates the distance between peaks in the
linearized firing concatenated across the two trajectories (double-headed black arrow). To determine whether the peak was significant, the autocorrelation was compared (Figure legend continues.)
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further changes with experience in the sequence-switching phase
of the task (Fig. 4b, middle) (� 2

(2,137) � 3.06; p � 0.2). Similarly,
comparisons of normalized overlaps between trajectory pairs where
one trajectory was unique to S1 and the other was unique to S2
yielded no significant changes (Fig. 4b, right) (�2

(2,120) � 5.28; p �
0.07). Thus, even though animals had many days of experience on
the track, when S2 was novel, firing on the pairs of trajectories in S2
was relatively dissimilar. With more experience with S2, the coding
for these related, task-relevant trajectories became more similar.

These changes in path equivalence with learning could not be
explained by remapping of field location or changes in peak rate
associated with the switch from S1 to S2. If remapping occurred,
we would expect that neurons would fire differently in the trajec-
tories shared across S1 and S2 when the animal transitioned from
performing S1 to performing S2. We therefore measured the nor-
malized overlap from the same cell on the same trajectory when
the animal performed S1 versus S2 accurately. We found that the
normalized overlap was high, as we would expect if the cells fired
in similar locations regardless of the sequence being performed.
We compared that distribution to the normalized overlap be-
tween different trajectories in the same session. We found signif-
icantly higher overlaps across S1 and S2 for the same trajectory
than across different trajectories in the same session (Fig. 4d)
( p � 0.001; n � 118 same-trajectory pairs in S1 vs S2, n � 210
different-trajectory pairs in the same session; medians, 0.7123
and 0.5574 from the same trajectories in S1 and S2 or different
trajectories, respectively). These results show that firing location
on the same trajectory in different sequences was very similar,
more similar even than the distribution of firing locations be-
tween trajectories that can be path equivalent. Therefore, there
was no evidence for changes in place field location between S1
and S2.

We similarly found no changes in overall peak rate when the
animal switched from S1 to S2. We compared peak linearized
firing rates on the same trajectory when animals were performing
S1 versus S2 and took a ratio of the smaller peak divided by the
larger peak firing rate. We compared this rate ratio to that ob-
tained from times when the animal was performing the same
sequence across two epochs and found no differences ( p � 0.08;
medians, 0.6941 and 0.6072 for S1 and S2, respectively; n � 118

and 197 trajectory pairs for the same trajectories in the same
sequence or the same trajectory in S1 and S2, respectively). Thus,
switching from S1 to S2 does not appear to alter the coding for the
shared central trajectory. Given that cells were most often path
equivalent on two or fewer trajectory pairs (Fig. 3h), our results
suggest that path equivalence of some cells could develop inde-
pendently in S1 and S2.

Furthermore, these changes in path equivalence could not be
explained by changes in place field properties related to the ani-
mal’s behavioral performance. We compared periods when the
animals performed the rewarded sequence with low or high ac-
curacy; e.g., before and after the animals performed the rewarded
sequence significantly more accurately than the unrewarded se-
quence (see Materials and Methods). We found no significant
differences in several place field properties when the animal per-
formed the rewarded sequence with low or high accuracy: spatial
information ( p � 0.08; medians, 2.9465 and 2.8088, respectively;
n � 26 and 64 trajectories for periods with low and high accuracy,
respectively), mean firing rates ( p � 0.56; medians, 0.2736 and
0.3180; n � 82 and 90 cells for periods with low and high accu-
racy, respectively), and peak firing rates ( p � 0.40; medians,
6.2767 and 7.8427, respectively; n � 74 and 90 cells for periods
with low and high accuracy, respectively).

These findings indicate that path equivalence increases with
experience with behaviorally related trajectories. That raises the
possibility that the coding for the nonrewarded trajectories in-
volving the outside arms of the maze would become less similar to
the coding for the rewarded trajectories with experience. Al-
though this may have occurred, animals stopped sampling the
unrewarded outer arms of the maze during the initial learning, so
we could not evaluate the similarity of coding across rewarded
and nonrewarded arms.

Ensembles of cells are recruited together in the
path-equivalent code
Previous studies have identified “cell assemblies,” where subsets
of neurons fire together more than expected (Harris et al., 2003;
Dragoi and Buzsaki, 2006). The role of these ensembles in encod-
ing specific mnemonic information remains unclear, however.
We therefore asked whether path-equivalent neurons were active
in the context of organized ensembles. If so, instead of single cells
independently firing similarly across places, ensembles of cells
could fire together in similar patterns across related places. In-
deed, we found that path-equivalent cells that repeat together on
multiple trajectories have correlated moment-to-moment activ-
ity, suggesting they are connected or receive similar inputs. These
results could not be explained by a simple relationship between
place field overlap and correlated moment-to-moment activity,
more time bins available in cells pairs with higher overlap, or
clustering errors.

To identify elements of cell ensembles, we examined correla-
tions between pairs of cells’ moment-to-moment variability.
High correlations between cells’ moment-to-moment variability
suggest the cells receive similar inputs or are connected to each
other either directly or indirectly (Lee et al., 1998; Shadlen and
Newsome, 1998). We calculated the difference between each
cell’s expected number of spikes (based on linearized firing rates
and the animal’s position) and the actual number of spikes in 500
ms time bins (see Materials and Methods) (Fig. 5a). We then
correlated these residuals between pairs of cells both in single
trajectories and over the entire session when animals were run-
ning. Higher correlations indicate that the cells vary together
from moment to moment.

