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Selectivity and Tolerance (“Invariance”) Both Increase as
Visual Information Propagates from Cortical Area V4 to IT
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Our ability to recognize objects despite large changes in position, size, and context is achieved through computations that are
thought to increase both the shape selectivity and the tolerance (“invariance”) of the visual representation at successive stages of
the ventral pathway [visual cortical areas V1, V2, and V4 and inferior temporal cortex (IT)]. However, these ideas have proven
difficult to test. Here, we consider how well population activity patterns at two stages of the ventral stream (V4 and IT) discriminate
between, and generalize across, different images. We found that both V4 and IT encode natural images with similar fidelity,
whereas the IT population is much more sensitive to controlled, statistical scrambling of those images. Scrambling sensitivity was
proportional to receptive field (RF) size in both V4 and IT, suggesting that, on average, the number of visual feature conjunctions
implemented by a V4 or IT neuron is directly related to its RF size. We also found that the IT population could better discriminate
between objects across changes in position, scale, and context, thus directly demonstrating a V4-to-IT gain in tolerance. This
tolerance gain could be accounted for by both a decrease in single-unit sensitivity to identity-preserving transformations (e.g., an
increase in RF size) and an increase in the maintenance of rank-order object selectivity within the RF. These results demonstrate
that, as visual information travels from V4 to IT, the population representation is reformatted to become more selective for feature
conjunctions and more tolerant to identity preserving transformations, and they reveal the single-unit response properties that
underlie that reformatting.

Introduction
Although our ability to identify individual objects invariant to
position, size, and visual context may appear effortless, it is a
tremendously complex computational challenge. The crux of the
object recognition problem lies in the ability to produce a repre-
sentation that can selectively identify individual objects in a
manner that is essentially tolerant (“invariant”) to changes in
position, size, and context (Riesenhuber and Poggio, 1999;
DiCarlo and Cox, 2007). From a computational perspective,
constructing a representation that is either highly selective or
highly tolerant is trivial; the challenge is to build a system that
can produce a representation that is simultaneously selective
and tolerant.

We do not fully understand how the brain accomplishes this
task, but the solution is thought to be implemented through
gradual increases in both selectivity and tolerance as signals prop-
agate through the ventral visual stream [which includes the ret-
ina, lateral geniculate nucleus, visual cortical areas V1, V2, and
V4, and inferior temporal cortex (IT)]. Evidence for gradual in-

creases in selectivity is suggested by tuning for stimuli more com-
plex than simple line segments in V2, V4, and posterior IT
(Gallant et al., 1993; Pasupathy and Connor, 1999; Brincat and
Connor, 2004; Anzai et al., 2007), as well as IT neurons that
appear to be highly selective for complex objects (Desimone et al.,
1984; Logothetis and Sheinberg, 1996; Tanaka, 1996). Evidence
for gradual increases in tolerance for changes in position and
scale is indirectly suggested by the presence of both simple and
complex cells in V1 (Hubel and Wiesel, 1965) as well as increases
in receptive field (RF) size along the ventral stream (Kobatake
and Tanaka, 1994).

At the same time, many open questions remain. First, al-
though highly selective IT neurons do exist, most neurons in IT
are broadly tuned for different objects when tested with large sets
of images (Desimone et al., 1984; Rolls and Tovee, 1995; Kreiman
et al., 2006; Zoccolan et al., 2007). Thus, it remains unclear
whether selectivity is increasing across the pathway “on average.”
Second, remarkably few studies have directly compared different
ventral stream visual areas using the same stimuli under the same
conditions, and, when direct comparisons are made, they fail to
find clear distinctions between areas (Hegdé and Van Essen,
2007). Notably, direct and definitive comparisons are difficult to
make given our lack of understanding of the visual features that
activate neurons beyond V1. Third, recent computational work
demonstrates that the invariant object recognition problem
could be solved by a distributed representation across a popula-
tion of neurons with small receptive fields (Li et al., 2009) and
hence earlier in the pathway then previously appreciated. Finally,
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the single-neuron response properties supporting these putative
increases in selectivity and invariance remain little understood.

Given that selectivity and tolerance are thought to lie at the
crux of the object recognition problem, we aimed to directly
examine whether and how they change along the ventral stream
and thus lay the groundwork for additional quantification of
these computations so as to meaningfully constrain computa-
tional models. Our results show that the visual representation is
reformatted between two stages of the ventral stream: at both the
population level and the single-unit level, we document an in-
crease in selectivity for naturally occurring conjunctions of sim-
ple visual features and an increase in tolerance to identity
preserving transformations.

Materials and Methods
Animals and surgery
Experiments were performed on two male rhesus macaque monkeys
(Macaca mulatta) weighing 5.0 and 8.0 kg. Aseptic surgery was per-
formed to implant a head post and scleral search coil in each animal
before the onset of training. An additional one to two surgeries were
performed to place recording chambers over both hemispheres of V4 and
IT. All surgical and animal procedures were performed in accordance
with the National Institute of Health guidelines and the Massachusetts
Institute of Technology Committee on Animal Care.

Stimuli and task
All behavioral training and testing was performed using standard oper-
ant conditioning (juice reward), head stabilization, and high-accuracy,
real-time eye tracking. Stimuli, reward, and data acquisition were con-
trolled using customized software. Stimuli were presented on a cathode
ray tube monitor with an 85 Hz refresh rate positioned 49 cm away such
that it subtended 44 � 33°. All images were presented at the center of
gaze, in a circular aperture that blended into a gray background (see Figs.
1a, 2). Both monkeys were trained to initiate each trial by fixating a
central red point (0.15°) within a square fixation window that ranged
from �0.9° to �1.1° for up to 4 s. Across the repeated presentations of a
stimulus recorded from a neuron, deviation of the eye position (mea-
sured relative to the mean position across all trials) was extremely small:
on average, 82, 86, and 97% of presentations occurred within windows
with a radius of 0.05, 0.1, and 0.25°, respectively. Soon after initiating
fixation (250 ms), a series of visual stimuli were presented in rapid suc-
cession (each for 218 ms or approximately five per second) with no
intervening blank period. This presentation duration is consistent with
that produced spontaneously by a free-viewing monkey (DiCarlo and
Maunsell, 2000) and is sufficient for successful object discrimination (see
below). Monkey 1 was rewarded with juice for maintaining fixation for
2.43 s (10 stimuli). Monkey 2 viewed the same images while engaged in an
invariant object detection task that required a saccade to a response dot
10° below the fixation point after encountering an image that contained
a motorcycle (see Fig. 2) (supplemental Fig. 3, available at www.
jneurosci.org as supplemental material) to receive a reward. After onset
of the motorcycle stimulus, the animal had 500 ms to reach the response
window; after the 218 ms presentation of the motorcycle image ceased,
other images continued to stream. The motorcycle image was presented
as the Nth image, where N was randomly selected from a uniform distri-
bution ranging from 2 to 20. To fully engage the system involved in
invariant object recognition, the same motorcycle was presented at dif-
ferent positions, scales, and on different backgrounds. Each day, the
monkey viewed the same 28 motorcycle photographs and an additional
two novel motorcycle images (supplemental Fig. 3, available at www.
jneurosci.org as supplemental material). Performance on this task was
high (miss rate for familiar motorcycle images of 1.32%, range of 0.48 –
2.4%; miss rate for novel motorcycle images of 1.37%; false alarm rate of
11%; mean reaction time of 254 ms).

Images. Designed to probe V4 and IT selectivity and tolerance, the
image set included 155 images (supplemental Figs. 1, 2, available at
www.jneurosci.org as supplemental material). Included were 50 natural
images and 50 scrambled versions of those images (see Fig. 4) (scram-

bling procedure described in detail below). For 10 of the natural images,
five additional transformations were also presented (rescaled to 1.5�
and 0.5�; shifted 1.5° left and right; and presentation in the context of a
natural background) (see Fig. 6). An additional five blank (gray) stimuli
were included to measure the baseline firing rate. Ten repeats of each
stimulus were collected.

At the onset of each trial, one of the images was randomly presented,
and the responses to this stimulus were disregarded to minimize onset
transient effects. Thereafter, stimuli were presented in a random se-
quence, and each stimulus was presented once before re-randomization.
If the monkey’s eyes moved outside the fixation window, the trial was
immediately aborted and the remaining stimuli on that trial were in-
cluded in a re-randomization with the remaining images. Both monkeys
were exposed to the image set for at least 3 weeks before data collection.

Image scrambling. Images were scrambled using a texture synthesis
method introduced by Portilla and Simoncelli (2000), using a publicly
available Matlab (MathWorks) implementation (http://www.cns.nyu.
edu/�lcv/texture/). Briefly, this method extracts 710 parameters from an
original image and then generates a scrambled image by repeatedly forc-
ing a new image (initially filled with Gaussian white noise) to match these
parameters. The parameters are all obtained by averaging local measure-
ments across all spatial positions within the original image and are thus
altogether capable of representing the number and type of local features
in the original image, while lacking information about their specific lo-
cations. Some parameters describe pixel statistics (mean, variance, skew,
and kurtosis) of the image, ensuring that the synthesized image is
matched in luminance distribution. Most parameters describe averages
of various local combinations of oriented linear filter responses. Filter
responses are computed using a complex-valued steerable pyramid de-
composition, which approximates the response of a population of model
V1 complex cells tuned for different orientations and scales (in our case,
four orientations and four scales that included filters one-eighth, one-
quarter, one-half, and one times the size of the image or equivalently
0.625, 1.25, 2.5 and 5°) and that tile all positions in the image. The
parameters include the local autocorrelation of the linear filter responses,
which enables the representation of periodic structures. Also included
are the correlations of complex magnitudes of nearby pairs of filters
tuned for the same scale, and the same or different orientations, which
enables the representation of rudimentary oriented feature information
(e.g., lines, edges, corners, and junctions). To capture the alignment of
phase structure in local features, the model also includes a form of cross-
scale phase correlation. Finally, several moments of the residual low- and
high-frequency nonoriented sub-bands are retained; the combination of
these parameters with those described above captures the spatial fre-
quency (spectral) content. The synthesis algorithm is not guaranteed to
converge to a solution with matched parameters, and we discarded the
occasional scrambled image that failed to match in either luminance or
spatial frequency content. On rare occasions, we also discarded scram-
bled images that (by chance) retained some global structure and (by
visual inspection) appeared to contain an identifiable object. To quantify
the degree of convergence for the 50 images included in this study, we
began by normalizing all parameters to have the same mean (0) and
variance (1) across all 50 natural images and their 50 scrambled counter-
parts. We then computed the Pearson’s correlation coefficient between
the normalized parameters for pairs of images. The correlation coeffi-
cients for natural images and their corresponding scrambled image pairs
were very close to perfect (mean of 0.9926, range of 0.9707– 0.9995). For
comparison, the parameter similarity of other possible image pairings in
our image set (i.e., all noncorresponding natural and scrambled image
pairings) ranged from �0.7432 to 0.8939. This confirms that the algo-
rithm successfully converged for the images we included in this study and
that the scrambled version of each image is much closer to its natural
counterpart than to all other images in the set [when measured in a
Portilla and Simoncelli (2000) image basis].

