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Sequencing of multiple mammalian ge-
nomes, together with the development of
whole-transcriptome profiling technolo-
gies, have opened the door to an unprec-
edented ability to study gene expression in
the brain. Transcriptomics refers to a class
of high-throughput methods, such as mi-
croarray (gene chip), serial analysis of gene
expression, and, more recently, whole-
transcriptome sequencing (RNA-Seq), which
enable measurement of the abundance of
tens of thousands of transcribed RNAs in
a given sample. Before the development of
these technologies, studies of gene expres-
sion and function in the brain were re-
stricted to targeted assay of a relatively
small number of genes for any given
study. Now it is possible to obtain a more
panoramic view of gene expression, and
potentially to understand the molecular
underpinnings of brain function from the
viewpoint of gene networks rather than
from a viewpoint dominated by the effects
of single genes.

Complicating this enterprise is the fact
that the brain is comprised of a famously
diverse menagerie of cell types, limiting
the utility of data obtained from tissue ho-
mogenates. For a given experimental con-
dition, gene expression changes occurring
in rare cell types may go undetected, as
they contribute to only a small fraction of
the total tissue RNA. Additionally, genes

may be regulated in opposing directions
in different cell types, thereby appearing
static in composite data. Attempts at de-
convolving tissue expression data into
independent contributions from constit-
uent cell types are computationally chal-
lenging and the results are uncertain.
Hence, directly measuring the transcrip-
tomes of specific cell types is crucial to
understanding the intracellular gene net-
works that underlie cellular phenotypes.

Cell type-specific transcriptomics re-
quires completion of four separable tasks.
First, the cell type of interest must be iden-
tified and (typically) labeled; second, RNA
from the targeted cells must be extricated
from that in surrounding cell types; third,
because the resulting RNA is typically low
in abundance, it must be amplified; and
fourth, the isolated sequences must be
identified through sequencing or hybrid-
ization (i.e., microarray) methods. Recent
reviews have focused on the problems of
cell identification (Miyoshi and Fishell,
2006; Kuhlman and Huang, 2008; Ma-
disen et al., 2010), and we direct the read-
ers’ attention to a number of online
resources that provide detailed informa-
tion about available cell type-specific re-
porter and cre-driver mouse lines (Table
1). Briefly, cell types are commonly iden-
tified by electrophysiological properties
using whole-cell patch-clamp recordings,
by projection target using retrograde or
anterograde tracers, by cell type-specific
markers using immunostaining, or through
transgenic labeling approaches. The choice
of amplification strategies and final readout
are interrelated and subject to a number of
technical concerns that are outside the scope
of this short review. Although the current
majority of cell type-specific transcriptomic

data comes from microarray studies, RNA-
Seq is clearly the next frontier. In particular,
RNA-Seq affords a more straightforward
ability to study genetic variation, uncover
previously uncharacterized transcriptional
start and stop sites and splice variants, and
discover novel noncoding RNAs (Guttman
et al., 2010). However, before performing
either microarray or RNA-Seq experiments,
the considerable obstacle of tissue heteroge-
neity must be overcome. Thus, we focus
here on methods for extracting cell type-
specific RNAs from mammalian brain tis-
sue (although similar approaches have also
been applied to nonmammalian species).
The typical workflow for each of the re-
viewed methods is depicted in Figure 1,
though this representation is by no means
exhaustive of all conceivable experimental
designs, and in some cases multiple purifi-
cation methods may be sequentially applied
(Cahoy et al., 2008).

