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Field Potential Signature of Distinct Multicellular Activity
Patterns in the Mouse Hippocampus
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Cognitive functions go along with complex patterns of distributed activity in neuronal networks, thereby forming assemblies of selected
neurons. To support memory processes, such assemblies have to be stabilized and reactivated in a highly reproducible way. The rodent
hippocampus provides a well studied model system for network mechanisms underlying spatial memory formation. Assemblies of
place-encoding cells are repeatedly activated during sleep-associated network states called sharp wave-ripple complexes (SPW-Rs).
Behavioral studies suggest that at any time the hippocampus harbors a limited number of different assemblies that are transiently
stabilized for memory consolidation. We hypothesized that the corresponding field potentials (sharp wave-ripple complexes) contain a
specific signature of the underlying neuronal activity patterns. Hence, they should fall into a limited number of different waveforms.
Application of unbiased sorting algorithms to sharp wave-ripple complexes in mouse hippocampal slices did indeed reveal the reliable
recurrence of defined waveforms that were robust over prolonged recording periods. Single-unit discharges tended to fire selectively with
certain SPW-R classes and were coupled above chance level. Thus, field SPW-Rs of different waveforms are directly related to the
underlying multicellular activity patterns that recur with high fidelity. This direct relationship between the coordinated activity of
distinct groups of neurons and macroscopic electrographic signals may be important for cognition-related physiological studies in

humans and behaving animals.

Introduction

The mammalian hippocampus displays a variety of state-
dependent network oscillations (O’Keefe and Nadel, 1978;
Buzsaki and Chrobak, 1995; Klausberger and Somogyi, 2008)
that entrain principal cells into coactive neuronal assemblies
(Buzsaki and Draguhn, 2004). A well studied behavioral correlate
of these neuronal activation patterns is spatial navigation. During
exploration of a new environment, pyramidal cells acquire differ-
ent place-selective firing properties (O’Keefe and Dostrovsky,
1971). By systematic changes of their temporal relationship to the
underlying theta network oscillation, they form sequential acti-
vation patterns that can represent the animal’s trajectory through
space (O’Keefe and Recce, 1993). These sequences are replayed, at
faster pace, during subsequent sleep or inactive wakefulness
(Wilson and McNaughton, 1994; Nadasdy et al., 1999; Foster
and Wilson, 2006). Reactivation occurs on top of brief field
potential transients called sharp wave-ripple events (SPW-Rs)
that propagate along the hippocampal loop toward the ento-
rhinal cortex (Chrobak and Buzsaki, 1996; Bragin et al., 1999).
Oscillation-associated hippocampal activity patterns may
therefore form an important example for the formation and
stabilization of representations by neuronal assemblies (Hebb,
1949).
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Stable patterns of place cell activity form within minutes after
exposure to a new spatial context (Wilson and McNaughton,
1993; Frank et al., 2004). They are maintained over several days
and can be rapidly reactivated on repeated exposure to the same
environment (Leutgeb et al., 2005). As a consequence, multiple
distinct assemblies should be present in the hippocampus at any
time, consistent with model calculations of hippocampal mem-
ory capacity (Lisman, 1999; Leibold and Kempter, 2006). Al-
though recordings from multiple units confirm the general
concept, they only reflect a small minority of cells within each
assembly. An alternative approach may be the recording of field
potentials that comprise a weighted average of multiple sub-
threshold synaptic potentials, action potentials, and electrical
coupling. Previous work has shown that, in principle, defined
field potential waveforms can be reproducibly generated by
repetitive activation of a similar set of neurons (Buzsaki,
1989). In this work, large-amplitude, short-duration spikes
were evoked in the hippocampus of fimbria—fornix-lesioned
rats. Repetitive stimulation at high frequency stabilized the
activated network such that events with the same shape oc-
curred spontaneously afterward. In a more physiological par-
adigm, Csicsvari et al. (2000) could relate the firing of
different units in CA3 to the subsequent occurrence of sharp
wave-ripple events in more proximal or distal portions of
CA1l. Therefore, it may be feasible to detect differences in the
electrographic signature of different assemblies by extracellu-
lar recordings. If these extracellularly recorded potentials
would reflect individual features of the underlying assemblies,
they would provide an easy accessible correlate of different
memory representations in the CNS.
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Sharp wave-ripple complexes are ide- A
ally suited to test this hypothesis: (1) they
are spatially and temporally well delin-
eated, allowing for the collection of nu-
merous distinct field events; (2) they go
along with the repetitive activation of
multiple different, but specific patterns of B
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spikes in selected place cells; (3) they pro-
vide a good signal-to-background ratio
(i.e., most pyramidal cells are inhibited
during SPW-R, leaving only participating
cells active). We therefore recorded spon-
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taneously occurring sharp wave-ripple
complexes in mouse hippocampal slices
in vitro (Maier et al., 2002, 2003). Unbi- C
ased sorting of different waveforms re-
vealed multiple different types of SPW-Rs
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Materials and Methods

