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Information Capacity and Transmission Are Maximized in
Balanced Cortical Networks with Neuronal Avalanches
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The repertoire of neural activity patterns that a cortical network can produce constrains the ability of the network to transfer and process
information. Here, we measured activity patterns obtained from multisite local field potential recordings in cortex cultures, urethane-
anesthetized rats, and awake macaque monkeys. First, we quantified the information capacity of the pattern repertoire of ongoing and
stimulus-evoked activity using Shannon entropy. Next, we quantified the efficacy of information transmission between stimulus and
response using mutual information. By systematically changing the ratio of excitation/inhibition (E/I) in vitro and in a network model, we
discovered that both information capacity and information transmission are maximized at a particular intermediate E/I, at which
ongoing activity emerges as neuronal avalanches. Next, we used our in vitro and model results to correctly predict in vivo information
capacity and interactions between neuronal groups during ongoing activity. Close agreement between our experiments and model
suggest that neuronal avalanches and peak information capacity arise because of criticality and are general properties of cortical net-
works with balanced E/I.

Introduction
In the cortex, populations of neurons continuously receive input
from upstream neurons, integrate it with their own ongoing ac-
tivity, and generate output destined for downstream neurons.
Such cortical information processing and transmission is limited
by the repertoire of different activated configurations available to
the population. The extent of this repertoire may be quantified by
its entropy H; in the context of information theory, entropy char-
acterizes the information capacity of the population (Shannon,
1948; Rieke et al., 1997; Dayan and Abbott, 2001). Information
capacity is important because, as the name suggests, it defines
upper limits on aspects of information processing. For example,
consider the information transmitted from input to output by a
population that only has two states in its repertoire (H � 1 bit).
No matter how much information the input contains, the infor-
mation content of its output cannot exceed 1 bit. A network with
low entropy presents a bottleneck for information transmission
in the cortex. Thus, it is important to understand the mechanisms
that modulate the entropy of cortical networks.

Cortical activity depends on the ratio of fast excitatory (E) to
inhibitory (I) synaptic inputs to neurons in the network. This E/I
ratio remains fixed on average even during highly fluctuating
activity levels (Shu et al., 2003; Okun and Lampl, 2008). How-
ever, it is currently not known whether a particular E/I ratio is
advantageous for certain aspects of information processing. The
existence of such an optimal ratio is suggested by two competing
effects of E/I on entropy. First, a large E/I ratio, i.e., if excitation is
insufficiently restrained by inhibition, can cause very high corre-
lations between neurons (Dichter and Ayala, 1987). Because in-
creased correlations decrease entropy (Rieke et al., 1997; Dayan
and Abbott, 2001), we anticipate that a sufficiently large E/I ratio
limits information transmission. This is consistent with findings
that moderate levels of correlation can play an important role in
population coding (Pola et al., 2003; Jacobs et al., 2009). At the
other extreme, i.e., a small E/I ratio, weak excitatory drive is ex-
pected to reduce correlations as well as the overall level of neural
activity. Although reduced correlations can lead to higher en-
tropy, this increase may be counteracted by a concurrent drop in
activity. Sufficiently suppressed activity reduces entropy (Rieke et
al., 1997; Dayan and Abbott, 2001). Accordingly, we hypothesize
that cortical entropy and information transmission are maxi-
mized for an intermediate E/I ratio.

Here we tested our hypothesis experimentally in cortex cul-
tures, anesthetized rats, and awake monkeys and compared our
results with predictions from a computational model. We discov-
ered an optimal intermediate E/I ratio distinguished by (1) max-
imal entropy and (2) maximal information transmission between
input and network output. This finding was based on analysis of
both ongoing and stimulus-evoked population activity. More-
over, at this optimal E/I ratio, ongoing activity emerges in the
form of neuronal avalanches (Beggs and Plenz, 2003) and inter-
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actions within the network are moderate. Agreement with our
model suggests that, by maintaining this particular E/I ratio, the
cortex operates near criticality and optimizes information
processing.

Materials and Methods
In vitro multielectrode array recordings and pharmacology. Cortex–ventral
tegmental area organotypic cocultures were grown on planar inte-
grated multielectrode arrays (MEAs) (for details, see Shew et al.,
2009). In brief, the MEA contained 60 recording electrodes (8 � 8
grid with no corner electrodes, 30 �m diameter, 200 �m interelec-
trode spacing). Local field potential (LFP) signals were sampled at 4
kHz and low-pass filtered (50 Hz cutoff). Experiments consisted of a
1 h recording of ongoing activity, followed by 0.5–1 h of stimulus-
evoked activity. Next, the antagonists were bath applied, and record-
ings of ongoing activity followed by stimulus-evoked activity were
repeated. We applied either (1) DNQX (0.5–1 �M) � AP-5 (10 –20
�M) or (2) picrotoxin (PTX) (5 �M). The stimuli consisted of brief
electric shocks delivered through a single electrode of the array lo-
cated near layers 2/3 of the cortex culture. Each stimulus had a bipolar
time course with amplitude �S for 50 �s in duration, followed by an
amplitude at �S/2 for 100 �s. We tested three similar sets of stimuli,
each with 10 different stimulus levels (in �A): S1 � 10, 20, 30, 50, 60,
80, 100, 120, 150, 200; S2 � 6, 12, 24, 50, 65, 80, 100, 125, 150, 200; or
S3 � 6, 12, 24, 50, 74, 100, 150, 200, 300, 400. Different amplitudes
were applied in pseudorandom order at 5 s intervals.