Often the preference (if not necessity)
for using a given cell type-specific mRNA
isolation technique is closely wedded to
the means of cellular identification being
used. For example, a neuron’s electro-
physiological properties, characterized in
whole-cell patch-clamp recordings from
acute slice preparations, are frequently
used to classify neural cell types. Histori-
cally, there has been considerable interest
in reducing a neuron’s electrophysiologi-
cal properties to the specific complement
of ion channels it expresses, and in finding
genetic signatures that correlate with fir-
ing phenotype in general. This led to the
development of postrecording, single-cell
profiling techniques, in which the cytosol
of recorded cells is aspirated through the
patch pipette, collected in a buffer, and the
mRNA is subsequently isolated (patch/as-
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pirate) (Surmeier et al., 1996; Martina et
al., 1998). Given the limited amount of
RNA contained in a single cell (5–10 pg),
early attempts were only able to profile a
small number of candidate genes using
reverse-transcription followed by PCR.
Over the years, improvements in mRNA
amplification and PCR techniques have
expanded the scope of the patch/aspirate
technique to profiling tens to hundreds of
genes using multiplex PCR (Toledo-Rodri-
guez et al., 2004) and tens of thousands of
genes using microarrays and sequencing
(Kurimoto and Saitou, 2010; Ozsolak et al.,
2010a,b; Subkhankulova et al., 2010). How-
ever, due to the small amounts of collected
RNA, single-cell methods are generally
more prone to producing false negatives
(described in more detail below), particu-
larly for low-abundance transcripts, and the
profiling results are often less reproducible
than transcriptional profiles obtained using
pools of cells. The extent to which reduced
reproducibility also reflects biological and
not just technical variability remains un-
clear (Raj and van Oudenaarden, 2009;
Janes et al., 2010). Given these difficulties,
much of our current understanding of the
genetic diversity of neural cell types has
come from studies predominately using
mRNA collected from pooled cells (de-
scribed below). Moreover, advances in
transgenic engineering have made it pos-
sible to consistently target electrophysi-
ologically defined cell types (Feng et al.,
2000; Oliva et al., 2000; Chattopadhyaya
et al., 2004), which offers an alternative
strategy for discovering genes underlying
electrophysiological phenotypes (Okaty et
al., 2009).

Laser-capture microdissection (LCM)
and closely related microdissection tech-
niques such as laser microbeam microdis-
section or laser-directed microdissection
(LDM) (Rossner et al., 2006) use a laser to
excise cells of interest (identified under a
microscope) from mounted thin-tissue
sections that have been either fixed or fro-
zen. The methods differ in the type of laser
being used and the specific manner in
which targeted cells are extracted. In

LCM, a low-power infrared laser beam
melts selected small (�7.5 �m) regions of
a plastic membrane on the surface of a
tissue section that then adhere to the tar-
get cell(s) upon cooling. The sheet is then
peeled away from the surface of the tissue
section, taking with it the adherent cells.
An obvious drawback of this method is
that it does not allow the user to tailor the
laser beam to the particular morphology
of any given cell, and thus some cellular
domains may be excluded. Additionally,
closely apposed off-target cells, such as
glia, may become attached to the plastic
film, resulting in contamination.

Other laser-based microdissection sys-
tems, such as the AS LDM system (Leica)
overcome the first limitation by using a
much narrower ultraviolet laser (�0.5 �m),
allowing the user to directly trace and cut the
outline of the target cell; however, closely
apposed glia are often difficult to detect vi-
sually, particularly if they are beneath the

target cell. Despite these drawbacks, LCM
and LDM have greatly facilitated cell type-
specific assays of mRNA from human post-
mortem tissue, as they are ideally suited for
obtaining cells from fixed or frozen tissue
preparations.

Given that tissue fixation can degrade
nucleic acids, and the heightened risk of
contamination when extracting cells from
intact tissue, cellular dissociation-based
methods may be better suited for studies
in which live tissue is available. As a first
step to performing fluorescence-activated
cell sorting (FACS), immunopanning (PAN),
and manual cell sorting (Manual), acutely
dissected brain tissue is digested in a pro-
tease solution containing artificial CSF
(ACSF) and in some cases ion channel and
receptor blockers that promote the health
of dissociated cells (Hempel et al., 2007).
In the Manual technique, dissociated cells
are deposited in a small Petri dish and
viewed under a fluorescence microscope.

Figure 1. Typical workflow of a cell type-specific transcriptional profiling experiment. Each node represents a key step and the
arrows indicate the sequence of steps. The reviewed purification methods are indicated by colored nodes. Notice that there are
multiple possible paths for some methods.

Table 1. Online resources cataloguing available cell type-specific reporter and driver mouse lines

Resource URL Available lines

http://transgenicmouse.alleninstitute.org BAC Cre lines and reporters. ISH/IHC atlas available for expression patterns.
http://www.bactrap.org Resources for TRAP. Site in preparation.
http://www.credrivermice.org Knock-in Cre, enhancer trap Cre, enhancer trap Tet and various XFP transgenic lines. Expression pattern viewable in atlas images.
http://www.gensat.org BAC GFP transgenics and BAC Cre lines. Expression atlas available.
http://cre.jax.org/index.html Cre/loxP lines repository.
http://jaxmice.jax.org/research/flp_frt.html Flp/Frt lines repository.
http://www.mshri.on.ca/nagy Nagy Lab Cre driver lines database. Expression pattern annotated by anatomical structure/cell types.