Experiments were performed on male

C57BL/6 mice of 4—8 weeks age and were ap- D
proved by the state government of Baden-
Wiirttemberg. Mice were anesthetized with ether
and decapitated before the brain was removed
and transferred into cooled artificial CSF (ACSF)
(1-4°C), containing the following (in mm): 124
NaCl, 3.0 KCl, 1.8 MgSO,, 1.6 CaCl,, 10 glucose,
1.25NaH,PO,, 26 NaHCO;, saturated with 95%
0,/5% CO,, pH 7.4 at 37°C. After removal of the
cerebellum and frontal brain structures, horizon-
tal slices of 450 wm were cut using a Leica Vi-
bratome (VT1000 S). Slices were transferred to a
Haas-type interface recording chamber at 34 *
1°C and were allowed to recover for at least 2 h.

Recordings. Field potentials and unit dis-
charges were recorded with two to three te-
trodes that were placed at and then moved
slightly into the surface of the slice in CA1 or CA3 stratum pyramidale.
The tetrodes were made of four twisted 12.5-um-diameter tungsten
wires (California Fine Wire) and were connected to separate DPA-2FX
amplifiers (npi electronics). Signals were amplified 100X, low-pass fil-
tered at 10 kHz, high-pass filtered at 0.3 Hz, and digitized at 20 kHz for
off-line analysis (1401 interface and Spike-2 data acquisition program;
CED).

Field potentials in stratum radiatum of CA1 were recorded with ACSE-
filled glass microelectrodes (tip diameter, 2—4 wm). Voltage signals were
amplified 100X, low-pass filtered at 2 kHz, high-pass filtered at 0.3 Hz
(EXT10-2EX amplifiers; npi electronics), and digitized at 20 kHz. To
elicit SPW-R-like activity in CAl, weak electrical stimulation (100 us
square voltage pulses) was applied in CA3b and CA3c with bipolar plat-
inum/iridium wires (Science Products; 100 k() at 1 kHz; 75 um tip
distance). The constant excitability of slices was tested by electrical stim-
ulation of the Schaffer collaterals. Slices that varied >30% were excluded
from the analysis. To avoid shifts in waveform composition attributable to
deteriorating recording conditions, we additionally required stability of
mean SPW-R frequency and amplitude within 10% during the experiment

Analysis of field potentials. Signals were sampled with the Spike-2 program
(CED) and analyzed off-line using custom routines written in Matlab (The
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Spontaneous hippocampal SPW-R oscillations have distinct waveforms and can be sorted. 4, Local field potential of
SPW-R recorded in CA1 stratum pyramidale. B, Extended view of three consecutive SPW-R complexes demonstrating the hetero-
geneity of SPW-R waveform shapes. C, Certain SPW-R waveforms occur repeatedly over time. Visual inspection of time intervals
from the beginning (first row), within (second row), and the end of the measurement (third row) reveals the reoccurrence of
distinct SPW-R waveforms. D, These waveforms can be sorted according to their electrographic characteristics. Averaged wave-
forms show a congruent appearance compared with the same amount of averaged randomly chosen SPW-Rs.

MathWorks). Sharp waves were detected from low-pass-filtered raw data
(50 Hz) as local maxima with amplitudes >0.15-0.2 mV within 30 ms time
windows. This value corresponds to 4 SDs of event-free baseline noise (Both
et al,, 2008) yielding stable and reliable detection of SPW-Rs (as confirmed
by visual inspection of traces and detected events). Subsequently, SPW-R
complexes were analyzed with continuous wavelet transform (complex
Morlet wavelet) (Both et al., 2008), starting 33 ms before and ending 67 ms
after the peak of the detected sharp wave. From this wavelet spectrogram
(50—300 Hz divided into 81 bins on a log scale), we extracted the time delay
of the maximum ripple oscillation with respect to the underlying sharp wave,
the leading ripple frequency, and the peak power of the oscillation at fre-
quencies >140 Hz. The same parameters were evaluated for electrically
evoked SPW-Rs after removal of the stimulus artifact. SPW-R amplitude and
frequency were calculated from 5 min (300 s) bins.

Self-organizing maps. SPW-R waveforms were classified using self-
organizing maps (SOMs) (Kohonen, 1995). SOMs are an unsupervised
learning algorithm that provides a projection of high-dimensional data
onto a two-dimensional classification map that preserves some of the
neighborhood relationship or topography of the original data. After the
training phase, each SPW-R can be associated with (and thereby classi-
fied by) a map unit thatis closest to it in the representing vector space [the
BMMU (best matching map unit); please do not confuse these with
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Unit discharges in CAT show preferences to certain SPW-R waveforms. 4, Local field potential samples of SPW-R (top traces) and high-pass-filtered tetrode recordings (four bottom

traces). The red ticks and highlighted data traces indicate the firing of one putative pyramidal neuron. B, Autocorrelation (top panel), coupling precision to the ripple cycle (middle panel), event
cross-correlation and ripple troughs (bottom panel) for the unit shown in A. Note high precision of coupling to field ripples. €, Unit discharges (right panel, colored ticks) during the occurrence of two
distinct SPW-R waveforms (left panel). The gray unit ticks indicate times when the unit was active during other SPW-R shapes. Note the specificity of units to different SPW-R waveforms.