4

(Figure legend continued.) to the distribution of cross-correlations of the linearized firing
between different cells (blue; solid line, mean; dashed line, 90% confidence bounds). d, Histo-
gram of significant peaks at nonzero lags for each cell’s linearized firing autocorrelations. The
region between the dotted lines corresponds to lags that are within 20 cm of the length of a
single trajectory and were therefore classified as periodic. Autocorrelations and significant
peaks were computed separately for trajectories in each turn direction. e, Proportion of cells
that had periodic or aperiodic activity or had no significant peak at nonzero lags (single peak).
Periodic cells had significant lags at 150 –170 cm in either autocorrelogram. Single-peak cells
had no significant nonzero lags in either autocorrelogram. Aperiodic cells had significant non-
zero lags outside of 150 –170 cm. f, Proportion of cells that had periodic activity in each session,
including all sessions per day during the sequence-switching phase of the task. g, Proportion of
cells that had periodic activity on each tetrode, including all tetrodes with at least four isolatable
units. h, Number of trajectory pairs with periodic firing per cell. i, Distribution of normalized
overlaps between the linearized firing of the same cell (black) on two different trajectories or
different cells (light gray) on two different trajectories. The median for single cells was larger
than for different cells (***p � 10 �10, rank-sum test). A diagram illustrating the normalized
overlap measure is shown to the left. The linearized firing on each trajectory (top, a single cell’s
firing on one trajectory in pink and on another trajectory in purple) is divided by its area to
produce firing rate curves with the same total firing (bottom). The normalized overlap is the
area under both curves that are normalized by their area (gray in bottom graph). Only correct
trials were included, and only trajectories with the same turn direction were compared. Results
were similar if all trials were included.
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Figure 4. Path equivalence increases with experience. a, Normalized overlaps per trajectory pair during initial training on S1 in the six-arm maze across days 2–5 for trajectories that
are part of S1. The median normalized overlap increased for S1 in the six-arm maze from day 2 to day 5 (Kruskal–Wallis one-way ANOVA, � 2

(4,115) � 17.46; p � 0.005; the value for day
2 was significantly less than the values on days 4 and 5; p � 0.05, Tukey–Kramer post hoc test). There were insufficient data to compute the normalized overlap on day 1. b, Normalized
overlaps during training on S2 during the switching phase of the task in the six-arm maze after initial training on S1. Normalized overlaps were examined for different pairs of trajectories,
including trajectory pairs within S2, trajectory pairs within S1, and trajectory pairs where one trajectory was rewarded in S1 and the other in S2. Only trajectory pairs within S2 showed
a significant change. Error bars show mean � SEM. c, Examples of firing on task-relevant trajectories of four different cells during training on S2. The plots depict the occupancy-
normalized linear firing rates for two cells taken from day 1 (above) and two from day 3 (below) of exposure to S2. d, Distribution of normalized overlaps between the linearized firing
of the same cell on the same trajectories when the animal performed S1 or S2 (light gray) or the same cell on different trajectories when the animal performed the same sequence in the
same session (black). The median for same trajectories in S1 versus S2 was larger than for different trajectories in the same session ( p � 0.001, rank-sum test). *p � 0.05; **p � 0.001.
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Figure 5. Pairs of path-equivalent cells are correlated. a, The linearized firing rate on a trajectory (top) was used to compute the expected number of spikes (black, middle, and bottom graphs)
in each time bin for a cell (two example cells shown here). Each dot shows the expected (black) or actual (light gray) number of spikes in each time bin for a single pass through the trajectory (middle)
and through three passes (bottom). The residuals are the difference between the expected and actual number of spikes in each time bin. b, Examples of linearized firing curves on all task trajectories
for different pairs of cells. Cell pairs 1 and 2 have negative residual correlations of �0.22 and �0.15, respectively, and have low overlap in most trajectories. Cell pairs 3 and 4 have positive residual
correlations of 0.14 and 0.21, respectively, and have high overlap in most trajectories. Some bins of the linearized firing curves were excluded because of low occupancy (see Materials and Methods).
c, Residual correlations for cell pairs in which both cells were path equivalent (P/P), one cell was path equivalent and one cell was not (P/NP), or both cells were not path equivalent (NP/NP). Residual
correlations were significantly higher for pairs in which both cells were path equivalent (ANOVA, p � 0.05; F � 3.32). d, The number of trajectory pairs with high overlap (overlap of �0.3) versus
the correlation coefficient of the residuals for all cell pairs (ANOVA, p � 0.05; F � 2.9704). When comparing different trajectories, only trajectories in the same turn direction were compared. e,
Correlation of residuals during the first two days of training on S2 (left bar), during three or more days of training on S2 (middle bar) after initial training on S1, and during the last (Figure legend continues.)
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We found that pairs of path-equivalent cells had higher resid-
ual correlations than other pairs of cells, suggesting that path-
equivalent cells are part of functional ensembles. Cells were
categorized as path equivalent based on the autocorrelation anal-
ysis described above. We examined pairs of path-equivalent cells
whose linear firing rate curves overlapped (overlap �0.3) in dif-
ferent numbers of trajectories. Pairs of path-equivalent cells that
overlap together in multiple trajectories (three or more) had
much higher residual correlations than pairs in which one or
both cells were not path equivalent (Fig. 5b,c; supplemental Fig. 3,
available at www.jneurosci.org as supplemental material)
(ANOVA, F(2,60) � 3.32; p � 0.05). We found the same trend for
pairs of path-equivalent cells that overlapped in two or more
trajectories but the effect was not significant (ANOVA, F(2,63) �
1.857; p � 0.17). Although we might expect that pairs of non-
path-equivalent cells would also form functional ensembles, we
did not find any evidence for that here. This is perhaps not sur-
prising as cells with overlapping place fields in a single location
could have similar field locations by chance, and thus might not
be part of an ensemble.