Receptive field mapping (V4). Designed to measure the location and
extent of V4 receptive fields, bars were presented, each for 500 ms, one
per trial, centered on a 5 � 5 invisible grid. In an additional baseline
condition, the fixation point was presented without a bar stimulus. Bar
orientation, polarity (black or white), length, and width as well as the grid
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center and extent were adjusted for each cell based on preliminary hand
mapping. On each trial, the monkey was required to maintain fixation on
a small response dot (0.125°) to receive a reward. The responses to three
repeats were collected at each position.

Recording procedures
The activity of well-isolated V4 and IT neurons was monitored serially
using standard single microelectrode methods (Zoccolan et al., 2005).
Recorded signals were amplified, filtered, and fed into a time–amplitude
window discriminator. Electrodes used to record from V4 and IT were
constructed from the same materials (glass-coated tungsten) by the same
manufacturer (Alpha Omega) and matched in impedance (�0.5 M�).

Before each recording session, an electrode was advanced to the ap-
propriate visual area. After allowing the electrode 15–30 min to settle, it
was then slowly advanced through the cortex until a waveform was iso-
lated. Great care was taken to ensure that any neuron whose waveform
could be isolated would be recorded, regardless of baseline or visually
elicited firing rate. In cases in which the electrode traversed the gray
matter approximately perpendicularly (the lower visual field representa-
tion of V4 and all penetrations of IT), care was taken to ensure that all
layers were sampled approximately uniformly. While searching for cells,
the monkey engaged in the same task required during the data collection
(described above). This included periods of viewing stimuli interleaved
with intertrial epochs in which no stimuli were presented and the mon-
key was free to look around the room. Additionally, no data analysis was
performed during data acquisition to assess the “quality” of the neuron;
all neurons were recorded until the experiment was complete or until the
waveform was lost.

To guard against nonstationary effects (e.g., familiarity with the im-
ages), recordings in each animal were alternated between V4 and IT.
Specifically, recordings were made in one visual area (V4 or IT) for 1–5
weeks, and then recordings were made in the other area; this alternating
process was repeated until all data were collected.

The left and right hemispheres of both V4 and IT were recorded in
each monkey (four recording chambers for each subject, resulting in
eight chambers in total). Both hemispheres of each visual area were sam-
pled approximately equally in each monkey, with approximately twice as
many cells sampled in monkey 2 compared with monkey 1 (monkey 1:
V4 left, n � 25; V4 right, n � 23; IT left, n � 32; IT right, n � 16; monkey
2: V4 left, n � 42; V4 right, n � 50; IT left, n � 35; IT right, n � 60).
Chamber placements varied slightly between hemispheres and between
animals and were guided by anatomical magnetic resonance images. A
representative IT chamber was centered 15.5 mm anterior of the ear
canal, 12 mm lateral of the midline and angled 5° lateral. The resulting
region of IT recorded was located on the ventral surface of the brain,
lateral to the anterior middle temporal sulcus and spanned �10.5–17.5
mm anterior to the ear canals (Felleman and Van Essen, 1991). A repre-
sentative V4 chamber was centered 6 mm posterior and 17 mm dorsal to
the ear canals. V4 recording sites were confirmed by a combination of
receptive field size and location (see Fig. 1b– d). V4 receptive fields in
lower visual field, found between the lunate and superior temporal sulcus
(STS), were confirmed as having receptive field centers that transversed
from the vertical to horizontal meridian across posterior to anterior re-
cording locations as well as receptive field sizes as a function of eccentric-
ity that were consistent with results reported previously (Desimone and
Schein, 1987; Gattass et al., 1988). Neurons with receptive fields at the
fovea and near the upper visual field were more difficult to verify given
their existence within the inferior occipital sulcus (IOS) and at the foveal
confluence of V1, V2, and V4. Thus, it is not certain that all the neurons
in the upper field were from V4, although the receptive field sizes were
more consistent with V4 than either V2 or V1. Notably, given the absence
of easily identifiable boundaries in this region, anatomical reconstruc-
tion would not assist in verifying their precise location. We also note that,
aside from their receptive field locations, neurons in the upper visual
field did not have any obvious, distinguishable properties from those in
the lower visual field. Moreover, the claims of this study (a comparison
between mid-level and high-level visual areas) would be little affected by
the occasional corruption of a neuron from a nearby visual area.

Analysis
Spike sorting. Spike waveforms were isolated online using a dual window
discriminator. In addition, a post hoc, template-based spike-sorting pro-
cedure was applied to remove spurious electrical artifacts and corruption
by other neurons. Specifically, from the data collected from all trials of an
experiment from a single neuron, we calculated the mean and SD of all
collected waveforms. We began by setting the boundary criteria for an
accepted waveform as the mean � 2 SDs and then adjusted the criteria, by
eye, to maximize the inclusion of spikes with the same waveform shapes
while minimizing the inclusion of spikes with different waveforms
shapes. In all cases, �10% of electrical events were disregarded, and, for
all the results reported here, qualitatively similar results were obtained
with the raw and spike-sorted data.

Latency. We computed the responses of each neuron by counting
spikes in a window matched to the duration of the stimulus (218 ms) and
shifted to account for the latency of the neuron. To calculate the latency
of each neuron, we used techniques similar to those described by
Zoccolan et al. (2007). Briefly, we began by finding the stimuli that
evoked at least 70% of the peak response and then used these stimuli to
calculate the latency of the neuron. Specifically, we binned neuronal
responses in a 218 ms window with a latency guess of 75 ms for V4 and
110 ms for IT, and, using these values, we computed the mean firing rates
to each stimulus for a given experiment. We then computed a combined
peristimulus time histogram across all stimuli that evoked �70% of the
peak response with 10 ms overlapping bins shifted in time steps of 1 ms.
Background firing rate was estimated as the mean firing rate 100 ms
before stimulus onset, and latency was estimated as the first bin that
exceeded 15% of the peak firing rate relative to the background rate. All
latency estimates were examined by eye and, when required, adjusted.
We used the same, mean latency for all the neurons in a given visual area
(V4, 78 ms; IT, 113 ms). Using either a fixed latency for all neurons or
tailoring the latency for each neuron resulted in qualitatively similar
results across the population. Additionally, we performed each analysis at
different latencies and found that the results we report here were robust
over a wide range of latency offsets (data not shown).

V4 receptive field mapping. Only those neurons that produced clear
visually evoked responses (see above) at a minimum of one position were
considered for receptive field position analysis. The center of the recep-
tive field was estimated by fitting a two-dimensional, oriented Gaussian
to these data (Op De Beeck and Vogels, 2000) and confirmed by visual
inspection. Simulations of two-dimensional receptive field profiles with
Poisson spiking variability confirm that measuring RF position in this
manner produces a robust estimate of the receptive field center (although
receptive field size, not reported here, may require more than three re-
peated trials for some neurons).

Population discriminability. To determine how well a population of
neurons could discriminate between a set of images, we implemented a
linear classifier readout procedure similar to that used by Hung et al.
(2005). Starting with the spike count responses of a population of N
neurons to P presentations of M images, each presentation of an image
resulted in a population response vector x with a dimensionality equiv-
alent to N � 1 (see Fig. 3, left), where repeated presentations of the same
images can be envisioned as a cloud in an N dimensional space (see Fig. 3,
middle). The linear readout amounted to finding a linear hyperplane that
would best separate the response cloud corresponding to each image
from the response clouds corresponding to all other images (see Fig. 3,
lines). More specifically, the linear readout took the following form:

f(x) � wTx 	 b,

where w is a N � 1 vector describing the linear weight applied to each
neuron (and thus defines the orientation of the hyperplane), and b is a
scalar value that offsets the hyperplane from the origin and acts as a
threshold. We used a standard “one-versus-rest” training and testing
classification scheme (Hung et al., 2005; Li et al., 2009). Specifically, one
such linear classifier was determined for each image or grouped set of
images (see details below). To determine the population “decision”
about which image (or object) was presented, a response vector x, corre-
sponding to the population response of one image, was then applied to
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each of the classifiers, and the classifier with the largest output [the clas-
sifier with the largest, positive f(x)] was taken as the choice of the popu-
lation (see Fig. 3, right). Performance was measured as the proportion of
correct answers when asked to identify each image with independent data
not used for training (i.e., standard cross-validation), and details of the
cross-validation data cuts are below.

The hyperplane and threshold for each classifier was determined by a
support vector machine (SVM) procedure using the LIBSVM library
(http://www.csie.ntu.edu.tw/�cjlin/libsvm) with a linear kernel, the
C-SVC algorithm, and cost (C) set to 0.5. To avoid overfitting, we always
used a cross-validation procedure to assess performance. To test scram-
bling sensitivity (see Figs. 5, 9, 10a), 80% (8 of 10) of the trials for each
image were used for training the hyperplanes, whereas 20% (2 of 10) of
the trials were set aside for cross-validated testing. To test generalization
(see Fig. 7), 80% of the trials corresponding to the reference image were
used to train the hyperplanes, and 20% (2 of 10) of the trials at each
transformation were used to assess cross-validated performance. To
test linear separability (see Figs. 8, 11, 12b,d, 13a), 80% of the trials for
each transformation were combined and used to train the hyper-
planes, and performance was assessed with the remaining 20% of
trials. To equalize firing rates across neurons, each neuron was nor-
malized to have the same (zero) mean and (unit) SD across M stimuli
before training and testing. When comparing performance across two
conditions (e.g., the natural vs scrambled images in Fig. 5 or when
probing generalization in Fig. 7), the responses of neurons were nor-
malized across the responses to all images sets combined. For Figures
5, 7, and 8, qualitatively similar results were produced when using raw
(non-normalized) spike counts.

In many plots, we report performance as a function of the number of
neurons (randomly selected) included in the analysis. To measure the
variability that can be attributed to the particular subpopulation of neu-
rons selected as well as the particular trials used for training and
testing, we applied a resampling procedure. On each iteration of the
resampling, a new subpopulation of neurons were randomly selected
(without replacement) from all neurons, and trials were randomly
assigned for training and testing (without replacement). Error bars
were calculated as the SD of performance across 50 iterations. We also
computed chance performance by randomly assigning the images
associated with each response vector and then performing the analysis
as described above.

To measure the ability of a population to generalize across an object-
identity-preserving image transformation (e.g., a change in the position
of an object), the hyperplanes were first trained and tested on a “refer-
ence” condition. Generalization was measured as identification perfor-
mance when this representation was tested with the responses to the
transformed images (see Fig. 7). Generalization capacity (see Fig. 7d) was
calculated as the ratio of the mean performance in the generalization
condition and the performance in the reference condition. To calculate
confidence intervals on this metric, generalization capacity was calcu-
lated on each iteration of a resampling procedure in which trials were
randomly assigned for training and testing without replacement. Error
bars were calculated as the SD of performance across 50 iterations. To
more specifically test the linear separability of the V4 and IT representa-
tions over all the object-identity-preserving image transformations (see
Fig. 8a), we performed an additional analysis in which hyperplanes were
trained with 80% of the data to simultaneously group all six transfor-
mations of each object (see Fig. 6), and the representation was tested
with 20% of randomly selected trials not included in the training.
Error bars were calculated as the SD of performance across 50 itera-
tions (see Fig. 8b).