MEA recordings in monkey. All procedures were in accordance with
National Institutes of Health guidelines and were approved by the Na-
tional Institute of Mental Health Animal Care and Use Committee.
Ninety-six-channel MEA (10 � 10 grid with no corner electrodes, 400
�m separation, and 1.0 mm electrode length) (BlackRock Microsystem)
were chronically implanted in the left arm representation region of pre-
motor cortex of two monkeys (Macaca mulatta, adults, one male and one
female). Ongoing activity was recorded for 30 min. Monkeys were awake
but not engaged by any task or controlled sensory stimulation. Extracel-
lular signals were sampled at 30 kHz and filtered offline (1–100 Hz; phase
neutral, fourth-order Butterworth). For Figure 5B, a 4 � 4 subset of
electrodes was analyzed, matching spatial dimensions of the 4 � 4 coarse
resolution view of the in vitro data (see below). For Figure 5C, 4 � 4
patterns based on a coarse-binned set of 8 � 8 electrodes spanning larger
spatial area were analyzed.

MEA recordings in rats. Urethane-anesthetized rats aged 15–25 d were
studied. As described previously (Gireesh and Plenz, 2008), an MEA was
inserted into superficial layers of barrel cortex (Michigan probe 8 � 4
electrodes, 200 �m interelectrode distance). Ongoing activity was re-
corded for 20 –30 min (4 kHz sampling rate, 1–3000 Hz bandwidth) and
filtered between 1 and 100 Hz (phase neutral, fourth-order Butterworth)
to obtain the LFP. In Figure 5B, the 8 � 4 MEA was coarse binned into a
4 � 4 pattern with two electrodes contributing to each bit. In Figure 5C,
4 � 4 patterns based on only 16 electrodes were also analyzed.

Population event detection. For each electrode, the SD of the LFP was
calculated. Automated (Matlab) population event detection entailed first
identifying large (less than �4 SD in vitro, �3 SD in vivo) negative LFP
fluctuations. Second, the time stamp ti, amplitude ai, and electrode ei of
each negative peak (nLFP) occurring during these large fluctuations was
extracted. Next, consecutive nLFPs were assigned to the same population
event if they occurred sufficiently close (ti�1 � ti � �) in time. The time
threshold � was determined based on the inter-nLFP interval distribu-
tion, as described previously (Shew et al., 2009).

Event size distribution, neuronal avalanches, and �. We defined the size
s of a population event as the sum of all ai that occur during the event.
During one recording, we typically measured thousands of population
events. We used a statistical measure called � to quantify the character of
each recording. The measure � was developed to provide a network-level
gauge of the E/I ratio, as demonstrated in a previous study (Shew et al.,
2009). Similar to the Kolmogorov statistic, � is computed based on the
cumulative probability distribution of event sizes, F(�), which describes
the probability of observing an event with size less than �. More specifi-

cally, � quantifies the similarity of the measured F(�) and a theoretical
reference distribution FNA(�). The reference distribution was chosen
based on empirical observations that cortical networks with unaltered E/I
tend to generate a probability distribution of population event sizes,
P(s)�s �1.5, which defines neuronal avalanches (Beggs and Plenz, 2003;
Petermann et al., 2009; Shew et al., 2009). Importantly, population events
are not considered to be neuronal avalanches unless they have this statis-
tical property. Thus, FNA(�)�� �0.5 is the cumulative distribution cor-
responding to neuronal avalanches, and � assesses how close the
observed distribution is to that of neuronal avalanches. By definition, � is
1 plus the sum of 10 differences between F(�) and FNA(�):

� � 1 �
1

10�
i�1

10

FNA��i� � F��i�. (1)

Therefore, � 	 1 indicates a good match with the reference distribution
and the existence of neuronal avalanches. Positive (negative) deviations
away from � 	 1 indicate a hyperexcitable (hypoexcitable) network and
the absence of neuronal avalanches. The 10 points at which the differ-
ences are computed are logarithmically spaced over the range of measured
event sizes. It was shown previously that � is not sensitive to changes in the
number of differences (5–100 were tried) (Shew et al., 2009).

Binary patterns and entropy H. Each population event is represented by
an 8 � 8 binary pattern with 1 bit per recording electrode. A bit is set to
1 if the corresponding electrode is active during the event; otherwise, it is
set to 0. The entropy of this set of patterns is defined as

H � ��
i�1

n

pi log2 pi, (2)

where n is the number of unique binary patterns, and pi is the probability
that pattern i occurs. In Figure 2 B, the black curve is based on the 8 � 8
binary patterns, which represent the 60 electrodes of the MEA. We also
studied entropy at different spatial resolutions by coarse binning and for
different spatial extents by using subregions of the MEA. The green
curves in Figures 2 D, 3A,B, and 4 A were obtained by reducing spatial
resolution through coarse binning of 8 � 8 patterns into square 4 � 4
patterns. Each bit in the 4 � 4 pattern was dependent on the state of four
neighboring 2 � 2 electrode sets; if at least one electrode was active, the
bit was set to 1. Reduced spatial extent was tested with 16-bit patterns
based on only 16 electrodes arranged in a 4 � 4 square (Fig. 2 D). As
pointed out in Results, these 4 � 4 patterns also reduce potential under
sampling bias when compared with 8 � 8 patterns.

For stimulus-evoked activity, binary patterns were defined based on
LFP activity measured during 500 ms after the stimulus. If the measured
response at an electrode exceeded �8 SD of the noise, then the corre-
sponding bit was set to 1; otherwise, it was set to 0. The stimulation
electrode was always set to 0.