Furthermore, we found that the larger the number of trajec-
tories in which two cells’ linearized firing curves overlapped, the
more correlated their moment-to-moment activity (Fig. 5d)
(ANOVA, F(4,30) � 2.9704; p � 0.05) (see Materials and Meth-
ods). We noted that the pairs with overlap in two or fewer trajec-
tories tended to be negatively correlated, perhaps reflecting a
mechanism that maintains low or negative correlations among
less related neurons. We also examined the distributions of the
correlations of residuals between all cell pairs and pairs with
low or high overlap (supplemental Fig. 4a– c, available at www.
jneurosci.org as supplemental material). Cell pairs with over-
lapping fields (overlap of �0.3) in at least three trajectories
(high overlap) had higher residual correlations than cell pairs
with low overlap (overlap of �0.2) in at least three trajectories
( p � 0.0005). Consistent with these results, we found that cell
pairs with overlapping place fields and correlated moment-to-
moment activity in one location are more likely to have overlap-
ping place fields in another location (supplemental Fig. 4d,
available at www.jneurosci.org as supplemental material). Only
cells with a minimum total overlap across all trajectories of at
least 0.1 were included for these analyses; cell pairs could overlap
on a single trajectory or on multiple trajectories. Although this
excluded many cell pairs, it ensured that the pairs that were in-
cluded had some overlapping fields on at least one trajectory on
which to compute the residual correlation.

In addition, the correlations of residuals increased as animals
gained more experience in S2. Given that overlapping, path-
equivalent cells were correlated and that path equivalence in-
creased with experience, we would expect that these correlations
would also increase with experience. Including all cell pairs with
an overlap of at least 0.1 across all trajectories, we computed the
correlation of residuals for the entire session when animals ran
faster than 3 cm/s and performed S2 on the first two days of
exposure to S2 or three or more days of exposure. We grouped
days to include more data in each group. We also compared this

to the last two days of exposure to S1 during the initial training on
S1 before the sequence-switching phase of the task began. We
found that the residual correlations were higher when animals
had three or more days of exposure to the sequence than on days
1 and 2 (Fig. 5e) (ANOVA, F(2,115) � 5.9582; p � 0.005; medians,
�0.1117, 0.0630, and 0.0348 for S2 days 1 and 2, days 3�, and S1
last 2 d preswitch, respectively; S2 days 1 and 2 median is signif-
icantly less than that for S2 days 3� and S1 last 2 d preswitch; p �
0.05, Tukey–Kramer post hoc test). The same trends were evident
when we examined different types of cell pairs with different
combinations of path-equivalent and non-path-equivalent cells,
but the comparisons were no longer significant (data not shown).
We also examined the correlations associated with the first few
days of experience on S1, but found no clear trends, perhaps
because place fields were still forming during this period (Leutgeb
et al., 2004; Karlsson and Frank, 2008).

We then performed four important control analyses. First, we
asked whether high correlations were a general feature of place
fields with high overlap. We found that this was not a likely ex-
planation, because there was no significant relationship between
the correlations of residuals and overlap in the same trajectory for
cells with a peak firing rate of at least 0.5 Hz in the trajectory
(supplemental Fig. 4e, available at www.jneurosci.org as supple-
mental material) (� � 0.0456; p � 0.7; n � 729 trajectories). We
also examined the relationship between overlap and the residual
correlation only in cases with overlap �0.3, because we noticed
that the distribution of the correlations seemed qualitatively dif-
ferent at overlaps above and below 0.3. Again, we found no sig-
nificant relationship between the residual correlations and
overlap in the same trajectory (� � 0.1273; p � 0.18; n � 174
trajectories). These results indicate that there is no relationship
between place field overlap and the correlation of residuals within
a single trajectory. Instead, this relationship is only evident when
we examine path-equivalent pairs across multiple trajectories.

Second, we determined that the relationship between overlap
and correlation of residuals was not attributable to the greater
number of time bins available for analyses in cells with high over-
lap. The larger the overlap between linearized firing curves, the
greater the number of time bins in which we could compute a
meaningful residual correlation. If cell pairs with little overlap
had lower residual correlation simply because of fewer available
time bins, we would expect a positive relationship between the
number of time bins and the residual correlation value. Again we
only examined cell pairs with an overlap of at least 0.1 across all
trajectories, though we found similar results if we included all cell
pairs. Because we would expect to see this relationship with few
time bins, we examined this relationship for cases with 20 (the
minimum allowed number of time bins) to 100 time bins. We
found no significant relationship between the number of time
bins and the residual correlation (supplemental Fig. 4f, available
at www.jneurosci.org as supplemental material) (� � 0.12102;
p � 0.37; n � 97 cells). We conclude that correlation in a cell
pair’s moment-to-moment variability was not attributable to
measurement error or bias, but instead reflects the short-time-
scale covariation of the cell pairs.

Third, we established that the higher residual correlations
were not explained by higher total firing in path-equivalent cells.
We computed the total firing over all trajectories for each cell as
the area under the linearized firing rate curves. For each trajectory
pair, we took the average of both cells’ total firing and compared
it to the cell pairs’ residual correlation. We found no significant
relation between the average total firing and the correlation of
residuals (supplemental Fig. 4g, available at www.jneurosci.org as

4

(Figure legend continued.) two days of training on S1 before the switching phase and training
on S2 commenced (right bar). Correlations increased from days 1–2 to days 3 or more (ANOVA,
F(2,115) � 5.9582; p � 0.005; S2 days 1 and 2 was significantly smaller than S3 day 3� and S1
2 d preswitch, p � 0.05, Tukey-Kramer post hoc test). Only cell pairs with an overlap of at least
0.1 across all trajectories were included. Error bars show mean � SEM; *p � 0.05.
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supplemental material) (� � 0.16234; p �
0.19; n � 90 cell pairs). We found similar
results if we examined the minimum or
maximum total firing of the pair, or if we
examined the peak firing rates of the pair.
Therefore, the higher total firing of path-
equivalent cells could not explain their
higher residual correlations.