To investigate how robust our results were to the particular readout
technique, we assessed population performance using two additional
readout methods. The first was a correlation-based classifier (Meyers et
al., 2008). Here, a classifier for each object was determined as the mean
response vector (see Fig. 3, left) across all trials of the training data. The
response of each classifier to a (separately measured) “test” response
vector was determined as the Pearson’s correlation coefficient between
the classifier and the test; the classifier with the largest positive coefficient
was taken as the “decision” of the population. The correlation-based

classifier is simpler than the SVM in that (1) the effective “weights”
placed on each neuron are determined by the normalized firing rates of
the neuron as opposed to an optimization procedure and (2) the thresh-
old is always set to zero. Sampling subpopulations of neurons, assigning
data for training and testing and calculation of error was identical to that
described for the SVM linear classifier.

As a third measure of population discriminability, we measured the
normalized Euclidean distance between the response clouds (see Fig. 3)
for the natural and scrambled images in both V4 and IT. Before calculat-
ing this population measure, the response for each neuron was normal-
ized to have a maximal average firing rate (across all trials) of 1 over all
the tested images. Given a set of T response vectors {xi} that describe
the population response on T trials to one stimulus and a second set of
vectors {yi} that describe the response on T trials to a second stimulus,
normalized Euclidean distance was calculated as the mean distance
between the mean of one response cloud (x) and all other trials of a
second response cloud (yi), normalized by the SD along each dimen-
sion of xi, �x:

d
 x,y� �

�
i

T � x�yi

�x
�

T
.

For a small fraction of neurons, a small fraction of images (�4% in
total) failed to evoke a response on any trial, resulting in �x � 0. If a
neuron failed to spike in response to all of the repeated presentations
of an image, that neuron was disregarded from the distance measures
for that image. The distance between two image sets was calculated
as the geometric mean of the normalized Euclidean distance across
all possible pairwise distance measures for each set of 50 images
(N � 50 2 � 50 � 2450).

Single-neuron received operating characteristic analysis. We quantified
the degree of overlap between two spike count distributions with a re-
ceiver operating characteristic (ROC) analysis (Green and Swets, 1966;
Britten et al., 1992). Given two spike count distributions that arise from
two different alternatives (e.g., one image vs another image for Fig. 9a, or
all the transformations of one object vs all the transformations of all other
objects for Fig. 11), we generated an ROC curve by computing the pro-
portion of trials for alternative 1 on which the response exceed the crite-
rion versus the proportion of trials for alternative 2 on which the
response exceeded the criterion for a range of criteria. The ROC value was
taken as the area under this curve.

Single-neuron measurement of linear separability. To obtain a single-
unit measure that is indicative of population linear separability for ob-
jects across the different transformations described in Figure 6, we
applied a metric described previously (Brincat and Connor, 2004; Janssen et
al., 2008) and reviewed below. We here term this metric single-neuron
“linear separability index” (se Fig. 12c) because, although it does not
indicate linear separability of object identity in the response of a single
neuron, under reasonable assumptions about the distribution of tuning
functions in a population, it is a good predictor of linear separability of
object identity at the neuronal population level and is a far better predic-
tor than single-unit measures such as receptive field size (Li et al., 2009).
This metric measures how well the response of a neuron can be explained
as resulting from independent tuning for object identity and the identity-
preserving image transformation (e.g., retinal position, size). We begin
by splitting the neuron’s response data into two halves by randomly
assigning the 10 repeated trials of each stimulus into two sets of five trials.
From these data, we compute two matrices (M1 and M2), each described
by the mean firing rate response to each of 10 objects across the six
transformations described in Figure 6 (i.e., each M was 10 � 6). Because
an artificially high linear separability index can result from the degener-
ate case in which a neuron responds to objects under only one of the
transformed conditions (e.g., only when the objects were positioned to
the left), we only included neurons that responded significantly differ-
ently than baseline (to any object) under at least two of the transformed
conditions (two-tailed t test, p � 0.05). For these neurons, we computed
the independent tuning prediction by computing the singular value de-
composition of one matrix (M1 � USV�) and then used the first principal
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component to determine the expected response to each object across the
six transformations (Mpred was the product of the first columns of U and
V�). Finally, we computed the element-wise Pearson’s correlation of
Mpred and the separately measured M2. The resulting metric was
bounded at �1 to 1.

Alignment of linear separability in simulation. To increase the average
single-neuron linear separability index of the V4 population to match the
average in IT (see Fig. 13c), we began by computing the singular value
decomposition of 10 object � 6 response surface of each V4 neuron (M1 �
USV�). We then reconstructed a new response surface (Mnew) with a
higher single-neuron linear separability index by adjusting the weights of
the diagonal matrix S. Specifically, we fixed the weight of the first (sepa-
rable) component to its original value and rescaled the remaining entries
of S by the same multiplicative factor (�1) whose value was chosen to
match the mean linear separability in the simulated V4 population and
the mean of the IT population. The modified response surface was com-
puted as (Mnew � USnewV�).

Results
We took a population-based, comparative approach toward de-
termining how selectivity and tolerance change along the ventral
visual pathway. Specifically, we compared neurons in mid-level
visual area V4 with the last stage of purely visual processing, IT.
Comparing the response properties of neurons across different
visual areas can be difficult as a result of differences in the sizes of
their receptive fields: although it makes little sense to measure the
response properties of a neuron outside its receptive field, neu-
rons at earlier stages of the ventral pathway typically have recep-
tive fields that are smaller than the objects they encounter, and
rescaling the objects to fit entirely within these small receptive
fields does not make sense if one’s goal is to study the re-
representation of real-world images along the ventral stream.
Thus, in contrast to traditional single-neuron approaches, we
started with the assumption that comparisons between V4 and IT
would be much more insightful if we evaluated the combined
behavior of neurons in each area as a population and with respect
to the kinds of visual tasks the ventral stream is likely to support.
In our experiments, stimuli were always presented in a fixed ret-
inal location and at a fixed retinal size despite the receptive field
location of the neuron we were recording. Specifically, all stimuli
were presented in a 5° diameter circular aperture placed at the
center of gaze (Fig. 1a). Neurons in IT have receptive fields that
often encompass the entire 5° image; these receptive fields typi-
cally include the center of gaze and extend into all four visual
quadrants (Fig. 1a, right) (Op De Beeck and Vogels, 2000). The
organization of V4 is quite different: V4 receptive fields are reti-
notopically organized and are primarily confined to the con-
tralateral hemifield (Fig. 1a, left) (Desimone and Schein, 1987;
Gattass et al., 1988). To compare the representation of images in
these two visual areas, we recorded from V4 neurons whose re-
ceptive fields tiled the image (Fig. 1b) and compared the V4 pop-
ulation responses to a similarly sized population of IT cells. This
required us to record from both hemispheres of V4 and within
each hemisphere to sample neurons with receptive fields in both
the upper and lower visual quadrants (Fig. 1c,d). Similarly, be-
cause IT receptive field centers tend to be shifted toward the
contralateral visual field (Op De Beeck and Vogels, 2000), we also
recorded from both hemispheres of IT. While we were recording,
one monkey performed a challenging object detection task to
engage the ventral visual stream and maintain a constant level of
arousal (Fig. 2) (supplemental Fig. 3, available at www.jneurosci.
org as supplemental material), whereas a second monkey was
passively viewing the images while fixating. We found no differ-
ences in the effects observed between the two monkeys (see Ta-

bles 1, 2), and, unless noted, the data presented here are pooled
across both subjects.

To compare the representation of images between the V4 and
IT populations, we performed a variety of analyses that all sought

Figure 1. Experimental design. a, All images were displayed in a 5° diameter aperture located at
the center of gaze (red). Expected receptive field locations and sizes for neurons in V4 (Desimone and
Schein, 1987; Gattass et al., 1988) and IT (Op De Beeck and Vogels, 2000). To compare these two areas,
we targeted V4 neurons such that the population of V4 receptive fields tiled the image. This required
recording from both the right (white) and left (dark gray) hemispheres. b, The receptive field locations
of a subset (78 of 140) of V4 neurons recorded; dots illustrate their centers relative to the 5° diameter
stimulus aperture (gray, monkey 1; white, monkey 2). c, Occipital cortex, illustrating the location of V4
relative to other visual areas, adapted from Gattass et al. (1988). V4 exists on the cortical surface
between the lunate sulcus and the STS and extends into the IOS. Approximate chamber placement
indicated in cyan. d, Expanded view of V4, also adapted from Gattass et al. (1988). The lower visual
field representation (LVF) in V4 exists on the cortical surface, in which receptive field locations move
toward the fovea as one traverses ventrally; approximate eccentricities are labeled according to Gat-
tass et al. (1988). At all eccentricities, receptive fields cluster toward the vertical meridian near the
lunate and move toward the horizontal meridian as one approaches the STS. The foveal representa-
tion, (labeled F) begins at the tip of the IOS. The upper visual field representation (UVF) can be found
within the IOS. Given the foveal confluence of V1, V2, and V4 within the IOS, it is not certain that all of
the neurons in the upper field were in fact from V4, although the receptive field sizes were more
consistent with V4 than either V2 or V1. Cyan illustrates the approximate region that can be accessed
via the chamber, which includes both the lower and upper visual field representations. MT, Middle
temporal area; TEO, temporal– occipital area.
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to measure how well the combined activity of each population
could discriminate between different images within a set (Hung
et al., 2005; Li et al., 2009). To quantify discriminability, we
trained each population using a linear readout scheme (repre-

sented by the lines in Fig. 3, middle) and
then tested the representation on an im-
age identification task (Fig. 3, right) (see
Materials and Methods). Linear readout
rules are neurally plausible in that they are
equivalent to a neuron at the next level of
processing that receives weighted exci-
tatory and inhibitory input from the
population in question, followed by a
threshold. It is important to recognize
that, by using a linear readout, we are
probing the information that is explicitly
accessible at a given level of visual process-
ing compared with “total information,”
which also includes information that is
present but not accessible using simple
neural machinery. Assuming that the in-
formation that propagates to IT does so by
passing through V4, the quantity of inter-
est is not “total” but “accessible” informa-
tion at each stage. Notably, measures of
performance on these discriminability
tasks depend not only on the format of the
population representation but also on the
number of neurons included in the analy-
sis and the number of images included in a
set. Thus, although absolute performance
on any one analysis may be difficult to in-
terpret, this type of analysis is useful for
making comparisons, either between stim-
ulus classes or between visual areas.

Comparison of selectivity in V4 and IT
We begin by describing our measure-
ments of selectivity in V4 and IT. Here, we
will be measuring a form of selectivity that
describes the complexity of image features
that activate a neuron, which we refer to as
“conjunction sensitivity.” Specifically, V1
neurons are known to be activated by
small image patches that contain energy
at a particular orientation and spatial
frequency (for review, see Lennie and
Movshon, 2005); a hypothetical neuron that
requires a more complex conjunction of lo-
cal oriented segments to evoke a response
would have a higher conjunction sensitivity
than a neuron in V1. We aimed to test the
hypothesis that IT neurons require a more
complex conjunction of features (have a
higher conjunction sensitivity) than V4
neurons. Traditionally, this hypothesis has
been difficult to systematically test given the
lack of understanding of the types of image
features that activate V4 and IT neurons.
For example, attempts have been made to
find the simplest “critical features” that
drive neurons in different visual areas and
then compare their complexity (Kobatake

and Tanaka, 1994), but given that such techniques involve specifi-
cally tailoring the stimulus set for each neuron, these methods pro-
duce results that are difficult to systematically compare across
different neurons and across different areas. Because we wanted to

Figure 2. The object detection task performed by monkey 2. Each trial began with the monkey looking at a fixation point. After
a brief delay, images were presented, in random order, each for 200 ms. At a randomly preselected point in the trial, an image
containing a motorcycle appeared. The monkey then had 500 ms to saccade to the response dot to receive a juice reward. In the
intervening time, images continued to stream. To ensure that the monkey was performing an object recognition task as opposed
to relying on low-level visual cues, the motorcycle was presented at different scales, positions, and on different backgrounds. In
addition, novel motorcycle images were introduced each day (supplemental Fig. 3, available at www.jneurosci.org as supplemen-
tal material).