Note that the lack of corner electrodes on the MEA means that the
corner bits of 8 � 8 patterns are always zero. This implies that the max-
imum entropy we could possibly record for 8 � 8 patterns is 2 60 rather
than 2 64. For coarse-binned 4 � 4 patterns, the likelihood that the corner
bits are active is slightly lower (�25% lower). These effects are present for
all E/I ratios examined. Therefore, they may affect the absolute values of
entropy measurements, but they are not important for our conclusions,
which are primarily based on changes in entropy. This is further con-
firmed by the robustness of our results to selecting 4 � 4 subregions from
the center of the MEA for which corner electrodes are not missing (see
Fig. 2 D).

The calculation of entropy entails estimating the occurrence probabil-
ity for each pattern. Therefore, H generally will depend on number N of
observed patterns unless N is so large that the probability of each pattern
is well represented by the samples recorded. H will be underestimated for
sufficiently small N but becomes independent of N for sufficiently large
N. To estimate potential “undersampling bias,” we computed corrected
values following the quadratic extrapolation method (Magri et al., 2009).
First, we randomly selected a fraction f of samples from the full set of N
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patterns. We recomputed the entropy for fractions f � 0.1 to 1 in steps of
0.1. We repeated this 10 times for each f. Next, we fit the average H versus
f data with the following function:

H� f � � H0 �
a

fN
�

b

� fN�2 . (3)

The fit parameter H0 is the estimated corrected value reported in Results.
Mutual information. From a set of N binary patterns, we defined a

participation vector qi (length N ) for each recording site i. qi( j) � 1 or 0
indicated that site i was active or inactive during event j. The interaction
between site i and site j was quantified by the mutual information (Rieke
et al., 1997; Dayan and Abbott, 2001) of qi and qj defined as

MI�qi;qj� � �
a�0,1

�
b�0,1

p�qi � a,qj � b�log2� p�qi � a,qj � b�

p�qi � a�p�qj � b��,

(4)

where p(x) is the probability of x, and p(x,y) is the joint probability x and
y. Mutual information (MI) quantifies (in bits) the information shared
by the two sites and provides similar information as a cross-correlation
(supplemental Fig. S1, available at www.jneurosci.org as supplemental
material). The MI values reported in Results were averages over all pairs
of sites:

MI �
2

M�M � 1� �
i�1

M�1 �
j�i�1

M

MI�qi;qj�. (5)

For the in vitro experiments, we also used mutual information in a dif-
ferent way to quantify the efficacy of information transmission between
stimulus and response. Here we computed MI(S;R) � H( R) � H(R�S).
H( R) is the entropy of the full set of response patterns for all stimuli.
H(R�S) is the conditional entropy (Rieke et al., 1997; Dayan and Abbott,
2001).

Likelihood of participation L. Likelihood of participation Li for site i was
defined as the fraction of patterns in which the site participated:

Li �
1

N�
j�1

N

qi� j�. (6)

The average likelihood of participation L for all M sites is discussed in text
and defined as

L �
1

NM�
i�1

M �
j�1

N

qi� j�. (7)

Data shuffling to destroy interactions. For the purpose of understanding
how the entropy changes as a result of interactions between sites, we
created surrogate datasets by shuffling the events in which sites partici-
pated. The 1 and 0 were randomly reordered in each participation vector
qi such that interactions between sites were destroyed, but Li and N
remained fixed.

Model. The model consisted of M � 16 binary sites (1, active; 0,
inactive). Each site was intended to model the activity of a large group
of neurons like the nLFP recorded at an electrode in the experiments.
The strength of interactions between site i and site j was modeled as an
activation probability; pij was the probability that site i would be
activated at time t � 1 if site j was active at time t. Therefore, if a set
J(t) of sites were active at time t, then site i would be active with
probability PiJ�t� � 1 � 
 j�J�t��1 � pij�. Increasing (decreasing)
the E/I ratio was modeled by increasing (decreasing) the average pij in
the range between 0.1/M and 1.5/M (all pij were initially drawn from
a uniform distribution on [0,1], and then all were scaled down by
dividing by a constant). Population events were modeled by activat-
ing a single initial site (such as an electrical shock applied at a single
electrode or a spontaneous activation in the experiments) and record-

ing the resulting activations that propagated through the network.
These dynamics were defined by

Si�t � 1� � �� piJ�t� � 	i�t� � ��1 � � j�J�t��1 � pij� � 	i�t�,

(8)

where si(t) was the state of site i at time t, �[x] � 0 (1) for x � 0 (�0), and
	i(t) was a random number drawn from a uniform distribution on [0,1]
at each update of each site. The states of all sites were updated simulta-
neously at each time step. Each population event in the model was rep-
resented with a 16-bit binary pattern (1 indicates the site was active at
least once during the response to the stimulus, otherwise 0). By simulat-
ing 1000 population events (always initiated at the same site), we gener-
ated a set of patterns for which the entropy was computed. From the
event size distribution of network events, we computed � (Shew et al.,
2009). The event size was defined as the sum of all activations from all
sites during the population event. The range of average pij values studied
with the model resulted in a range of � � 0.6 to 1.6.

Statistical analysis. For determining the statistical significance of dif-
ferences in entropy for different drug conditions and differences in � for
different drug conditions, we first used a one-way ANOVA to establish
that at least one drug category was different from at least one other. Next
we performed a post hoc test of significant pairwise differences between
the drug categories using a t test with the Bonferroni’s correction for
multiple comparisons. The same procedure was used to assess signifi-
cance of differences in H and MI for different categories of �.

