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Dopaminergic Genes Predict Individual Differences in
Susceptibility to Confirmation Bias
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The striatum is critical for the incremental learning of values associated with behavioral actions. The prefrontal cortex (PFC) represents
abstract rules and explicit contingencies to support rapid behavioral adaptation in the absence of cumulative experience. Here we test two
alternative models of the interaction between these systems, and individual differences thereof, when human subjects are instructed with
prior information about reward contingencies that may or may not be accurate. Behaviorally, subjects are overly influenced by prior
instructions, at the expense of learning true reinforcement statistics. Computational analysis found that this pattern of data is best
accounted for by a confirmation bias mechanism in which prior beliefs—putatively represented in PFC—influence the learning that
occurs in the striatum such that reinforcement statistics are distorted. We assessed genetic variants affecting prefrontal and striatal
dopaminergic neurotransmission. A polymorphism in the COMT gene (rs4680), associated with prefrontal dopaminergic function, was
predictive of the degree to which participants persisted in responding in accordance with prior instructions even as evidence against their
veracity accumulated. Polymorphisms in genes associated with striatal dopamine function (DARPP-32, rs907094, and DRD2, rs6277)
were predictive of learning from positive and negative outcomes. Notably, these same variants were predictive of the degree to which such
learning was overly inflated or neglected when outcomes are consistent or inconsistent with prior instructions. These findings indicate

dissociable neurocomputational and genetic mechanisms by which initial biases are strengthened by experience.

Introduction

Overwhelming evidence across species indicates that dopami-
nergic neurons signal reward prediction errors (Schultz, 1998;
Roesch etal., 2007; Zaghloul et al., 2009). These phasic dopamine
(DA) responses facilitate corticostriatal synaptic plasticity (Cen-
tonze et al., 2001; Reynolds et al., 2001; Shen et al., 2008) that is
necessary and sufficient to induce behavioral reward learning
from experience (Tsai et al., 2009; Zweifel et al., 2009). However,
reward is better harvested from some environments through
strategies that dismiss individual instances of feedback. For ex-
ample, in the stock market, a standard reinforcement learning
(RL) mechanism (Sutton and Barto, 1998) would employ a ru-
inous “buy high, sell low” scheme, whereas a cleverer investor
would buy and hold over the ups and downs in the interest of
long-term gains.

Behavioral and computational work suggests that verbal in-
struction (such as that from a financial planner) can powerfully
control choice (Hayes, 1989; Waldmann and Hagmayer, 2001;
Biele etal., 2009; Doll et al., 2009), often leading to a confirmation
bias (Nickerson, 1998) whereby subjects behave in accordance
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with contingencies as they are described, rather than as they are
actually experienced. Functional magnetic resonance imaging ev-
idence suggests that verbal information might exert control by
altering activation in brain areas implicated in reward learning
(Plassmann et al., 2008; Engelmann et al., 2009; Li et al., 2011),
though the mechanism for such modulation remains unclear.
Our previously developed computational models (Doll et al.,
2009) propose two biologically viable alternative explanations for
this effect, entailing different versions of guided-activation the-
ory whereby rule representations in prefrontal cortex (PFC)
modulate downstream neural activation (Miller and Cohen,
2001).

In the first (override model), the striatum learns objective
reinforcement probabilities as experienced, but is overridden by
the PFC at the level of the decision output. In the second (bias
model), PFC instruction representations bias striatal action selec-
tion and learning. These models (see Figs. 1 B, 4A) describe com-
petitive and cooperative relationships between striatum and PFC,
and make opposite predictions regarding the striatal valuation of
instructed stimuli.

Probabilistic reinforcement learning is modulated by striatal
dopamine manipulation (Frank et al., 2004; Pessiglione et al.,
2006; Bodi et al., 2009). Striatal activation and dopaminergic
genes are predictive of individual differences in such learning
(Cohen et al., 2007; Frank et al., 2007; Klein et al., 2007; Schon-
berg et al., 2007; Jocham et al., 2009). However, no studies have
investigated neurochemical or genetic influences on learning
when subjects are given explicit information about the learning
environment. We reasoned that the directionality of any striatal
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DA-related genetic effects on instructed learning could help
discriminate between our candidate models. According to the
override model, enhanced striatal DA function should support
better learning from environmental contingencies. In con-
trast, according to the bias model, striatal DA genetic markers
would predict the degree to which learning is modulated by
prior instructions.

We collected DNA from subjects performing an instructed
probabilistic RL task. We find that genotypes associated with
better learning from rewards [dopamine- and cAMP-regulated
phosphoprotein of molecular weight 32 kDa (DARPP-32)] and
punishments (DRD2) are predictive of distorted learning of re-
inforcement statistics in accordance with prior information. We
further report that a catechol-O-methyl transferase (COMT) ge-
notype typically associated with better prefrontal function im-
pedes the discovery of true reinforcement contingencies. These
data support the bias model, where PFC rule-like representations
distort the effect of reinforcement in the striatum, confirming
prior beliefs.

Materials and Methods

Theoretical framework

In this section, we describe the assumptions that have been simulated
in our a priori neural network and algorithmic models of instruc-
tional control over learning, which allow us to derive differential
predictions regarding the role of dopaminergic genes in capturing
individual differences. The computational models have been de-
scribed in detail previously (Doll et al., 2009); here we highlight the
key features. These models build on previous basal ganglia network
models (Frank, 2005, 2006), with the addition of PFC architecture to
represent instructions and permit instruction following. In these models, the
striatum learns the positive and negative values of stimulus—action
combinations via dopaminergic modulation of synaptic plasticity.
In particular, DA bursts modulate reward-driven activity and plastic-
ity along the direct pathway via D, receptors, whereas DA dips mod-
ulate punishment-driven activity and plasticity along the indirect
pathway via disinhibition of D, receptors (for review, see Doll and
Frank, 2009). In both models, a population of PFC units represents
the instructed rule in working memory. There are two routes with
which PFC information can influence action selection, due to ana-
tomical connections to multiple striatal regions and also directly
to premotor/motor cortex (Haber, 2003; Wallis and Miller, 2003;
Draganski et al., 2008). The roles of these different pathways in in-
structed choice are qualitatively different and are assessed in two
separate models.

When a stimulus that had been associated with instructions is pre-
sented, it activates a corresponding population of PFC units that encode
the rule. In the override model, this representation directly activates the
instructed response in motor cortex. Here the striatum is free to repre-
sent the learned value of alternative responses, and to attempt to select a
(possibly different) response via gating of motor cortex, but it must
compete with the instructed response.

In the bias model, PFC influences action selection by sending gluta-
matergic projections to striatum, thereby biasing striatal representations
to be more likely to gate actions consistent with the instructed rule. This
modulation of striatal activity is in turn associated with modulation of
activity-dependent plasticity, and hence learning. This mechanism am-
plifies the effects of instruction-consistent outcomes while diminishing
the effects of inconsistent ones, such that the PFC “trains” the basal
ganglia (BG) to learn in accordance with prior beliefs, while distorting
the true observed statistics. The effects of DA bursts accompanying re-
wards for the instructed response are exaggerated due to top-down PFC
influence, further promoting long-term potentiation (LTP). Similarly,
the effects of DA dips accompanying instructed punishments are re-
duced, with top-down PFC input onto D, units biasing the activation
landscape such that D, units do not learn as much as they would
otherwise from DA dips. In this model, in contrast to the override
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model, PFC and striatum cooperate in the distortion of learning to
confirm the instructions.