Figure 3. Assessing the ability of a population of neurons to encode an image set by measuring discriminability with a linear
population readout. Left, A hypothetical population response for a single presentation of an image (labeled A). After adjusting for
latency (see Materials and Methods), spikes were counted in a 200 ms window. The spike counts for the N neurons recorded within
a given visual area were combined to form a “response vector” of length N. Right, The response vector exists in an N-dimensional
space but is illustrated in the two-dimensional space defined by the responses of neurons 1 and 2 (circled blue dot). Because
neurons are noisy, different presentations of the same image produce slightly different response vectors and together all presen-
tations form a “response cloud.” The images producing each response vector are labeled by color. The ability of the population to
discriminate between different images is proportional to how far apart the response clouds are in this space. We quantified
discriminability using linear classifier readout techniques (see Materials and Methods). This amounted to finding, for each image,
the optimal linear hyperplane (shown here as a line) that separated all the responses to that image from all the responses to all
other images. After using a subset of the trials to find each hyperplane, we tested discriminability with other trials by looking to see
where the response vectors fell. The hyperplane that produced the maximal response (the hyperplane for which the response
vector was on the correct side and the farthest from the boundary) was scored as the answer, and performance was measured as the
percentage correct on this image identification task. Example correct and wrong answers for presentations of stimulus A are shown
(right).
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systematically compare visual areas under matched conditions that
included the same stimuli presented under the same conditions, we
attempted a different approach in which we measured the sensitivity
of populations of neurons to image scrambling (“scrambling sensi-
tivity”) as an estimate of the conjunction sensitivity for that popula-
tion. After describing the image scrambling procedure itself, we
describe the rationale behind these experiments. This procedure for
scrambling, introduced by Portilla and Simoncelli (2000), mini-
mizes the artifacts common to many scrambling procedures (such as
introduction of high spatial frequencies) and, moreover, preserves
the types of image features thought to be encoded by the first visual
area in the cortex, V1. Specifically, given a natural image, this proce-
dure produces a second image containing the same number and type
of local, oriented elements but presented at random positions within
the image (Fig. 4) (see Materials and Methods). Viewing these im-
ages shows that they are clearly rich in local structure, but, because
the positions of the local features have been randomized, they con-
tain no definable objects. One important property of V1 neurons
that is reproduced by the model is the covariation between the size of
the elements and their spatial frequency content (Ringach, 2002):
larger elements contain lower spatial frequency content (e.g., large,
oriented blobs), whereas high spatial frequency content is encoded
by smaller elements. Consequently, because long, continuous lines
are produced by higher spatial frequencies, they are broken up into a
number of local elements and tend to be destroyed in the scrambled
images. Similarly, contours, shape, figure/background, and at least
some of the global structure often referred to as “gist” are destroyed
by this scrambling procedure. Our operational definition of “feature
conjunctions” for the purposes of this study is the destruction of
these higher-order properties of images, which remain statistically
ill-defined, after using the scrambling procedure described above.
Consideration of how our results depend on the particular scales at
which we scrambled the images can be found in Discussion.

The rationale behind comparing discriminability among nat-
ural images with the discriminability among scrambled images is
as follows. In a first scenario, a population of neurons that are
tuned to the local features in an image (that is, they have, by
definition, little or no conjunction sensitivity) should encode
both intact natural images and appropriately scrambled versions
of those images with similar fidelity. That is, if the scrambling
process preserves the types of local features for which single neu-
rons are tuned but merely rearranges them, scrambling will
change the particular pattern of neurons activated but will not
affect the ability of the population to encode (i.e., discriminate
among) the scrambled images (Fig. 5a, left). In a second, alterna-
tive scenario, a population of neurons may only be activated by
the specific, feature conjunctions found in natural images, and,
because scrambling destroys these conjunctions, the neurons
would fail to respond to (and thus fail to discriminate among)
such images (Fig. 5a, right). A third scenario is also possible: a
population may be tuned for random conjunctions of local fea-
tures and therefore have no preference for naturally occurring
feature configurations. Similar to the first scenario, such a popu-
lation would discriminate among both natural and scrambled
images with similar fidelity. In other words, matched population
discriminability for natural and scrambled images is consistent
both with a population that encodes local structure and with a
population that encodes random conjunctions of features. How-
ever, reduced discriminability for scrambled compared with nat-
ural images indicates a population that preferentially encodes the
feature conjunctions found in natural images.

We begin by comparing the ability of the V4 versus the IT
populations to discriminate among different members of a set of

50 natural images using linear readout rules (specifically, SVMs;
see Materials and Methods). We found that encoding perfor-
mance increased as a function of the number of neurons included
in the analysis, and performance was similar but slightly higher in
V4 compared with IT (Fig. 5b,c, black). This nearly equivalent
population discriminability in V4 and IT for natural images with
a comparable number of neurons (sampled without bias; see Ma-
terials and Methods) has not, to our knowledge, been described
previously, and it was not a predetermined result of our ap-
proach; this result implies that information about natural images
is primarily maintained as signals travel from V4 to IT (assuming
an approximately equal number of neurons in V4 and IT). Crit-

Figure 4. Scrambling procedure. a, Images were scrambled using a model introduced by
Portilla and Simoncelli (2000). Briefly, the procedure begins by computing a number of image
statistics. A Gaussian white-noise image is then iteratively adjusted until it has the same num-
ber and type of local, oriented elements but presented at random positions within the image
(see Materials and Methods). b, Example natural images and their scrambled counterparts.
Each set contained 50 images.
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ically, this result demonstrates that we
have sampled the visual representation of
V4 and IT equally well (by the operational
criterion of encoding natural images) and
provides a baseline for comparison with
the scrambled versions of those images.
To determine the sensitivity of the V4 and
IT populations to image scrambling, we
measured the ability of each population to
discriminate among the scrambled ver-
sions of the natural images. When V4 and
IT are equated in terms of numbers of
neurons (n � 140), we found moderate
reductions in discriminability perfor-
mance for scrambled images compared
with natural images in V4 (scramble per-
formance, 60 � 4% vs natural perfor-
mance, 81 � 4%) and marked decrements
in IT (scrambled, 33 � 4% vs natural,
72 � 4%) (Fig. 5b,c). When V4 and IT
were equated in terms of their perfor-
mance on the natural image set (which
amounted to limiting the V4 population
to 121 neurons compared with 140 neu-
rons in IT), IT still showed a larger deficit
in encoding scrambled images than V4
(Fig. 5d,e).

We summarize these results by com-
puting a measure of scrambling sensitivity
as the ratio of the performance on the
scrambled and natural image discrimina-
tion tasks subtracted from 1. This index
takes on a value of 0 for a population that
discriminates equally well among natural
images and among scrambled images
(and is thus insensitive to the particular
conjunctions with which the features are
presented) and a value of 1 for a popula-
tion that has absolutely no discriminabil-
ity for the scrambled image set. With this
measure of scrambling sensitivity, we find
an increase of 108% in IT over V4 (scram-
bling sensitivity indices of 0.26 vs 0.54 in
V4 and IT, respectively) (Table 1). We ob-
served similar, large increases in the neu-
ronal data from each of our two subjects,

confirming that these results are not particular to one individual
and were not particular to the fixation behavioral task or the
object detection behavioral task (Table 1).

To consider the possibility that these results were peculiar to our
SVM linear readout discriminability test, we analyzed the same data-
set using two alternative techniques to measure population discrim-
inability. The first method was a simplified, correlation-based
classifier that weighted the neurons based on their actual firing rates
rather than computing the weights via an optimization process (see
Materials and Methods). The second method assessed the average
pairwise Euclidean distance between the response clouds (see Mate-
rials and Methods). Both methods confirmed that the IT population
has substantially higher scrambling sensitivity than V4 (Table 1).
Similar results were also found when spikes were counted in shorter
windows (i.e., 25, 50, and 100 ms) (Table 1).

These results are consistent with the previously proposed hy-
pothesis that neurons at lower levels of visual processing encode

Figure 5. Testing conjunction sensitivity. a, Logic behind the experiment designed to measure conjunction sensitivity. Top left,
Response clouds (see Fig. 3) corresponding to the population response to four natural images for an idealized population that
encodes local structure within the images. Bottom left, Response clouds for the same population in response to four scrambled
versions of the same natural images. In this scenario, scrambling the images activates the population differently, resulting in a
repositioning of the response clouds, but the clouds remain a similar distance apart. Top right, Response clouds for an idealized
population that encodes specific conjunctions of local structure. Bottom right, Response clouds for the same population in response
to scrambled images. In this scenario, destroying the natural feature conjunctions results in the response clouds collapsing toward
the origin. b, Performance as a function of the number of neurons for the V4 and IT populations on the discrimination task for the
natural (black) and scrambled (red) image sets. Both sets contained 50 images. SE bars indicate the variability (determined by
bootstrap) that can be attributed to the specific subset of trials determined for training and testing and the specific subset of
neurons chosen. Also shown is chance performance, calculated by scrambling the image labels (dashed lines, �2%; see Materials
and Methods). c, Performance of the V4 and IT populations for n � 140 neurons. d, In contrast to equating the number of neurons
in each population, V4 and IT can be equated via performance on the natural image set; this amounts to limiting the V4 population
to 121 neurons compared with 140 neurons in IT. e, Performance of the V4 and IT populations for n � 121 and n � 140 V4 and IT
neurons, respectively.

Table 1. Scrambling sensitivity

V4 IT IT gain

SVM 0.26 0.54 	108%
SVM (matched natural performance) 0.22 0.54 	145%
SVM (subject 1) 0.27 0.46 	70%
SVM (subject 2) 0.29 0.55 	90%
Correlation-based classifier 0.20 0.48 	140%
Normalized Euclidian distance 0.05 0.14 	180%
SVM (25 ms) 0.18 0.60 	230%
SVM (50 ms) 0.36 0.74 	105%
SVM (100 ms) 0.26 0.65 	150%

Scrambling sensitivity measured as the ratio of the performance on the scrambled and natural image discrimination
tasks (Fig. 5), subtracted from 1. Included are scrambling sensitivity estimates based on the performance of the
linear classifier analysis including the neurons recorded from both subjects and when spikes were counted in a 218
ms window (the duration of each stimulus) and for matched numbers of neurons (Fig. 5c), results for numbers of
neurons adjusted for matched performance for natural images (Fig. 5e), linear classifier performance for subjects 1
and 2 individually, the correlation-based classifier, normalized Euclidean distance metric, and the linear classifier
analysis when spikes were counted in 25, 50, and 100 ms windows.
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more local structure whereas neurons at higher stages of the vi-
sual system become more sensitive to specific conjunctions of
those local features, at least at the sizes of images we presented
and the scales at which we scrambled the images. Furthermore,
these results suggest that neurons in IT do not merely encode any
arbitrary configuration of local structure, rather the IT popula-
tion is tuned for (i.e., best encodes) the particular configurations
found in natural images.

