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Temporal cortical neurons are known to respond to visual dynamic-action displays. Many human psychophysical and functional imaging
studies examining biological motion perception have used treadmill walking, in contrast to previous macaque single-cell studies. We assessed
thecodingoflocomotioninrhesusmonkey(Macacamulatta)temporalcortexusingmoviesofstationarywalkers,varyingbothformandmotion
(i.e., different facing directions) or varying only the frame sequence (i.e., forward vs backward walking). The majority of superior temporal sulcus
and inferior temporal neurons were selective for facing direction, whereas a minority distinguished forward from backward walking. Support
vector machines using the temporal cortical population responses as input classified facing direction well, but forward and backward walking
less so. Classification performance for the latter improved markedly when the within-action response modulation was considered, reflecting
differences in momentary body poses within the locomotion sequences. Responses to static pose presentations predicted the responses during
the course of the action. Analyses of the responses to walking sequences wherein the start frame was varied across trials showed that some
neurons also carried a snapshot sequence signal. Such sequence information was present in neurons that responded to static snapshot presen-
tations and in neurons that required motion. Our data suggest that actions are analyzed by temporal cortical neurons using distinct mechanisms.
Most neurons predominantly signal momentary pose. In addition, temporal cortical neurons, including those responding to static pose, are
sensitive to pose sequence, which can contribute to the signaling of learned action sequences.

Introduction
Primates recognize actions of their own and different species, which
is essential for survival and social behavior. Visual temporal cortex
has been implicated in the coding of actions by macaque single-cell
(Oram and Perrett, 1994, 1996; Vangeneugden et al., 2009; Singer
and Sheinberg, 2010), macaque (Nelissen et al., 2006) and human
functional imaging (Grossman et al., 2000; Vaina et al., 2001;
Beauchamp et al., 2003; Puce and Perrett, 2003; Jastorff and Orban,
2009), and lesion studies (Saygin, 2007). Indeed, the superior tem-
poral sulcus (STS) and inferior temporal cortex (IT) can provide a
visual description of actions to be used by other regions to infer
intention, action goals, etc. (Rizzolatti and Sinigaglia, 2010).

Models of action recognition (Giese and Poggio, 2003; Schin-
dler and Van Gool, 2008) suggest that actions can be described
using either kinematic or form cues. Previously, we demon-

strated that motion- and form-sensitive STS/IT neurons can rep-
resent similarities among actions, suggesting contributions from
both cues to action coding (Vangeneugden et al., 2009). In that
study, action patterns were simple and restricted to one limb,
limiting the scope of its conclusions. Furthermore, it was unclear
whether form-sensitive neurons additionally carried an action
sequence signal, as postulated by computational work (Giese and
Poggio, 2003; Lange and Lappe, 2006).

Locomotion consists of rather complex motion patterns in-
volving simultaneous movements of all limbs and is widely used
to study mechanisms of biological motion at the computational
and psychophysical level. Although discrimination between
rightward and leftward walkers (i.e., facing direction) can be
achieved using different body poses, differentiating between for-
ward and backward walking requires an integration of successive
body poses (Beintema and Lappe, 2002; Lange and Lappe, 2006) or
motion information, since the body poses are identical. Here, we
examine how well macaque STS/IT neurons can discriminate be-
tween forward and backward walking, and thus signal pose sequence
instead of mere momentary pose. For comparison, we parametri-
cally manipulated facing direction, using controlled displays based
on motion-captured human walkers. The complexity of the displays
was a compromise between that of difficult-to-control, fully tex-
tured body images and easily controllable, but abstract, point light
displays used in human biological motion studies (Blake and Shif-
frar, 2007) but that might not be easily perceived as biological by
macaques (Vangeneugden et al., 2010).
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As in human psychophysical studies, we used stationary walk-
ers (i.e., walking as if on a treadmill). This contrasts with previous
macaque studies in which walkers moved across the display
(Oram and Perrett, 1994, 1996; Jellema et al., 2004; Barraclough
et al., 2006; Jellema and Perrett, 2006), adding a strong transla-
tory motion and spatial component that might engage different
mechanisms. In a previous psychophysical study using the same
stimuli, monkeys required a lengthy training to discriminate for-
ward from backward locomotion (Vangeneugden et al., 2010).
Here, we examine the single-cell STS/IT responses in these
trained animals to the locomotion stimuli. Furthermore, we used
machine-learning classification tools to analyze the signal that
neuronal populations carry concerning locomotion direction,
thus providing insight into what it is that IT/STS neurons tell
other regions about visual actions.

Materials and Methods
Subjects and surgery
Two female rhesus monkeys (Macaca mulatta; monkey M1, 6 kg; M2, 7
kg) participated in the single-cell recording experiments. These are two
of the three subjects trained extensively in the discrimination of some of
the stimuli used in this study (see below) (Vangeneugden et al., 2010).
Each monkey had a custom-made plastic head post attached to the skull.
Guided by preoperative structural magnetic resonance imaging of each
monkey’s head [3T Siemens Trio; magnetization-prepared rapid-
acquisition gradient echo (MPRAGE) sequence; 0.6 mm resolution], we
implanted a plastic recording chamber over the left hemisphere, dorsal to
the rostral temporal cortex, allowing a vertical approach to the rostral
STS and lateral convexity of IT. The recording chambers (Crist Instru-
ment) were positioned 10 mm anterior to the auditory meatus and 24
mm lateral to the midline for M1 and 13 mm anterior and 21 mm lateral
for M2. Between recording sessions, we repeatedly verified recording
locations by scanning the brain (MPRAGE sequence; 0.6 mm resolution)
while copper sulfate-filled glass tubes were inserted into the Crist grid at
locations of interest. These magnetic resonance imaging (MRI) images
were then compared with depth readings of the white and gray matter
transitions and of the base of the skull obtained during the single-cell
recording sessions. This procedure allowed us to assign neurons to the
appropriate bank of the STS or to the lateral convexity of IT.

During the course of the experiments, the animals were kept on a con-
trolled fluid intake schedule while dry food was available ad libitum in the
home cage. The surgeries were performed under aseptic conditions and
isoflurane gas anesthesia. All animal care and experimental and surgical
procedures followed national and European guidelines and were ap-

proved by the Katholieke Universiteit Leuven Ethical Committee for
animal experiments.

Stimulus apparatus and recordings
During the single-cell recordings sessions, the monkeys were seated in
custom-made primate chairs with their heads fixed. Standard extracellu-
lar single-unit recordings were performed with epoxylite-insulated tung-
sten microelectrodes (FHC; in situ measured impedance, �1 M�) using
techniques as described previously (Vangeneugden et al., 2009). Briefly,
the electrode was lowered with a Narishige microdrive into the brain
using a guide tube that was fixed in a standard Crist grid positioned
within the recording chamber. After amplification and filtering, spikes of
a single unit were isolated on-line using a custom amplitude- and time-
based discriminator.

The position of one eye was continuously tracked by means of an
infrared video-based tracking system (SR Research EyeLink; sampling
rate, 1 kHz). Stimuli were displayed on a cathode ray tube display (Philips
Brilliance 202 P4; 1024 � 768 screen resolution; 60 Hz vertical refresh
rate) at a distance of 57 cm from the monkey’s eyes. As in all our previous
studies, the onset and offset of the stimulus was signaled by means of a
photodiode detecting luminance changes in a small square in the corner
of the display (but invisible to the animal), placed in the same frame as
the stimulus events. All stimuli were dark gray and were presented on a
light gray background. A digital signal processor-based computer system
developed in-house controlled stimulus presentation, event timing, and
juice delivery while sampling the photodiode signal, vertical and hori-
zontal eye positions, spikes, and behavioral events. Time stamps of the
recorded spikes, eye positions, stimulus, and behavioral events were
stored for off-line analyses.