Results
In all of our experiments, MEA recordings of the LFP (Fig. 1A)
were used to obtain patterns of cortical population activity. We
defined a recording site as “active” if it presented a large, negative
deflection in the LFP (Fig. 1A, green). We have demonstrated
previously that such negative LFP deflections correlate with in-
creased firing rates of the local neuronal population for each of
the experimental preparations studied here: superficial layers of
organotypic cultures (Shew et al., 2009), urethane-anesthetized
rat (Gireesh and Plenz, 2008) and awake monkeys (Petermann et
al., 2009). We define a “population event” as a set of electrodes
that were active together within a short time (see Materials and
Methods). In our analysis, each population event was represented
by a binary spatial pattern with 1 bit per recording site and 1 or 0
indicating an active or inactive site, respectively (Fig. 1B, top).
For each 1 h recording in vitro (n � 47) or 30 min recording in
vivo (n � 2 monkeys, n � 6 rats), we typically observed 10 3 to 10 4

population events.
First, we systematically explored a range of E/I conditions in

cortex slice cultures. A reduced E/I ratio was obtained by bath
application of antagonists of AMPA and NMDA glutamate
receptor-mediated synaptic transmission (DNQX, 0.5–1 �M;
AP-5, 10 –20 �M). This resulted in population events that were
typically small in spatial extent (Fig. 1B,C, left). Conversely, an
increased E/I ratio was obtained with an antagonist of fast
GABAA receptor-mediated synaptic inhibition (PTX, 5 �M),
which led to stereotyped, spatially extended population events
(Fig. 1B,C, right). In contrast, unperturbed E/I (Fig. 1B,C, mid-
dle) typically yielded a diverse pattern repertoire. The raster plots
in Figure 1B (bottom) display examples of 100 consecutive pop-
ulation events recorded under the three different E/I conditions.
Figure 1C displays example probability distributions of popula-
tion event sizes for the three E/I conditions. We performed 11
recordings with reduced AP-5/DNQX, 27 with no drug, and 9
with PTX. For each recording, we measured both ongoing activ-
ity and stimulus-evoked activity. For all recordings, we assessed
the information capacity by computing the Shannon entropy of
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the full set of recorded binary patterns (Shannon, 1948; Rieke et
al., 1997; Dayan and Abbott, 2001) (see Materials and Methods).

Peak information capacity of ongoing activity for
intermediate E/I and neuronal avalanches
Our first finding was that the entropy H for ongoing activity
peaks at an intermediate E/I ratio. This was demonstrated with
two different approaches. First, we compared entropy with the
three pharmacological categories: AP-5/DNQX, no drug, and
PTX. We found that, under the unperturbed E/I condition, the
average H was significantly higher than either the reduced E/I
condition of the AP-5/DNQX or the increased E/I condition of
PTX (Fig. 2A) (ANOVA, p � 0.05). Second, we compared en-
tropy with a previously developed statistical measure called �,
which characterizes E/I based on population dynamics of the
network (Shew et al., 2009) (see Materials and Methods). An
advantage over the three pharmacology categories is that � is a
graded measure, thus providing a continuous function of en-
tropy H versus E/I. A detailed definition of � is given in Materials
and Methods. Briefly, � quantifies the shape of the population
event size distribution, which is sensitive to changes in E/I (Fig.
1C): � � 1 indicated reduced E/I, and � � 1 indicated increased
E/I (Fig. 2B). Indeed, � was significantly different for the two
pharmacological manipulations compared with the no-drug
condition (Fig. 2B) ( p � 0.05). When we plotted entropy versus
� (Fig. 2C), we discovered a peaked function with maximum
entropy occurring for � 	 1. This confirms our finding of peak
entropy for the no-drug condition (Fig. 2A) and provides a more
refined view of the data; the peak occurred at �* � 1.16 � 0.12
(mean � SD, uncertainty determined by rebinning the experi-
mental data) (supplemental Fig. S2, available at www.jneurosci.
org as supplemental material). The statistical significance of the
peak in H was confirmed by comparing H for the 10 experiments
with � closest to 1 with the 10 experiments with smallest � and 10
with largest � ( p � 0.05).

In addition to providing a graded measure of E/I, � assesses
the statistical character of ongoing cortical population dynamics.
Specifically, � 	 1 is the signature of neuronal avalanches (Shew
et al., 2009), a type of population dynamics defined by a power-
law population event size distribution with a power-law expo-
nent near �1.5 (Beggs and Plenz, 2003; Stewart and Plenz, 2006;
Gireesh and Plenz, 2008; Petermann et al., 2009; Shew et al.,
2009). The computation of � entails first computing the differ-
ence between a measured event size distribution and a theoretical
reference distribution defined as a power law with exponent �1.5
(Fig. 1C, green dashed). Next, this difference is added to 1 [for
historical reasons (Shew et al., 2009)], resulting in � � 1 for an
exact match with a �1.5 power law, i.e., neuronal avalanches. In
this context, our findings indicate that entropy is maximized un-
der conditions that result in neuronal avalanches.

Next we tested the robustness of the peak in H with respect to
changes in spatial and temporal scales of recordings. First, as
shown in Figure 2D (green), we found that the peak in H re-
mained close to � � 1 (�* � 1.01 � 0.02), even when the original
8 � 8 patterns were coarse grained to obtain 4 � 4 patterns at half
the spatial resolution (see Materials and Methods). Second, the
peak was also maintained when the spatial extent of the recorded
area was reduced by 75% (4 � 4 electrodes near center of the
MEA) (Fig. 2D). Finally, we confirmed that the peak persisted for
a restricted recording duration of 12 min rather than 1 h (Fig. 2D,
purple). The robustness of our finding to shorter recording du-
rations is important because estimations of entropy depend on
the number of samples recorded (see below).