Finally, to control for possible contam-
ination attributable to clustering errors
(Quirk and Wilson, 1999), we repeated all
of these residual correlation analyses for
cells recorded on different tetrodes. We
found similar results for all of the analyses
of residual correlations described above
except one, in that the relationship be-
tween cell pairs with larger numbers of
trajectories with overlapping fields still
tended to have higher correlations of re-
siduals for each cell pair, but the results
were no longer significant (ANOVA,
F(4,13) � 0.66; p � 0.6298). This is not
surprising because restricting the analy-
ses to cells on different tetrodes reduced
the number of cell pairs substantially.
Because all of the other findings were con-
sistent with our previous results, we be-
lieve the lack of significance in this case is
attributable to the reduced number of cell
pairs.

We also obtained the same residual
correlation results when we included only
every other day of data to help control for
possible repeat recordings of the same cell
on multiple days. As for the normalized
overlap measure, we examined the rela-
tionship between cell pairs’ residual cor-
relations and the number trajectories with
high overlap in linearized firing. Again, we
found that the larger the number of tra-
jectories in which two cells’ linearized
firing curves overlapped, the more cor-
related their moment-to-moment activity
(ANOVA, F(4,87) � 2.39; p � 0.06) (see
Materials and Methods). These results ap-
proached significance, and when we grouped the data into pairs
with less than three or three or more trajectories with high overlap,
we found that the pairs with three or more highly overlapping tra-
jectories had much higher residual correlations ( p � 0.005; medi-
ans, �0.0126 and 0.1202 for cell pairs with less than three or three or
more trajectories with high overlap, respectively; n � 76 and 16,
respectively). Thus, our results remain significant with substantial
reductions in the total numbers of cells analyzed when controlling
for potential clustering errors or cells recorded on multiple days.

Differences in firing rate and population coding associated
with path equivalence
The above analyses suggest that path equivalence could encode sim-
ilarities across distinct locations, providing a framework to form
common behavioral associations with multiple places. At the
same time, animals would still need to distinguish among these
places to perform spatial tasks. We therefore examined popula-
tion activity and found that the population as a whole could

distinguish between the arms of the six-arm environment despite
the path-equivalent coding of individual cells. We first noted that
although many cells fired in very similar locations in different
trajectories in a repetitive environment, they fired at different
peak rates, similar to reports of rate remapping (Leutgeb et al.,
2005b). We compared peak linearized firing rates between two
trajectories when the firing on those trajectories was in similar
locations (normalized overlap of �0.3) (see Materials and Meth-
ods). We took a ratio of the smaller peak divided by the larger
peak firing rate. We found the peak rate ratio between different
trajectories with overlapping firing locations was lower than if
we compared the peak firing on the same trajectory in differ-
ent run sessions on the same day (Fig. 6a) ( p � 10�5; medians,
0.3695 and 0.6072, respectively; n � 150 and 197 trajectory
pairs for different trajectories in the same session or the same
trajectory in different sessions, respectively). We found simi-
lar results if we used a higher normalized overlap requirement
to select cells with similar firing locations in different trajec-

Figure 6. Firing rate differences create distinct population code. a, Histogram of peak rate ratio of cell pairs’ linearized firing
comparing different trajectories with similar firing locations in the same run session (black; defined as normalized overlap of�0.3)
and the same trajectory in different run sessions within a day (medium gray). The medians of the two distributions were signifi-
cantly different ( p�10 �5). b, To compare population level activity across trajectories, population vectors were constructed. Each
trajectory was divided into 10 cm spatial bins, and a population vector of the linearized firing rate for all cells was created (see
Materials and Methods). Population vectors from corresponding spatial bins in different trajectories were correlated. Only trajec-
tories in the same turn direction were compared. The resulting correlations from all bins in a pair of trajectories were averaged. c,
Histogram of population vector correlation of different trajectories in the same session (black), the same trajectory in different
sessions (medium gray), and different trajectories in the same session with shuffled cell identity (light gray). The median popula-
tion vector correlation across different trajectories in the same session was larger than that for the shuffled cell identities ( p �
0.0001) but smaller than that for the same trajectory across sessions ( p � 0.02). Only correct trials were included and when
comparing different trajectories only trajectories in the same turn direction were compared. d, Histogram of population vector
correlation of different trajectories in the same session with linearized firing either normalized by its area to reduce differences in
firing rate (gray) or not normalized (black). The distributions were not significantly different ( p � 0.7). e, Coactivation probability
within 100 ms bins during running for cell pairs in which both cells were path equivalent (P/P), one cell was path equivalent and
one was not (P/NP), or both cells were not path equivalent (NP/NP). The non-path-equivalent cells were just as likely to fire with
path-equivalent cells as other non-path-equivalent cells and vice versa. n.s., Not significant. Error bars show mean�SEM; ***p�
10�5; **p � 0.0001; *p � 0.02.
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tories. Thus, cells that fire in similar locations in different
trajectories fire at different peak rates.