Stimuli and tests
Main stimuli. A motion capture system (MoCap; Vicon) at the Motion
Capture Laboratory of the Eidgenössische Technische Hochschule
Zürich (Zürich, Switzerland) was used to generate the stimuli (Vangeneug-
den et al., 2010). Six cameras were positioned around an actor of average
physical constitution walking on a treadmill at 4.2 km/h. The actor wore a
skintight suit with 41 markers located on major anatomical landmarks. The
three-dimensional spatial positions of each marker (spatial resolution, 1
cm; sampling rate, 120 Hz; total duration, 10 s) were stored and inte-
grated into a 16-point three-dimensional body representation. Commer-
cially available animation software (Maya; Autodesk) was used to render
“humanoid-like” displays consisting of cylindrical geometrical primi-
tives, the position and motion of which were based on the motion-
captured three-dimensional coordinates. The motion-captured
locomotions were rendered at eight different facing directions: 0, 45, 90,
135, 180, 225, 270, and 315° (Fig. 1a). The 0, 45, 90, 270, and 315° displays

Figure 1. Schematic representation of the locomotions from the main test. a, An agent walked as if on a treadmill along one of four axes (dotted lines: 0 –180°, 45–225°, 90 –270°, and
315–135°), in either facing direction, either forward or backward (full arrows). The start frame for each locomotion is depicted. Locomotion in the forward direction is toward the center. b, Sequences
of six snapshots sampling the locomotion movies every 216 ms (except for 200 ms between snapshots 5 and 6). Facing directions are indicated. Left to right corresponds to forward walking, and right
to left to backward walking. Note that in the forward condition the legs close and then open, whereas the opposite is the case in the backward condition. Movies were presented without translatory
component at the center of the screen.
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were generated based on the motion-captured three-dimensional coor-
dinates, whereas the other three remaining facing directions (135, 180,
and 225°) were obtained by mirroring the frames of the 45, 0, and 315°
displays, respectively. For each facing direction, the agent could move
either forward or backward. Backward locomotion displays were created
by reversing the temporal order of the frames of the forward locomo-
tions. Thus, the snapshots of forward and backward locomotion displays
were identical and differed only in their sequences.

The stimuli consisted of approximately a full walking cycle and lasted
65 frames, equivalent to a stimulus duration of 1086 ms. The differences
between the stimuli can be appreciated from Figure 1b, which shows
condensed sequences of snapshots, taken every 13 frames (but with only
12 frames between snapshots 5 and 6; sampling frames: 1, 14, 27, 40, 53,
65). Note the differences in poses (i.e., legs closing vs opening) when
advancing through the forward and backward sequences, respectively.
The height of the agent and the maximum lateral extension of the ankles
measured �6 � 2.8°, respectively. All stimuli were presented at the cen-
ter of the monitor (i.e., nontranslatory motion as on a treadmill) with a
red fixation square located just below the hip of the agent. Unless stated
otherwise, the start frame for each movie was kept constant across
presentations.

Throughout the remainder of this paper, stimuli will be annotated
according to the facing direction followed by F or B to indicate forward or
backward walking, respectively. Thus, “0F” indicates 0° facing direction,
walking forward, and “225B” indicates 225° facing direction, walking
backward, etc.

Main test. The main test consisted of the eight different facing direc-
tions with the agent walking either forward or backward (8 � 2 � 16
conditions). The 16 movies were presented in an interleaved pseudoran-
dom fashion. This test was used to search for responsive neurons that we
tested with at least 4 unaborted trials (median, 7) per stimulus condition.
Cells still adequately isolated at the end of this test were further subjected
to at least one of the following tests.

Random-start frame test. In this test, the starting frame of the movie for
any given stimulus condition was randomized across trials. Three stimulus
conditions were included in this test: 0F, 0B, and 180F. The randomization of
the start frame covered the full 65 frame walking cycle. This was accom-
plished by generating 22 different movies beginning at 3 frame intervals.
Temporally reversing the sequence and mirroring the 22 different movies of
the 0F condition resulted in the 0B and 180F movies, respectively. The vari-
ous movies of the three conditions were pseudorandomly interleaved with a
minimum of 6 unaborted (median, 16) trials per condition.

Snapshot test. We extracted seven different body poses, representative
of the full walking cycle and spaced by at least 10 frames, for each forward
movie of the eight facing directions. The snapshot test consisted of eight
pseudorandomly interleaved conditions: the most effective locomotion
display as determined in the main test, together with the seven snapshots
from that movie. Each snapshot was displayed for 303 ms while the
locomotion was displayed exactly as in the main test. A minimum of 5
unaborted (median, 10) trials per stimulus condition were presented.

Half-body test. For each of the 16 movies of the main test, we generated
two half-body configurations: displays showing only the upper (torso,
arms, and head) or lower body parts (legs). The locations of the half-body
stimuli on the screen corresponded to their locations in the original full
body display. The test consisted of six conditions, which included the
full-body and two half-body displays of the most and least effective stim-
uli. At least 6 unaborted trials (median, 10) were presented per movie, in
pseudorandomly interleaved fashion.

Tasks
Passive fixation. The animals performed a passive fixation task in all tests,
except the random-start frame test. The advantage of the fixation task is
that a large number of stimuli can be presented to the animal with no
previous training. The sequence of the fixation task was as follows. The
trial started with the onset of a red, square fixation target (size, 0.12 �
0.12°), which the animal had to fixate within a time period of 2 s. After
fixating the target for 500 ms, the locomotion was shown with the fixation
target superimposed. To obtain a juice reward, the animal was required to
continue fixating throughout the entire stimulus duration plus 200 ms after

stimulus offset. Failure to do so resulted in an aborted trial. The size of the
fixation window varied between 1.3 and 1.7° across monkeys. Only re-
sponses obtained in trials with successful fixations were analyzed.

Locomotion categorization. During the random-start frame test (and
only in that test), the animals performed a three-alternative categoriza-
tion task, categorizing three locomotion conditions: 0F, 0B, and 180F.
The trial sequence in the locomotion categorization task was similar to
that of the passive fixation task, except that 100 ms after stimulus offset,
the fixation target was replaced by three red target squares (size, 0.4 �
0.4°), located 8.4° to the right, left, and above the fixation target. The
animals had been trained to saccade to one of these eccentric targets to
indicate the perceived locomotion condition. The conditions 0F, 0B, and
180F were associated with a rightward, leftward, and upward saccade,
respectively. An immediate saccade to the correct target, followed by
holding fixation on this target for 100 ms, was rewarded with juice.
Incorrect trials or aborted trials resulted in no reward. Before the record-
ing sessions, the animals had been extensively trained in this locomotion
categorization task. Additional details concerning the training and be-
havioral results in this and a related task can be found in the study by
Vangeneugden et al. (2010). Note that the animals had been trained only
to discriminate the 0F, 0B, and 180F conditions and not the other facing
directions, nor forward versus backward walking for the other facing
directions. This explains why only the 0F, 0B, and 180F conditions were
used in the random-start frame test.

The passive fixation and categorization tasks were run in separate
blocks of trials.

Data analysis
Main test. The responsiveness of each cell was assessed by a split-plot
ANOVA (Kirk, 1968) comparing baseline with stimulus-driven activity.
For each trial, the baseline activity was computed in a time window from
�400 to 0 ms, whereas activity elicited by the stimulus was computed in
a window from 50 to 1100 ms, 0 representing stimulus onset. Baseline
versus stimulus activity served as a repeated-measure within-trial factor,
and the 16 stimulus conditions as a between-trial factor. Cells with either
a significant main effect for the baseline-stimulus activity factor ( p �
0.05) or a significant interaction between the two factors ( p � 0.05) were
considered for additional analysis. All neurons in the reported sample
(N � 171) had significant responses based on this ANOVA analysis.

We used a two-way ANOVA of the net responses to examine the main
effects and interaction between the following factors: forward versus
backward locomotion (two levels) and facing direction (eight levels). Net
responses were calculated by subtracting the firing rate in the baseline
window from the firing rate in the stimulus window for each individual
trial. The time windows (baseline and stimulus) were identical to the
ones used in the split-plot ANOVA. A factor (e.g., facing direction) was
deemed to have a significant effect on the response of the neuron if either
the main effect of that factor or the interaction effect was significant ( p �
0.025, Bonferroni’s correction for multiple comparisons).

The degree of selectivity for the different locomotion conditions was
quantified using the d� index: d� � (mean (resp(c1)) � mean (re-
sp(c2)))/sqrt((var(resp(c1)) � var(resp(c2)))/2), where mean and var
correspond to the mean and between-trial variance of the gross response
(time window, 50 –1100 ms) to c1 and c2, respectively. c1 refers to the
action, selected from the 12 conditions, that produced the largest mean
response. These 12 conditions were: 0F, 0B, 45F, 45B, 135F, 135B, 180F,
180B, 225F, 225B, 315F, and 315B. Given that the perceived difference
between the forward and backward walking is poor for the 90 and 270°
stimuli, we excluded those conditions from the d� computation. We
computed three sorts of d�, differing in the identity of c2: (1) d� fwd-bwd:
c2 being the forward or backward condition of the same facing direction
as c1 (e.g., 0F and 0B), (2) d� facing: c2 being the least effective facing
direction (of five) with forward/backward locomotion being the same as
c1 (i.e., if c1 is a forward condition then c2 will also be a forward condi-
tion), and (3) d� axis, c2 being the facing direction of the same axis as c1
with forward/backward locomotion of c1 and c2 being the same (e.g., 0F
and 180F). We use d� as an index of selectivity since it takes into account
the mean trial-to-trial variability of the responses in addition to differ-
ences in the strengths of responses to c1 and c2.
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To visualize mean tuning for facing direction in neurons that demon-
strated selectivity for that parameter, we performed the following analy-
sis. First, for each neuron we performed two one-way ANOVAs on the
net responses to the eight facing directions, one for the backward and one
for the forward conditions. Next, we selected those cases in which the
ANOVA showed a significant effect ( p � 0.05) for facing direction. For
each selected case, the preferred direction was determined based on the
odd trials, whereas the mean responses of the even trials for each of the
eight facing directions were plotted in polar coordinates. The tuning
curves of the even trials were then rotated so that the preferred direction
of each neuron, as determined by the odd trials, equaled the 0° coordi-
nate. The rotated tuning curves were then averaged across all cases and
across cases for which the preferred directions lie along the same axis. The
odd-even averaging procedure makes certain that the preferred stimulus
is defined on a set of trials that are independent of the trials used to plot
the tuning curve. This prevents favoring the response to the best direc-
tion compared with the other directions, and thus guards against over-
estimating the actual tuning. This odd-even procedure has also been used
in other analyses in this paper in which we compare population responses
between conditions.