Figure 1. Measuring the neural activation pattern repertoire for a range of E/I conditions. A,
Example LFP recordings under conditions of reduced E (left), unperturbed E/I (middle), and
suppressed reduced I (right). Calibration: 250 ms, 10 �V (left, middle); 250 ms, 100 �V (right).
Population events were defined based on large negative deflections (less than �4 SD; green).
B, Top, Single examples of population events represented as binary patterns: 1, Active site; 0,
inactive. Bottom, Rasters including 100 consecutive population events represented as binary
patterns; each row represents one event, and each column represents one recording site. Left,
Reduced E. Middle, Unperturbed. Right, Reduced I. C, Shape of event size distributions reveal
changes in E/I, which are quantified with � (see Materials and Methods; broken line, power law
with exponent of �1.5).
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Peak information transmission between stimulus and
response for intermediate E/I and neuronal avalanches
We now present measurements of stimulus-evoked activation
patterns. A priori, one can expect a different distribution of
stimulus-evoked patterns compared with ongoing activity and
thus different entropy. Indeed, studies suggest that ongoing ac-
tivity is more diverse than typical stimulus-evoked activity (Fiser,
2004; Luczak et al., 2009; Churchland et al., 2010). However, if
the entropy of evoked patterns changes with E/I in the same way
that we found for ongoing activity, then evoked entropy may also

peak near � � 1. This possibility is in line with significant evi-
dence that ongoing activity in the cortex is intimately related to
stimulus-evoked activity (Kenet et al., 2003; Ji and Wilson, 2007;
Han et al., 2008; Luczak et al., 2009). For instance, stimulus-
evoked activity patterns recur during ongoing activity, at both the
population level (Kenet et al., 2003; Han et al., 2008) and the level
of spike sequences (Ji and Wilson, 2007). Therefore, our next aim
was to test whether our finding of peak entropy near � � 1 also
holds for stimulus-evoked activity.

Stimuli consisted of 10 different amplitude single bipolar
shocks each applied 40 times in randomized order through a
single electrode of the MEA within cortical layers II/III (see Ma-
terials and Methods). A binary pattern was constructed to repre-
sent each response during the 20 –500 ms after the stimulus. The
evoked entropy H was calculated for the set of 400 stimulus-
evoked activation patterns for each E/I. As found for ongoing
activity, the evoked entropy was highest near � � 1 for both fine
and coarse spatial resolution (Fig. 3A, black shows 8 � 8, green
shows coarse-grained 4 � 4) ( p � 0.05).

In Introduction, we gave a simple example in which informa-
tion transmission from input to output was limited because of
low entropy. With our measurements of network responses (i.e.,
output) to stimuli (i.e., input), we can directly test whether effi-
cacy of information transmission is optimized when entropy is
maximized. This idea is concisely summarized in the following
equation: MI(S;R) � H(R) � H(R�S). Here, MI(S;R) is the mu-
tual information of stimulus and response, which quantifies the
information transmission (Rieke et al., 1997; Dayan and Abbott,
2001). H(R) is the entropy of the full set of response patterns for
all stimuli, whereas H(R�S) is the conditional entropy (Rieke et
al., 1997; Dayan and Abbott, 2001). As shown above, H(R) is
maximized near � � 1. Because H(R�S) is always positive,
MI(S;R) is bounded by H(R) and thus potentially also peaks near
� � 1. Indeed, we measured MI(S;R) under different E/I condi-
tions and found that stimulus–response mutual information was
maximized near � � 1 (Fig. 3B, black shows 8 � 8, green shows
coarse-grained 4 � 4) ( p � 0.05).

Competition between activity rates and interactions explains
peak in entropy
To identify and quantify the mechanisms leading to the peak in
entropy near � � 1, we analyzed in more detail the coarse-grained
4 � 4 patterns measured during ongoing activity (Fig. 2D, green).
A priori, the total number of unique patterns that are possible is
2 16, implying a maximum H � log2(2 16) � 16 bits. This maxi-
mum would be reached if all 2 16 patterns occurred with equal
probability. However, during a 1 h recording, the network did
not generate all possible patterns, nor were different patterns
equally likely, resulting in H that was always below 16 bits. The
peak in H was explained by three main factors that changed with
the E/I ratio: (1) the number N of patterns observed during the
recording, (2) the likelihood L that sites participate in patterns,
and (3) the strength of interactions between sites. The first two
effects are related to the rates of observed activity and impose upper
bounds on H: effect 1 requires H � log2(N) (Fig. 4A, dash–dot line),
and effect 2 limits H in a way that depends on L (Fig. 4A, dashed
line). Specifically, the highest possible entropy for a given L can be
computed by assuming that sites are independent:

H 
 ��
i�1

M

�Li log2 Li � �1 � Li� log2�1 � Li��. (9)