These two models make distinct predictions regarding the effects of
individual genetic variation in striatal and PFC DA function on in-
structional control of reinforcement learning (see Fig. 4A). In partic-
ular, the bias model suggests that the same striatal genetic variations
that predict better learning from positive and negative outcomes
should be predictive of the extent to which such learning is distorted
by instructional influence. Increases in striatal efficacy enhance the
cooperative confirmation bias learning mechanism implemented by
PFC and striatum. Thus, genotypes associated with better unin-
structed learning should be associated with the opposite pattern
(worse learning) when given an invalid instruction. In contrast, the
override model suggests that these genes should predict the degree to
which subjects learn the true programmed task contingencies regard-
less of instruction. Here, increases in striatal efficacy increase the
ability of this region to compete with PFC at motor cortex for action
selection. Our experiment sought to arbitrate between these alterna-
tives with behavioral manipulations. Our computational models de-
scribed below provide an estimate of the degree to which outcomes
consistent and inconsistent with instructions are amplified or
distorted.

Sample

Eighty subjects (51 females, mean age 22.5, SE 0.5) were recruited from
Brown University and the Providence, Rhode Island, community and
were paid $10 for completing the study. Subjects provided saliva samples
before completing two iterations of a cognitive task. Of these, four com-
puter crashes eliminated two subjects entirely from the dataset and two
subjects from the second iteration dataset (due to the crashes occurring at
the start and end of the experiment, respectively). Finally, we eliminated
subjects unable to demonstrate task learning (details below). By our
filtering scheme, six subjects were eliminated from the first and six from
the second iteration of the task (with one subject performing below
chance on both iterations). Results did not differ if these subjects were
included in the analyses. We obtained genotype data on three polymor-
phisms associated with DA function: the vall58met single-nucleotide
polymorphism (SNP) of the COMT gene (rs4680), a SNP of the
PPPIRIB (DARPP-32) gene (rs907094), and a SNP of the DRD2 gene
(rs6277).

For four subjects, we were unable to obtain any genotype data from the
samples. For another two subjects, DRD2 genotyping failed. Of success-
fully genotyped subjects, frequencies per allele were COMT—28:33:13
(Val/Val:Val/Met:Met/Met), DRD2—22:38:12 (C/C:C/T:T/T), and
DARRP-32—10:37:27 (C/C:C/T:T/T). All three SNPs were in Hardy—
Weinberg equilibrium (x* values < 1, p values > 0.05). No correlations
between categorical gene groups (see below, Data analysis) were signifi-
cant ( pvalues >0.15), though DRD2 T and COMT Met alleles correlated
(r72y = 0.23, p = 0.05). The behavioral and computational effects re-
ported for each SNP remain significant when controlling for this
correlation.

The majority of the sample (58 subjects) classified themselves as Cau-
casian, 10 as Asian, 7 as African-American, and 4 as “other” (1 subject
declined classification). Eight individuals classified themselves as His-
panic. Because population stratification represents a potential confound
for the observed genetic effects, several additional measures were taken to
verify that the effects reported herein were not due to admixture in the
sample. Behavioral and computational results remained significant for
the entire sample when minority subgroups were excluded. In addition,
allele frequencies did not differ from Hardy—Weinberg equilibrium in
any subgroup when analyzed independently (y* < 2.9, p values >0.05).
In sum, there was little evidence to suggest that the genetic effects ob-
served in the present study were due to population admixture in the
sample.

Genotyping method

DNA was collected via 2 ml salivettes (DNA Genotek). Samples were
genotyped using TagMan primer and probe pairs; the probes are conju-
gated to two different dyes (one for each allelic variant). Tagman assays
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are designed and selected wusing the A TRAIN
SNPBrowser program (Applied Biosystems).
The PCR mixture consists of 20 ng of genomic !{;
DNA, 1 X Universal PCR Master Mix, a 900 nm *‘)
concentration of each primer, and a 200 nm

. . . A(80/20) B (20/80)
concentration of each probe in a 15 ul reaction
volume. Amplification was performed using
the TagMan Universal Thermal Cycling Proto- j’ A}
col, and fluorescence intensity was measured
using the ABI Prism 7500 Real-Time PCR Sys- C(70/30)  D(30/70)
tem. Genotypes were acquired using the 7500
system’s allelic discrimination software (SDS
version 1.2.3). 't‘: %
Cognitive task E(60/40)  F (40/60)

To assess the effect of instructions on learn-
ing, we administered a modified version of
the same probabilistic selection task previ-
ously shown to be sensitive to striatal DA
function by numerous measures, including
genetic variability (Frank et al., 2004, 2007;
Frank and O’Reilly, 2006). In this task (Fig.
1A), subjects select repeatedly among three
randomly presented stimulus pairs (AB, CD,
and EF), and receive corrective feedback af-
ter each choice. Before completing the in-
structed probabilistic selection task, subjects
read the task instructions that appeared on
screen:

Figure 1.

Please read through these instructions carefully. It is important
that you understand them before beginning the task. Two
black symbols will appear simultaneously on the computer
screen. One symbol will be “correct” and the other will be
“Incorrect”, but at first you won’t know which is which. Try to
guess the correct figure as quickly and accurately as possible.
There is no ABSOLUTE right answer, but some symbols will
have a higher chance of being correct than others. Try to pick the
symbol you find to have the highest chance of being correct. This
symbol will have the highest probability of being correct: [symbol
shown]. You’ll have to figure out which of the other symbols you
should select by trying them out. Press the “0” key to select the
stimulus on the right, and the “1” key to select the symbol on the
right. Now you will be tested on these instructions to make sure
you have understood them fully.

After reading the instructions, subjects were quizzed to make sure they
understood the instructions. They were (1) asked how many stimuli
would appear on screen at a time, (2) asked how to select the left and right
stimuli, and (3) shown all of the stimuli and asked to select the stimulus
they were told would have the highest chance of being correct. Incorrect
answers on any questions restarted the instructions and subsequent test.
The training phase consisted of a minimum of two blocks of 60 trials (20
of each type: AB, CD, and EF, presented randomly). Subjects completed
the training phase if, after two blocks, they were at or above accuracy
criteria for each uninstructed stimulus pair (65% A in AB, 60% Cin CD,
and 50% E in EF); otherwise, training blocks recurred until criteria were
met. The test phase was then completed after reading the following
instructions:

It’s time to test what you’ve learned! During this set of trials you will
NOT receive feedback (“correct” or “incorrect”) to your responses. If
you see new combinations of symbols in the test, please choose the
symbol that “feels” more correct based on what you learned during
the training sessions. If you’re not sure which one to pick, just go with
your gut instinct!