“units” from electrophysiological measurements]. We chose this ap-
proach as one cannot exclude that there are several problems associated
with the classification of local field potentials. First, there might not be a
clustering tendency in the data set at all but rather a continuum of dif-
ferent shapes. Second, shapes from the activity of possibly stable neuro-
nal groups might change over time as other parameters (e.g., volume
conductance attributable to activity-dependent changes in extracellular
ion concentrations) might change. Third, the exact composition of neu-
ronal ensembles might fluctuate and/or change systematically over the
course of the experiment. Moreover, different neuronal assemblies
might, by chance, generate the same field potential shape and are there-
fore classified into the same cluster. Certainly the use of SOM:s for clas-
sifying field potential shapes does not circumvent these problems, but
provides additional means to interpret the resulting classification in ex-
cess of simply evaluating the resulting class membership: similar field
potential shapes are classified next to each other on the SOM. If a distinct
assembly is reactivated several times and the corresponding field poten-
tial shapes are similar to each other, it will at least be classified to a
connected and circumscribed area on the SOM. Similarly, a neuron that
is a member of a distinct assembly will show a characteristic distribution
toward connected field potential shapes on the SOM.

For details about the exact implementation of SOMs, supplemental
Materials and Methods (available at www.jneurosci.org as supplemental
material) provides information describing the classification and compar-
ison of SPW-R waveforms by SOMs.

Unit analysis. To detect extracellularly recorded action potentials
(units), raw data were high-pass filtered at 500 Hz and upsampled from
20 to 100 kHz with a Nyquist algorithm (Blanche and Swindale, 2006).
Single events were extracted by setting a negative threshold at 4.5 SDs
from background noise. Subsequently, putative units were analyzed by
principal component analysis (PCA) and clustered using the first three
principal components of each tetrode channel in the open source pro-
gram Klustakwik (Harris et al., 2000). Unit clusters were finally identified
after visual inspection with the open source program Klusters (Hazan et
al.,, 2006), using only event waveforms with clear separation from other
units (see supplemental Fig. S5, available at www.jneurosci.org as sup-
plemental material). Our approach to link cellular activity with the local
field potential does not require that the unit clusters contain only spikes
emitted by a single neuron. In fact, several of the detected events con-
sisted of a sequence of individual events (see waveform; supplemental
Fig. S5A, unit 7, available at www.jneurosci.org as supplemental mate-
rial). These events can be seen as recurring distinct neuronal sequences
and further substantiate the relationship between cellular firing and field
events. Therefore, reasonable application of our algorithms solely requires a
stable unit waveform that is well isolated across the recording period to
examine neuronal activity patterns rather than single cells. Unfortunately,

events consisting of multiple spikes do not match well into the parameter
space (principal components) used for clustering and often contain few
spikes. Therefore, these clusters tend to scatter and have low-quality mea-
sures. Meaningful classification for all of our clusters with low-quality mea-
sures and clusters that did not meet stability was anew confirmed by visual
inspection and distinctness concerning high-pass-filtered raw data wave-
forms. Resulting clusters quality measures are L,;, of 0.78 [median; 25th
percentile (P,5), 0.35; 75th percentile (P5), 2.4] and isolation distance of
15.4 (median; P, s, 10.8; P,5, 18.6) (Schmitzer-Torbert et al., 2005). For each
identified unit, we calculated spike width and amplitude of unit waveform,
spiking frequency, and interspike intervals within 300 s sliding windows as
well as the autocorrelation function. Coupling precision of unit firing to field
ripples was computed from event cross-correlations of unit discharge times
and ripple troughs (Both et al., 2008). Stable entrainment of units by the
underlying ripple oscillation is apparent by distinct peaks of the cross-
correlation function at intervals corresponding to the cycle length of ripples
(see Fig. 2 B). Phase-coupling was quantified from cumulative histograms of
spikes with respect to their time of occurrence within a single ripple cycle.
Random distribution would yield 50% of spikes occurring during 50% of
one ripple cycle (~5 ms). Lower time intervals indicate phase-coupling. The
units were not further divided into putative pyramidal cells or interneurons
as “classical” parameters from in vivo recordings based on autocorrelation,
firing frequency, and spike width cannot directly be applied to units firing
preferentially during SPW-R events in hippocampal slices in vitro.