Figure 2. Ongoing activity: peak information capacity at intermediate E/I ratio specified by
� 	 1. A, Information capacity (entropy H ) of the pattern repertoire is maximized when no
drugs perturb the E/I ratio. Significant differences are marked; *p�0.05. Box plot lines indicate
lower quartile, median, upper quartile; whiskers indicate range of data, excluding outliers (�,
�1.5 times the interquartile range). B, The statistic � provides a graded measure of E/I condi-
tion based on network dynamics (see Materials and Methods). C, Entropy H peaks near � 	 1.
Each point represents one recording of ongoing activity (n � 47; 8 � 8 MEA; 1 h; color indicates
drug condition: red, PTX; blue, AP-5/DNQX; black, no drug). Line is the binned average of points.
D, The peak in entropy H is robust to changes in spatial resolution (green; 4 � 4 coarse binned,
1 h), spatial extent (orange; 4 � 4 subregion, 1 h), and duration (purple; 4 � 4 coarse binned,
12 min) of recording (black, same data as in C). Error bars indicate mean � SEM.
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where M is the number of recording sites, and Li is the likelihood
of participation for site i. This formula is based on the fact that the
entropy of two independent systems combined is the sum of their
individual entropies. Because a single site i is either active (with
probability Li) or inactive (with probability 1 � Li), its entropy is
�Li log2 Li � (1 � Li) log2 (1 � Li). Thus, adding the entropy of
all sites, we obtain the formula above. When L � 1⁄2, increasing L
increases the upper bound on H. When L � 1⁄2, increasing L
decreases the upper bound on H. We found that L increased over
the range of E/I conditions we studied (Fig. 4C), whereas the
number of patterns N did not show a systematic trend.

We turn now to effect 3. Increased interactions between sites
always reduce H because of the increased redundancy of the in-
formation at different sites (Schneidman et al., 2003). We found
that site-to-site interactions during ongoing activity increased
with E/I (Fig. 4E) and quantified this trend in two ways. First, we

computed MI between the activity recorded from different pairs
of sites (Fig. 4E, red). Note that above we used mutual informa-
tion in a different way, computed between stimulus and re-
sponse, MI(R;S), to assess information transmission. Second, we
estimated the effect of interactions by computing the drop in
entropy resulting from shuffling the data. The shuffling proce-
dure destroyed interactions by randomizing the set of population
events in which each site participated, while keeping L and N
fixed (see Materials and Methods). The entropy of the shuffled
data for the corresponding original � value is shown in Figure 4A
(black) and, as expected, nearly reached the bounds set by the
combined effects 1 and 2. The difference in entropy �H between
the measured and shuffled data is attributable to interactions
(Fig. 4E, blue). �H has been used previously to quantify redun-
dancy (Dayan and Abbott, 2001).

In summary, at low E/I, effects 2 and 3 compete and effect 2
wins, i.e., activity rates drop sufficiently low to cause low entropy
although interactions are also low. At high E/I, effects 2 and 3
cooperate, i.e., both high activity rates and strong interactions
cause low entropy. Entropy peaked at an intermediate E/I ratio
at which interactions between sites were not too low or too
high (specified by MI 	 0.2) and activity was not too de-
pressed (L 	 0.25).

Figure 3. Stimulus-evoked activity: peak information transmission at intermediate E/I ratio
specified by � 	 1. A, Single shock stimuli with 10 different amplitudes (10 –200 �A) were
applied 40 times each using a single electrode. The pattern repertoire of stimulus-evoked ac-
tivity has maximum entropy near � � 1. This holds for 8 � 8 response patterns (black line) as
well as coarse-resolution 4 � 4 patterns (green line). Points correspond to 8 � 8 patterns: light
blue, AP-5/DNQX; gray, no drug; pink, PTX. B, The efficacy of information transfer, i.e., mutual
information of stimulus and response, also peaks near �� 1 (black, 8 � 8; green, 4 � 4). Error
bars indicate SEM.

Figure 4. Peak information capacity explained. A detailed analysis of in vitro experimental
results (left, Fig. 2 D, green) and model results. A, B, Upper bounds on entropy are set by (1) the
average likelihood that sites participate in patterns (dashed) and (2) the number of patterns
observed (dash-dotted). When the effects of interactions are removed by shuffling (see Mate-
rials and Methods), the entropy reaches these bounds (black), but the measured entropy
(green) is always lower as a result of interactions. C, D, Rise in participation likelihood L as E/I
ratio is increased. This rise accounts for the bounds (dashed) shown in A and B. E, F, Rise in
interactions between sites (mutual information, red) is proportional to the loss in information
capacity �H (blue). All error bars indicate SEM.
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We remark that, if N were large enough (e.g., for longer re-
cording duration), the upper bound attributable to effect 1 would
become irrelevant, in which case, we still expect H to peak near
� � 1 as a result of the combined effects of interactions (�H) and
L. Nonetheless, the persistence of the peak in H for shorter-
duration recordings may be more relevant for cortex operations
that occur on shorter timescales. We also tested the extent to
which our measurements are impacted by sample size following
the methods developed by Magri et al. (2009). The difference
between our measured H and “corrected” H was 0.06 � 0.06
(mean � SD) bits for 4 � 4 in vitro ongoing activity patterns and
0.22 � 0.18 bits for the 8 � 8 patterns. Thus, sample size effects
are small compared with the variability from one experiment to
another (see error bars in Fig. 2). We also point out that N, L, and
MI are not the only factors that could potentially influence H. For
example, not every site was equally likely to be active. Such spatial
structure is expected to decrease entropy compared with a spa-
tially homogeneous system with all other properties held fixed.
This was not a major influence in our results.

Experimental results confirmed in a computational
network-level model
To gain additional insight on our experiments, we compared our
results with a network-level simulation, which has been used pre-
viously to model neuronal avalanches (Haldeman and Beggs,
2005; Kinouchi and Copelli, 2006; Shew et al., 2009). The model
consisted of 16 binary sites. The state (1, active; 0, inactive) of
each site was intended to represent a population of neurons in the
vicinity of a recording electrode (see Materials and Methods).
The propagation of activity from one site to another was treated
probabilistically; a connection matrix p with entries pij specified
the probability that site i would become activated as a result of site
j having been activated in the previous time step. Increases (de-
creases) in E/I were modeled by increasing (decreasing) the aver-
age pij value through the range 0.006 – 0.1. For each E/I condition,
1000 population events were simulated, beginning with a single
initially active site, and the resulting patterns of activity were
recorded. To facilitate comparison with our experimental results,
we also parameterized each E/I condition of the model using �,
based on population event size distributions.