Comparison of tolerance (invariance) in V4 and IT
Next, we used similar population readout approaches to compare
the tolerance with object-identity-preserving image transforma-
tions between V4 and IT. We used the term “tolerance” instead of
“invariance” because it better reflects the fact that object recog-
nition behavior and IT neuronal object recognition performance
(Hung et al., 2005; Li et al., 2009) are somewhat insensitive, but
not absolutely so, to identity-preserving image transformations.
Here, we focus specifically on changes in the position, scale, and
background of an object (Hung et al., 2005). Ten objects were
presented under six identity-preserving transformations: in ad-
dition to a reference condition, which corresponded to an object
approximately centered in the 5° aperture on a gray background,
the object was shifted left and right, presented at a smaller and
larger size, and presented in a natural context (see Materials and
Methods) (Fig. 6). We began by training each population to dis-
criminate between objects at the fixed reference condition (Fig.
7a, black). Similar to that described above for comparison of
selectivity, we regarded discriminability to the reference images
as the baseline estimate of the encoding performance of each
population. We then asked how well this representation could
generalize to the same images presented at the other positions,
scales, and at the other background condition (Fig. 7a, blue). If
the clouds of response vectors corresponding to different trans-
formations of an image remain segregated according to identity,
this will translate into good generalization performance (Fig. 7a,
right). Conversely, if clouds corresponding to the transformed

images intermingle with those corresponding to different objects
or become located in a completely new location, this will result in
poor generalization performance for these identity-preserving
transformations (Fig. 7a, left). Notably, in this scenario, poor
generalization results not from a lack of an ability of the popula-
tion to encode the individual images themselves but because the
identity information about one object is “tangled” with identity
information about other objects (DiCarlo and Cox, 2007).

Before probing the ability of the population to generalize
across identity-preserving transformations, it was important to
ensure that each image corresponding to each transformation
was itself well represented by the population. For example, if we
had failed to record from V4 receptive fields that tiled the left side
of the image, we may have failed to encode the “shift-left” condi-
tion altogether and poor generalization would result trivially.
Thus, we first tested the ability of the population to discriminate
between the 10 objects under each transformed condition sepa-
rately, and, although we found some variability, in all cases dis-
criminability was high. Notably, consistent with our results on
encoding natural images (see above and Fig. 5), we found
similar encoding performance for these “natural” objects in
V4 and IT (Fig. 7b). Specifically, drawing on the same number
of neurons in each area (n � 140), we found that, on average,
V4 and IT encoded the object-related information in each of
the transformed conditions with similar, high performance
(mean magnitude performance in V4 and IT was 79 and 83%
across all six conditions).

Having established that all the individual images were en-
coded by the V4 and IT populations we recorded, we then asked
how well the format of the information in each population was
suited for an invariant object recognition task. Specifically, we
assessed generalization capacity in V4 and IT using linear classi-
fier methods (Fig. 7a). When asked to generalize across small
changes in position (from the reference to shifts right or left of
1.5°), the V4 population performance was above chance but de-
creased markedly relative to the reference (V4 generalization

Figure 6. Images used to compare tolerance in V4 and IT. Ten objects were presented under six different transformed conditions. The reference objects (black) were always presented near the
center of the 5° aperture. The transformed conditions (blue) included rescaling to 1.5� and 0.5� at the center position, presentation at 1� scale but shifted 1.5° to the right (R) and left (L), and
presentation at the reference position and scale but in the context of a natural background.
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performance, 32 � 9% vs reference per-
formance, 69 � 8%) (Fig. 7c, left). In
comparison, the IT population showed
much better generalization performance
across the same position changes, almost
as good as the reference condition (IT
generalization performance, 74 � 9% vs
reference, 81 � 8%) (Fig. 7c, middle). To
compare across different object-identity-
preserving image transformations, we
measured generalization capacity as the
ratio between performance on each gen-
eralization condition and performance on
the reference condition (a value of 1.0 in-
dicated perfect generalization capacity)
(Fig. 7d). We found larger generalization
capacity in IT compared with V4 for small
(V4, 0.46 � 0.11; IT, 0.92 � 0.08) and
large (V4, 0.21 � 0.11; IT, 0.76 � 0.14)
changes in position as well as changes in
background context (V4, 0.49 � 0.09; IT,
0.81 � 0.10) (Fig. 7d), indicating general-
ization capacity was higher in IT com-
pared with V4 for these transformations.
Although small changes in scale resulted
in good generalization capacity in both V4
and IT (V4, 0.89 � 0.09; IT, 0.90 � 0.09)
(Fig. 7d), large changes in scale showed a
trend toward higher generalization capac-
ity in IT over V4 (V4, 0.69 � 0.21; IT,
0.83 � 0.13) (Fig. 7d). As a summary sta-
tistic, we computed the mean generaliza-
tion capacity across all five (equally
weighted) transformations and found it to
be smaller in V4 compared with IT (V4,
0.55; IT, 0.84). These results directly dem-
onstrate that the ability of the IT population
to encode object identity is more tolerant of
identity-preserving image transformations
than the V4 population.

Additional analyses confirmed that
these increases in generalization capacity
in IT over V4 were found in both mon-
keys, indicating that they were not pecu-
liar to one individual and were not
peculiar to the fixation behavioral task or
the object detection behavioral task (Ta-
ble 2). Similar results were found with the
simpler correlation-based classifier read-
out procedure, indicating that they were
not peculiar to the SVM optimization
(Table 2). Similar results were also found
when spikes were counted in shorter win-
dows (i.e., 50 and 100 ms) (Table 2). To
determine whether the variability intro-
duced by the small deviations in eye posi-
tion across repeated presentations of the
same stimulus could account for reduced
generalization capacity in V4 compared
with IT, we calculated the mean eye posi-
tion during the presentation of each stim-
ulus and included only those stimulus
presentations for which eye position (rel-

Figure 7. Comparing tolerance in V4 and IT. a, Logic behind the experiment. The analysis begins by training the linear readout
to identify the reference objects and then determining how well this representation generalizes across different positions, scales,
and context. Middle, We are testing the hypothesis that the ability to generalize across identity-preserving transformations
increases along the pathway. Left, More specifically, we expect that neural populations at earlier stages of visual processing will not
be capable of generalization because the response clouds for the images presented at different positions, scales, and context will
intermingle with the response clouds for other objects, resulting in reduced discriminability. Right, Conversely, we expect that
neural populations at later stages of processing will be capable of generalization because the response clouds for the images
presented at different positions, scales, and context will remain on the “correct” side of the linear decision boundary. b, To first
assess how well the individual images were encoded, performance on the object discrimination task was determined by training
and cross-validated testing on different trials of the same images (similar to the black lines in Fig. 5b). Plotted is the mean
performance on the object discrimination task (chance, 10%). Error bars indicate SEs (determined by bootstrap) that can be
attributed to the specific subset of trials determined for training and testing and the specific subset of neurons chosen. Ref,
Reference; B, 1.5� scale (Big); S, 0.5� scale (Small); L, 1.5° shift left; R, 1.5° shift right; BG, presentation on a natural background.
Performance was high across all transformations in both V4 and IT. c, Generalization across position for the V4 (left) and IT (middle)
populations. Black lines indicate mean performance as a function of the number of neurons when training and testing on the
reference objects. Blue lines indicate average performance when asked to generalize across small changes in position (from the
reference to 1.5° to the left or right). Dashed lines indicate chance performance (�10%), calculated by scrambling the image labels
(see Materials and Methods). Error bars indicate SEs (determined by bootstrap) that can be attributed to the specific subset of trials
determined for training and testing and the specific subset of neurons chosen. Right, Performance of the V4 and IT populations
when nearly all recorded neurons (n � 140) from each area are included. d, Generalization capacity for different transformations,
calculated as the fractional performance on the generalization task relative to the reference. For example, generalization capacity
across small changes in position (the 2 leftmost bars) is calculated as the ratio of the blue and black points in c (right). Large changes
in position correspond to the average generalization across 3° transformations (right to left and left to right): small changes in scale
correspond to the average generalization from the reference to the 0.5� and 1.5� images; large changes in scale correspond to
the average generalization from 0.5� to 1.5� and vice versa; and changes in context correspond to average generalization from
objects on a gray to natural background and vice versa.
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ative to the mean position across all trials) fell within a 0.2° di-
ameter window. We calculated the average firing rate response to
each stimulus from five such trials, and we disregarded the small
proportion of neurons (�5% in V4 and IT) for which five trials
failed to meet this criteria for all 60 images. Finally, we reintro-
duced trial-to-trial variability via Poisson spiking simulations
centered on those empirically observed mean rates and recalcu-
lated generalization capacity (for n � 130 neurons in each pop-
ulation) as described above. Generalization capacity remained
higher in IT than V4 (V4, 0.36; IT, 0.55), showing that lower
generalization capacity in V4 is unlikely to be caused by the vari-
ability introduced by eye movements.

Thus far, we have compared the ability of the V4 and IT pop-
ulations to generalize across position, scale, and context by train-
ing the linear readout on the responses to the reference images
and measuring how well these representations generalize to new
conditions, and we found that IT per-
formed better at this generalization task
than V4. However, this leaves open the
possibility that the V4 population repre-
sentation has the capacity to directly sup-
port object identification tasks, even in
the face of identity-preserving image vari-
ation, but the particular classification
training method we have used failed to
find it. For example, perhaps the V4 rep-
resentation can, in principle, allow a hy-
perplane to separate all images of each
object from all other object images but, in
practice, this linear separation (hyper-
plane) is not discovered by only training
on the reference image (Fig. 8a). That is, al-
though the issues of generalization perfor-
mance (which we tested in Fig. 7) and
linear separability (Li et al., 2009) are re-
lated (e.g., good generalization perfor-
mance with linear classifiers implies
linear separability), lack of generalization
does not necessarily imply lack of linear
separability.

Thus, to directly measure linear sepa-
rability of the V4 and IT populations, we
performed an additional analysis in which
we trained on a subset of neuronal popu-
lation data from all six transformations of
each object simultaneously and tested
with cross-validated data (i.e., all image
conditions were used for training, but the
performance was tested on stimulus repe-
titions that were not used in the training
procedure). We found that IT also per-
formed better on this invariant object rec-
ognition task than did V4 (Fig. 8b, solid
lines). Importantly, enhanced perfor-
mance in IT over V4 is not attributable to
an enhanced representation of each image
individually because the individual images were represented
approximately equally well in V4 and IT (Fig. 7b). Furthermore,
when we attempted to find hyperplanes that separated arbitrary
groups of images (e.g., grouping the reference image of the squir-
rel with the left-shifted image of a bottle and the enlarged image
of a gorilla, etc.) from all other images, we found that IT (and V4)
performance dropped nearly to chance (Fig. 8b, dashed lines).