We constructed “unit hit maps” to analyze whether units fire prefer-
entially coupled to certain field potential waveforms. Therefore, SPW-Rs
were classified by the SOM, and unit events occurring during waveforms
of these SPW-R classes were summed up to construct a histogram map.
This map was normalized by the probability of occurrence of each
SPW-R class. Specificity of unit firing was quantified as information and
sparsity, as defined by Skaggs et al. (1993):

SPW

I(unit; SPW) = E[ P(SPW,) * p(unit|SPW,) * log 2(

i

p(unit|SPW,»))
p(unit) ’

where p(xly) is the conditional probability of x given y, and p(z) the
marginal probability that z occurs.

Sparsity was calculated according to Treves and Rolls (1994) and Sk-
aggs etal. (1993), with A as total average firing rate and A; as average firing
rate during a certain SPW, as follows:

)\2
S(unit|SPW)= [WW} .

Random distributions were calculated by shuffling spikes with all sharp
waves from the respective experiment (1000 repetitions). Information and
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sparsity of each unit were compared with the resulting random distributions,
considering values outside the 95% confidence interval as significant.

For a more rigid and physiologically more accurate randomization, we
additionally used a second randomization. For each unit, we drew ran-
domly as many SPW-Rs as this unit had discharged on SPW-Rs during
the recording. In contrast to the conventional randomization, these
SPW-Rs were taken only from the pool of SPW-Rs in which we had
detected one or more units in the original data trace. By this, we corrected
for a potential bias toward SPW-Rs that might have been generated far
away from the recording tetrode and lacked detectable and separable unit
discharges. Again, we calculated the information and sparsity of 1000
random distributions and compared them with the actual values, con-
sidering values outside the 95% confidence interval as significant. Our
data show that individual units discharge on defined subsets of SPW-Rs.
Quantifying the information and sparsity of occupancy on the unit hit
maps were significantly different from random values for 95 units (i.e.,
34%; information) and 84 units (i.e., 30%; sparsity), respectively [differ-
ence for both parameters: 78 units (i.e., 28%)] depicted in one detailed
example in which parameters for all units of one representative experi-
ment are shown (supplemental Fig. S6, available at www.jneurosci.org as
supplemental material).

Statistics. Quantitative results are given as mean = SEM if data was
normally distributed or as median with 25th and 75th percentiles. Signifi-
cance of results was tested by Wilcoxon’s rank sum test or Kruskal-Wallis
nonparametric one-way ANOVA, and p < 0.05 was regarded as significant.

Results

SPW-R waveforms reoccur over time

SPW-Rs are spatially and temporally restrained patterns of net-
work activity that are generated in CA3 and propagate along the
hippocampal output loop. The spontaneous network events can
be recorded as field potential waves in CAl of living rodents
(Chrobak and Buzséki, 1996) or brain slices (Maier et al., 2003).
We asked whether these weighted average signals of neuronal
activity contain direct information about the underlying multi-
cellular activity patterns. Recording with two to three tetrodes
along the CA1 pyramidal cell layer of mouse hippocampal slices
revealed spontaneously occurring SPW-Rs with similar basic
properties but strong variability between their individual wave-
forms (Fig. 1A,B). On closer inspection, we found that certain
SPW-R waveforms occurred repetitively over time, even during
prolonged recordings for ~4000 s (Fig. 1C,D). This observation
was confirmed by averaging similar numbers of randomly cho-
sen SPW-Rs, or SPW-Rs of the same waveform, respectively.
Whereas averages of randomly chosen events resulted in smooth
field potentials, averages of similarly looking SPW-Rs maintained
the fine structure of superimposed high-frequency “ripple” oscilla-
tions (Fig. 1 D). We conclude that certain SPW-R waveforms recur
with high fidelity. Does this reflect the repetitive activation of well
defined underlying multicellular activity patterns? To answer this
question, we performed a rigorous sorting of SPW-R field events
before correlating different waveforms with concomitant discharges
single units.

SPW-R waveforms can be sorted by SOMs

We sorted multiple SPW-R events from individual hippocampal
slices (~10,000 SPW-Rs from ~4000 s of raw data in each slice
with stable recording conditions; median, 10,072; P,5, 8262; P,
12,841; n = 19 slices). Classification followed two steps: first, we
applied PCA (see supporting information, available at www.
jneurosci.org as supplemental material) to describe the events by
a small set of independent parameters. Subsequently, we sorted
the resulting vectors by SOMs (see Materials and Methods) (see
supporting information, available at www.jneurosci.org as sup-
plemental material), an automatic unsupervised learning algo-
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Figure 3.  Unit discharges in CA1 show preferences to certain SPW-R waveforms. A, SPW-R

hit map (left) and unit hit map (right) for the unit shown in A and B. This unit discharges only on
specific SPW-R waveforms, belonging to a distinct area of the SPW-R hit map. B, Information
(top panel) and sparsity (bottom panel) for the unit shown in A and B reveal a significant
difference between measured values and a random distribution based on unit firing frequency.
€, Specificity of 283 SPW-R coupled units shows significant differences between measured and
random values for information (top panel) and sparsity (bottom panel) revealing a specific
coupling of units to certain SPW-R waveforms. D, Units in CA1 form multicellular activity pat-
terns and show coupled discharge during SPW-R. Fourteen percent (n = 65) of all unit pairings
(n = 461) show coincidences that are significantly different form the value expected from their
individual firing rates (red plus signs, p << 0.05, Fisher's exact test with Bonferroni's correction);
*p < 0.05.