Together, cells with path-equivalent coding but differences in
peak firing rate and cells without path-equivalent coding gener-
ate distinct population codes in each trajectory. To examine this
issue, we compared population activity in different trajectories by
computing a population vector of firing rates of multiple single
cells in each 10 cm bin of each trajectory (Fig. 6b). We then
correlated vectors of corresponding bins from trajectories in the
same turn direction and averaged the correlations for each trajec-
tory. We found the resulting population vector correlations were
significantly lower than if we compared the same trajectory in
different sessions (Fig. 6c) ( p � 0.02; n � 10 averaged trajectory
pairs), revealing significant differences between trajectories in the
population code. The population vector correlations were also
higher than if the cell identity was shuffled, revealing that the
repetitive coding structure in some cells does result in higher
correlation in the population activity (Fig. 6c) ( p � 0.0001; n �
10 averaged trajectory pairs). Because, by definition, non-path-
equivalent cells fire differently on different trajectories, shuffling
the cell identity is similar to examining populations without
path-equivalent cells. This suggests that a population with both
path-equivalent and non-path-equivalent coding may simulta-
neously generalize and separate.

To determine the relative contribution of rate remapping in
path-equivalent cells to the population code, we also computed
the population vector correlations using the normalized linear-
ized firing rates. With the normalized linearized firing, each cell
has the same total firing on each trajectory, reducing differences
in activity attributable to rate remapping. We found that the
distribution of population vector correlations from normalized
linearized firing was similar to the correlation from nonnormalized
firing, though the distribution was narrower (Fig. 6d) ( p � 0.7;
medians, 0.5922 and 0.5103 for nonnormalized and normalized,
respectively; n � 10 averaged trajectory pairs). The population vec-
tor correlations from normalized firing were still significantly lower
than if we compared the same trajectory in different sessions ( p �
0.001; n � 10 averaged trajectory pairs), and higher than if the cell
identity was shuffled ( p � 0.001; n � 10 averaged trajectory pairs).
These results indicate that even without extensive rate remapping, a
population of path-equivalent and non-path-equivalent cells can
create distinct population codes for different trajectories.

These findings suggest that CA3 population activity contains in-
formation representing the similarities across locations and infor-
mation about each individual location. We then asked whether these
two types of information are present simultaneously or whether the
system alternates between path-equivalent and non-path-equivalent
representations. We found that both path-equivalent and non-path-
equivalent cells fire together on short time scales. We examined the
probability of two cells firing together in 100 ms bins while animals
were running on each trajectory for pairs of path-equivalent cells (as
determined by the autocorrelation analyses above), pairs with one
path-equivalent and one non-path-equivalent cell, and pairs of non-
path-equivalent cells. We computed the coactivation probability per
trajectory to avoid biases caused by the fact that pairs of periodic cells
have more place fields across multiple trajectories. We chose 100 ms
bins because this is about the length of a theta cycle, which is often
considered an important computational unit.

We found that per trajectory, path-equivalent cells were
equally likely to fire with non-path-equivalent and path-
equivalent cells (Fig. 6e) ( p � 0.5; medians, 0.0296, 0.0294, and
0.0276 for path-equivalent pairs, path-equivalent/non-path-
equivalent pairs, and non-path-equivalent pairs, respectively;

n � 235, 209, and 167 cell pairs, respectively). Although there was
a trend for pairs of non-path-equivalent cells to fire together less
than pairs of periodic cells, this result was not significant when
taking into account the multiple comparisons made (Fig. 6e). We
also examined the coactivation probability per trajectory in 25 ms
bins, or about the length of a gamma cycle, and found similar
results (medians, 0.0067, 0.0069, and 0.0063; p � 0.5, rank-sum
test of coactivation probability of path-equivalent pairs and pairs
of path-equivalent and non-path-equivalent pairs) (data not
shown). Together, these results indicate that the hippocampus
can simultaneously represent similarities across locations and
unique information about each location.

Path equivalence is less common in the three-arm maze
If similar coding patterns reflect learned generalizations, then
repetitive coding would be less common in a simpler, less repet-
itive environment. Indeed, a previous report has indicated that
path equivalence was not prevalent in CA1 cells recorded while
animals performed a spatial alternation task on a three-arm “W-
track” maze (Frank et al., 2000). The environment in that study
was highly familiar, and no CA3 cells were sampled, however.
Since previous studies have reported differences between CA3
and CA1 (Guzowski et al., 2004; Leutgeb et al., 2004, 2005a; Lee et
al., 2004), we wondered whether path-equivalent activity is ab-
sent in a three-arm maze or if it only occurs in CA3 or during
learning in such a maze. We therefore examined three-arm maze
data from both CA3 and CA1 cells (Karlsson and Frank, 2008,
2009). The alternation task in the three-arm maze was the same as
S1 or S2 in the six-arm maze; however, there were fewer arms, and
none of the arms were exactly geometrically identical (Fig. 2). In
particular, in the six-arm maze, all the arms end in a T junction,
whereas in the three-arm maze the middle arm ends in a T, and
the left and right arms end in right-turn-only or left-turn-only L
shapes.

We found that most cells had single place fields in the three-
arm environment (Fig. 7a,b, left, right), though some had multi-
ple fields in somewhat similar locations in different arms (Fig.
7a,b, middle). Cells that had a single place field could fire in a
single trajectory (Fig. 7a,b, left) or multiple trajectories as the
animal traversed the same location in multiple trajectories (Fig.
7a,b, right). However, these cells generally did not have peaks in
the autocorrelogram at the length of a single trajectory (�180
cm), as we would expect if the cells’ firing was periodic (Fig. 7c).
Across the population, both CA3 and CA1 cells with multiple
place fields had some tendency to be active at lags of about the
length of a trajectory (Fig. 8a,d), but the overall proportion of
periodic cells (160 –200 cm) was lower than in the six-arm maze
(Fig. 8b,e) ( p � 0.05, � 2 test for both CA3 and CA1 cells from the
three-arm maze compared to CA3 cells in the six-arm maze).