All possible stimulus combinations were presented, with each unique
pair appearing six times. This test phase enables us to estimate the value
assigned to each stimulus as compared to all other stimuli, using both
traditional behavioral analysis (proficiency in selecting/avoiding stimuli
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A, Instructed probabilistic selection task. Example stimulus pairs, which minimize explicit verbal encoding. Correct
choices are determined probabilistically, with percentage positive/negative feedback shown in parentheses for each stimulus.
Before training, subjects were shown one randomly selected stimulus and told it “will have the highest probability of being
correct.” Instructions on stimuli in the left column are accurate in training pairs. Instructions for those on the right are inaccurate.
After training, subjects completed a test phase in which all stimulus combinations were presented. Instructional control is assessed
by choices of the instructed stimulus / on test choose-i trials when it is the statistically superior option and avoid-i trials when it is
statistically inferior. The figure shows test trials for a subject instructed to choose “F.” B, Diagram depicting neural network
accounts of instructional control over learning. Dashed lines indicate anatomical projections with differing computational roles.
Instruction representations either directly bias the striatal valuation, selection, and learning (bias model), or simply override the
otherwise accurate striatal learning of probabilities via competition at motor cortex (override model). The dotted line indicates the
time course in the evaluative loop, not an anatomical projection.

that are statistically superior/inferior options) and computational model
fits to these choices. Subjects completed two iterations of training and
testing, and were instructed on one randomly selected stimulus before
each training run (thereby ensuring that most participants would be
instructed at least once with a suboptimal stimulus).

In the second task iteration, the instructions were repeated and the task
was completed with new stimuli. After completion of the second task
iteration, subjects were queried on the instructed stimulus for both iter-
ations. We removed subjects from the dataset who did not show evidence
in the test phase of having learned the reinforcement statistics in training.
Specifically, subjects at or below chance on the AB test pair were re-
moved. For subjects instructed on A or B, above chance performance on
the CD test pair was used.

Data analysis

Due to variability in allele frequencies, for all categorical genotype anal-
yses we compared the largest homozygote group to the other two (i.e., the
smallest homozygote group was combined with the heterozygotes). This
produced the following groups: COMT—Val/Val, Val/Met+Met/Met;
DRD2—C/C, C/T+T/T; DARRP-32—C/C+C/T, T/T.

Behavioral data were analyzed using mixed models with gene groups
as categorical variables, and, in the gene-dose analyses, with allele num-
bers as continuous variables. Tests on parameter estimates from compu-
tational models were conducted with logistic regression.

Degrees of freedom listed in the statistical tests we present vary
somewhat due to available trials for each analysis (e.g., subjects in-
structed on stimulus A or B were dropped from choose-A and avoid-B
replication analysis) and available subjects meeting accuracy criteria
in each iteration.

Models

Prior theoretical and empirical work identified several candidate models
for instructional control over reinforcement learning in this task (Doll et
al., 2009). We applied the same models to the larger sample of data here
to determine which is the best behavioral fit, by maximizing the log-
likelihood (Burnham and Anderson, 2002) of each individual subject’s
responses (Matlab optimization toolbox), using multiple random start-
ing points for each model fit. We then analyzed genetic effects on param-
eters of interest in only the models providing the best behavioral fit
(preventing multiple genetic comparisons that could be done across
models).
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Instructed learning (bias) model. We assume subjects learn the value of
choosing each stimulus s in the training phase as a function of each
outcome. As in prior algorithmic models of this task (Frank et al., 2007;
Doll et al., 2009), we allow for asymmetric learning rates in accord with
the posited dissociable neural pathways supporting learning from posi-
tive and negative reward prediction errors (Frank, 2005). Specifically, on
each trial we compute the action value Q of choosing stimulus s as
follows:

Qt +1) = Q1) + [ag X 8(B)]1 + [ X (1], (1)

where &(t) = r(t) — Q,(¢) is the reward prediction error on trial f com-
puted as the difference between delivered reward r (1 for gains 0 for
losses) and expected reward for the selected action. Free parameters a
and ¢ are the learning rates applied for gain (8, ) and loss (8_) trials,
respectively. These learning rates estimate the impact of each positive or
negative outcome on the updating of action values for uninstructed
trials.

The critical feature of the bias model is that when the instructed
stimulus i is present and chosen, learning is distorted to confirm the
instructions:

Qi(t+ 1) = Q1) + ayufag X 8(1)], + [% X 6(t):| , o (2)

where o, and o, = 1 are free parameters that respectively amplify and
diminish the impact of reinforcement that follows the selection of the
instructed stimulus. These parameters capture the proposed top-down
PFC-BG confirmation bias, increasing striatal evaluation of gains and
reducing that of losses. Choice on each trial is modeled with the “soft-
max” choice rule commonly used to model striatal action selection: the
probability of selecting stimulus s1 over s2 is computed as follows:
Qa(1)

e ¢

Qu(n) Qu(1)’
e L tel

Psl(t) = (3)

where { is the temperature parameter controlling the gain with which
differences in Q values produce more or less deterministic choice.

Standard Q-learning model. We compared the fit of the instructed
learning model with several other models of subject behavior. First, we fit
a basic uninstructed Q-learning model with no provisions for incorpo-
rating prior beliefs into outcome evaluations. This model computes Q
values for each stimulus identically to those computed by the instructed
learning model for uninstructed trials (Eq. 1) and selects between them
according to the softmax choice rule (Eq. 3). Thus this model is equiva-
lent to fixing the confirmation bias parameters a;, and oy, to 1 for all
subjects, and serves as a control against which to compare models at-
tempting to account for the effect of instructions.

Bayesian “strong prior” model. Next, we fit a Bayesian Q-learning
model to subject choices, which computes a distribution of Q values for
each stimulus (Dearden et al., 1998; Doll et al., 2009). Given the binomial
outcomes in this task, Q values were represented with the conjugate prior
of the binomial distribution, the beta distribution, which has the follow-
ing density:

x*1(1 — x)B!

flxs , B) = T e T (1 — w)f du (4)

On each outcome, the posterior distribution is computed by updating
the hyperparameters a and 3, which store a running total of gain and loss
outcomes, respectively. These counts were allowed to decay back toward
uniform with two free parameters vy and vy; , which were applied to gain
and loss trials, consistent with separable neural mechanisms for learning
from rewards and punishments. Choices were modeled by submitting
the mean of the Q distributions [u( Q) = a/(«a + B)] for each stimulus to
the softmax choice rule (Eq. 3).

In this model, the prior probability distribution of the instructed stim-
ulus on the first trial was allowed to vary (o was free, B = 1), whereas the
priors for uninstructed stimuli were all uniform (flat). Allowing e to vary
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captures the initial biasing effect of the instructions on each subject,
testing the possibility that subjects simply have a “strong prior” belief in
the veracity of the instructions, but one that could be eventually overrid-
den with sufficient experience. Greater priors (higher «) indicate that
subjects require greater evidence of true contingencies before abandon-
ing the instructions. In this case, instructions do not modulate the learn-
ing process.

Bayesian “hypothesis testing” model. In all of the models described
above, we estimated the parameters of the learning models that best
explain participants’ choices during the final test phase, which is most
diagnostic for assessing the learned values of each stimulus (see fitting
details below) (Frank et al., 2007; Doll et al., 2009; Cavanagh et al., 2010b;
Chaseetal., 2010). However, we also sought to model the dynamics of the
learning phase in which participants may at some point decide to aban-
don the instructions. Models of this learning phase are of particular
interest in elucidating the behavioral effects of COMT on the persistence
of instructional control.

We investigated the possibility that during training, participants un-
dergo “hypothesis testing” with respect to the veracity of the instructions,
and that they abandon the instructed rules when they are sufficiently
confident that they are incorrect. To this end, we fit a Bayesian model
similar to the “strong prior” model described above to the training phase
data for inaccurately instructed subjects (Doll et al., 2009).