We used support vector machines (SVMs) (Cortes and Vapnik, 1995;
Hung et al., 2005) to classify the facing directions, using temporal cortical
responses as input. A support vector machine performs classifications by
constructing hyperplanes in a multidimensional space that separates
items (responses on individual trials) of different class labels (locomo-
tion stimuli). Basically, we used the same procedure as that of Köteles
et al. (2008) except that, in the present paper, we used a linear rather
than a radial-basis-function kernel. Classification using a linear SVM
should be more biologically plausible since it is formally identical
with classification based on a linear combination of the weighted re-
sponses of each of the neurons. We used the machine learning package
“Spider” (http://www.kyb.tuebingen.mpg.de/bs/people/spider/main.html)
to implement a multiclass SVM using a one-versus-one approach
(Weston and Watkins, 1998). Training was performed using a grid search
algorithm to find the optimal regularization parameter C of this linear
SVM algorithm. In addition, we applied during training a threefold
cross-validation to optimize the C-parameter of the SVM classifier dur-
ing the grid search. Importantly, the classification performances that we
report are obtained using tests with responses from trials that are differ-
ent and independent of the trials used to train the SVM. This in fact
assesses the generalization capabilities of the classifier: when overfitting
occurs during training, the trained classifier will yield an inferior gener-
alization performance during testing. Also, note that overfitting results in
classification performances during testing that is higher than or equal to
chance level, but not substantially below chance level, at least when a
considerable number of resamplings of training and test trials are used, as
is done here (see below). Performance below chance level corresponds to
a reversal of the label– condition assignment during testing (label A is
assigned to condition B, whereas label B is assigned to condition A).

The input to the SVMs consisted of population response vectors that
were constructed by concatenating the responses of a set of N neurons on
a single trial for a given stimulus. For the SVM analyses, we pooled the
responses of the two animals into single population vectors. Note that the
neurons were recorded in separate sessions, and thus we ignore any
correlated activity between neurons. However, having simultaneous re-
cordings would most likely not have changed our conclusions since we
are mainly interested in comparisons of relative classification ability
across stimulus conditions and over time. Furthermore, a recent study
(Anderson et al., 2007) has suggested that the responses of simulta-
neously recorded IT neurons, taking response correlations into account,
do not produce more information about the stimulus presented than
taking the responses without considering response correlations (as with
sequential recordings). We used three sorts of response vectors. In one
such analysis, the firing rates, averaged within a 50 –1100 ms window,
were computed for each trial and for each neuron, and the population
response vector was defined as the concatenation of the average firing
rates of the individual neurons for a single trial (vector length: N neu-
rons). In a second set of analyses, average firing rates were computed for
each 50 ms bin between 50 and 1100 ms after stimulus onset. Population

response vectors in this case were a concatenation of the responses in the
individual bins of a single trial for the different neurons (vector length: N
neurons � 21 bins). In a third set of analyses, the response vector con-
sisted of the concatenation of the responses of the individual neurons
obtained in a single, 50 ms bin of a single trial (e.g., the 100 –150 ms bin;
vector length � N neurons).

For all SVMs, training and testing followed the same scheme. For each
neuron, four trials of each condition were randomly drawn, without
replacement, from all the recorded trials of that condition and used to
create four population response vectors. These vectors were then used to
train the SVM. Testing was performed using two different trials ran-
domly drawn from all the recorded trials (except the four used for train-
ing). Consequently, only neurons for which at least six trials per
condition had been recorded were incorporated in the SVM. Each SVM
was run 1000 times using a different sampling of four training and two
test trials per neuron each time. Based on the classifications, confusion
matrices were created which indicated the proportion of classifications in
which a response vector belonging to condition X was classified as con-
dition Y. These proportions are computed from the classifications of the
test trials across the 1000 resamplings.

One set of SVM analyses classified the 16 locomotion conditions of the
main test based on the responses of a population of neurons. Chance level
for this 16 condition classification is theoretically 1/16 � 0.0625. We ran
a control SVM analysis in which we randomly shuffled the labels of the
trials and then performed exactly the same SVM classification as for the
real, correctly labeled data, except that here 100 rather than 1000 resam-
plings were performed. These control SVMs were done for each of the
SVMs (response averaged across full duration SVMs and 50 ms binned
responses SVMs) performed on the correctly labeled data shown in Re-
sults. For each of the control analyses, the mean proportion of correct
classifications was 0.0625, as expected, and all gave SEs (computed on the
100 resamplings) �0.02. In a second set of SVM analyses, we classified
the 0F, 0B, and 180F conditions. Control SVMs using randomly reshuf-
fled trial labels all produced the expected proportion of correct responses
[i.e., 0.33 (SE on 100 resamplings was �0.04)]. Although performance
levels during training were above chance level in some of these control
SVMs, the performance levels obtained during testing were all at chance
level, hereby indicating overfitting. The chance performance during
these control tests using shuffled data demonstrates that the generaliza-
tion tests using independent trials effectively protect against erroneously
high performance levels that result from overfitting.

To assess the reliability of the classification scores in the confusion
matrices, we computed SEMs for the 1000 resamplings. For all analyses,
the maximum SE across all cells of the confusion matrix was �0.01.

When comparing the SVM-based classification performances of two
classes of neurons, we equated the numbers of neurons in these two
classes. The number of neurons randomly selected (in each of the 1000
resamplings) to provide input to the SVMs was set equal to the sample
size of the smallest class. We also ensured that the number of neurons
contributed by each animal was equal for the two classes. Thus, differ-
ences in classification scores between the two groups of neurons cannot
be attributable to difference in the number of neurons or differences
between animals.

For the third set of SVM analyses, we trained and tested using the
responses in single 50 ms bins. In these analyses, training was performed
for a particular bin (e.g., 100 –150 ms) while testing was performed for
the same and all other bins separately. Responses from the same trial were
used to classify all bins during testing. In one analysis, the responses in the
different bins were taken as the raw spike counts (as in all other SVM
analyses), whereas another analysis used responses standardized across
bins. The standardization was performed for each bin by computing the
difference between the spike count and the mean spike count for that
particular bin, averaged across trials and neurons. This difference was
then divided by the SD of all spike counts within that particular bin across
all trials and neurons. This z-standardization ensured that the mean
response was the same across all bins. The SVM classification scores with
and without standardization were virtually identical (data not shown).
The data shown in Results are the classification scores obtained without
the standardization.

388 • J. Neurosci., January 12, 2011 • 31(2):385– 401 Vangeneugden et al. • Coding of Locomotion Displays in Temporal Cortex



Random-start frame test. Neuronal responsiveness to the three loco-
motion conditions was assessed by means of a split-plot ANOVA (see
Main test). The same time windows were used as in the analyses of the
main test. All neurons reported in Results showed significant responses
as judged from the split-plot ANOVA.

Snapshot test. We considered only neurons that showed a significant
response to the dynamic locomotion condition. This was tested by means
of the Wilcoxon matched-pairs test ( p � 0.05), comparing baseline (i.e.,
�400 to 0 ms) versus stimulus-driven activity at 50 –350 ms. To deter-
mine whether the static snapshot displays elicited significant activity, a
split-plot ANOVA was performed on the responses of the seven snap-
shots (between-trial factor) comparing baseline (time window, �400 to
0 ms) with stimulus-driven activity (time window, 50 –350 ms; within-
trial factor). When the main effect of the baseline-stimulus factor, or the
interaction between these two factors (both effects; p � 0.05), proved to
be significant, we determined whether the neuron showed a significant
effect of pose using a one-way ANOVA of the net responses to the seven
static conditions.