rithm (Kohonen, 1995). In short, a rectangular map of prototypic
waveforms is formed by an iterative training phase and optimized to
represent and classify the data as a whole. The resulting two-
dimensional representation maintains a topographic order of the
prototypic waveforms [i.e., “similar” SPW-Rs fall onto closely lo-
cated SOM areas (so-called “map units”)] (for details, see
supporting information, available at www.jneurosci.org as sup-
plemental material). Correct sorting of waveforms and similarity-
based topography of the map was confirmed by averaging
individual events from the same SOM unit (supplemental Fig. S1,
available at www.jneurosci.org as supplemental material). To-
gether, these findings are compatible with the stable expression
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Figure4. Weak electrical stimuli in CA3 activate specific patterns in CA1. 4, Activation of distinct neuronal subpopulations in
(A3 activates different upstream neuronal cells resulting in different SPW-R waveforms. B, Comparison between spontaneous and
evoked SPW-Rs reveals no difference in waveform and frequency components (for details, see supplemental Fig. S9, available at
www.jneurosci.org as supplemental material). , Weak activation of CA3 cells at 300 ms after a strong stimulation. Evoked SPW-Rs
are confined to few, strongly connected areas within the SOM (left panel) created of spontaneous and evoked events. Furthermore,
evoked SPW-Rs show clearly distinct, but reproducible stable waveforms at two different stimulation locations (middle). On a
SPW-R hit map generated from spontaneous events (right panel), these elicited SPW-R events are homogenously distributed. D,
The variance of evoked SPW-R events is significantly smaller than the variance of all SPW-Rs, indicating a specific interaction

between stimulated cells in CA3 and resulting activated cells in CA1; *p << 0.05.

and recurrent activation of a limited set of different SPW-R field
potentials.

Units fire preferentially on defined SPW waveforms

Action potentials of CA1 pyramidal cells occur at precisely de-
fined times during SPW-R (Ylinen et al., 1995; Csicsvari et al.,
2000). Assuming that different SPW-R waveforms reflect differ-
ent underlying multicellular activity patterns, individual neurons
should preferentially fire on a defined subset of SPW-Rs. This
should result in a nonrandom distribution of unit discharges on
the SOM of field SPW-Rs.

Ifp pyramidale

atlon CA3c

time (ms)
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Using three tetrodes along the CA1 py-
ramidal band, we identified 283 SPW-R-
correlated units in 21 slices (19 animals)
by their discrete spike waveform (Fig.
2A). Discharge frequency was 0.07 Hz
(median; P,5, 0.02 Hz; P,5, 0.18 Hz). Sim-
ilar to SPW-R in vivo (Csicsvari et al.,
1999), discharge probability increased
strongly during SPW-R events (9.9 * 1.9-
fold). Individual units fired on 2.6% of the
spontaneously occurring SPW-Rs (medi-
an; P,s, 1.0%; P, 6.6%). In addition,
units were entrained by the superimposed
ripple oscillations (Csicsvari et al., 1999;
Both et al., 2008). Coupling precision was
0.99 £ 0.03 ms, corresponding to 22 *
1% of a single ripple cycle. Most units
(236 of 283; 83%) had a coupling preci-
sion <35% (for an example, see Fig. 2 B;
chance value is 50%, and lower values in-
dicate higher precision).

We then asked whether discharges of
identified units occurred randomly on all
possible SPW-R waveforms or, alterna-
tively, on a defined subset of SPW-R

AN

0.4 mV

events (for an example, see Fig. 2C). Ap-
proximately one-half of the unit hit maps
showed a nonrandom distribution (Fig.

giE

3A; supplemental Fig. S6, available at

O I . 299

1 |

gt

www.jneurosci.org as supplemental ma-
terial), indicating that individual neurons
fire preferentially on a subset of network
events. To quantify this specificity, we
computed information and sparsity for
each unit and compared the values to ran-
dom distributions from shuffled data
(Fig. 3B; supplemental Fig. S6, available at
www.jneurosci.org as supplemental ma-
terial) (see Materials and Methods) (see
supplemental information, available at
www.jneurosci.org as supplemental mate-
rial) (Brun et al., 2008). This test revealed
significant deviations from random values
for both parameters in 115 of 283 (41%)
units (Fig. 3C). Information varied signifi-
cantly from chance in 138 units (49%) and
sparsity was nonrandom in 126 units
(45%). A more rigid randomization that ex-
cluded contributions from remote SPW-R
events did still reveal significant specificity
in approximately one-third of all units (see
Materials and Methods). As this specificity
could be attributable to a rather trivial “preference” of unit entrain-
ment by large amplitude SPW-Rs, we performed the following tests:
first, we identified several units with strong preference to small-
amplitude SPW-Rs (for two examples, see supplemental Fig. S6 B, F,
available at www.jneurosci.org as supplemental material). Second,
we estimated the amplitude bias of units by computing the median
amplitude of the SPW-Rs on which the individual units fired. The
distribution is slightly biased toward large amplitudes but shows
clearly that many units are distributed about median or small
SPW-Rs (see supplemental Fig. S6 H, available at www.jneurosci.org
as supplemental material). Third, we reclassified the SPW-R wave-