This shows that, although a relatively small IT population (here
n � 140) is highly capable of linearly separating image groups
produced by object-identity-preserving transformations (Fig. 8b,
solid lines), it is not capable of supporting arbitrary linear sepa-
ration of image groups (Fig. 8b, dashed lines). In summary, these
results directly show that the format of the IT representation is
superior to V4 with regard to invariant object identification tasks
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Figure 8. A second tolerance test: linear separability. a, Hypothetical representations that perform poorly and well at tests of
tolerance. Left, A population representation that will fail to support tolerant object recognition because of a lack of linear separa-
bility. Middle, A population representation that can, in principle, support tolerant object recognition, but one for which the
generalization test presented in Figure 7 may fail to find it. The linear boundary located by training on the reference condition alone
(solid line) fails to separate the response vectors corresponding to different transformations of one object from the response vectors
corresponding to the other objects. In this case, a more appropriate linear boundary (dashed line) can be located by training on all
transformations simultaneously. Right, A population representation that performs well at tests of tolerance when training on the
reference condition alone. b, Performance on an object identification task for the six transformations of each of 10 objects when the
linear boundaries were trained on response data from all six transformations simultaneously and tested with cross-validation data
in IT (white) and V4 (black). Dashed lines indicate performance when different objects at different transformations are randomly
assigned to one another (e.g., object 1 at the reference position and scale paired with object 3 shifted left 1.5° and object 6 at 0.5�
scale, etc.).

Table 2. Mean generalization capacity

V4 IT IT gain

SVM 0.55 0.84 	53%
SVM (subject 1) 0.61 0.91 	49%
SVM (subject 2) 0.64 0.88 	38%
Correlation-based classifier 0.58 0.92 	63%
SVM (25 ms) N/A 0.74 N/A
SVM (50 ms) 0.65 0.75 	15%
SVM (100 ms) 0.61 0.94 	54%
Eye deviation within 0.2°, Poisson variability 0.36 0.55 	53%

Mean generalization capacity across all identity-preserving transformations (Fig. 7d). Included are mean generali-
zation capacity estimates based on the performance of: the linear classifier analysis including the neurons recorded
from both subjects and when spikes were counted in a 218 ms window (the duration of each stimulus), the linear
classifier performance for subjects 1 and 2 individually, the correlation-based classifier, the linear classifier analysis
when spikes were counted in 25, 50, and 100 ms windows, and the linear classifier analysis when mean firing rates
were computed across trials on which eye position deviated �0.2° and trial-to-trial variability was simulated with
a Poisson process (see Results). In 25 ms windows, performance of the V4 population on some of the images (Fig. 7b)
was not significantly different from chance and thus generalization could not be assessed.
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(in terms of both linear separability and generalization), and
these results are not simply explained by a lack of information in
V4 (Fig. 7b).

What single-unit properties underlie the increase in
population selectivity from V4 to IT?
Our experiments were designed to probe selectivity and tolerance
at the population level as opposed to single-neuron measure-
ments; single-neuron experiments typically involve tailoring the
stimulus identity and location to match the receptive field of each
neuron, whereas our experiments aimed to directly assess real-
world tasks by testing the exact same stimulus conditions for each
neuron. However, the performance of our population must re-
sult from the single neurons contained therein, and, thus for a
complimentary look at our data, we computed single-neuron
measures. We began by assessing how well individual neurons
could discriminate between different natural images and between
different scrambled images (Fig. 4). To do this, we used an ROC
analysis (see Materials and Methods) to measure the discrim-
inability between all pairs of natural images in our set (1225 pairs)
and discriminability between all pairs of scrambled images in our
set (1225 pairs). Mean pairwise single-neuron ROC for natural
images was not statistically different between V4 and IT (mean
ROC: V4, 0.648; IT, 0.639; p � 0.10). However, mean pairwise
single-neuron ROC was slightly lower for scrambled images than
for natural images in V4 (mean ROC: natural, 0.648; scramble,
0.637; p � 0.04) and distinctly lower in IT (mean ROC: natural,
0.639; scramble, 0.617; p � 0.0001). Thus, our measures of
scrambling sensitivity assessed at the single-neuron level are in
qualitative agreement with our measurements of discriminability
using population-based analyses.

To determine the degree to which the distribution of single-
neuron ROC values across the V4 and IT populations contrib-
uted to the population-based results for scrambling sensitivity
(Fig. 5), we organized our neurons in rank-order according to
their ROC values and computed population performance for
sliding window subpopulations of 48 neurons with neighboring
ROC values. As expected, performance increased with increasing
ROC in V4 and IT (Fig. 9a). Moreover, Figure 9a shows that,
when subpopulations of V4 and IT neurons with the same mean
single-neuron ROC values are compared, they give rise to the
same population performance for natural and scrambled image
discriminability (Fig. 9a), suggesting that the population-based
effects we observed can be directly explained by single-neuron
discriminability.

We were also interested in knowing how the distribution of
receptive field sizes within each area, and the larger receptive field
sizes in IT compared with V4, impacted population performance
for natural and scrambled images. To address this question, we
began by computing an estimate of receptive field size using the
data collected for the invariance experiment in which objects
were presented at the center of gaze, 1.5° to the left of center, and
1.5° to the right (Fig. 6). For each neuron, we screened for objects
that produced a response significantly differently from baseline,
and, for all such objects (if any), we computed an RF profile
normalized to the preferred position of each neuron. We quan-
tified individual neuronal position insensitivity as the average
fractional response at the two non-optimal positions, and, in
agreement with previous studies (Kobatake and Tanaka, 1994),
this measure of RF size was larger in IT than V4 (V4 mean, 0.49;
IT mean, 0.69; two-tailed t test, p � 0.0001) (see Fig. 12a). Similar
to the ROC analysis described above, we organized our neurons
in rank order according to their position insensitivity values and

computed population performance for sliding window subpopu-
lations of 48 neurons with neighboring position insensitivity. For
natural images, we found a trend toward increasing performance
as RF sizes increased in V4 and a dramatic increase in perfor-
mance as RF sizes increased in IT (Fig. 9b, gray). We found no
such trend for the scrambled images in V4 or IT (Fig. 9b, red). We
also calculated scrambling sensitivity (as described above) as a
function of RF size (Fig. 9c) and found an approximately mono-
tonically increasing relationship between these two parameters.
Moreover, neurons in different visual areas but with similarly
sized receptive fields (the largest V4 neurons and the smallest IT
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Figure 9. The relationship between single-neuron measures and population discriminabil-
ity for natural and scrambled images. a, Single-neuron ROC computed for natural (gray) and
scrambled (red) images as the average pairwise ROC for 50 natural and 50 scrambled images
(Fig. 4). Neurons were ranked separately for their average natural and scrambled image ROC,
and population performance for natural or scrambled image discrimination was assessed for
subpopulations of 48 neurons with neighboring ROC values. The x-axis shows the geometric
mean ROC of each subpopulation in V4 (left) and IT (right). The y-axis shows performance on the
discrimination task for the natural (gray) and scrambled (red) image sets (Fig. 5). b, Single-
neuron RF size measured as the insensitivity of the responses to the objects across changes in
position (see Fig. 12a). Neurons were ranked by position insensitivity, and population perfor-
mance for natural and scrambled image discrimination was assessed for subpopulations of 48
neurons with neighboring position insensitivity values. The x-axis shows the geometric mean
position insensitivity of each subpopulation. The y-axis shows performance on the discrimina-
tion task for the natural (gray) and scrambled (red) image sets (Fig. 5). c, Scrambling sensitivity,
calculated as the ratio of scrambled and natural image performance (taken from b), subtracted
from one and plotted for subpopulations of 48 neurons with neighboring position insensitivity
values.
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neurons) had similar scrambling sensitivities. An interpretation
of these results, including the role that neurons with larger RFs
might play in encoding natural images is included in Discussion.

For a closer look at the single-neuron response properties that
determine population performance for natural and scrambled
images, we were interested in knowing whether differences in the
signal-to-noise ratio (SNR) of individual neurons for natural ver-
sus scrambled images in IT could account for the population
behavior or whether something more subtle was happening. We
began by maintaining the mean firing rates of each neuron in our
population to each image, but we replaced the trial-to-trial vari-
ability of each neuron with a Poisson spike generation process.
Overall, performance increased in both V4 and IT relative to the
raw data, and, although performance for natural and scrambled
images was similar in V4, performance for scrambled images
remained lower than performance for natural images in IT (Fig.
10a). This suggests that the differences in performance of the IT
population for natural compared with scrambled images are not
simply attributable to differences in trial-by-trial variability for
the two image classes. Next we investigated the average dynamic
response range of V4 and IT neurons by plotting the rank-order
firing rate plots for the 50 natural and 50 scrambled images, av-
eraged across each population (Fig. 10b). Consistent with the
ROC results presented in Figure 9a, the rank-order plots were
similar for natural and scrambled images in V4 (Fig. 10b, left),
whereas natural images produced a slightly larger average dy-
namic response range than scrambled images in IT (Fig. 10b,

right). To determine whether the differences in the average IT
rank-order curves for natural compared with scrambled images
was sufficient to account for the increased population perfor-
mance, we aligned the dynamic range of the two curves by apply-
ing the same multiplicative factor and offset to the rank-order
response curve of the responses of each IT neuron to scrambled
images (Rnew � 1.27 � Rorig � 1.65) and, as before, simulated
variability with a Poisson spike generation process. Performance
of this “adjusted” IT population to scrambled images matched
the population performance to natural images (Fig. 10a, gray
dashed), suggesting that the differences in SNR between natural
and scrambled images can account for the differences we ob-
served in population performance for these two image classes.

What single-unit properties underlie the increase in
population tolerance from V4 to IT?
Similar to our inquiry of the single-neuron correlates of popula-
tion scrambling sensitivity, we were interested in the single-
neuron correlates of population tolerance. We began by
computing the single-neuron ROC for discrimination between
all six transformations of the best object of a neuron and all
transformations of the nine other objects; we found that single-
neuron ROC was higher in IT than V4 (mean ROC: V4, 0.610; IT,
0.659; p � 0.0001). Next, we organized our neurons in rank order
according to their ROC values and computed population perfor-
mance on an invariant object recognition task (the task described
for Fig. 8b) for sliding window subpopulations of 48 neurons
with neighboring ROC values. The curves describing population
performance for tests of linear separability across the different
transformations of each object were nearly aligned in V4 and IT
for populations with similar ROC values (Fig. 11), suggesting that
single-neuron performance on the tolerance task assessed by
ROC is a good predictor of population performance on the same
task assessed by linear classifiers.