Using the Pearson product-moment correlation coefficient, we corre-
lated the neuronal responses to the static snapshots with the neuronal
responses to the same snapshots embedded in the locomotion sequence.
Only those neurons showing a significant response to the action and a
significant selectivity for the static snapshots were incorporated in this
analysis. The correlation coefficients presented in Results were computed
using a time window of 150 ms and a delay of 50 ms. Thus, for the
snapshots in the locomotion sequence, the neuronal activity was aver-
aged across a window of 150 ms starting 50 ms after the occurrence of the
snapshot in the locomotion sequence. The responses for the static pre-
sentations of these snapshots were computed in a window of the same
duration that started 50 ms after stimulus onset. We examined a range of
delays (0 –100 ms) and time window durations (100 –250 ms), all of
which yielded qualitatively similar results.

To compare the strengths of responses to the action and to the static
presentations of the snapshots, we computed an action index � (Pa �
max Ps)/(Pa � max Ps) for each neuron, with Pa being the net peak firing
rate, between 50 and 1100 ms, for the action, and max Ps being the maxi-
mum net firing rate, between 50 and 350 ms, for the seven static snapshots
(times relative to stimulus onset). We followed the procedure of Vangeneug-
den et al. (2009) to compute this index. Briefly, we smoothed the response
using a Gaussian kernel (SD, 25 ms) before determining the maximum firing
rate. Only neurons with a net peak firing rate exceeding 10 spikes/s for the
action were considered. Other analyses of the responses in this and other tests
are described in the relevant sections in Results.

Results
We recorded the responses of single ros-
tral temporal cortical neurons to locomo-
tion displays in two macaque monkeys
(M1 and M2) that had been extensively
trained to categorize facing direction and
forward versus backward walking by a
“humanoid” walker (Vangeneugden et
al., 2010). Neurons from both banks of
the STS and the lateral convexity of IT
were sampled. Although the recording lo-
cations explored were, on average, more
posterior in M1 than in M2, there was still
considerable overlap (Fig. 2).

Effect of facing direction and forward
versus backward walking:
single-neuron examples
The main test included 16 conditions:
movies of 8 facing directions combined
with forward and backward walking for
each of these facing directions (Fig. 1).
The stimuli were presented during con-
trolled fixation on a small red target. Fig-

ure 3 shows three examples of single neurons that responded to at
least one of the stimuli. The first neuron (Fig. 3a) shows strong
selectivity for facing direction, responding mainly to the 180°
facing direction (two-way ANOVA with facing direction and for-
ward vs backward as factors; main effect of facing direction: p �
0.00001). Note the similar responses to the forward and back-
ward conditions of the same facing direction (no main effect of
forward vs backward nor an interaction effect between the two
factors: all values of p 	 0.14). Such a response pattern was typical
of the majority of neurons (see below). The neuron shown in
Figure 3b not only shows a strong effect of facing direction (main
effect: p � 0.00001) but also for forward versus backward loco-
motion (main effect: p � 0.005). Note, however, that the modu-
lation between the forward and backward conditions was
relatively weak. The neuron shown in Figure 3c shows a much
stronger effect of forward versus backward locomotion (main
effect: p � 0.00001), in addition to strong selectivity for facing
direction and a significant interaction effect (both values of p �
0.00001). Note the similar responses shown by this neuron for
facing directions along the same axes (e.g., 0 and 180°).

These examples demonstrate that single STS/IT neurons can
show selectivity for facing direction and that some can also dis-
tinguish between forward and backward walking directions. The
movies of the eight different facing directions vary in both snap-
shots and the motion trajectories. Hence, selectivity for facing
direction could be attributable to selectivity for the body poses
and/or for motion trajectories associated with the different facing
directions. However, forward and backward movies for the same
facing direction differ only in their frame sequence (backward
movies are forward movies played in reverse) and contain the
same snapshots. Thus, different neuronal responses between
the forward and backward locomotions, when averaged across
the whole movie presentation, suggest selectivity for snapshot
sequence and/or motion. This will be examined in more detail
below.

Selectivity for facing direction
Of the 171 responsive neurons (81 and 90 neurons in M1 and M2,
respectively) tested with 2 � 8 facing-direction conditions (main

Figure 2. Estimated range of recording locations. Top, Sagittal MRI sections of each monkey marking the most posterior and
anterior recording locations. The bottom coronal MRI sections show the most posterior and anterior recording locations. a, Monkey
M1, 1 and 2. b, Monkey M2, 3 and 4. The boxes approximately demarcate the lateral-medial extent of responsive cells at those
coronal planes.
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test), the majority (65%) showed a signif-
icant effect of facing direction (two-way
ANOVA: main effect of facing direction
or interaction significant; p � 0.025). In a
complementary analysis, we examined the
significance of the facing direction effect
by means of a one-way ANOVA. We con-
ducted this one-way ANOVA for the for-
ward and backward conditions separately,
thus giving two values for each neuron
(2 � 171 � 342 cases in total). This
yielded 187 cases (55%; 187 of 342) show-
ing a significant effect of facing direction.
Interestingly, of these 187 selective cases,
35% preferred the trained walking direc-
tions (0F, 0B, and 180F), which is a signif-
icantly larger proportion than the 19% (3
of 16) expected from a uniform distribu-
tion of preference ( p � 0.05, binomial
test). This may suggest that the extensive
training that the monkeys received be-
fore the recording sessions affected the
preferences of the facing-direction se-
lective neurons.

Figure 4e shows the average facing di-
rection tuning for all facing-direction se-
lective neurons (n � 187 cases). Note that
this average tuning curve was obtained by
determining the preferred direction using
an independent set of trials (see Materials
and Methods). Such a procedure avoids
the overestimation of the actual tuning
that occurs when peak responses are se-
lected from noisy data. Two points are
noteworthy regarding the average tuning
curve for facing direction. First, a change
in facing direction of only 45° from the
preferred direction is sufficient to cause a
marked drop of the average response
strength, with little additional decrease in
the response strength with larger direc-
tion differences. Second, at 180°, opposite
the preferred facing direction, the average
response is stronger than that at facing di-
rections closer to the preferred direction.
This differs from classic direction tuning,
where the response decreases with in-
creasing distance from the preferred di-
rection (classic bell-shaped tuning curves
as observed in, e.g., macaque area MT for
motion direction). Instead, it suggests
that there is less selectivity for two facing
directions lying along the same axis than
for other direction differences. This sort
of axial selectivity was most prominent for
neurons preferring the 90 and 270° direc-
tions (Fig. 4c), which is not surprising
given that these stimuli differ relatively lit-
tle in appearance (Fig. 1b). Nonetheless,
axial selectivity was also clearly present for
the 0 and 180° directions (Fig. 4a). The
neurons tuned to the other two axes
showed the lowest average direction selec-

Figure 3. Selectivity for locomotion stimuli in the main test: single-neuron examples. PSTHs and raster plots are positioned
according to the conventions of Figure 1a. The left and right PSTHs of a pair indicate responses to forward and backward walking,
respectively, for a particular facing direction. Facing directions are indicated in the central inset. All three neurons show a significant
effect of facing direction (all values of p � 0.00001) combined with a, no significant effect of forward versus backward locomo-
tions, nor a significant interaction effect (both values of p 	 0.14); b, only a significant effect of forward-backward ( p � 0.005);
and c, a significant main effect of forward versus backward and a significant interaction effect (values of p � 0.00001). Bin width
is 25 ms. For each neuron, firing rates in spikes/second are indicated on the vertical axis. The vertical lines mark stimulus onset and
offset; stimulus duration was 1086 ms.
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tivity (Fig. 4b,d). These analyses show that the neuronal responses
vary with facing direction, but that in general, the dependence on
facing direction is unlike classic, bell-shaped direction tuning.

Selectivity for forward versus backward walking
Of the 171 responsive neurons recorded in the main test, a mi-
nority (18%) showed a significant effect of forward versus back-
ward walking (two-way ANOVA: main effect of walking
direction or interaction significant; p � 0.025). In a complemen-
tary analysis, we tested, for each neuron, whether the response in
the forward condition differed from that in the backward condi-
tion for at least one facing direction. Since the perception of
forward versus backward walking is rather subtle for the 90 and
270° locomotions, we excluded these directions from this analy-
sis. The response differences were tested with the nonparametric
Mann–Whitney U test using a corrected p value of 0.008 (0.05/6
comparisons for each neuron). Applying this second analysis
showed that only 13% of the neurons responded significantly
differently to the forward versus backward walking for at least
one of the six facing directions tested.