all evoked
SPW-R SPW-R



15446 - ). Neurosci., November 17,2010 - 30(46):15441-15449

forms after normalizing all events by their amplitudes. This rigorous
test resulted in similar percentages of units with waveform selective
firing (38% using both criteria, 42% for sparsity, and 48% for infor-
mation). Thus, SPW-R waveform selectivity of unit discharges is not
an artifact of amplitude selectivity.

These data show that individual units discharge on defined
subsets of SPW-Rs. In consequence, different units recorded
from the same slice may be coherently activated by the same
events, forming part of a strongly connected neuronal group. We
tested this in slices in which multiple clearly distinct units could
be identified (21 slices; 3-22 units per slice). If two cells are firing
independently during SPW-Rs with probabilities p(x) and p( y),
coincident discharges during a given SPW-R should be observed
with the probability p(x)-p( y). We computed this value for units
recorded at the two most distant tetrodes and compared it with
our experimental results (Fisher’s exact test with Bonferroni’s
correction). Coupled discharges were significantly above chance
in 65 of 461 unit pairs (14.1%; p < 0.05) (Fig. 3D). This finding
shows that different neurons are indeed coupled to common sets
of SPW-R waveforms, constituting a direct observation of stable
multicellular activity patterns in CA1.

Activation of neuronal subpopulations induces distinct
SPW-R waveforms

SPW-Rs are generated in the hippocampal subfield CA3 and
propagate along CA1 toward the subiculum and entorhinal cor-
tex. Therefore, different assemblies in CA1 may be activated by
different upstream assemblies in CA3 (Fig. 4A). Indeed, weak
electrical stimulation at the border between stratum pyramidale
and stratum radiatum of CA3b or CA3c elicited typical SPW-Rs
in CA1 (Both et al., 2008) (17 slices from eight animals) (Fig. 4 B;
supplemental Fig. S4, supporting information, available at www.
jneurosci.org as supplemental material).

Stimulation at random time points during ongoing spontane-
ous SPW-R activity resulted in variable events (supplemental Fig.
S4, available at www.jneurosci.org as supplemental material).
However, a strong “reset” stimulus 300 ms before the evoked
SPW-R (supplemental Fig. S4, available at www.jneurosci.org as
supplemental material) induced a brief pause in spontaneous
network activity and allowed for the generation of very stable
SPW-R waveforms. This was reflected by a significant reduction
in waveform variance [median: random pulse, 0.75 mV? (n =
15); prepulse, 0.22 mV? (n = 8), p < 0.05, Mann—Whitney]
(supplemental Fig. S4, available at www.jneurosci.org as supple-
mental material). Supportively, waveforms of evoked SPW-Rs
had lower variance than spontaneously occurring SPW-Rs (n =
8; median of variance for all SPW-Rs, 1.43 mV? median of
evoked SPW-Rs, 0.22 mV % p < 0.05, Mann—Whitney) (Fig. 4 D),
indicating a highly specific input of CA3 to CAl.

Stimulus-evoked SPW-R complexes appeared highly similar
to certain waveforms of spontaneous events in the same slice (Fig.
4 B), and both types of events shared the same map units (Fig.
4C). Most importantly, stimulation-evoked SPW-Rs (with pre-
pulse conditioning) consistently mapped onto restricted sections
of the respective SOM, covering ~11% of the full SOM (median;
P,5,3%; P,5, 14%; n = 8). This limited occupancy of the reference
SOM poses a lower limit of different SPW-R types in the order of
10. It also indicates that well defined subnetworks in CA1 can be
reproducibly activated by activation of small, spatially segregated
networks within CA3.

As an additional test for the specificity of evoked multicellular
activity patterns, stimulation at two different sites within CA3
yielded clearly distinct waveforms of evoked SPW-Rs within CA1
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Figure 5.  Modulation of SPW-R waveforms during propagation along CA1. A, Measuring

field potentials at distant positions in CA1 allows analyzing the propagation of sharp waves
along CA1. A given SPW-R waveform at tetrode position 1is followed by well defined waveform
patterns at tetrode 2. B, Left panel, Two different classes of SPW-Rs that were recorded at
position Ifp1 shown in A. The gray traces are the raw data of all events, the red traces are the
means, and the hit maps show corresponding best matching SOM units. Right panel, Raw traces
(gray), mean waveforms (red), and hit maps of all corresponding events at position Ifp2. Note
the sparse distribution of events in the downstream hit map indicating a strong correlation
between waveforms at Ifp1 and Ifp2, but also some processing of SPW-Rs during propagation.
€, Information and sparsity of the concurrent SPW-R distribution at tetrode 2 are significantly
different from randomly chosen SPW-R; *p << 0.05.