BAC, Bacterial artificial chromosome; ISH, in situ hybridization; IHC, immunohistochemistry.
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Fluorescent cells are aspirated using a
small glass pipette, washed in ACSF in a
series of clean dishes to ensure purity, and
finally collected in a cell lysis buffer. RNA
collected from even a single manually
sorted cell can be amplified using a two-
step in vitro transcription amplification
method and yield sufficient quantities of
labeled RNA for hybridizing to microar-
rays (�10 �g). However, comparison be-
tween the microarray present call, or the
percentage of probes on the Affymetrix
chip that register a signal level above an
algorithmically determined threshold for be-
ing expressed in a given experiment, and
the number of manually sorted cells used
as input demonstrates that a minimum of
30 cells is generally required to achieve the
highest reproducible sensitivity, indicat-
ing that this level of input minimizes false
negatives (Fig. 2; note the saturating pres-
ent call between 30 and 60 cells, though
the precise number of cells and the result-
ing amount of collected RNA and present
call depend on the particular cell type).
Furthermore, detecting a single nonfluo-
rescent cell out of a population of 30 –100
dissociated cells under a microscope is rel-
atively straight forward, ensuring that
false positives resulting from contaminat-
ing cell types are kept to a minimum.
Thus, Manual sorting is particularly well
suited to profiling rare and low-abundance
cell types, as well as more plentiful cell
populations. However, a high level of pro-
ficiency is generally required on the part
of the sorting technician.

FACS requires a flow cytometry plat-
form and can typically sort thousands of
cells in a relatively short amount of time,
provided the proportion of the labeled cell
is reasonably high (�1 h with �0.1% la-
beled cells) (Lobo et al., 2006; Cahoy et al.,
2008; Marsh et al., 2008). Streams of dis-
sociated cells are ushered into a fluidic
channel where a fluorescence detector
sorts cells based on user-specified criteria.
This is often achieved by forming a drop-
let that only contains a single cell just after

it has passed through the beam of the flu-
orometer. A charge is then applied to the
droplet, depending on whether or not the
target spectrum was detected, and the cell-
containing droplet is then diverted into
the appropriate receptacle. Multiple exci-
tation lasers and fluorescence detectors
can be incorporated into a single flow cy-
tometry platform, allowing for simultane-
ous detection of multiple spectra, and
therefore multiple labeled cell markers.
This is especially useful given that many
cell types can only be identified by combi-
natorial expression of multiple genes,
rather than expression of a single, unique
marker gene. Additionally, properties of
the light scatter may be used to infer cell
size, morphology, and intracellular com-
plexity (granularity); thus, FACS allows
for multiparametric analysis across an ar-
ray of cellular properties. A drawback of
FACS sorting is that it is often too stressful
for mature neurons (Arlotta et al., 2005;
Lobo et al., 2006; Heiman et al., 2008) and
special care must be taken to ensure that
neurons remain healthy (Lobo et al.,
2006). Given that the Manual method has
been successfully implemented for ac-
quiring microarray data from numerous
cell types from mature mice (Sugino et al.,
2006), the high-throughput nature of
FACS may be more of an advantage in ap-
plications that require a greater number of
starting cells than required for microar-
rays, such as assays of genomic DNA, like
chromatin immunoprecipitation.

Unlike FACS and Manual, PAN does
not rely on a fluorescent signal to detect
specific cell populations, and therefore
may be used to purify unlabeled cell types
(Barres et al., 1988, 1992). PAN uses anti-
bodies raised against cell type-specific
surface proteins to select various subsets
of cells from a heterogeneous cell suspen-
sion. Panning plates are first coated with
antibodies and the dissociated cells are de-
posited on the plate for 30 min to 1 h to
allow sufficient time for antibodies to
bind. The plate is then washed and either
the adherent or nonadherent cells (de-
pending on the target population) can
then be used for downstream assay. Often,
multiple plates with multiple antibodies
are necessary to sequentially enrich the
target population of cells (Barres et al.,
1988, 1992; Cahoy et al., 2008). Thus,
PAN can be more time consuming than
the other techniques and potentially ex-
poses dissociated cells to more reagents,
both of which could in theory induce ab-
errant transcriptional responses. Another
important consideration is that a given
cell type is only amenable to immunopan-

ning purification if it can be identified by a
unique cell surface antigen, and if a suit-
able antibody exists for that antigen. Ulti-
mately, the purity of the resulting cell
population depends on the specificity of the
antibody. Alternatively, an exogenously de-
rived cell surface antigen for which a highly
specific antibody exists may be introduced
to a particular population of cells through
retrograde transport of the injected antigen
adsorbed to fluorescent beads (Dugas et al.,
2008), or conceivably by introduction of an
exogenous epitope through viral transfec-
tion or transgenic methods.