As in the model discussed above, we modeled the expected Q value of
each stimulus as a beta distribution, with the added assumption that
participants would choose the instructed stimulus and then abandon it
only when they were confident that its mean Q value was less than that
expected by chance. The probability of abandoning the instructed stim-
ulus on trial £ was computed as follows:

1
e

Papanaon(t) = oy )
el te ¢
where ;. is the mean of the instructed Q distribution, and oy, is the
standard deviation (uncertainty) of that distribution,
Cun= o 6)
inst V(a+B)2(a+B+1).

Thus this model predicts that subjects will only abandon the instructions
if this mean is at least ¢ standard deviations below chance (0.5; or equiv-
alently, if the mean is confidently below that for the alternative stimulus,
since they know that one is correct and the other is not). The critical
parameter ¢ determines how much confidence (certainty) is needed
before abandoning instructions. The probability of selecting the in-
structed stimulus is simply P, () =1 — Py don-

To capture the dynamics of initially following instructions before re-
jecting them, we restricted these model fits to those subjects who were
inaccurately instructed in the first iteration of the task, due to the addi-
tional complication of trying to account for potential changes in criteria
for abandoning instructions between task iterations.

Model fitting details

As in prior modeling efforts, parameters were optimized separately to fit
choices in the training and testing phases of the task (Frank et al., 2007;
Doll et al., 2009; Cavanagh et al., 2010b; Chase et al., 2010). In the train-
ing phase, parameter fits are optimized to account for choice dynamics as
a function of trial-to-trial changes in reinforcement, working memory,
hypothesis testing, etc. Such putatively PFC and hippocampal-
dependent strategizing requires explicit recall of recent trial outcomes.
When optimized to the test phase (in which there is no reinforcement
feedback and therefore no working memory/hypothesis testing, and par-
ticipants are asked to select among novel combinations of stimuli having
a range of reinforcement probabilities), parameter fits provide an esti-
mate of the learning process that yields final stabilized stimulus—action
values that best explain participants’ allocation of choices (Frank et al.,
2007; Doll et al., 2009). Thus the test phase provides a relatively more
pure measure of incrementally learned (putatively striatal) values than
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the training phase. Supporting these distinc- A

tions, dopaminergic drugs, Parkinson’s dis- 03
ease, and DARPP-32/DRD2 genotypes all o2
affect test phase performance (Frank et al.,
2004; Frank and O’Reilly, 2006), including pa-
rameter estimates (Frank et al., 2007), whereas
trial-to-trial adaptations and associated pa-
rameter estimates during the training phase are

Relative accuracy
°

-0.2
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B Training: last block C

predicted by frontal EEG and COMT genotype 03
(Frank et al., 2007; Cavanagh et al., 2010a). Stimuli
Pharmacological challenge with the benzodi-
azepine midazolam, which reduces cerebral
blood flow in the PFC and hippocampus but
not the striatum (Bagary et al., 2000; Reinsel et
al., 2000), further supports this view, impairing
training but not test phase performance (Frank
et al., 2006).

Model comparisons were made with Akaike
information criterion (AIC) weights (Burn-
ham and Anderson, 2002; Wagenmakers and
Farrell, 2004), computed from Akaike information criterion values
(Akaike, 1974), and with hierarchical Bayesian model comparison for
group studies, which, given AIC values for model fits to each individual,
provides an exceedance probability estimating the likelihood that each of
the considered models provides the best fit (Stephan et al., 2009). Each of
these measures is interpretable as the probability that a given model is the
best among the candidates (see Tables 2, 3). We also report mean AIC
values, where lower numbers indicate better fits.

Figure 2.

Identifiability of confirmation bias parameters

We estimated «; , and oy, in separate models, which provided very stable
parameter estimates across multiple runs. We note that oy, and «;, are
separately estimable in principle, due to differences in the number of
trials in which instruction-inconsistent losses could be discounted and
instruction-consistent gains could be amplified. The relative proportion
of these trials depends on the value of the instructed stimulus, which is
randomized across subjects (and gene groups). Thus, this procedure
allowed us to estimate the degree to which each behavioral genetic effect
is best accounted for by modulation of o, versus e ,. Note also that the
estimation of each of these confirmation bias parameters is constrained
by the best-fitting standard learning rates « and «; for each subject,
which were themselves largely determined by performance on (the ma-
jority of) uninstructed trials. Thus, confirmation bias parameters reflect
the extent to which an individual’s learning from gains or losses is altered
due to instructions. We computed the log-likelihood of this five param-
eter model as the average of the best fits estimating the amplifying and
diminishing parameters.

Results

Behavioral results

Training data showed that subjects tended to choose in accor-
dance with the instructions (effect of instruction on choice, F, ;5, =
95.2, p < 0.0001). This tendency waned over training as experi-
ence about the true contingencies accumulated (effect of training
block, F; 75, = 6.6, p = 0.01). Notably, despite this learning effect
across training, instructional control was strong in the test phase,
with subjects choosing the instructed stimulus more often than in
control conditions regardless of whether it was accurate to do so
(F1,76) = 92.4,p < 0.0001) (Fig. 2). This result is consistent with
our previous report (Doll et al., 2009). Task iteration did not
significantly impact the training or test phase results. We next
examine the genetic correlates of this effect.

Behavioral genetic effects

To test the predictions of the candidate models (Fig. 1B, see Fig.
4A) (Doll et al., 2009), we assessed SNPs of three genes primarily
influencing prefrontal and striatal dopaminergic function. These

Training: first block Test phase
B inaccurate 03 02
accurate
0.2
o 0.1
>
8 o1 8
g :
s 4 <
2 2 -01
5 =1
B -0.1 5
o« & 02
-02
-03
-03
AB CD EF AB CD EF Choose-i Avoid-i
Stimuli Trial type

Effects of instruction on accuracy, plotted as relative accuracy: the difference in accuracy on instructed stimulus pairs
relative to accuracy on uninstructed pairs of the same type (e.g., performance on instructed pair (D was compared with that of
subjects in (D who had not been instructed on this pair). Error bars here and throughout reflect SE. 4, Accuracy relative to control
is shifted in the direction of the instructions for all stimuli {p values <<0.0001, uncorrected; all remain significant after correction)
except “B,” the worst stimulus statistically (o = 0.16). B, By the last block of training, “D” and “F” instruction continue to affect
choice {p values <<0.03, uncorrected, only “D” survives correction). Effect of “E” is marginal (o = 0.07). C, Instructional control at
test. Choice of instructed stimuli increases accuracy on choose-/ trials (where the instructed stimulus is statistically better than its
paired alternative) and decreases accuracy on avoid-i trials (where it is statistically worse).

SNPs were chosen both for data supporting their specific func-
tional involvement in BG or PFC efficacy (see below), and for
their prior associations with uninstructed RL measures (Frank et
al., 2007, 2009).