(Fig. 4C; supporting information, available at www.jneurosci.org
as supplemental material). Both types of evoked events mapped
onto restricted, but clearly distinct areas of the SOM (Fig. 4C)
(n=38).

In summary, these data show that different SPW-R waveforms
in CA1 result from the preceding activation of defined neuronal
subpopulations within CA3. These subnetworks can be reliably
activated by a rather unspecific stimulation of small regions
within CA3.

Modulation of SPW-R waveforms during propagation

along CA1

The propagation of sharp waves along CA1 offers an independent
possibility to test whether different SPW-R waveforms corre-
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varying lengths of the full recording dura-
tion (n = 19 experiments) (Fig. 6A—C). As
expected, maps from shorter time inter-
vals showed increasing difference toward
the full data map. Thus, few SPW-Rs can-
not provide a full representation of all oc-
curring waveforms (Fig. 6 B; supporting
information, available at www.jneurosci.
org as supplemental material). Impor-
tantly, the distance between partial and
full maps did not change systematically
over recording time (Fig. 6 B), underlin-
ing stability of SPW-R waveforms over at
least 4000 s (runs test) (see supporting in-
partial formation, available at www.jneurosci.org
data as supplemental material). This temporal
map-slzs stability allowed us to use the distance pa-

= e rameter for assessing the quality of repre-
sentation by small numbers of individual
events. As expected, the mean distance be-
tween partial maps and full maps in-
creased when fewer events were used to
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construct the partial maps (Fig. 6C). At
values below ~500 individual events per
partial map, the slope of the distance plot
became increasingly steep, indicative of a
lower limit of different events needed for a
representation of the full spectrum of oc-
curring waveforms.

T
4000

Discussion

Field potentials reflect weighted averages
of local neuronal activity. Here, we show
that individual, clearly delineated net-
work events in hippocampal slices (SPW-

8 32 128 512
number of SPW

Figure 6.

partial data map sizes (<<500) indicates incomplete representation of SPW-R waveforms.

spond to different groups of coactive neurons: in this case, there
should be a stable correlation between SPW-R waveforms re-
corded at different positions along CA1. We therefore tested the
correlations between corresponding SPW-Rs recorded at two
distinct sites along the CA1 pyramidal cell layer. Indeed, a given
SPW-R waveform at tetrode position 1 was followed by well de-
fined (although different) waveform patterns at tetrode 2 (Fig.
5A,B). Downstream patterns were, however, slightly more di-
verse than the corresponding upstream waveforms. Information
and sparsity of the correlating SPW-R at tetrode 2 were signifi-
cantly different from randomly chosen SPW-R (Fig. 5C). Thus,
multicellular activity patterns underlying SPW-R show a high
degree of stability, but also some processing, during propagation
along CAl.

SPW-R waveforms are stable over time
Finally, we tested the stability of recurring prototypic waveforms
over time. We constructed partial maps from intervals covering

2048

SPW-R waveforms are stable over time and their number is limited. A, The whole data set was split into shorter
segments that underwent SOM classification. Distance between resulting partial SPW-R maps and the whole data map is depicted
(right) and was taken to assess waveform stability. B, Distance between partial SPW-R maps depends on sample size. For each
length of partial data set, however, distance between partial data maps and whole data map is stable over time. C, Relationship
between partial data map size and mean distance to whole data map. The sudden deviation from the logarithmic correlation at low

Rs) contain specific signatures of the
underlying multicellular activity patterns:
(1) they can be robustly classified into dis-
tinct waveforms, (2) waveforms recur sta-
bly over prolonged recording times, and
(3) phase-locked discharges of single units
tend to fire within a limited set of SPW-R
waveforms. Therefore, field SPW-Rs are
representations of defined, transiently
stable groups of neurons. This close cor-
respondence between field potentials and
the underlying multicellular activity patterns may be of practical
importance for the analysis of cognitive processes in humans. It
also underlines the specificity of information processing in sharp
wave-ripple complexes that have been implicated in declarative
memory consolidation.