For a closer look at how the sizes of individual receptive fields
impacted population tolerance, we took a slightly different ap-
proach from that described for scrambling sensitivity. Specifi-
cally, we wanted to understand the degree to which the higher
performance on the invariant object recognition task observed in
IT over V4 (Fig. 8b) was correlated with larger IT RFs. To address
this question, we began by estimating the position sensitivity of
V4 and IT neurons as described above (i.e., an estimate of RF size)

Figure 10. SNR differences can account for decreased scrambled image discriminability in IT.
a, Natural (black) and scrambled (red) image discriminability when the mean firing rate of each
neuron to each image is preserved but trial-to-trial variability is replaced with a Poisson process.
Also shown is discriminability after adjusting the mean dynamic range of the IT population
response to scrambled images to match the mean dynamic range of the population response to
natural images (gray dashed; see b). b, Mean dynamic range for natural (black) and scrambled
(red) images, computed by averaging over the responses of all neurons after organizing the
responses of each neuron in rank order. Points on the left of each plot show mean and SE of firing
rate to the most effective natural (black) and scrambled (red) stimulus, averaged across all
neurons (to indicate error for firing rates of stimulus rank 1). Gray dashed lines indicate the
mean dynamic range after the responses of each IT neuron to scrambled images are adjusted
with a multiplicative factor and an offset to match the IT responses to natural images (see
Results).
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Figure 11. The relationship between single-neuron ROC and population tolerance. Single-
neuron ROC computed as the ROC for discriminations between all six transformations of the best
object of a neuron (defined by the highest firing rate after averaging across all transformations)
and all six transformations of the nine other objects. Neurons were ranked by their ROC values,
and population performance for the linear separability test of tolerance (see Fig. 8b) was as-
sessed for subpopulations of 48 neurons with neighboring ROC values in V4 (black) and IT
(white). The x-axis shows the geometric mean ROC of each subpopulation. The y-axis shows
population performance for the linear separability test of tolerance (see Fig. 8b).

12990 • J. Neurosci., September 29, 2010 • 30(39):12978 –12995 Rust and DiCarlo • Selectivity and Invariance Increase across the Ventral Visual Pathway



(Fig. 12a). To determine whether the differences in RF size be-
tween V4 and IT could account for the differences we observed in
population performance for linear separability, we subselected
the largest possible V4 and IT subpopulations that were matched
for average RF position insensitivity (n � 59). The effect of equat-
ing V4 and IT for position sensitivity resulted in population perfor-
mance in the invariant object recognition task that was more similar
in V4 and IT compared with the differences observed with the entire
population, but performance remained significantly higher in IT
(Fig. 12b). Thus, the differences in single-neuron RF size alone can-

not account for the differences in linear sep-
arability observed between these two
populations.

What single-unit property then can
account for higher linear separability of
object identity in the IT population? In con-
trast to absolute position sensitivity, a sec-
ond concept of “receptive field” relies on the
notion that a neuron that contributes to a
highly tolerant object representation at the
population level will maintain its relative se-
lectivity (rank-order) for different objects
across changes in position, scale, and con-
text, although the absolute responses of the
neuron might rescale with each transforma-
tion (Tovee et al., 1994; Ito et al., 1995;
Logothetis and Sheinberg, 1996; Op De
Beeck and Vogels, 2000; DiCarlo and
Maunsell, 2003; DiCarlo and Cox, 2007).
Extensive simulations have established a
link between rank-order preservation of se-
lectivity and population performance under
mild assumptions about the distribution of
tuning in the population (Li et al., 2009). To
measure rank-order preservation of selec-
tivity in individual neurons, we began by
screening for neurons that responded sig-
nificantly differently from baseline to at least
one of the objects across two (of six) trans-
formations (Fig. 6) (see Materials and
Methods). For these neurons, we quantified
how well rank-order selectivity was pre-
served across changes in position, scale, and
context using a single-neuron linear separa-
bility index (Mazer et al., 2002; Brincat and
Connor 2004; Janssen et al., 2008; Li et al.,
2009) that measures how well the response
of the neuron can be explained as resulting
from independent tuning for object identity
and changes in position, scale, and context.
This correlation-based index compares the
similarity of the actual response surface with
the best-fitting response surface assuming
independent tuning and takes on a value of
1 for perfect independence (see Materials
and Methods). Although the metric varies
widely from neuron to neuron, we
found that, on average, IT had signifi-
cantly higher single-neuron linear sepa-
rability index values when compared
with V4 (Fig. 12c) (mean V4, 0.54; mean
IT, 0.63; two-tailed t test, p � 0.0263).
To determine whether this difference in

single-neuron linear separability between the two areas could
account for the difference we observed in population perfor-
mance on our invariant object recognition task (Fig. 8), we
subselected from our populations the largest possible V4 and
IT subpopulations that were matched for this measure (n �
45; mean V4, 0.586; mean IT, 0.588). Similar to equating RF
position sensitivity, the effect of equating V4 and IT for single-
neuron linear separability resulted in population performance
on an invariant object recognition task that was more similar
between V4 and IT, but performance remained significantly
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Figure 12. Single-neuron correlates of population tolerance. a, Position insensitivity of the V4 and IT population based on the
responses to the objects presented at the center of gaze, 1.5° to the left of center, and 1.5° to the right (see Fig. 6). For each neuron,
a receptive field profile was computed as the average response at each position to all objects that produced a response significantly
differently from baseline at one or more positions (t test, p � 0.05; 108 of 140 neurons in V4 and 110 of 143 neurons in IT). After
normalizing the receptive field profile to 1 at the preferred position, we quantified position sensitivity as the average fractional
response at the two non-optimal positions. Arrows indicate means. b, Performance on the same object identification task pre-
sented in Figure 8b but for an IT and V4 population that are matched for position insensitivity. Each subpopulation was chosen by
randomly sampling the maximal number of entries in each histogram bin in a that overlapped. Solid lines indicate populations
matched in this way in IT (white) and V4 (black). Dashed lines indicate populations that passed the significance test for at least one
object but when not equated for position sensitivity (all the entries in the histograms of a). c, Single-neuron linear separability
index measured as the correlation between the actual responses of the neuron and the predicted responses assuming indepen-
dence between the responses to the 10 objects and each of six transformed conditions (see Fig. 6 and Materials and Methods). For
this analysis, only neurons that responded significantly differently from baseline to at least one object under at least two trans-
formed conditions were included (V4, n � 65 of 140; IT, n � 56 of 143). Arrows indicate means (V4, 0.54; IT, 0.63). d, Similar to b,
performance on the same object identification task presented in Figure 8b but for an IT and V4 population that are matched for their
linear separability index (n � 45; mean V4, 0.586; IT, 0.588). Solid lines indicate populations matched in this way in IT (white) and
V4 (black). Dashed lines indicate populations that passed the significance test for at least one object but when not equated for
single-neuron linear separability (all the entries in the histograms of c). e, Plots of position insensitivity versus linear separability
index in V4 (left) and IT (right).

Rust and DiCarlo • Selectivity and Invariance Increase across the Ventral Visual Pathway J. Neurosci., September 29, 2010 • 30(39):12978 –12995 • 12991



higher in IT (Fig. 12d). Thus, differ-
ences in the maintenance of relative se-
lectivity across changes in position,
scale, and context between V4 and IT
also cannot completely account for the
differences in population performance
between these two visual areas.

Although there is no theoretical reason
to suggest that these two single-neuron
measures of tolerance (position sensitivity
and rank-order preservation of selectiv-
ity) should be correlated with one an-
other, we wondered whether the neurons
with the largest receptive fields also
tended to be those that best preserved
their rank-order selectivity across identity-
preserving transformations. We found that
RF position sensitivity was not significantly
correlated with our single-neuron linear
separability index in V4 (Fig. 12e, left) (r �
�0.16; p � 0.52) and was weakly but signif-
icantly correlated with our single-neuron
linear separability index in IT (Fig. 12e,
right) (r � 0.34; p � 0.01). Thus, although
both the average RF position sensitivity and
rank-order selectivity increase from V4 to
IT, these two single-unit measures are not
empirically bound together. This suggests
the hypothesis that increases in both RF po-
sition sensitivity and the preservation of
rank-order selectivity may be required to
match V4 and IT performance for invariant
object recognition tasks.

To more closely examine this hypothesis, we sought to de-
termine a set of manipulations that could transform the V4
population into one that was matched to IT for both average single-
neuron metrics and population performance on an invariant object
recognition task. Similar to the procedure described in Figure 10, we
began by equating the SNR in the two populations. V4 neurons had
higher average firing rates than IT (data not shown); hence, we
aligned the average V4 and IT firing rate responses to the 60 stimuli
(10 objects each presented under six transformations) by applying
the same multiplicative factor (0.78) to the responses of each V4
neuron and simulated trial-to-trial variability with a Poisson spike
generation process. IT performance remained higher than V4 (Fig.
13a, red versus black), suggesting that differences in SNR alone can-
not account for increased IT performance. Note that, for all analysis
described below, we re-equate SNR in a similar manner.

To determine whether single-neuron differences in firing rate
sensitivity to identity-preserving transformations [which include
position sensitivity (“RF”), described above, as well as scale and
background sensitivity] could account for the differences in popula-
tion performance between V4 and IT, we examined the mean firing
rate to each object (collapsed across all six identity-preserving trans-
formations) and the mean firing rate to each transformation (col-
lapsed across all 10 objects) after organizing the responses along each
axis in rank order for each neuron. We found that rank-order plots
averaged over all neurons in V4 versus IT were similar for the 10
objects (Fig. 13b, top) but were substantially different across six
transformations (Fig. 13b, bottom). Specifically, the mean V4
“transformation profile” fell off more steeply away from the pre-
ferred transformation, whereas the mean IT transformation profile
was more flat. We equated the average transformation profile in V4

to IT by applying the same multiplicative adjustment for each V4
neuron to each rank-ordered transformation (weights of 0.75, 0.89,
0.95, 0.99, 1.06, and 1.4); this manipulation resulted in a small in-
crease in V4 population performance but V4 performance remained
lower than in IT (Fig. 13a, gray dashed). Consistent with Figure 12b,
this suggests that equating the V4 transformation profile alone is not
sufficient to achieve IT population performance.

To determine whether higher single-neuron linear separabil-
ity (Fig. 12c) could account for the increased tolerance in IT, we
manipulated the average linear separability of V4 neurons to
match the average in IT. Specifically, for the subpopulation of V4
neurons that passed the screening test described for Figure 12c,
we manipulated the internal structure of the response surface of
each V4 neuron by taking a weighted sum of the independent and
non-independent components determined by singular value de-
composition (see Materials and Methods). The same weights
were applied to each neuron; the weights were designed to ap-
proximately match the mean single-neuron linear separability
index in V4 and IT (Fig. 13c). Similar to the results for the trans-
formation profile adjustment, adjusting the average linear sepa-
rability index of the V4 population to match the average IT linear
separability index alone was not sufficient to match IT perfor-
mance (Fig. 13a, solid gray). Finally, when we simultaneously
matched both the V4 transformation profile (Fig. 13b) and the V4
single-neuron linear separability index (Fig. 13c) to match the
values observed in IT, this resulted in an adjusted V4 population
whose performance was matched to IT (Fig. 13a, gray dot-dash).
These results suggest that both the decrease in single-unit response
rate sensitivity to identity-preserving image transformations as well
as the increase in single-unit rank-order selectivity preservation
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Figure 13. Receptive field differences can account for higher population tolerance in IT. a, Performance of the V4 (black) and IT
(red) populations on the invariant object recognition task described for Figure 8b after equating V4 and IT for SNR (responses of
each V4 cell were rescaled by 0.78, and trial-to-trial variability of both V4 and IT neurons was simulated by a Poisson process).
Additional transformations to the V4 population include the following: aligning the V4 transformation profile to match the average
IT transformation profile (gray dashed; see Results; b); aligning the average V4 single-neuron linear separability to match the
average in IT (gray solid; see Results; c); aligning both the V4 transformation profile to match the average IT transformation profile
and aligning the average V4 single-neuron linear separability to match the average in IT (gray dot-dashed). b, Top, Average across
the population of the rank-order response to all objects computed after averaging across all six transformations. Bottom, Average
across the population of the rank-order response to all six transformations computed after averaging across all 10 objects. V4,
Black; IT, red; gray dashed, V4 after aligning the transformation rank profile to match IT. Colored regions indicate mean � 1 SE. c,
Single-neuron linear separability histograms computed after manipulating the internal structure of the V4 neurons’ 10 object �
6 transformation response surface to match the average single-neuron linear separability in IT (see Results). Arrows indicate
means.
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across those image transformations are required (empirically speak-
ing) to account for the ability of the IT population to outperform the
V4 population in invariant object recognition tasks. Restated for the
specific case of recognizing objects across changes in retinal position,
this corresponds to both a broadening of the spatial RF as well as an
increase in the rank-order object preference at each location within
the spatial RF.