First, we assessed the Vall58Met polymorphism within the
COMT gene, which codes for an enzyme that breaks down extra-
cellular DA and affects individual differences in prefrontal DA
levels (Gogos et al., 1998; Huotari et al., 2002; Matsumoto et al.,
2003), predicting D, receptor availability in prefrontal cortex
(Slifstein et al., 2008). In particular, carriers of the Met allele have
reduced COMT efficacy, and therefore greater persistence of pre-
frontal DA, promoting sustained PFC cellular activation and
working memory for abstract rules (Durstewitz and Seamans,
2008; Durstewitz et al., 2010). These molecular effects are sup-
ported by behavioral and neuroimaging observations that
COMT influences prefrontal working memory, executive func-
tion, and higher-order cognitive faculties in RL environments,
such as directed exploration and lose-switch strategizing (Egan et
al., 2001; Tunbridge et al., 2004; Frank et al., 2007, 2009; de Frias
et al., 2010). Thus, we reasoned that COMT Met alleles would
index increasing stability of prefrontal working memory repre-
sentations (Durstewitz and Seamans, 2008), and could therefore
predict individual differences in decision making based on prior
instructions. COMT effects on striatal DA are negligible, appar-
ently due to the presence of the more efficient DA transporters in
that region (Gogos et al., 1998; Sesack et al., 1998; Huotari et al.,
2002; Matsumoto et al., 2003; Tunbridge et al., 2004). Neverthe-
less, COMT may modulate striatal activity indirectly, by influenc-
ing prefrontal neurons that project to striatum (Krugel et al.,
2009).

Second, we assessed a polymorphism within the PPP1R1B
gene coding for DARPP-32. DARPP-32 is an intracellular protein
abundant in striatum that, when phosphorylated by D, receptor
stimulation, inhibits protein phosphatase-1, thereby facilitating
corticostriatal synaptic plasticity and behavioral reward learning
(Ouimet et al., 1984; Calabresi et al., 2000; Svenningsson et al.,
2004; Valjent et al., 2005; Stipanovich et al., 2008). Prior studies
showed that a SNP within PPP1R1B influenced learning from
positive relative to negative reward prediction errors in humans,
with learning increasing as a function of T alleles (Frank et al.,
2007, 2009). This result is consistent with the aforementioned
theoretical models suggesting that phasic DA bursts promote
positive prediction error learning via D,-mediated modulation of
synaptic potentiation in the striatonigral “Go” pathway, together
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Figure 3.

with concurrent synaptic depression in the striatopallidal
“NoGo” pathway (Reynolds and Wickens, 2002; Frank, 2005;
Shen et al., 2008; Hikida et al., 2010). Note that D, and D, recep-
tor stimulation leads to phosphorylation and dephosphorylation
of DARPP-32, respectively (Svenningsson et al., 2004), and be-
cause the SNP we assess affects overall DARPP-32 expression
(Meyer-Lindenberget al., 2007), it should presumably affect both
phosphorylation sites (Thr-34 and Thr-75), and thus modulate
dopamine effects on synaptic plasticity in both pathways in op-
posite directions (Bateup et al., 2008). Together these effects
should emphasize rewards relative to punishments, as observed
here and in previous studies (Frank et al., 2007, 2009). We there-
fore reasoned that, if the override model is correct,
enhanced DARPP-32 function should support learning the
true reinforcement statistics via positive prediction errors. If the
bias model is correct, individual differences in DARPP-32 func-
tion would modulate not only positive learning, but the extent to
which such learning is amplified when outcomes are consistent
with prior beliefs.

Finally, we examined the C957T polymorphism within the
DRD2 gene, where T alleles are associated with decreased affinity
of D, receptors in striatum (Hirvonen et al., 2005, 2009), where
these receptors are primarily expressed (Camps et al., 1989).
Models and experimental data suggest that D, receptors in the
striatopallidal pathway are necessary for detecting when DA lev-
els drop below baseline (as is the case during negative reward
prediction errors). Thus, genetic modulation of D, receptor af-
finity with increasing T alleles should facilitate synaptic plasticity
and therefore avoidance learning (Frank, 2005; Shen et al., 2008;
Hikida et al., 2010). In humans, numerous studies show that low
striatal DA levels, pharmacological manipulation of striatal D,
receptors, and DRD2 genetic variation modulate learning from
negative reward prediction errors (Frank and O’Reilly, 2006;
Frank et al., 2007, 2009; Klein et al., 2007; Bodi et al., 2009; Cools
et al., 2009; Frank and Hutchison, 2009; Jocham et al., 2009;
Palminteri et al., 2009). In some contexts, DRD2 genotype also
modulates functional connectivity between striatum and pre-
frontal cortex (Cohen et al., 2007; Jocham et al., 2009). We rea-
soned that if the override model is correct, D, receptor function
would also predict learning from negative prediction errors when
instructions were incorrect. Conversely and counterintuitively,
the bias model suggests that striatal D, function should predict
learning from negative prediction errors, but also the degree to
which these negative outcomes are neglected when outcomes are
inconsistent with prior beliefs—thereby leading to a confirma-
tion bias.

Gene effects on behavior. A, Gene-dose effect of DARPP-32 T alleles on choose-A (the most positive stimulus) relative
toavoid-B accuracy. B, Gene-dose effect of DRD2 T alleles on avoiding the most negative stimulus (avoid-B). €, Effect of inaccurate
instructions on test choices is modulated by striatal genotype. When reinforcement statistics conflicted with prior instructions,
efficacy of both striatal (DARPP-32 and DRD2) and prefrontal (COMT) genotypes modulated proportion of choices in accordance
with prior instructions. Accuracy is plotted in terms of avoid-i when the instructed stimulus is suboptimal in the test phase.
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genes on uninstructed learning. Consis-
tent with prior reports, DARRP-32 and
DRD2 T alleles (0, 1, or 2), indicative of
enhanced striatal function, showed signif-
icant test phase associations with unin-
structed approach and avoidance
learning, respectively. DARRP-32 T alleles
were associated with a relative perfor-
mance advantage on choose-A compared
to avoid-B trials (F(, 45, = 4.09, p = 0.05),
while DRD2 T alleles were associated with
improved avoid-B accuracy (F, sy
7.58, p = 0.008) (Fig. 3A,B). In line with
our previous findings, we found no evi-
dence of a role for COMT in these puta-
tive striatal DA measures (p values >0.18).
We did not find evidence for these effects to persist into the
second task iteration (p values >0.11), possibly due to practice
effects. (Experience in the first task iteration may have allowed
subjects to learn the structure of the task, potentially changing
the strategies they used and overwhelming individual differ-
ences in the basic reward-learning functions that are sensitive
to the genes we investigate.)

Consistent with the above predictions, COMT genotype modu-
lated the extent to which inaccurately instructed individuals per-
sisted in selecting the instructed stimulus during the training phase
of the first task iteration (effect of COMT group F, 55y = 8.77,p =
0.005 and marginal block by genotype interaction F, 5¢) = 3.05,p =
0.07) (see Fig. 5A). Post hoc tests showed that while both groups
tended to abandon inaccurate instructions from first to last block
(p values <0.05), Val/Val homozygotes (with putatively lower
PFC DA) were more adept than Met carriers at doing so by the
second block of training (p = 0.006 corrected for multiple com-
parisons). There was no difference between gene groups in in-
structional control in the first or last blocks (p values >0.15
corrected). These results indicate that, despite differences in the
persistence of instruction following (see below for a model ac-
count of this effect based on Bayesian hypothesis testing), the
COMT effect was not due to differences in initially recalling or
trusting the instructions, and that the proportion of instructed
choices did not differ significantly by the end of training. There
were no DARPP-32 or DRD2 effects on these training measures
(p values >0.14), nor of any SNP on performance in subjects
given accurate instructions (p values >0.15).