We quantified the degree of selectivity by computing a d�
index (see Materials and Methods) comparing responses to the
forward and backward stimuli for the best facing direction (d�
fwd-bwd). Given that the perception of the difference between
forward and backward walking for the 90 and 270° locomotions is
poor, we again excluded those conditions from the present anal-

ysis. Thus, the best response was chosen from the 12 remaining
stimulus conditions. We thereby excluded three neurons that were
highly selective for the 90 or 270° conditions and failed to respond to
any of the other conditions. For comparison, we also computed d�
values contrasting the best and worst facing direction (d� facing) (see
Materials and Methods) and contrasting the best facing direction
with the one differing by 180°, along the same axis (d� axis) (see
Materials and Methods), for the same neurons. The distributions
of these three d� indices (n � 168) are shown in Figure 5a. As
expected from the ANOVA analyses described above, the median
d� fwd-bwd (0.75) was significantly lower than that for facing
direction (1.65; Wilcoxon’s matched-pairs test, p � 0.00001).
Also, the d� for stimuli differing in facing direction by 180° (0.98)
was significantly higher than the d� for forward versus backward
(0.98 vs 0.75, respectively; Wilcoxon’s matched-pairs test, p �
0.00001). Thus, the overall degree of selectivity for forward versus
backward stimuli was rather weak, with only 10 of 168 neurons
exhibiting a d� 	2.

Classification of walking direction by the population of
temporal neurons
All analyses thus far have described the selectivity of single STS/IT
neurons. As is the case for many of the selectivities observed in
visual cortex, single neurons varied markedly in their degree of
selectivity for facing direction and also, to some extent, with re-
gard to forward versus backward walking. This raises the question
of how well this population of STS/IT neurons can classify the

Figure 4. Average facing direction tuning for facing-direction-selective neurons. The tuning
curves, after alignment of the preferred facing direction ( P) to 0°, were averaged. The responses
of neurons with a preferred facing direction along the same axis were averaged. Response
strengths were not normalized before averaging, but the averaged responses are normalized by
their maximum in the plots. The thin black lines indicate SEMs. a, 0 –180° (n � 72; maximum
average firing rate, 19.8 spikes/s). b, 45–225° (n � 38; maximum firing rate, 16.3 spikes/s). c,
90 –270° (n � 51; maximum firing rate, 20.3 spikes/s). d, 315–135° (n � 26; maximum firing
rate, 25.7 spikes/s). The average tuning curve for all selective neurons is shown in e (n � 187;
maximum firing rate, 20.1 spikes/s).

Figure 5. Distributions of single-cell selectivity for different walking directions for the main
(a) and random-start frame test (b). a, Distributions of d� indices for forward-backward (blue;
d� fwd-bwd), facing direction (orange; d� facing), and facing direction along the same axis (red;
d� axis) for all neurons responsive in the main test (n � 168). b, Distributions of d� indices for
responsive neurons in the random-start frame test (n � 45). Note that, in this test, only three
conditions were shown, and thus the preferred direction was not always included, explaining
the lower average d� values. Also, d� facing and d� axis are identical for this test, since only two
facing directions (along the same axis) were presented. Medians of each of the distributions are
indicated by arrowheads. Significant differences between the distributions are denoted by
asterisks (all values of p � 0.001).
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locomotion movies and which movies
tend to be “confused” by this population
of neurons. To answer these questions, we
trained linear SVM classifiers using popu-
lation response vectors as inputs. Popula-
tion response vectors were constructed by
concatenating the responses of randomly
drawn, single trials of neurons for which
at least six trials per condition were avail-
able (n � 146; 85% of the total popula-
tion; 67 and 79 neurons from M1 and M2,
respectively). We used four randomly
drawn trials (without replacement) from
each neuron to train the classifier while
using two of the remaining trials to mea-
sure the performance of the classifier (for
details, see Materials and Methods). Thus,
training and testing were performed on
different and independent data, avoiding
circularity and protecting against overfit-
ting. We tested 1000 permutations of trial
numbers and neurons.

In an initial SVM analysis, the response
was defined as the mean firing rate aver-
aged across the entire stimulus duration
(as for the single-neuron analyses above).
Figure 6a displays the confusion matrix
plotting the relative frequency with which
a particular stimulus (“expected”; rows) is
classified as one of the 16 possible stimuli
(“predicted”; columns). Note that each of
the rows (expected or presented stimuli)
sums to 100%. Perfect classification cor-
responds to values of 100% on the right
diagonal (predicted � expected). Classifi-
cation accuracy averaged across the 16 lo-
comotions was 48% correct, which was
considerably and significantly greater than expected by chance
(1/16 � 6.25%). However, the overall classification performance
was far from perfect. Inspection of the confusion matrix shows
that the classification errors are not randomly distributed and
thus do not merely reflect noisy data. First, classification of the
facing direction, regardless of walking forward or backward, is
much better than overall classification accuracy. Indeed, overall
classification performance for the former was 76% correct. Thus,
the low overall classification accuracy is attributable more to a
confusion of forward versus backward walking than to a difficulty
in distinguishing locomotions differing in facing direction. This
is revealed in the confusion matrix by the 2 � 2 square patterns
along the diagonal. Second, errors in the classification of facing
direction were also distributed systematically. Three groups of
facing direction stimuli were rarely confused: (1) the 0 and 180°
directions, (2) the 45, 135, 225, and 315° directions, and (3) the 90
and 270° directions. Notably, the neurons tended to confuse the
oblique directions and even more so the 90 and 270° directions.
Third, locomotions along the different axes varied greatly in their
classification accuracies: the average performance for the 0 versus
180° stimuli was 76% (range, 65– 84%), whereas it averaged only
38% (range, 25–54%) for the other axes. Fourth, except for the 90
and 315° facing directions, the percentage of correct classifica-
tions of forward locomotions exceeded the misclassifications of
that stimulus as backward and vice versa. Thus, the population
activity was able to classify forward versus backward walking but

this ability depended strongly on facing direction axis: for the 0
and 180° directions, the mean accuracy of forward-backward
classification was 83% correct (chance level, 50%), whereas only
56% of the oblique-facing directions and about chance level
(49%) of the 90 and 270° directions were correctly classified.
Thus, the classification accuracy of forward versus backward
walking was relatively high for the trained stimuli, but less for the
other, untrained stimuli. The difference between trained and un-
trained stimuli was present even within the 0 –180° direction axis.
The monkeys were extensively trained on three locomotions: 0F,
0B, and 180F. The classification accuracy for these three trained
stimuli ranged from 75 to 84% correct (mean, 79%), whereas it
was only 65% for the untrained, 180° backward stimulus.

In all the analyses so far, we have used the mean firing rate
computed for the entire stimulus duration. From an inspection
of the peristimulus time histograms (PSTHs) of single neurons, it
was clear that most neurons did not respond over the whole
stimulus duration but only to certain segments of the action (e.g.,
neurons in Fig. 3b,c). One possible explanation for this within-
action response modulation is that these neurons respond selectively
to particular snapshots or motion patterns that occur at specific
moments during the action (this possibility will be addressed later).
Now, we will determine whether incorporation of such within-
action response modulation increases the ability to classify the ac-
tions. To this end, we binned the responses for each trial, using 50 ms
bins starting 50 ms after stimulus onset. The population response

Figure 6. Confusion matrices displaying the performance of the linear SVM classifier. In each panel, the rows indicate the actual
presented, and thus expected, locomotion, and the columns, the classifications (i.e., the predictions made by the classifier). The
classification scores are plotted using the color scale shown at the bottom. Numbers indicate classification scores in percentage.
Perfect classification corresponds to values of 100% along the right diagonal. The proportions of a row add up to 100%. Facing
directions are indicated in degrees following the convention of Figure 1a. Forward and backward walking are denoted by “F” and
“B,” respectively. a, b, Confusion matrices for the main test, when taking as input averaged neuronal activity per trial in a 1050 ms
window (a) or in 21 bins of 50 ms each (b). The latter incorporates temporal within-action response modulation. Training and
testing was performed using the responses of 146 neurons. c, d, Comparison of the confusions made between three locomotion
categories (0F, 0B, and 180F) using random- or fixed-start positions for the same neurons. The responses for the random-start SVM
were obtained in the random-start frame test, whereas the responses for the fixed-start SVM were from the main test of the same
neurons. Neuronal activity was computed for each trial in a 1050 ms window (c) or in 21 bins of 50 ms each (d). Training and testing
was performed using the responses of 42 neurons.

392 • J. Neurosci., January 12, 2011 • 31(2):385– 401 Vangeneugden et al. • Coding of Locomotion Displays in Temporal Cortex



vector of a trial then consisted of the concatenation of the binned
firing rates of the neurons (n � 146). Otherwise, the SVM analysis
was identical with the one described above (with the average firing
rate computed over the entire stimulus duration).