Discussion
Although the hierarchy of visual areas that combine to form the
ventral visual stream has been identified through anatomical
connections and latency estimates, little is known about how
visual information is reformatted as signals pass from one visual
area in the stream to the next. To better understand this refor-
matting, we focused on measuring any change in the two key
properties required for object recognition: selectivity and toler-
ance. Here we focused on a form of selectivity that describes the
complexity of image features that activate a neuron, conjunction
sensitivity, measured as the sensitivity to natural image scram-
bling. We found a substantial increase in scrambling sensitivity
from V4 to IT, which suggests an increase in sensitivity for con-
junctions of local image features, particularly for conjunctions
found in natural images. We also found a substantial increase in
the tolerance to changes in the position, scale, and context of
those feature conjunctions as signals travel from V4 to IT. These
increases did not depend on the animal’s task or the method of
reading out the population code.

Several lines of evidence have already suggested that conjunction
sensitivity increases across the ventral visual stream (Desimone et al.,
1984; Gallant et al., 1993; Kobatake and Tanaka, 1994; Pasupathy
and Connor, 1999; Vogels, 1999; Brincat and Connor, 2004; An-
zai et al., 2007; Hegdé and Van Essen, 2007). Notably, Kobatake et
al. (1994) searched for the minimally complex feature arrange-
ments that would robustly drive neurons at different points of the
ventral visual stream and found indications of a gradient of com-
plexity in terms of an increase in the relative responses to pre-
ferred “complex” and “simple” stimuli. Another elegant series of
studies has explored tuning for parametrically defined contour
shapes (Pasupathy and Connor, 1999; Brincat and Connor, 2004;
Yamane et al., 2008) and found indications of increasingly com-
plex contour encoding properties across different stages of the
ventral visual stream (as determined by the strength of the non-
linear terms needed to fit responses in a particular curvature
basis). Although such single-neuron approaches have the poten-
tial to provide insight into the specific visual features that neu-
rons in each area are encoding, definitive determination of
increases in conjunction sensitivity requires probing different vi-
sual areas with the same stimulus set, presented at the same size
and in the same region of the visual field. By monitoring the
combined behavior of neurons as a population, we demonstrate
that, as information about an image propagates through the ven-
tral pathway, the representation of that image becomes increas-
ingly selective for specific conjunctions of local features found in
natural images. These results are consistent with functional mag-
netic resonance imaging (fMRI) results in monkey extrastriate
visual cortex (Denys et al., 2004) and are likely analogous to
findings that regions of human high-level visual cortex produce
more robust fMRI signals to intact objects compared with scram-
bled images (Kanwisher et al., 1996, 1997).

The finding that the neuronal population at a later stage of
processing has a decreased ability to encode scrambled images
shows that information about these images is first encoded by the
visual system and later disregarded. That is, successive ventral

stream representations behave as if they are becoming increas-
ingly tuned to naturalistic stimuli or stimuli that overlap the
region of shape space previously encountered by the animal (and
thus implicitly disregard less natural, “scrambled” stimuli). In
these experiments, the monkeys were not asked to discriminate
between different scrambled images; given the plasticity known
to exist at higher stages of visual processing (Baker et al., 2002;
Sigala and Logothetis, 2002; Kourtzi and DiCarlo, 2006; Li and
DiCarlo, 2008), it remains an open question as to how well IT
populations can encode less natural stimuli such as scrambled
images after training.

With regard to changes in tolerance (invariance) along the
ventral stream, previous studies have illustrated that single IT
neurons tend to maintain their rank-order selectivity for images
across changes in position and scale (Schwartz et al., 1983; Tovee
et al., 1994; Ito et al., 1995; Logothetis and Pauls, 1995; Op De
Beeck and Vogels, 2000) and that relatively small IT populations
are capable of supporting position and scale invariant object rec-
ognition (Hung et al., 2005). The results of one fMRI study sug-
gest a posterior-to-anterior gradient of size tolerance within
monkey IT (Sawamura et al., 2005). Our results extend these
previous findings to demonstrate that, in addition to position
and scale tolerance, the IT population representation is at least
somewhat tolerant to context. In addition, our results are the first
to directly show that this increase in tolerance happens gradually
across different visual areas along the ventral stream. That is, a
portion, but not all, of the position, scale, and context tolerance
properties observed in IT likely arise from computations that
occur in IT itself because they are weaker in V4. Qualitatively
similar increases from V4 to IT have been reported for orienta-
tion and shape selectivity invariant to the cue that defines the
boundaries (i.e., luminance vs motion) (Sáry et al., 1995; Mysore
et al., 2006).

We found three complimentary single-neuron correlates of
the increases in population scrambling sensitivity we observed in
IT over V4. First, single-neuron ROC values were much lower for
scrambled images compared with natural images in IT (in contrast
to V4). Moreover, directly comparing population performance for
neurons with similar ROC values for natural and scrambled images
aligned population performance (Fig. 9a), suggesting that (not sur-
prisingly) discriminability at the single-neuron level can account for
our population differences. Similarly, we found that the lower IT
population discriminability for scrambled images could be ac-
counted for by a smaller dynamic range of response to the scrambled
images (Fig. 10). Finally, we found that performance for natural
image discrimination (but not scrambled image discrimination) in-
creased with increasing receptive field size in both V4 and IT (Fig.
9b). This supports the notion that pooling over local features is im-
portant for natural image encoding in both V4 and IT.

Can the increases in conjunction sensitivity that we observed
be explained simply by increases in RF size (Desimone and
Schein, 1987; Gattass et al., 1988; Kobatake and Tanaka, 1994; Op
De Beeck and Vogels, 2000) as signals pass from V4 to IT? The
answer to this question depends entirely on what one means by
an “increase in the receptive field size.” Our results rule out mod-
els in which receptive field size increases are implemented from
V4 to IT by “magnifying” small RFs (e.g., taking a small Gabor
and producing a larger scale copy) or by pooling small RFs with
similar preferences because both of these alternatives would en-
code natural and scrambled images with similar fidelity. Impor-
tantly, we found a relationship between scrambling sensitivity
and RF size in both visual areas and that V4 and IT neurons with
similarly sized RFs had similar sensitivities to image scrambling
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(Fig. 9c). Thus, our results are consistent with models in which
the number of conjunctions implemented by a neuron in the
ventral pathway is, on average, proportional to the size of its RF.
In other words, IT has a higher conjunction sensitivity than V4
and it has correspondingly larger RFs, but we do not know
whether one response property causes the other at a deeper
mechanistic level. Nor do we yet know whether this phenome-
nology is somehow optimal in an algorithmic resource allocation
sense.

In our experiments, we fixed the size of the images and the
four scales at which the scrambling was applied. Importantly, we
used natural images presented at sizes within the regime that one
would encounter in the natural world, and our results demon-
strate that, within this regime, IT is more sensitive to the specific
configurations of features found in natural images. Notably, the
smallest scale of scrambling we used (filters sized 0.625°) is a
fraction of the size of most V4 RFs at the eccentricities we re-
corded (Desimone and Schein, 1987; Gattass et al., 1988), and
thus visual features were in fact “scrambled” within V4 RFs. The
modest decreases we observed in V4 at this scale of scrambling
suggests that V4 neurons are at least somewhat sensitive to con-
junctions of the simple features encoded by our scrambling
procedure (Gallant et al., 1993; Pasupathy and Connor, 1999);
future investigations will be required to determine whether
scrambling at even smaller scales reveals additional conjunc-
tion sensitivity in V4.

We were particularly interested in knowing whether the in-
creases in tolerance that we observed in our population-based
analyses could be explained by increases in RF sizes between V4
and IT. Again, answering this question requires a careful consid-
eration of what one means by RF. Although larger RF sizes, mea-
sured as the position insensitivity for a preferred object, have
been documented previously in V4 and IT, we are not aware of
any comparison of the degree to which rank-order selectivity is
preserved across identity-preserving transformations (which we
refer to here as “single-neuron linear separability”). We found
that both RF size and single-neuron linear separability are higher
in IT than V4 but that these two single-unit measures of an RF
were at best weakly correlated within each population. In other
words, not all of the largest RF neurons in the population succeed
at maintaining their linear separability across changes in posi-
tion, scale, and context, whereas some of the smaller receptive
field neurons maintain their relative selectivity at the low firing
rate fringes of their receptive fields. Moreover, we found two
pieces of evidence to suggest that neither the increases in trans-
formation bandwidth alone (which includes RF position sensi-
tivity as well as bandwidth for changes in size and context) nor
preservation of rank-order selectivity alone could account for the
increased invariant object recognition performance of the IT
population. First, when we selected V4 and IT subpopulations
that were matched for either of these parameters, IT still pro-
duced higher performance than V4 (Fig. 12b,d). Second, using a
combined data and simulation analysis, we found that “trans-
forming” the V4 population to match the values of the IT for
either parameter alone was not sufficient to account for higher IT
performance, whereas matching both parameters together could
account for the higher performance observed in IT over V4. The
notion that the maintenance of rank-order selectivity preferences
across identity-preserving transformations has long been appreci-
ated (Tovee et al., 1994; Ito et al., 1995; Logothetis and Sheinberg,
1996; Op De Beeck and Vogels, 2000; DiCarlo and Maunsell,
2003; DiCarlo and Cox, 2007), and increases in population per-
formance with increased single-neuron linear separability have

been predicted previously via simulation (Li et al., 2009). The
empirical requirement that transformation bandwidth increase
(e.g., increase in spatial RF size) is somewhat less expected. Pre-
vious simulations predict that bandwidth is much less important
than single-neuron separability in the limit of populations that
contain a sufficient number of neurons such that complete “cov-
erage” of the object and transformation space as been achieved
(Li et al., 2009). The analyses we present here compare popula-
tion performance for V4 and IT populations containing the same
number of neurons for numbers that are much smaller than the
full population. One reasonable interpretation of these results is
that, per neuron, the IT population more efficiently “tiles” the
transformation space than does V4 by virtue of broader receptive
fields across position, size, and context. In summary, increases in
tolerance along the ventral pathway are not simply a consequence
of first-order increasing RF phenomenology but instead that in-
creasing RF phenomenology is likely a reflection of more sophis-
ticated computations designed for the discrimination of objects
invariant of identity-preserving image transformations (Fuku-
shima, 1980; Riesenhuber and Poggio, 1999; DiCarlo and Cox,
2007; Serre et al., 2007).
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