The critical measures are from the test phase, which permits us
to infer the accumulated learned value associated with each of the
stimuli by having participants choose among all previously un-
tested combinations of these stimuli (without feedback). As men-
tioned, our previous computational work (Doll et al., 2009)
explored two plausible neural system mechanisms for instruction
effects on test performance (Figs. 1B, 4A). The override model
postulates that striatal and prefrontal systems compete for con-
trol of behavior, such that enhanced striatal function should lead
to improved sensitivity to the true reinforcement probabilities. In
contrast, the bias model posits that prefrontal instruction repre-
sentations bias activity and learning in the striatum, increasing
learning about outcomes consistent with instructed beliefs and
discounting outcomes inconsistent with such beliefs.

In accordance with the bias model, we found that polymor-
phisms indicative of enhanced striatal DA function were associ-
ated with impaired accuracy on inaccurately instructed test trials
(Fig. 3C). Strikingly, DRD2 T allele carriers, who demonstrated

DARPP-32 COMT
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Figure4. Model predictions and empirical results supporting bias model. A, Neural network
model predictions for BG efficacy on inaccurately instructed stimuli (Doll et al., 2009). “Go-
NoGo” striatal activation indexes the extent to which the striatum assigns a relatively more
positive than negative value to the action associated with selecting the instructed stimulus.
“Go-NoGo” evaluations are initially neutral and are learned through training experience. The
bias model predicts that increased BG function should produce greater distortion of striatal
action values while the override model predicts greater striatal learning of the objective con-
tingencies. B, Algorithmic RL model showing final learned Q values after training that best
explain test phase choices for instructed and uninstructed stimuli. Each unfilled bar reflects the
learned Q value for the subset of participants who had been instructed on the given stimulus.
Uninstructed (filled) bars reflect learned values in subjects not instructed on that stimulus. (Any
individual subject contributes to one unfilled bar and five filled bars.) Q values are uniformly
increased by instruction across stimulus probabilities. €, Supporting the bias model, increased
striatal efficacy was associated with increased confirmation bias parameter estimates leading
to these skewed Q values. DARPP-32 genotype modulated the amplification of instruction-
consistent positive outcomes (cy,), whereas DRD2 genotype modulated the discounting of
inconsistent negative outcomes (c,p). D, Striatal genotypes differentially predict o, and o,
Subjects fit by relatively greater than average differences in a;, than oy (in z-scores), had
relatively greater than average differences in DARPP-32 than DRD2 efficacy as indexed by
z-score difference in number of T alleles (DARPP-32 — DRD2).

better uninstructed learning from negative outcomes, were actu-
ally less likely than C/C homozygotes to avoid inaccurately
instructed (negative) stimuli (F(, 55y = 8.92, p = 0.0039), sug-
gesting that learning in these subjects was biased by top-down
prior expectations. Similarly, DARPP-32 T/T homozygotes, who
showed evidence of relatively better uninstructed reward learning
than C carriers, also showed an impairment in avoiding inaccu-
rately instructed stimuli (F(, ;) = 16.9, p = 0.0001) (potentially
due to amplification of positive learning and/or reduction of neg-
ative learning when selecting the instructed stimulus). Finally,
COMT Met carriers were impaired relative to Val/Val homozy-
gotes in these trials (F, ;,) = 7.31, p = 0.008), consistent with the
hypothesis that COMT modulates the initial maintenance and
top-down modulation of striatal learning. These results and the
computational results below hold over both task iterations and in
the first iteration alone.

Neurocomputational results

To more directly assess the process-level mechanism suggested by
the bias model to account for these effects, we fit subject data with
an RL algorithm that captures some of the key computational
attributes of our network model (Doll et al., 2009). This approach
holds an advantage over the behavioral analysis above in that it
takes into account the trial-to-trial experiences of each subject,
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and extracts parameters that are not directly measurable in the
data but provide a plausible explanation of subjects’ choices.

Replicating our prior work (Doll et al., 2009), model compar-
ison revealed that subject test choices were best captured by al-
lowing for the confirmation bias mechanism (instructed learning
model: Egs. 1, 2,and 3; see Table 2). We assessed the final Q values
(i.e., at the end of training, given the reinforcement history),
which best explain participants’ test phase choices among all
stimulus combinations (Frank et al., 2007; Doll et al., 2009).
These Q values are estimates of the final learned values of each
stimulus.

We first assessed whether the final Q values reflected the rela-
tive reinforcement probabilities of the stimuli, and whether those
of the instructed stimulus were inflated. Indeed, there was a main
effect of both stimulus-reinforcement probability and instruc-
tion on final Q values (p values <0.0001). Furthermore, there was
no interaction (p = 0.6) (Fig. 4 B), indicating that the slopes of the
regression lines for instructed and uninstructed Q values across
stimulus probabilities did not differ. Thus, although the learned
Q value for the instructed stimulus was inflated relative to its
objective reinforcement history, it was still graded (i.e., it was still
sensitive to value). This result further supports the bias model,
where instructions produce a distortion of learned values, but
those values remain sensitive to relative differences in objective
value. If the instructions were implemented as in the override
model, one might expect that the probability of choosing the
instructed stimulus would be insensitive to the value of the alter-
native stimulus with which it is paired, and thus instructed Q
values would be equivalent for all reinforcement probabilities.
Further analyses confirmed that decisions for instructed trials
were best fit by assuming the same softmax choice function
(which is sensitive to the value difference between stimuli) as for
uninstructed trials, only with inflated values for the instructed
stimuli. Worse fits were obtained when we modeled the in-
structed trials with a different choice function (“e-greedy,” in
which choices are only sensitive to the sign of the difference
in value between stimuli, and not to the relative differences in
value; softmax: mean AIC = 176.08, AIC weight = 0.88, ex-
ceedance probability = 1; e-greedy: mean AIC = 180.14, AIC
weight = 0.12, exceedance probability = 0). Thus priors appear
not to alter the choice process after learning, but rather to distort
the initial learning of values.

Given these inflated values, we assessed the confirmation bias
parameters o, and o, that were most likely to have generated
them as a function of each participant’s trial-by-trial sequence of
choices and outcomes. We then used logistic regression to deter-
mine whether these parameters, which are distinguishable from
one another (see Materials and Methods, Identifiability of con-
firmation bias parameters), were diagnostic of genotype. As pre-
dicted by the bias model, enhanced striatal DA efficacy was
associated with greater influence of confirmation bias parameters
on learning. Indeed, the DARPP-32 T/T genotype was associated
with greater oy, than C carriers (Wald x* = 4.52, p = 0.03), with
no effect of oy, (p = 0.4). Strikingly, the opposite pattern was
observed for DRD2 T carriers, who had larger o, than C/C ho-
mozygotes (x> = 5.04, p = 0.025), with no ay, effect (p = 0.17)
(Fig. 4C, Table 1). Moreover, a follow-up test revealed that the
relative difference between oy, and oy, is predicted by relative
differences in the efficacy of DARPP-32 compared to DRD?2 (dif-
ference in T alleles across SNPs) as indicated by an interaction
between these measures (F, 55, = 3.86, p = 0.05) (Fig. 4D).