The confusion matrix obtained when the population response
vector consisted of these binned responses is presented in Figure
6b. It is obvious that, except for the 90 and 270° facing directions,
the stimuli were classified perfectly or nearly perfect (97–100%
correct). It is important to note that the SVM analysis based on
the population response vectors consisting of binned firing rates
could classify forward from backward walking extremely well,

even for the 90 and 270° directions (mean
forward-backward classification, 94% cor-
rect; 80% correct for the latter two condi-
tions and 99% correct for the remaining
12 conditions; chance level, 50%). In fact,
in the case of the 90 and 270° directions,
confusions existed mainly between oppo-
nent facing directions with the walker
moving in the same direction (i.e., with
some confusion between the 90F and
270F but less between 90F and 90B or
270B and 270F).

The above SVM takes the within-
action differences in response into account.
The increased performance compared with
when using average firing rates computed
across the stimulus duration suggests that
this within-action modulation carries in-
formation about forward versus back-
ward walking. An alternative and less
interesting interpretation is that the im-
proved performance of the classifier is at-
tributable to the increased number of input
features. Results reported below (compari-
son of random-start frame and fixed-start
frame conditions), however, strongly sug-
gest that the improved performance is not
merely attributable to an increase in the
number of input features but attributable to
the added information of within-action re-
sponse modulations. Note that this added
information does not refer to temporal de-
pendencies within the responses, since the
SVM treats the different time bins as inde-
pendent features. Instead, the added infor-
mation refers to firing rate differences
between conditions within the different 50
ms bins that are obscured when averaging
across bins. Note that when areas down-
stream to STS/IT use this information, they
need to store the firing rates of the dif-
ferent bins or at least part of the tempo-
ral fluctuations in the response. At the
least, our analysis shows that the informa-
tion to discriminate forward from back-
ward locomotion is present.

Subsequently, we questioned how the
classification accuracy evolved during
the course of the response and whether
the stimulus preferences remained invari-
ant during the course of the response. In
theory, it is possible that neurons coding

for, for example, forward walking at the beginning would con-
tinue to do so during the course of the response. However, given
the strong impact of the 50 ms binning on the overall classifica-
tion performance, it might also be that stimulus preferences shift
during the course of the response or that different neurons con-
tribute to the classification at different moments during the re-
sponse, in other words, that the stimulus code is not stationary
but changes during stimulus presentation. To answer both ques-
tions, we trained the classifier using population vectors (n � 146
neurons) based on the average firing rate of a particular 50 ms bin
and tested the SVM using the average firing rates, on independent

Figure 7. TTTD plots of SVM classification of facing direction along the same axis. Classification accuracy is plotted as a function
of trained (ordinate) and tested (abscissa) 50 ms bins. For the data shown along the right diagonal, tested and trained bins
coincided. Classification accuracies were computed for pairs of facing directions along the same axis (e.g., 0 and 180° facing
directions; rows) and for forward (left column) and backward walking (right column) separately. Chance performance corresponds
to 50% (green color). Note that blue colors correspond to a reversed classification (e.g., 0° facing direction classified as 180°).
Training and testing was performed using the responses of 146 neurons.
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trials, of this and all other bins (e.g., train-
ing with trial X: bin 150 –200 ms while
testing different trial Y: bins 50 –100, 100 –
150, 150 –200, 200 –250, etc.). Training
and testing using the same bin will assess
the time course of the classification,
whereas training and testing using differ-
ent bins will assess the stationarity of the
code.

Since we were mainly interested in the
classification of facing direction along any
given axis (e.g., 0 vs 180°) or forward ver-
sus backward classification for a particu-
lar facing direction, we computed, for
each axis (Fig. 7) and each facing direction
(Fig. 8), the percentage correct classifica-
tions of facing direction and forward ver-
sus backward locomotion, respectively.
The classification score was plotted as a
function of the difference between the
trained and the tested bin [training–test
time difference (TTTD) plot]. Note that,
in all TTTD plots, chance performance
corresponds to 50%.

First, we will discuss the classification
of facing direction along a single axis (e.g.,
0 vs 180°) (Fig. 7). As expected from the
previous analyses (Fig. 6a,b), the overall
classification performance was poorer for
the 90 –270° axis (mean accuracy along
the diagonal, 62%), whereas high-to-
excellent classification performances were
achieved for the other axes when training and test bins coincided
(mean accuracy along the right diagonal, 86%). Overall, classifi-
cation performance varied little over the course of the response
and was already high by the 50 –100 ms bin. Importantly, perfor-
mance deteriorated quickly with increasing temporal offset be-
tween test and training bins (data offset from the diagonal in the
TTTD plots of Fig. 7). Overall, performance remained stable only
when test and training bins differed by �100 ms, although this
margin varied during the course of the action. Thus, these neu-
rons code predominantly for momentary action snippets and not
for the overall facing direction. A prominent feature of the TTTD
plots is the periodicity of the pattern of the classification scores. A
classifier trained at a particular time period will classify the re-
sponse vectors well not only for the same time period (
100 ms)
but also for response vectors �500 (0 –180° axis) or 750 ms
(oblique axes) distant from it. This is probably related to the
cyclic, repetitive nature of the limb movements during locomo-
tion (see below). Importantly, between such classification peaks,
performance drops to below chance level (Fig. 7, blue colors),
showing that response patterns that were trained as belonging to
direction A are consistently classified as belonging to direction B
and vice versa. This reversal of classification is a strong demonstra-
tion of the nonstationary coding of facing direction by these neu-
rons. As shown in the supplemental material (supplemental Fig. 1,
available at www.jneurosci.org as supplemental material), the me-
dian period of the cyclic patterns that are present in the TTTD plots
for the 0–180° axis, where these are most apparent, was 500 ms
(pooled across peak and trough periods and across forward and
backward locomotions), which fits the 500 ms period of the cyclic
pattern in the locomotion stimulus (e.g., the distance between the
ankles). Since opening and closing of the legs correlate with arm

movements, it is impossible to know which features determine the
cyclic pattern in the TTTD plots and the corresponding spike trains,
but this analysis suggests it is related to the cyclic pattern of the
locomotion.

Figure 8 shows the TTTD plots of forward-backward classifi-
cation for each of the eight facing directions. Overall, the
forward-backward classifications have slower time courses than
those for facing direction. Here, also, classification performance
varied substantially during the course of the response. In a man-
ner similar to the facing-direction classification, marked periodic
patterns are present in the TTTD plots for the 0 and 180° direc-
tions: performance is best when training and testing bins coin-
cide, or where they differ by �500 ms (supplemental Fig. 2,
available at www.jneurosci.org as supplemental material). Be-
tween these points, classification performance is worse than ex-
pected by chance, indicating a reversal of the classification (Fig. 8,
blue). Such reversals are also prominent for other facing direc-
tions, particularly the oblique directions.

Comparing responses to actions and static presentations
To determine whether motion was required to drive the neurons,
we compared the response during the action with responses to
static presentations of representative frames, or snapshots, sam-
pled from the complete walking cycle. This test was performed for
133 neurons responsive to at least one locomotion direction. We
found that some neurons required motion, since they did not
respond to the static presentations of the snapshots (Fig. 9a),
whereas other neurons responded equally well to the static pre-
sentations (Fig. 9b) and motion.

To capture differences in the responses to static and dynamic
displays, we computed an action index (Vangeneugden et al.,

Figure 8. TTTD plots of SVM classification accuracy between forward and backward locomotions of the same facing direction.
The TTTD plots show the forward-backward classification performance (chance, 50%) for each of the eight facing directions. They
are ordered according to the schema presented in the center (Fig. 1a). Training and testing was performed using the responses of
146 neurons. Conventions are the same as in Figure 7.
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2009). A positive action index indicates a higher peak response to
the action than to the preferred static snapshot, and a negative
index, a lower peak response. As shown in Figure 10, most neu-
rons had negative or near-zero action indices (median action
index � �0.02; n � 133), indicating strong responses to the static
presentations. The distribution of the action indices differed be-
tween regions: neurons in the upper bank and fundus of the STS
had a significantly higher median action index (0.33; n � 35) than
neurons in the lower bank of the STS (median, �0.08; n � 82;

Mann–Whitney U test, p � 0.00001) and lateral convexity of IT
(median, �0.05; n � 16; Mann–Whitney U test, p � 0.00001).