At first glance, the stable recurrence of defined SPW-R pat-
terns appears surprising. Local field potentials result from cur-
rent flow through cell membranes, with major contributions
from subthreshold postsynaptic currents (Johnston and Wu,
1999). Their interpretation is confounded by multiple factors,
including their limited spatial extension (Cohen and Miles,
2000), laminar changes along the dendritic-axonal axis, other
non-isotropic properties of the extracellular space (Bédard et al.,
2004), far field effects (Nicholson, 1973; Mitzdorf, 1985), and
activity-dependent changes in extracellular ion concentrations
(Kann et al., 2003). Therefore, field potentials provide rather
indirect reflections of the underlying network activity. Action
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potentials of one or few neurons can have significant impact on
the local field, either by their direct contribution (Rasch et al.,
2009) or by synaptically mediated effects on multiple target cells
(Mikkonen et al., 2006; Huttunen et al., 2008). In our recordings,
it is unlikely that SPW-R waveforms depended critically on the
contribution of single units. Events were sorted into the same
waveform class regardless of whether a coupled unit fired on an
individual event or not. Moreover, the most dominant principal
components for SPW-R sorting reflected sharp waves or oscilla-
tions at ~200 Hz. Both components are clearly slower than the
contribution of single units.

The exact mechanisms linking SPW-R pattern and discharges
of defined units are not known. One simple link may be that the
amplitude of sharp waves is directly correlated with the number
of recruited neurons. Therefore, we normalized the sharp waves
to identical amplitudes before performing the PCA and sorting.
Nevertheless, units showed almost identical values of waveform
preference, indicating that unit preferences are only weakly influ-
enced by SPW-R amplitude. Furthermore, supplemental Figure
S6 (available at www.jneurosci.org as supplemental material)
shows units (8, 13) that are clearly correlated to small-amplitude
sharp waves, indicating that other features of the waveform may
be equally important. Moreover, even the slight preference of
units for larger sharp waves—and their absence in smaller wave-
form types—indicates specificity of unit firing.

The position of our recording electrode within stratum pyra-
midale favors the detection of perisomatic or proximal-dendritic
synaptic potentials that are mainly inhibitory. Perisomatic basket
cells are strongly activated during SPW-R (Klausberger et al.,
2003) and are likely to contribute to the high-frequency ripple
oscillation (Csicsvari et al., 1998; Klausberger et al., 2003;
Hartwich et al., 2009) as well as to other oscillating states
(Johnston and Wu, 1999; Whittington and Traub, 2003; Buzsaki
etal., 2004; Mann and Paulsen, 2007; Oren et al., 2010). Network
bursts similar to SPW-R can indeed be influenced by the dis-
charge of single perisomatic interneurons (Ellender et al., 2010).
Although the widespread axonal arbors of perisomatic interneu-
rons enable such strong effects at the network level, the selection
of specific assembly members is most likely achieved by more
selective, excitatory connections (Draguhn et al., 1998; Mem-
mesheimer, 2010). In any case, the intricate connections between
interneurons and pyramidal cells make it likely that different
neuronal assemblies activate different sets of interneurons.

Our stimulation experiments show that the activation of dis-
tinct multicellular activity patterns depends mostly, but not en-
tirely, on the upstream pattern of activity in CA3 (Both et al,,
2008). A similar strong influence of few neurons in CA3 on net-
work patterns in CA1 has previously been shown for theta and
gamma oscillations in vivo (Mikkonen et al., 2006). At the same
time, recordings with two spatially separated electrodes revealed
degenerating waveform fidelity along CA1 (Fig. 5). This result
points toward computational processes beyond mere signal
propagation within CAl. It should also be kept in mind that we
did not study interference from the entorhinal cortex, which is
involved in signal comparison and novelty detection in CAl
(Vago and Kesner, 2008; Van Cauter et al., 2008).

Our stimulation experiments yielded a lower estimate of 10
different classes of SPW-R waveforms in CAl. It is tempting to
relate this estimate to the number of distinct hippocampal assem-
blies (e.g., for coding of spatial memory). However, the correla-
tion between single units and field potential waveforms does not
provide a direct observation of distinct neuronal assemblies.
Moreover, the hippocampal slice is a partially de-afferentiated
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subnetwork of the mouse hippocampus. It is, therefore, difficult
to compare our number with theoretical estimates of the hip-
pocampal storage capacity in vivo. Recent model calculations
suggested 1500-100,000 different memory-representing assem-
blies in the recurrent network of rodent CA3 (Leibold and
Kempter, 2006; de Almeida et al., 2007). Measuring and sorting
different SPW-R waveforms in vivo may, in future work, provide
a direct experimental approach to such numbers.

Our data may be relevant for the interpretation of electro-
physiological data from animals and humans during behavioral
or cognitive tasks. Indeed, high-resolution EEG or magnetoen-
cephalographic recordings in humans have revealed event-related
waveforms for different mnemonic (Fernandez etal., 1999; Fell et al.,
2001) or perceptual (Fries et al., 2001; Schneider et al., 2005) pro-
cesses. Similar distinctions have also been achieved during high-
resolution functional imaging (Norman et al., 2006). Although these
authors report categorical distinctions, rigid sorting of individual
waveform patterns may allow for the detection of individual,
content-specific neuronal representations.
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