In good agreement with our experiments, we found that en-
tropy reached a peak for � 	 1 (Fig. 4B, green). Moreover, the
explanation of peak entropy in terms of the competition between
activity rates and site-to-site interactions also held for the model.
Just as in the experiments, when the model data was shuffled to
remove effects attributable to interactions, H (Fig. 4B, black)
approached the upper bounds set by the number of events (Fig.
4B, dash-dotted line) and the likelihoods of participation (Fig.
4B, dashed line). The model H results matched the experimental
values, because the underlying changes in L versus � (Fig. 4D)
and the changes in site-to-site MI versus � (Fig. 4F, red) were very
similar to those measured experimentally. This agreement is not
trivial; the same values of entropy could in principle be reached
with different combinations of the underlying L and MI versus �.
For example, a peak in H could result if L remained fixed at 0.5
and interactions were minimized at � � 1. Site-to-site mutual
information in the model reached slightly lower levels for high �
when compared with experiments (Fig. 4F, red), which could be
attributable to the lack of significant structure in the model con-
nectivity matrix p.

In vivo entropy matches in vitro prediction
Finally, we analyzed recordings of ongoing activity from superfi-
cial cortical layers in two awake monkeys (premotor cortex) not
engaged in any particular task and in urethane-anesthetized rats
(n � 6, barrel cortex) with no whisker stimulation. In agreement
with previous studies (Gireesh and Plenz, 2008; Petermann et al.,
2009), we found that the ongoing activity was organized as neu-
ronal avalanches (Fig. 5A). More precisely, we found that � �
1.02 � 0.02 for the monkeys and � � 1.08 � 0.02 for the rats.
Based on our in vitro findings, these � values suggest that the in
vivo networks are operating under E/I conditions that maximize
entropy and information transmission. Although we cannot fully
test this idea without a full range of � in vivo, we can test whether
the in vivo values of H, L, and MI match with those predicted
from the in vitro results. As shown in Figure 5B and summarized
in Table 1, we found good agreement with these predictions. We
found no statistically significant difference between the in vivo
results and the prediction from in vitro experiments with the
same range of � (1.0 � � � 1.1; p � 0.05). Nonetheless, the fact
that entropy values in vivo were slightly higher than the in vitro
results may be attributable to the corresponding slightly lower MI
values. We note that the in vivo values of MI, which are based on
LFP measurements, coexist with low values of pairwise correla-
tion r between spiking activity of units (mean � SEM; r � 0.03 �
0.01) (supplemental Fig. S3, available at www.jneurosci.org as
supplemental material), in line with recent reports for awake
monkeys (Ecker et al., 2010) and anesthetized rats (Renart et al.,
2010). The success of our prediction requires matching the
number of recording sites (16 here) but is robust to large
changes in spatial extent and resolution of recordings (Fig.
5C). The prediction is also robust to changes in the threshold
used for generating binary activity patterns from continuous
LFP data (supplemental Table S1, available at www.jneurosci.
org as supplemental material).

Discussion
We used in vitro and in vivo experiments as well as a computa-
tional model to study the effects of the E/I ratio on entropy and
information transmission in cortical networks. We analyzed
multisite measurements of LFP recorded during ongoing as well
as stimulus-evoked activity. We found that entropy and informa-
tion transmission are maximized for the particular E/I ratio spec-
ified by � 	 1, which is the same E/I condition under which
neuronal avalanches emerge.

We emphasize that the relative changes in H as we altered E/I
are the meaningful results of our in vitro study; the absolute en-
tropy values in bits depend on arbitrary aspects of the analysis
and measurements, e.g., the number of electrodes in the MEA.
Thus, we are not suggesting that there is an absolute cap on the
information that a cortical circuit can represent at �10 bits, and
it is not appropriate to compare our H values with those found in
other studies of population entropy measures (Quian Quiroga
and Panzeri, 2009). The important feature of our result is the
peak in H near � � 1. We expect that any measure of population
entropy would also peak for the same intermediate E/I, specified
by � 	 1.

Previous studies have separately addressed the topics of en-
tropy maximization (Laughlin, 1981; Dong and Atick, 1995; Dan
et al., 1996; Li, 1996; Rieke et al., 1997; Dayan and Abbott, 2001;
Garrigan et al., 2010), neuronal avalanches (Beggs and Plenz,
2003; Haldeman and Beggs, 2005; Stewart and Plenz, 2006; Ramo
et al., 2007; Gireesh and Plenz, 2008; Petermann et al., 2009; Shew
et al., 2009; Tanaka et al., 2009), and the balance of E/I (van

Shew et al. • Maximized Information Capacity and Transmission J. Neurosci., January 5, 2011 • 31(1):55– 63 • 61



Vreeswijk and Sompolinsky, 1996; Shadlen and Newsome, 1998;
Shu et al., 2003; Roudi and Latham, 2007; Okun and Lampl, 2008;
Sussillo and Abbott, 2009), but our work is the first to show how
these ideas converge in cortical dynamics.