Vangeneugden et al. (2009) distinguished two classes of neu-
rons based on these action indices. Neurons with an action index
	0.2 responded more strongly to the action than to the static
presentations, and were labeled “motion” neurons. In the present
paper these neurons will be labeled “A” neurons (“A” stands for
“action”). Neurons of the complementary class were labeled
“snapshot” neurons by Vangeneugden et al. (2009). We will label
these neurons “SA” (“static and action”) since they responded as
well (or even better) to the static presentations of the snapshots
than to the action. The majority (72%) of the 36 A neurons were
recorded in the upper bank and fundus of the STS, whereas the
great majority (91%) of the 97 SA neurons were recorded either
in the ventral bank of STS or in lateral convexity of IT, corrobo-
rating previous results (Vangeneugden et al., 2009). Both types of
neurons were observed in each of the two animals. The action
indices of neurons with a significant effect of facing direction
(median action index � �0.04) did not differ significantly from
those showing no effect of facing direction (median, 0.06; Mann–
Whitney U test, p � 0.46). However, neurons with a significant
effect of forward versus backward locomotion demonstrated a
significantly larger action index than those that did not (medians,
0.08 and �0.05, respectively; Mann–Whitney U test, p � 0.034).
The majority of the neurons showing a significant forward-
backward effect were SA neurons (68%; 19 of 28), which demon-
strates that it is not only the A neurons that can distinguish
forward from backward locomotion. This led us to ask how well
A and SA neurons can classify facing direction and forward versus
backward walking. Note that for these SVM analyses, the number

Figure 9. Neuronal responses to static snapshots and locomotions compared: two example neurons. PSTHs with raster plots displaying a neuron not responding to static poses (a; action index,
0.85) and a neuron firing selectively to different body poses (b; action index,�0.15). The snapshots are shown above the corresponding PSTH. The PSTHs for the locomotion stimuli are shown in each
row to the left. The dynamic walker elicited a significant discharge in both neurons. The neuron in a is the same as in Figure 3c (note that the start frame position of the 180F locomotion differed from
that in Fig. 3c). The neuron in b is the same as in Figure 3b.

Figure 10. Distribution of the action indices of neurons (n � 133) recorded in different
anatomical STS/IT regions. Regions included the following: lateral convexity of IT (light gray)
and STS lower (dark gray) and upper bank (black). Medians are indicated by arrowheads above
the graph. Significant differences between medians are denoted by asterisks (Mann–Whitney U
test, values of p � 0.00001). Positive (negative) action indices indicate smaller (greater) re-
sponses to static presentations of body poses than to the locomotion. Following Vangeneugden
et al. (2009), the criterion to distinguish between SA and A neurons was set at 0.2 (stippled
vertical line). The values on the x-axis indicate neurons with action indices of the same or larger
size as the plotted value.
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of A and SA neurons were made equal
(both groups contained 32 neurons with
at least six trials per condition) (see Mate-
rials and Methods) (SA neurons: 9 and 23
from M1 and M2, respectively), allowing a
proper comparison of the two classes of
neurons. Figure 11 shows the confusion
matrices obtained from SVM classifica-
tion using population response vectors of
A and SA neurons separately (Fig. 11a,c,
with per-trial averaged firing rate as input;
c,d, using the per-trial binned firing rates
as input). Excluding the poorly perform-
ing 90 and 270° facing directions, the A
neurons had an average forward versus
backward classification performance of
80% correct (averaged across the remain-
ing six facing directions, in the SVM anal-
ysis using the averaged, per-trial firing
rate; chance level, 50%). The classification
performance using an equal number of SA
neurons was poorer but still above chance
(average, 59%). In fact, the sample of SA
neurons was able to classify the behavior-
ally trained 0F and 0B stimuli with an ac-
curacy of 76%. The population of A
neurons, in comparison, could classify
these stimuli with an accuracy of 88%.

Taking into account the response mod-
ulation during the course of the locomo-
tions (Fig. 11b,d; binned, per-trial firing
rate) improved the classification perfor-
mance of the SA neurons considerably, more so than that of the A
neurons. In fact, the A neurons confused facing directions along the
same axis more often than forward versus backward locomotion.
These results are in line with the idea that SA neurons signal predom-
inantly momentary body pose, which can be used to classify both
facing direction and forward versus backward locomotion (at least
for a fixed starting frame and when within-action response modula-
tions of the response are taken into account) (see below). These data
also agree with the idea that A neurons carry a signal that can be used
to classify stimuli that differ in motion parameters such as forward
versus backward locomotion (even when using firing rates averaged
across the full analysis window).

Body pose selectivity
Signaling momentary body poses in locomotion displays assumes
that single neurons are sufficiently selective to body poses. This is
not trivial, given the relatively small differences in form associ-
ated with the different poses of a walking human. The neuron
illustrated in Figure 9b, however, shows an exquisite selectivity
for statically presented body poses. To determine the range of
static snapshots to which the neurons responded, we computed
for each of the 118 neurons with significant responses to the static
snapshots (split-plot ANOVA; main effect of baseline-stimulus
response; p � 0.05) the number of snapshots (of the seven tested)
to which the neuron responded with at least one-third of its max-
imum net response (Vogels, 1999). The median snapshot range
for the population of responsive neurons was 6 (first quartile, 5;
third quartile, 7; N � 118). Similar snapshot range distributions
were obtained when considering only neurons tested with snap-
shots of the 0 and 180° facing directions (median snapshot range,
6; N � 72) and for neurons that showed a significant difference

between forward and backward locomotion (median snapshot
range, 6; N � 20) (supplemental Fig. 3, available at www.
jneurosci.org as supplemental material). Of the 118 neurons, 65
(55%) showed a significant effect of body pose (one-way
ANOVA, p � 0.05). The average pose selectivity for the selective
neurons is shown in supplemental Figure 4 (available at www.
jneurosci.org as supplemental material). To quantify the degree
of pose selectivity we computed for each pose selective neuron a
best-worst index � (best net response � worst net response)/best
net response; net responses computed for each of the seven snap-
shots. The median best-worst index was 0.82 (first quartile, 0.54;
third quartile, 1.04; N � 65), indicating an on average fivefold
difference in response between the best and worst responses to
the different poses. The two animals showed a similar degree of
snapshot selectivity [median best-worst index: M1, 0.78 (N � 43);
M2, 0.94 (N � 22)]. For the 39 pose selective neurons that were
tested with the same snapshots of the 0 and 180° facing directions, we
determined whether some postures were more often represented
than others. This was not the case since the distribution of the pre-
ferred poses of these neurons did not significantly differ from a uni-
form distribution (�2 test; NS; N � 39) (Fig. 12a).

Next, we examined whether body pose tuning could predict
the response modulation during the course of the locomotion.
Therefore, we examined the correlation between responses to the
static snapshots and the responses to the same snapshots/body
poses when the latter were embedded in the locomotion. This
correlation analysis was performed for the 65 neurons that
showed significant body pose selectivity. Figure 12b shows the
distribution of the Pearson correlation coefficients between these
spiking activities as measured in a 150 ms window, beginning 50
ms after the onset of the snapshot within the locomotion or the

Figure 11. Confusion matrices displaying the classification performance of the linear SVM classifier using the responses of A (a,
b) or SA (c, d) neurons. Confusion matrices for the main test, when taking as input averaged neuronal activity per trial (a, c) in a
1050 ms window or (b, d) in 21 bins of 50 ms each. Note that all SVMs were trained and tested using the same number of neurons
(n � 32). Conventions are the same as in Figure 6.
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static presentation. The median correlation coefficient was 0.46,
which was significantly greater than 0 (Wilcoxon’s test, p �
0.001). This analysis shows that the modulation of the response
during the locomotion is related to the body pose selectivity of the
neuron. Thus, these neurons are able to signal momentary body
poses during the course of the action.

The selectivity for body poses can explain why the population
of SA neurons is able to code for forward versus backward loco-
motion when the within-action response modulation is taken
into account. It also explains the cyclic patterns observed in the
TTTD forward-backward plots (Fig. 8), since forward and back-
ward locomotion displays differ in their component snapshots at
particular moments in time within the movie. Although the same
snapshots are present in the forward and backward stimuli, their
sequences and thus the times at which a particular snapshot oc-
curs, differ in both movies (Fig. 1b, e.g., comparing 0F and 0B,
initially the legs close and open, respectively). We quantified the
differences between snapshots between the forward and back-
ward versions of the 0 and 180° movies, by computing the signed
difference between the distances between the two ankle points at
corresponding frames. This signed difference followed a cyclic
pattern during the course of the movie, with a period of 500 ms.
This period was close to the measured median period of the cyclic
pattern in the TTTD plots for these conditions (median period
pooled across peak and trough periods and across the two facing
directions, 550 ms), as shown in supplemental Figure 2 (available

at www.jneurosci.org as supplemental material). Thus, the peri-
odicity observed in the TTTD plots can be related to the period-
icity in the differences between snapshots in the forward and
backward conditions. Note that such a mechanism, sensitive to
momentary body pose, has strong limitations in signaling for-
ward versus backward motion, since it signals only when a par-
ticular pose occurs. This limitation is illustrated nicely by the
reversals of the classification in the TTTD plots for forward and
backward walking: given the cyclic nature of the poses during
walking, and thus the cyclic nature of the momentary differences
between the poses in the forward and backward stimuli, a classi-
fier reading out the neuronal responses will erroneously classify
forward as being backward walking, and vice versa, when training
and testing use opposite phases of the walking cycle.