Similarly, in the three-arm maze, the spatial locations of firing
from the same cell on different trajectories were more similar to
firing from different cells on different trajectories. Unlike in the
six-arm maze, the distribution of normalized overlaps was not
bimodal, but instead decreased monotonically from 0 to 1 (Fig.
8c,f). The same and different cell distributions did have slightly
different medians (CA3: medians, 0.1697 and 0.1211; n � 260
and 1692 same cell and different cell distributions, respectively;
p � 0.05; CA1: medians � 0.1557 and 0.1129; n � 309 and 2659
same cell and different cell distributions, respectively; p � 0.005),
but the CA3 same cell distribution from the three-arm maze had
a much lower normalized overlap than that from the six-arm
maze (median, 0.5574 for six-arm maze same cell; p � 10�5). We
conclude that path-equivalent coding in CA3 and CA1 is present,
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but much less common in the three-arm maze compared to the
six-arm maze, even though the animals were executing the same
alternation task. There were no differences in the prevalence of
path-equivalent coding between CA3 and CA1.

Furthermore, in the three-arm maze, normalized overlap did
not change with experience. We examined normalized overlap of
CA3 cells between trajectory pairs in T2 in the three-arm maze,
from the animals first exposure to T2 to the fifth day of exposure.
We found no significant change in normalized overlap across
days or between the first day of T2 exposure and exposures to the
familiar track, track 1 (Fig. 8g) (Kruskal–Wallis one-way
ANOVA, � 2

(4,108) � 7.8749; p � 0.09; medians, 0.3454, 0.3146,
0.2682, 0.2333, and 0.1636 for days 1–5 on T2; no significant
differences between days 1–5 on T1; p � 0.05, Tukey–Kramer
post hoc test). In fact, the distributions of normalized overlap
values for the highly familiar T2 were similar to those of the novel
six-arm maze (Fig. 8h), indicating that both environments began
with comparable overlaps across trajectories. Thus, the overlaps
increased with experience in the six-arm maze, but there were no
changes over time in the three-arm maze.

Path equivalence in CA1 in multiple-U environment
Finally, to better understand the role of geometric versus local
cue-based similarity in path-equivalent activity, we examined
CA1 neurons in two animals traversing a multiple-U environ-
ment where each U had different local visual and olfactory cues
(Fig. 2b). We examined these parameters because previous stud-
ies have shown that subtle environmental manipulations can lead
to distinct patterns of rate and global remapping (Skaggs and
McNaughton, 1998; Lever et al., 2002; Leutgeb et al., 2004,
2005a,b). In the multiple-U environment, the local sensory cues
differed substantially across each U (see Materials and Methods),
but despite these differences, path-equivalent coding was com-
mon. We found many single cells fired in similar locations in the
different U’s that make up the track, whereas others only fired in
a single location (Fig. 9a). Some cells fired around the corners and
other cells fired along straight sections of the track, suggesting
that this activity is similar to that seen in the six-arm maze.

As in the six-arm maze, we found that the place field firing
locations on some, but not all, possible trajectories was highly
similar. Only 24 cells reached the criteria for inclusion in the

Figure 7. Path-equivalent coding is less common in the three-arm maze. a, Overhead view of the three-arm maze (top left) and spatial firing rate maps of three cells scaled to the cells’ peak firing
rate (above) or scaled so that all firing of �3 Hz is red (below). The cells shown on the left and center were recorded in CA3, and the cell shown on the right was recorded in CA1. The cell shown in
the center fired in several arms in some similar locations, whereas the other cells had place fields limited to a single arm. Only times when the animal was running �3 cm/s were included. b,
Occupancy-normalized firing rates on each linearized trajectory for the same three cells shown in a. c, Autocorrelation of the linearized firing for the same three single cells shown in a and b (red)
and the mean cross-correlation of the linearized firing between different cells (blue; solid line, mean; dashed line, 90% confidence bounds). Linearized firing rates on trajectories in the same turn
direction were normalized by their area and then concatenated. The top shows right-turn trajectories as the animal moves from the left to the right, and the bottom shows left turns as the animal
moves from the right to the left.
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analysis, making it difficult to apply the autocorrelation analysis
used for the six-arm maze. As an alternative, we computed the
normalized overlap between linearized firing from the same cell
on different trajectories and from different cells on different tra-
jectories. We took the maximums of the normalized overlaps for
the same-cell and different-cell pairs. Cells tended to be path
equivalent across a subset of the U’s and were often not active at
all in the other U’s. Taking the maximum normalized overlap
across all trajectory pairs highlighted the subset of U’s in which
the cell was active in both trajectories and path equivalent. The
maximum normalized overlaps of all the trajectory pairs from the
same cell had a bimodal distribution that was different from
the distribution from different cells (Fig. 9b) (Komolgorov–
Smirnov test; p � 0.01). The shape of this distribution suggests
that, as in the six-arm maze, about half of the cells showed peri-
odic, path-equivalent activity, whereas the other half do not.

Including normalized overlaps from all trajectory pairs, not
just the maximum per cell, the normalized overlap between lin-
earized firing from the same cell on different trajectories was also

significantly higher than firing from dif-
ferent cells (Fig. 9c) ( p � 0.001). These
results establish that path equivalence also
occurs in CA1, is not attributable to the
specifics of the six-arm paradigm, and, be-
cause each U had very different visual and
olfactory cues, is not likely to be attribut-
able solely to similarity of local sensory
cues. This further supports our finding
that path equivalence is not the result of
an animal’s failure to distinguish between
similar locations.