Significant evidence suggests that maximization of entropy is
an organizing principle of neural information processing sys-
tems. For example, single neurons in the blowfly visual system
have been shown to exhibit spike trains with maximized entropy,
considering the stimuli the fly encounters naturally (Laughlin,
1981). Applied at the level of neural populations, the principle of
maximized entropy has provided successful predictions of recep-
tive field properties in mammalian retina (Garrigan et al., 2010),
lateral geniculate nucleus (Dong and Atick, 1995; Dan et al.,
1996), and visual cortex (Li, 1996). Our work shows that the
potential ability of a neural population in the cortex to achieve
maximum entropy and maximum information transmission de-
pends on the E/I ratio. Thus, if such properties are optimal for the
organism, then the particular E/I ratio specified by � 	 1 may best
facilitate this goal.

We note that our investigation is not directly related to “max-
imum entropy” models (Schneidman et al., 2006). In those stud-
ies, the aim was to use the maximum entropy principle (Jaynes,
1957) to find the simplest model to describe an experimental
dataset; entropy served as a modeling constraint. In contrast, here
we compare the entropy across different experiments, searching
for conditions that result in maximum entropy; entropy mea-
surements are the results.

Several theory and modeling studies (including our own
model) offer a deeper explanation of why � � 1 and neuronal
avalanches occurs under E/I conditions that maximize entropy
and information transmission (Greenfield and Lecar, 2001; Beggs
and Plenz, 2003; Haldeman and Beggs, 2005; Ramo et al., 2007;
Tanaka et al., 2009). Recall that neuronal avalanches and � � 1,
by definition, indicate a power-law event size distribution with
exponent �3/2. This same property is found in many dynamical
systems that operate near “criticality.” Criticality refers to a par-
ticular mode of operation balanced at the boundary between or-
der and disorder (Stanley, 1971; Jensen, 1998), akin to the balance
of excitation and inhibition that we explore in our experiments.
In our model, criticality occurs when the average pij equals 1/M
(M is the number of sites). When pc � 1/M, activity propagation
is widespread and highly synchronous, like a seizure, whereas
pc � 1/M results in weakly interacting, mostly independent neu-
rons (Beggs and Plenz, 2003; Haldeman and Beggs, 2005; Kinou-
chi and Copelli, 2006). The balanced propagation that occurs at
criticality might be attributed to interactions between excitatory
and inhibitory neurons in the cortex. Using theory of Boolean
networks, Ramo et al. (2007) showed theoretically that entropy of
the event size distribution is maximized at criticality. Similarly,
simulations of a model similar to our own showed that the num-
ber of activation patterns that repeat is maximized at criticality
(Haldeman and Beggs, 2005). Tanaka et al. (2009) found that

Figure 5. In vivo properties predicted from in vitro results. A, Population event size distribu-
tions from ongoing activity in two awake monkeys (blue) and an example rat (green) are near a
power law with exponent �1.5 (dashed line), i.e., they exhibit neuronal avalanches and � 	
1. B, In line with in vitro and model predictions for � 	 1, in vivo entropy was high and mutual
information between recording sites was moderate (asterisks, 2 recordings on different days
from each monkey; squares, anesthetized rats; n � 6). The spatial extent of recorded area was
approximately matched. C, The result holds even when the spatial scales and resolution differ by
factor of 4.

Table 1. In vivo results match in vitro predictions

Entropy
H (bits)

Participation
likelihood L

Site-to-site
MI (bits)

In vitro predictions for 1.0 � � � 1.1 5.7 � 1.6 0.3 � 0.1 0.2 � 0.2
Awake monkeys, � � 1.02 � 0.02 7.5 � 0.5 0.3 � 0.03 0.1 � 0.01
Anesthetized rats, � � 1.08 � 0.02 7.1 � 1.2 0.4 � 0.1 0.2 � 0.1

Given the range of � found in the in vivo recordings (1 � � � 1.1), our in vitro results provide the predictions of H,
L, and MI shown in the first row. The corresponding measurements from the awake monkeys (second row) and
anesthetized rats (third row) match the in vitro predictions, i.e. they are not significantly different ( p � 0.05).
Corresponding data are shown in Figure 5B. All numbers are mean � SD.
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recurrent network models in which information transmission is
optimized also exhibit neuronal avalanches and repeating activa-
tion patterns. Likewise, it has been shown that mutual informa-
tion of input and output in feedforward network models is
maximized near criticality (Beggs and Plenz, 2003). In line with
these theory and model predictions, our results are the first ex-
perimental demonstration of peak entropy and information
transmission in relation to criticality in the cortex.

Finally, a separate line of research has focused on the E/I ratio
in cortical networks. Models emphasize the importance of bal-
anced E/I for explaining the variability observed in spike trains
(van Vreeswijk and Sompolinsky, 1996; Shadlen and Newsome,
1998), low correlations between spiking units (Renart et al.,
2010), and generating diverse population activity patterns (Sus-
sillo and Abbott, 2009), which may play a role in memory (Roudi
and Latham, 2007). Moreover, in vivo experiments have shown
that synaptic input received by cortical neurons exhibits a fixed
ratio of excitatory to inhibitory current amplitudes (Shu et al.,
2003; Okun and Lampl, 2008). Because we measure � 	 1 in vivo,
it follows that the “balanced E/I” discussed in these previous
studies may also correspond to the optimal E/I that we identify
here.

In summary, our results suggest that, by operating at the E/I
ratio specified by � 	 1, the cortex maintains a moderate level of
network-level activity and interactions that maximizes informa-
tion capacity and transmission. This finding supports the hy-
potheses that balanced E/I and criticality optimize information
processing in the cortex.
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