These results suggest that prior information supports confir-
mation bias learning by modulating the degree to which positive
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Table 1. Parameter estimates
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Gene Alleles oy, (SE) ayp (SE) Qp_yrain (SE) Qp_1rain (SE) ¢ (SE)

DARPP-32 7 5.79(0.7)* 7.35(0.7) 3.15(0.5) 4.24(0.8) 3.09(1.3)
et 3.99(0.5) 6.52 (0.6) 3.15(0.4) 413 (0.6) 1.30 (0.5)

DRD2 T/1,T/C 5.03(0.5) 7.56 (0.5)* 3.32(0.4) 4.86 (0.6)* 2.45(0.8)
[¢/8 3.67 (0.8) 5.25(0.9) 2.96 (0.6) 2.84(0.7) 1.00 (0.4)

omT Met/Met, Val/Met 4.43(0.7) 7.02 (0.6) 3.73 (0.4)% 499 (0.6)* 2.74(0.9)*
Val/Val 478 (0.5) 6.50 (0.8) 2.19(0.3) 2.83(0.6) 0.66 (0.3)

*Difference in parameter estimate between allele groups (p < 0.05).

Table 2. Model comparisons

Model Params AIC_Tst AIC_Tst_Wt P(Exceed_Tst) AIC_Tm AIC_Trn_ Wt P(Exceed_Trn)

Uninstructed 3 185.22 0.065 0.15 744 0.608 1

Instructed 5 177.59 0.915 0.83 71.71 0.136 0

Strong prior 4 182.88 0.02 0.02 76.13 0.256 0

Model comparisons of fits to all subject data. Params, Number of parameters. AIC_Tst, Akaike information criterion values for test phase fits (smaller values indicate better fit). AIC_Tst_Wt, AIC weights for test phase fits of candidate models.
P(Exceed_Tst), Exceedance probability of test phase candidates. AIC_Trn, AIC_Trn_Wt, P(Exceed_Trn), Same measures for training phase fits.
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them. In contrast to the test phase fits,
the training phase results were best ex-
plained by the basic uninstructed model
[consistent with our prior report (Doll
et al., 2009)] (Table 2). This result sug-
gests that any advantage for models rep-
resenting instructions only exists early
in learning before subjects have
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Figure 5.

and negative outcomes are consistent or inconsistent with this
information, in the same neurogenetic pathways that modulate
learning from positive and negative experiences. DARPP-32 ge-
netic function supports relatively better learning from positive
outcomes overall (here and in prior studies), and this same ge-
netic factor appears to modulate the amplification of such learn-
ing when outcomes confirm prior biases. Conversely, and
perhaps more counterintuitively, DRD2 predicts both enhanced
learning from negative outcomes and the discounting of such
outcomes when they betray prior beliefs.

COMT did not modulate the confirmation bias parameters
that explain test phase performance (p values >0.5). We may,
however, expect a gene—gene interaction, where DARPP-32
and DRD?2 effects are dependent on COMT genotype, though
our current sample lacks statistical power to assess this effect.

Our other studies suggest that COMT influences strategic ex-
ploration and acquisition during the early phases of learning
(during which working memory and cognitive control demands
are high) (Frank et al., 2007, 2009). Indeed, the behavioral effects
of COMT in the training phase support this view. To further
investigate this effect computationally, we fit models to account
for the dynamics of the training phase, in which subjects initially
chose according to instructions before eventually abandoning

COMT hypothesis testing effects in training phase. A, When instructions were inaccurate, COMT Met carriers showed
greater persistence in instruction following than Val/Val homozygotes, who more rapidly abandoned inaccurate instructions.
Some subjects completed additional training blocks to reach accuracy criteria before the test phase. Because the sample size
decreases in these later blocks as subjects advance to the testing phase, only the first, second, and last blocks were assessed.
Learning curve shading reflects SE. Data are smoothed over a 10-trial window. B, Schematic of choice rule in Bayesian hypothesis
testing model. For this example distribution, the mean . (best guess) of the instructed Q-value is <<0.5, but the belief distribution
extends well above chance. Assuming a minimal temperature parameter (£) for illustrative purposes, subjects abandoning in-
structed stimulus selection at this point would be best described by a model with ¢ <<0.83, given that the mean is below chance
by 83% of a standard deviation. The red dashed vertical line indicates chance, and the purple dotted horizontal line indicates
variability of distribution. €, COMT Met carriers had greater ¢» parameter estimates than Val/Val homozygotes in the hypothesis
testing model, indicating that they required more evidence on the inaccuracy of instructions before abandoning them.

“learned away” from the instructed re-
sponse, and does not improve the fit be-
yond the penalization incurred for
adding extra parameters. Nevertheless,
prior work suggests that the hypothesis
testing model described below provides
a reasonable fit to a subset of partici-
pants who reliably chose the instructed
stimulus and then abandoned it at some
point (Doll et al., 2009). We tested for
genetic effects across model parameters
based on the a priori bias model predic-
tion that PFC instruction representa-
tions modulate striatal reinforcement
learning. Thus, the greater training phase adherence to instruc-
tion observed behaviorally in COMT Met carriers (Fig. 5A) should
be detectable in more fine-grained, mechanistically precise
computational model parameter estimates. (We only tested
for these effects in the first iteration of training, due to the
additional complications potentially introduced by learning
of instruction quality over task repetitions.)

The best of the models incorporating instructions into the
training phase was the Bayesian “hypothesis testing” model (see
Materials and Methods and Fig. 5B). This model produced a
better fit of inaccurately instructed subject data than the in-
structed learning model (Table 3). Notably, COMT Met allele
carriers had larger estimated ¢ parameters than Val/Val homozy-
gotes (Wald x* = 3.73, p = 0.05) (Fig. 5C). There were no effects
of either striatal gene on ¢ (p values >0.2). This result provides
support to the notion that during training, subjects follow in-
structions until sufficient evidence has accumulated that they are
inaccurate, and that Met allele carriers required more evidence
than Val/Val homozygotes before they were willing to abandon
the instructions. This finding is consistent with the behavioral
result that increased PFC efficacy increases the persistence in instruc-
tion following during learning (Fig. 5A), and contrasts with the no-
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Table 3. Training phase model comparisons for iteration 1inaccurately instructed
subjects

Model Params AIC_Tm AIC_Trm_Wt P(Exceed_Trn)
Uninstructed 3 71.72 0.6008 1
Instructed 5 74.66 0.1386 0
Hypothesis testing 3 7431 0.1648 0
Strong prior 4 75.4 0.0957 0

Abbreviations are as in Table 2.

tion that subjects with better working memory should be better able
to falsify the hypothesis that the instructions are correct. Other stud-
ies have shown an advantage for Val alleles in the flexible gating of
alternative hypotheses (Krugel et al., 2009; de Frias et al., 2010),
consistent with predictions of computational models of COMT and
PFC (Durstewitz and Seamans, 2008).