Whereas LCM, FACS, Manual, and
PAN harvest total RNA from pooled sorted
cells, translating ribosome affinity purifica-
tion (TRAP) immunoprecipitates labeled
polysomes directly from tissue homoge-
nates obtained from special transgenic mice.
These mice are engineered using bacterial
artificial chromosomes (Shizuya et al., 1992;
Gong et al., 2003) to target an EGFP-L10a
ribosomal transgene to restricted cell popu-
lations in the CNS (Doyle et al., 2008;
Heiman et al., 2008). Thus, TRAP detects
only ribosome-associated mRNA, and
therefore only transcripts that are actively
being translated, rather than the full popu-
lation of transcribed RNA. Data obtained
from some of these lines appear to be some-
what prone to background contamination
and post hoc cleanup of the data must be
applied (Dougherty et al., 2010). However,
TRAP and another closely related method
called RiboTag (Sanz et al., 2009) signifi-
cantly improve on pre-existing translational
profiling techniques, such as polysome frac-

Figure 2. Percentage microarray present call as a function
of the number of manually sorted cells used as input.
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Figure 3. Box-and-whisker plots depicting contamination
indices for LCM, TRAP, FACS, PAN, and Manual methods.
Briefly, contamination indices were computed using the ex-
pression levels of well defined marker genes for GABAergic
cells (Slc32a1, Gad1, Gad2), astrocytes (Aqp4, Gfap, Fgfr3,
Slc1a2, Gjb6), and oligodendrocytes (Mbp, Sox10, Mag, Mog)
in non-GABAergic, nonastrocyte, and nonoligodendrocyte
samples. A contamination index of 1 indicates expression of
marker genes at the same level in the target population (e.g.,
non-GABAergic) as in the nontarget population (e.g., GABAe-
rgic), whereas 0 indicates no expression. The bottom and top
edges of each box indicate the 25th and 75th percentiles, re-
spectively; the red line indicates the median value; and the
whiskers indicate the minimum and maximum values not
considered outliers. The red cross indicates an outlier (a data
point �1.5 times the interquartile range outside the box).
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tionation (Darnell et al., 2009), by adding
cell type-specificity and offering consider-
ably greater throughput. Detecting the pres-
ence of polysomal mRNA for a given gene is
a stronger indicator of protein expression
than the detection of the mRNA itself, and
thus TRAP offers an advantage over other
methods in this regard. Conversely, the in-
ability to detect noncoding RNAs using the
TRAP method may also be construed as a
limitation insofar as noncoding RNAs are
critically important for gene regulation.
Lastly, TRAP and RiboTag require the use of
special mouse lines, whereas the other
methods are currently applicable to a wider
array of cell types; however, several new
TRAP- and RiboTag-compatible mouse
lines are in development. Importantly, Ri-
boTag mice and the newer generation of
TRAP mice incorporate cre-responsive ri-
bosomal transgenes, which may be crossed
with cell type-specific cre-driver mice, pro-
viding a modular experimental design strat-
egy that will greatly expand the applicability
of ribosomal pull-down methods.

Recently, we reanalyzed all of the publi-
cally available mouse brain, cell type-spe-
cific microarray data (Affymetrix platforms
only) obtained by each of the described
methods (with the exception of patch/aspi-
rate) to quantify potential differences in re-
peatability, contamination, and stress effects
(Okaty et al., 2011). We found that all meth-
ods demonstrated a comparably high de-
gree of repeatability as measured by the
correlation between biological replicate
samples (�0.94), but we detected signifi-
cant differences in the levels of contamina-
tion. Using the expression levels of well