Discussion
We found that hippocampal neurons fire
in multiple similar locations in environ-
ments with repeated elements even when
animals must behaviorally distinguish
among the elements, and even when the
elements have distinct visual and olfactory
cues. This path-equivalent coding devel-
ops as animals learn the rewarded se-
quences and the relationships between
paths. Furthermore, path-equivalent fir-
ing is not simply the result of single cells
acting independently. Rather, pairs of
cells whose activity varied together from
moment to moment also repeated to-
gether in multiple segments, suggesting
that ensembles of cells are recruited to-
gether. This correlated firing also became
more prevalent with experience, pointing
to a role for learning in the development
of path-equivalent coding. These results
are consistent with a functional role for
hippocampal ensembles in coding for
general features across locations (Frank et
al., 2000). At the same time, the simulta-
neous presence of path-equivalent and
non-path-equivalent coding on short
time scales indicates that hippocampal
cells can simultaneously represent both
common elements across locations and
the unique features of each location.

Path equivalence cannot be explained by confounding factors
In previous reports of path equivalence and rate remapping, the
functional significance of these coding schemes has been unclear,
because they could have been explained by a number of con-
founding factors. In this study, we show that these patterns of
activity cannot be explained by the animal’s failure to distinguish
among the arms, a lack of hippocampal involvement in the task,
a dearth of differentiating sensory cues, or errors in isolating
single cells. First, correct behavioral performance in the six-arm
task requires that the animal make different choices depending
on current and past locations. Although it is conceivable that the
animal could make these choices without an accurate hippocam-
pal representation of location, there is good reason to believe that
the hippocampus is involved in learning this task. When animals
were first placed in the home arm of S2, they immediately moved
to the adjacent arm and performed the previously rewarded
S1. This indicates that the animals were using an allocentric
strategy associated with hippocampal dependence (Packard

Figure 8. Quantification of path-equivalent activity in the three-arm maze. a, Histogram of significant peaks at lags of �60 cm
for each cell’s linearized firing autocorrelation in CA3. b, Proportion of cells with periodic or aperiodic activity, or no significant
peaks at lags �60 cm in CA3 (single peak). c, Distribution of normalized overlaps between the linearized firing of the same cell
(black) on two different trajectories or different cells (light gray) on two different trajectories in CA3. The median values were
significantly different (*p � 0.05) but were similar in magnitude (medians: 0.1697, same cell; 0.1211, different cell). d–f, The
same as a, b, and c for CA1. Once again, the median normalized overlap values were significantly different (**p � 0.005) but were
similar is magnitude (medians: 0.1557, same cell; 0.1129, different cell). Only correct trials were included, and only trajectories in
the same turn direction were compared. Results were similar if all trials were included. g, Normalized overlap in the initially novel
three-arm maze, T2, and from T1. There were no significant changes in the distributions across days (Kruskal–Wallis one-way
ANOVA, � 2

(4,108) � 7.8749; p � 0.09; the days were not significantly different; p � 0.05, Tukey-Kramer post hoc test). n.s., Not
significant. h, Normalized overlap per trajectory pair for days 1 to 3 in S1 (dark gray) (4a) and S2 (light gray) (from Fig. 4b) in the
six-arm maze and T2 in the three-arm maze (black) (g) for direct comparison. The similarities in the overlaps suggest that CA3 cells
start out with more dissimilar firing across trajectories, but that as the animal learns the task in the six-arm maze, the coding for
these trajectories becomes more similar. Error bars show mean � SEM.
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and McGaugh, 1996). In addition, this
task is based on a the simpler W-track al-
ternation task where the hippocampus is
required for rapid learning (Kim and
Frank, 2009). The six-arm task also re-
quires flexible changes in behavior in re-
sponse to changing reward contingencies.
Because this sort of flexibility generally re-
quires the hippocampus (Hsiao and Isaac-
son, 1971; Hirsh et al., 1978; Ainge et al.,
2007), hippocampal activity is likely to be
important for learning to switch between
sequences. Thus, there is good reason to
believe that the hippocampus was en-
gaged during the performance of the six-
arm task and that animals distinguished
among the arms of the environment.

Second, the prevalence of path-
equivalent activity in the multiple-U track
argues that this activity is not attributable
to a lack of distinguishing sensory cues.
Each U of that environment was bordered
by walls with highly distinctive visual pat-
terns and was scented uniquely. Given
that animals can use local visual and odor
cues to distinguish among locations
(Anderson and Jeffery, 2003), it is unlikely
that path-equivalent activity in the hip-
pocampus was attributable solely to sen-
sory similarity.

Finally, there is no reason to suspect
that errors in clustering could have led to
our findings. Clustering errors would lead
to errors such that a single clustered
“unit” would have multiple place fields
corresponding to the place fields of the
single cells that were erroneously com-
bined. However, fields from different single cells erroneously
clustered as one cell would not tend to show path equivalence, as
nearby cells tend to have unrelated place fields in spatial tasks
(Redish et al., 2001).

Path equivalence, rate remapping, and mixed remapping
in CA3
Although path-equivalent cells fire in similar locations in multi-
ple trajectories, they fire at different peak rates. This pattern of
activity is very similar to rate remapping, where individual
neurons fire at different rates in different open field environ-
ments (Leutgeb et al., 2005b,c, 2006). These two patterns of
activity had not been considered to be similar, but we argue
that these two types of activity are manifestations of the same
basic phenomenon, where individual cells fire in related loca-
tions within and across environments.