Discussion
Psychological experiments provide many examples of confirma-
tion biases. Individuals with divergent prior beliefs are likely to
interpret the same evidence as support for different conclusions
(Lord et al., 1979; Nickerson, 1998). Evidence challenging preex-
isting views or beliefs is discounted, while evidence supporting
these views is overemphasized. These effects apply to many do-
mains of belief, including science, politics, and astrology, and
may explain the persistent tendency to hold seemingly irrational
beliefs in the face of contradictory evidence (Nickerson, 1998).
We found that when the evidence consists of reinforcement
probabilities, individual differences in confirmation bias are pre-
dicted by the same dopaminergic genes involved in the learning
process. Although there is increasing evidence that dopaminergic
genes are predictive of individual differences in reinforcement
learning (Cohen et al., 2007; Frank et al., 2007, 2009; Klein et al.,
2007; Jocham et al., 2009; Krugel et al., 2009), the role such genes
play in integrating explicit prior beliefs (here in the form of com-
puterized instructions) with experience has not been investi-
gated. We tested between two candidate neural models of
instructional control based on prior behavioral and theoretical
work (Biele et al., 2009; Doll et al., 2009). Results support the view
that representations of prior information, maintained by PFC,
exert their influence by modifying the striatal learning process in
accord with a confirmation bias. Thus, individuals with enhanced
statistical reinforcement integration processes are paradoxically
hindered by their own strengths when reinforcing or punishing
actions for which they have strong, but invalid, prior beliefs.
Parameter estimation revealed that the tendencies to over-
weight positive and to discount negative evidence are separately
modulated by DARPP-32 and DRD2 genotypes, respectively.
Our network model (Doll et al., 2009), building on previous
models of uninstructed BG reinforcement learning (Frank,
2005), suggests that top-down biases operate to modify learning
in the same neural pathways as uninstructed learning. The
DARPP-32 findings we present fit similarly with the previously
reported role for this SNP in reward learning (Frank et al., 2007,
2009), with T/T homozygotes having a performance advantage
over C carriers in uninstructed tasks. We submit that this poly-
morphism should exert its effects via allele-dependent differences
in the abundance of intracellular DARPP-32 mRNA (Meyer-
Lindenberg et al., 2007). Available evidence suggests that
DARPP-32 accumulates in the nucleus following reward, and
facilitates reward learning via modulation of synaptic plasticity in
the D,-mediated striatonigral pathway (Calabresi et al., 2000;
Svenningsson et al., 2004; Shen et al., 2008; Stipanovich et al.,
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2008), which is activated by phasic dopamine bursts that accom-
pany positive prediction errors (Schultz, 1998). Our instructed
neural models suggest that input from PFC to striatonigral/D,
cells should bolster LTP along this pathway on trials with
instruction-consistent feedback (Doll et al., 2009).

Similarly, the DRD2 SNP assessed here has been shown to
affect learning from punishment in both forced choice and
reaction-time tasks (Frank et al., 2007, 2009), and its effects are
separable from those of other DRD2 SNPs (Frank and Hutchi-
son, 2009). Our models posit that these effects are due to in-
creased sensitivity of striatopallidal cells to DA pauses that
accompany negative prediction errors (Schultz, 1998), disinhib-
iting D, cells and allowing for avoidance learning to occur
(Frank, 2005). In vitro synaptic plasticity studies support this
claim, demonstrating LTP facilitation in striatopallidal cells when
D, receptors are not stimulated (Shen et al., 2008). Subjects car-
rying T alleles, exhibiting an advantage in avoidance learning
from negative outcomes as in prior studies, actually showed an
increased tendency to select inaccurately instructed stimuli. This
finding is surprising given that inaccurate instruction produced
the same negative outcomes DRD2 carriers are normally so
adroit at integrating. Model parameter estimation suggests that
these subjects were more likely to dismiss negative outcomes
when they are inconsistent with prior beliefs. One possibility is
that the top-down prefrontal input prevents the D, cells from
being disinhibited by dopamine dips during negative prediction
errors (Doll et al., 2009). Greater DRD2 function would then be
associated with greater long-term depression, rather than poten-
tiation, in the striatopallidal pathway (Shen et al., 2008). As a
result, prior biases would promote unlearning along this path-
way, allowing the positive evidence to dominate in other trials.

Given that the bias and override models both predict a role for
PFC in maintaining instructions in working memory and facili-
tating instructional control, the COMT findings do not discrim-
inate between the models as do those of striatal genotypes.
Nevertheless, the findings demonstrate a rare advantage for the
Val/Val genotype, which was associated with speeded ability to
learn when the instructions were false during the learning phase.
Met allele carriers showed greater susceptibility to general confir-
mation bias during this initial phase, requiring greater confi-
dence that reinforcement probabilities of the instructed stimulus
was below chance before abandoning it (Fig. 54, C).

Despite our strong a priori hypotheses on the candidate neu-
rocomputational substrates of instructional control, the correla-
tional nature of these genetic data cannot rule out the possibility
that the SNPs we assessed are unrelated to our interpretation of
the behavioral effects. It is in principle possible that the SNPs
discussed are associated with some unconsidered model of in-
structional control. For example, enhanced BG and PFC efficacy
might support “obedience” to the experimenter (despite the fact
that the instructions were given by the computer). We view such
a hypothesis as unlikely for several reasons. First, previous work
has shown effects of these genes on uninstructed learning tasks,
which are unlikely to exert substantial demands of obedience.
Second, final Q values show a relatively uniform distortion of
value across stimulus probabilities (Fig. 4 B). If subjects were sim-
ply obeying the instructions, best-fit Q values for instructed stim-
uli should be maximal, regardless of their probability of being
correct. Third, the override model specifies a mechanism that
might be termed “obedience,” where behavior obeys the instruc-
tions as represented in PFC, despite evidence accumulated by the
BG that the instructions are inaccurate. The pattern of genetic
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results was the opposite of what would be expected if this model
were correct.

Though our results suggest that better prefrontal and striatal
function leads to a poorer assessment of “objective” reality, we
submit that the ability to modulate evaluation of actions by ex-
plicit signals such as verbal instruction is typically adaptive, al-
lowing the instruction follower to reap the benefits of others’
experience. Further, the same frontal mechanisms for represent-
ing prior hypotheses may support hypothesis testing (Badre et al.,
2010) and Bayesian statistical integration processes in which
prior beliefs are fundamentally incorporated into the interpreta-
tion of evidence in the support of a hypothesis. These mecha-
nisms might permit one to search among candidate causal
models to determine that which best describes the environment
(Waldmann and Martignon, 1998). However, it is more difficult
to cast the striatal learning mechanisms explaining test perfor-
mance as part of an optimal computation. First, Bayesian learning
models do not fit the behavioral data as well as the reinforcement
prediction error models used here [see Table 2 and Doll et al.
(2009)]. Second, by the end of training, the majority of partici-
pants had effectively learned to stop choosing the instructed
stimulus, implying that they abandoned the prior hypothesis.
Nevertheless, these individuals responded in the test phase as if
the value of the instructed stimulus had been inflated. Together
with the genetic results, these findings suggest that the striatal
learning process is modulated by prior expectations, and that the
resulting associative weights cannot be easily “undone” after the
prior is rejected. These findings may have implications for disor-
ders of frontostriatal circuitry, which are often associated with
irrational compulsions and maladaptive behaviors that are diffi-
cult to unlearn.

Many contingencies are difficult to learn by experience be-
cause they play out over extended temporal windows (e.g., the
benefits of saving for retirement), are hard to observe (e.g., levels
of harmful pesticides in food), or can provide rewards in the short
term but punishments in the long term (e.g., the “contingency
trap” laid by drugs of abuse). In such cases, altering the effects of
feedback to confirm the validity of explicit signals is desirable.
Future research into the neurocomputational mechanisms sup-
porting such distortion of learning (and individual differences
therein) should yield valuable insight into why explicit signals
influence behavior in some cases, and do not in others.
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