established cell-type-specific marker genes
for GABAergic cells, astrocytes, and oligo-
dendrocytes to calculate contamination in-
dices for non-GABAergic, nonastrocyte,
and nonoligodendrocyte cell types profiled
by each method, we found that LCM and
TRAP samples showed significantly higher
levels of contamination than FACS, PAN,
and Manual. On average, the effects were
higher in LCM samples and contamination
of TRAP samples was highly variable, indi-
cating that the level of contamination may
vary depending on the cell type and/or
transgenic mouse line being used. A sum-
mary of these results can be found in Figure
3 (note that using an expanded list of genes
selected by unsupervised clustering to calcu-
late contamination indices did not alter the
key finding, namely that LCM and TRAP
samples showed significantly higher levels of
contamination). Although comparisons
were largely made between different cell
types, in a handful of cases common cell
types were profiled by different methods,
and in each case LCM or TRAP data showed
evidence of higher contamination than data
acquired by other methods, suggesting that
differential contamination stems from the
purification method, rather than the cell
type. Also, differences in the translational
activities of different transcripts may be re-
flected in TRAP versus non-TRAP data. Ex-
pression of noncoding RNAs, for example,
was detected in LCM-, Manual-, FACS-,
and PAN-purified samples but not in TRAP
samples, as expected. We also detected
heightened expression of immediate early
genes, stress-related genes, and apoptosis
genes in some PAN samples; however, the

effect was modest. Additional sources of dif-
ferences observed in the data may be differ-
ential sensitivities between methods or
more idiosyncratic differences deriving
from other experimental conditions rather
than the purification methods per se.

Ultimately, the suitability of each
method for use in a given study is a func-
tion of the particular goals of the study,
the cell type(s) of interest, and the avail-
ability of resources, such as equipment
and/or mouse lines (Tables 1, 2). For in-
stance, all of the discussed methods can
be used to detect enrichment of strong
marker genes for a given cell type. How-
ever, comparison between different con-
ditions for the same cell type, such as a
disease state, activity deprivation, or other
perturbations in which expression differ-
ences are generally smaller than between-
cell type differences requires a method
achieving high purity to ensure that con-
tamination will not skew the results. Ad-
ditionally, not all methods are equally
compatible with all cell populations. Cells
identified by retrograde or anterograde
tracer injection or by viral transfection of
a fluorescent reporter construct are more
readily collected by LCM, FACS, PAN, or
Manual, and only LCM and Manual are
well suited to small, sparsely labeled
populations. However, for assays re-
quiring greater amounts of genetic ma-
terial, FACS, PAN, and TRAP may be
more appropriate. Regardless of the
sorting method used, cell type-specific
transcriptomic data are a valuable re-
source to the neuroscience community.

Table 2. An overview of cell type-specific mRNA purification methods reviewed from the literature

Method
Preamplification yield of
total RNA Pros Cons References

Patch/aspirate 5–10 pg (1 cell) Allows direct comparison between
electrophysiology and gene expression
at the single-cell level

Lowest preamplification yield, potentially leading
to false negatives and low reproducibility

(Subkhankulova et al., 2010; Toledo-Rodriguez
et al., 2004)

LCM 1–10 ng (100 –700 cells) Readily applied to preserved human
postmortem tissue

Tissue fixation degrades mRNA (Chung et al., 2005; Rossner et al., 2006;
Pietersen et al., 2009)

Manual 0.25–1 ng (30 –100 cells) Compatible with dim, sparsely labeled
cell populations

Low preamplification yield (Sugino et al., 2006; Hempel et al., 2007; Okaty
et al., 2009)

FACS 10 –500 ng (103-105 cells) Highest preamplification yield Processing samples from mature animals requires
optimization to overcome stress of procedure

(Arlotta et al., 2005; Lobo et al., 2006; Cahoy et
al., 2008; Marsh et al., 2008; Molyneaux et
al., 2009)

Immunopanning 30 –50 ng (103-105 cells) Compatible with unlabeled cells Cell type must be distinguishable by a surface
protein

(Barres et al., 1988, 1992; Cahoy et al., 2008)

Procedure often requires multiple iterations of
plating and antibody reaction steps which may
result in stress effects

TRAP/RiboTag �15 ng (�103 cells) Targets actively translated transcripts Requires specific transgenic mouse lines (Doyle et al., 2008; Heiman et al., 2008; Sanz et
al., 2009; Dougherty et al., 2010)

Incompatible with detection of noncoding RNAs

Preamplification yield of total RNA indicates the reported quantity of RNA that served as input to the two round in vitro transcription amplifications used by each method. Cell numbers were either given explicitly in the references or were
estimated from the amount of RNA, using 10 pg per cell as an approximation (however, in general, the quantity of total RNA in a given cell varies by cell type). Pros and Cons are by no means complete, but are provided to illustrate some of
the key differences between methods, particularly as they may relate to deciding which method is best suited to a given scientific question.
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