We found that about half of the cells we recorded fired in only
one place or in unrelated locations. In conjunction with the dif-
ferences in firing rates across locations for path-equivalent cells,
our results indicate that each location was still associated with a
distinct population pattern of activity. These findings are similar
to results from Skaggs et al. (1998), who reported that some, but
not all, CA1 place cells had similar place fields across two con-
nected but visually identical open field environments. At the
same time, our finding of mixtures of path-equivalent and non-
path-equivalent cells in CA3 stands in contrast to previous re-

ports that CA3 activity is frequently coherent: either the majority
CA3 cells fire similarly, or the majority fire differently across
different locations (Guzowski et al., 2004; Lee et al., 2004; Leutgeb
et al., 2004). We therefore suggest that population coherence in
CA3, and the presence of mixed coding properties more gener-
ally, will depend on both the specifics of the animal’s environ-
ment and the task it is performing.

The origin of path-equivalent activity
Previous work demonstrated that path-equivalent activity in the
hippocampus was associated with resets of the EC grid pattern
across each repeating geometric element of the environment
(Derdikman et al., 2009). Those authors suggested that these re-
sets are sufficient to explain the previous observation of path-
equivalent activity in the EC of animals running in the three-arm
maze and the presence of path equivalence in the hippocampus.
Although it seems likely that grid resets contribute to the presence
of path equivalence, this similarity is not sufficient to explain our
results. We found that path-equivalent activity in CA3 and CA1
was relatively uncommon in the three-arm maze, despite its pre-
viously demonstrated prevalence in the EC (Frank et al., 2000).
Thus, path-equivalent activity does not always propagate from
the EC to the hippocampus.

Our data suggest instead that both the presence of repeating
elements and task-related learning contribute to the presence of
path equivalence in the hippocampus. First, our observation of

Figure 9. Path-equivalent activity in CA1 neurons active on the multiple-U track. a, Overhead view of the U track with unique
dividers and odors in each U (top left). Spatial firing rate maps of three CA1 cells scaled to the cells’ peak firing rate (above) or scaled
so that all firing �3 Hz is red (below). The cells on the left and in the middle show repetitive firing patterns, whereas the cell on the
right does not. Only times when the animal was running �3 cm/s are included. b, Maximum normalized overlaps of all the
trajectory pairs per cell for trajectories from the same cell (black) or different cells (gray). The maximum normalized overlaps of
trajectory pairs from the same cells was significantly higher (**p � 0.01). c, Distribution of normalized overlaps between the
linearized firing rate of single cells (black) or different cells (light gray) on two different trajectories (**p �0.001). Only trajectories
in the same turn direction were compared.
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path-equivalent activity in the context of the repeating elements
of the six-arm maze, and the relative lack of path equivalence in
the three-arm maze (which does not contain identical elements),
is consistent with the idea that the presence of repeating elements
contributes to the development of path-equivalent activity. Sec-
ond, our finding that path equivalence increases with experience,
and in particular that it increases as animals learned the novel
sequence 2 in the familiar six-arm maze, demonstrates that path
equivalence in the hippocampus depends on experiences relating
the paths. Given that the animals had full access to the geometri-
cal structure of the environment for at least five days before their
first exposure to S2, the change in path equivalence with experi-
ence is more closely aligned to changes in the behavioral signifi-
cance of individual trajectories than to their stable geometrical
character. Therefore, path equivalence increased as animals
learned relationships between paths and executed similar behav-
iors across paths, whether the environment was novel or familiar.

Our results also indicate that path equivalence reflects the
development of coordinated neural ensembles. Although neu-
rons in the hippocampus have been shown to fire in the context of
coordinated ensembles (Harris et al., 2003; Dragoi and Buzsaki,
2006), the functional role of these ensembles was unknown. We
found that hippocampal cells with similar activity across loca-
tions are more correlated with one another, suggesting that one
role of these ensembles could be to represent related locations.
This possibility is consistent with a recent report demonstrating
the importance of ensembles for representing multiple reference
frames (Keleman and Fenton, 2010). Our analyses indicate that
pairs of cells with overlapping, path-equivalent fields across tra-
jectories tended to have high overall short-time-scale correlations
of residuals. Similarly, for a given pair of cells with overlapping
place fields in one trajectory, more correlated residuals were as-
sociated with higher overlaps in another trajectory. So although
the similarity of cells’ receptive fields in a single location was not
predictive of moment-to-moment correlations, similarities over
multiple locations were. To our knowledge, this is the first dem-
onstration that the firing properties of two place cells in one
location can predict their patterns of spatial activity in another
location. We suggest that the fine timescale organization of these
cell assemblies can be harnessed to represent learned generaliza-
tions across similar locations. As a result, our findings provide a
new link between short-time-scale correlations and the represen-
tation of specific features of the environment.

The role of path equivalence
In previous studies, the functional significance of path equiva-
lence and rate remapping was unclear. Our findings support the
hypothesis that path equivalence (and thus rate remapping) may
be a mechanism to encode common features across related expe-
riences. The development of path equivalence with task learning
indicates path-equivalent activity could help the animal link be-
haviors to specific sets of locations where those behaviors are
appropriate (Frank et al., 2000). We suggest that rate remapping
across different environments could play the same role in helping
the animal associate common features across locations, and thus
facilitate learning about any specific relevance of those features.
Because previous studies of rate remapping have used only ran-
dom foraging tasks, a test of that hypothesis will require new
studies.

Furthermore, because path-equivalent and non-path-equivalent
cells fired together within 100 ms windows, animals could in
principle use both types of activity to extract a relative location
within each trajectory in the environment as well as a global

location from the ensemble of active place cells (Fenton et al.,
2008). This would allow hippocampal place cells to simulta-
neously support memories for unique experiences and learned
generalizations across experiences.
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