Start frame randomization
The momentary, body pose mechanism will not be able to distin-
guish forward from backward walking when the start frames of
the movies are randomized, since then a particular pose can occur
at any time in both the forward and the backward movies. How-
ever, monkeys, after considerable training (Vangeneugden et al.,
2010), can successfully categorize movies of forward or backward
walking when the start frame is randomized across trials. This
poses the question of whether individual neurons are also able to
differentiate forward from backward walking when start frames
are randomized. A strong hint that this might be the case arises
from the fact that a non-negligible proportion of the neurons
were able to significantly discriminate forward from backward
locomotion when the firing rates were averaged over the stimulus
duration (see above, Selectivity for forward versus backward
walking). Averaging neuronal activity removes momentary dif-
ferences in firing rates among the stimulus conditions.

To obtain direct evidence for coding of sequence information,
we measured neuronal responses to the 0F, 0B, and 180F loco-
motions, while randomizing the start frame across trials. Since
the monkeys were trained to categorize these locomotions, we
could record the responses of the neurons during the actual clas-
sification of the stimuli by the animals (see Materials and Meth-
ods). We recorded 45 responsive, isolated neurons using
randomized start frames. Behavioral categorization of forward
versus backward locomotion averaged 96% correct (chance level,
50%), whereas the categorization of the facing direction of the
forward locomotion was performed at 99% correct. Interestingly,
the animals confused the 180F and 0B conditions to a somewhat
greater extent (accuracy, 93% correct). In these two conditions,
although facing differently, the agent walked in the same direc-
tion (i.e., to the left) (on a treadmill).

Forty percent of the 45 neurons (18 of 45) responded signifi-
cantly differently to the two facing directions (Mann–Whitney U
test, p � 0.05; firing rate computed for the whole stimulus dura-
tion). More importantly, 20% of the neurons (9 of 45) also re-
sponded significantly differently to the forward versus backward
locomotions, a proportion significantly higher (binomial test,
p � 0.05) than the expected 5% chance level (given that we used
a type 1 error rate of 0.05 in the Mann–Whitney U test) and is
similar to the 18% obtained when the stimuli had fixed starting
positions (see above). Figure 13a shows an example neuron
whose responses differed significantly in the forward and back-
ward, 0° facing-direction conditions (Mann–Whitney U test, p �
0.0002). This neuron responded strongly to static presentations
of snapshots (SA neuron). Figure 13b illustrates the average dif-
ference in the normalized responses to the forward and backward
conditions for the nine neurons showing a significant effect of

Figure 12. Neuronal selectivity for body poses. a, Distribution of preferred poses for 39
pose-selective neurons tested with snapshots from the 0 and 180° facing directions. b, Distri-
bution of the Pearson product-moment correlation coefficients computed between the neuro-
nal activity evoked by the static snapshots and the same snapshots embedded in the locomotion
sequence. The correlations were only computed for neurons (n � 65) showing pose selectivity.
The arrowhead indicates median correlation.
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forward versus backward walking. For this
figure, we ranked the two conditions ac-
cording to their response in one-half of the
trials, and then computed the PSTH for the
other one-half of the trials. The normalized
PSTHs for the best and worst condition
were subsequently averaged across neurons.
For these neurons, the response to the best
locomotion direction (either forward or
backward) was approximately twice that of
the worst condition. Thus, even when the
start frame position is randomized across
trials, temporal cortical neurons can signal a
difference between stimuli that differ only in
their snapshot sequence.

The difference between forward and
backward locomotions appeared rela-
tively late in the course of the response
of the neuron of Figure 13a, much later
than the greater response difference seen
between the two facing directions. This
was true for the population of nine neu-
rons that showed both a significant differ-
ence between forward and backward
locomotion and between left versus right-
ward walking when randomizing the start
frame (supplemental Fig. 5, available at www.jneurosci.org as
supplemental material). This difference in onset latency between
forward-backward and facing direction discrimination agrees
with the idea that the latter can be based on fast form discrimi-
nation, whereas the former requires integration across several
frames. The onset of the response difference allows one to esti-
mate approximately how many frames the neurons require to
discriminate forward from backward sequences. Note that this
estimate represents an upper bound of the required real number of
frames since the response latency to the snapshot and snapshot se-
quences are also included in this estimate. Twenty frames (at 60 Hz:
333 ms) (supplemental Fig. 5, available at www.jneurosci.org as sup-
plemental material) were required to obtain a significant forward-
backward response difference in the nine selective neurons, but this
is likely an overestimation of the real number of required frames
given the low number of neurons and correspondingly weak statis-
tical power. Indeed, eyeballing supplemental Figure 5 (available at
www.jneurosci.org as supplemental material) provides a lower esti-
mate of 10 frames (or 167 ms).

The distributions of d� fwd-bwd and d� facing are shown in
Figure 5b. As expected, the average d� for facing direction (me-
dian, 0.67) was significantly larger than that for forward versus
backward (median, 0.35; Wilcoxon’s matched pairs test, p �
0.001). Since the same neurons were also tested using a fixed-start
frame across trials, one can correlate the selectivity measures ob-
tained in the fixed- and the random-start frame conditions. Such
correlation analyses showed that, for both the fwd-bwd and the
facing d� indices, there was a significant correlation ( p � 0.05)
between the d� values for the fixed- and the random-start posi-
tion conditions, although this correlation was greater for the fac-
ing direction (d� facing; r � 0.58) than for the forward-backward
comparison (d� fwd-bwd; r � 0.36). This distinction may be
attributable to the smaller range of the d� facing compared with
the d� fwd-bwd index. Nonetheless, this analysis again shows that
forward-backward selectivity is still present when the start frame
is randomized across trials, suggesting genuine selectivity for
body pose sequence.

For 40 of the neurons tested with the random-start frame
conditions, we also collected data with the snapshot test. Ten of
these neurons were classified as A neurons and 40% (4 of 10) of
these neurons showed a significant effect of forward versus back-
ward when using a random-start frame. This proportion dropped
to 17% for the 30 SA neurons. However, probably because of the
small number of A neurons (n � 10), the difference in the inci-
dences of forward-backward selectivity between the two classes of
neurons failed to reach significance. Again, however, the impor-
tant thing to note here is that some SA neurons can differentiate
forward from backward locomotion when the start frame is ran-
domized, indicating that these neurons signal body pose se-
quence (e.g., the neuron of Fig. 13a).

To determine how well the population of neurons tested in the
random-start frame test could classify the three different stimulus
conditions, we trained an SVM classifier using response popula-
tion vectors. Forty-two of the 45 neurons were also tested with at
least six trials per condition in the main test (locomotions having
fixed-start frames). To allow a comparison of the classification
accuracies in the two tests for the same sample of neurons, the
SVMs were applied to these 42 neurons. In total, we trained four
sets of SVMs: using averaged firing rates, computed for the whole
stimulus duration, or using binned vectors, and then using those
two measures for both the random- and the fixed-start frame
tests (see above). As shown in Figure 6c, classification of forward
versus backward was inferior to the classification of facing direc-
tion, when per-trial averaged firing rates were used as the input to
the SVM. The classification of forward versus backward was mar-
ginally better for the fixed- (74% correct) compared with the
random-start frame conditions (66% correct). The important
point here, however, is that the classification of forward versus
backward remains greater than chance level even when the start
frame is randomized between trials. Taking into account the re-
sponse modulation that occurs over the course of the action im-
proved classification of forward versus backward markedly
(100% correct) when the start frame between trials was fixed (Fig.
6d). However, such an improvement was absent in the random-

Figure 13. Neuronal responses to locomotions with randomized start frames across trials. a, Example neuron recorded in the
random-start frame test responding significantly different to forward and backward walkers (0F vs 0B) and to walkers facing in
different directions (0F vs 180F). This neuron also responded strongly to static presentations of the snapshots (SA neuron). b, The
mean normalized response plotted for the best and worst walking direction (forward or backward walking; same facing direction),
averaged across neurons that showed a significant effect of forward versus backward walking (n � 9). Best and worst ranking and
plotting were performed on independent sets of trials.
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start frame conditions (classification performance forward vs
backward, 63% correct).

Despite the large increase in the number of features of the 50
ms binned response SVMs, the performance of the classifier was
similar for the random-start frame conditions between the 50 ms
binned and full duration SVMs. However, there was a marked
increased performance for the 50 ms binned response SVM for
the fixed-start frame conditions. Note that the difference between
the number of input features of the SVMs for the 50 ms binned
and full response SVM was identical in the fixed and random-
start frame tests. This shows that the increased performance for
the 50 ms bins classifier in the case of the fixed-start frame con-
ditions is not attributable to the increase of the number of input
features—since the same increase was also present for the
random-start frame test— but depends on the information that is
added when binning the response. This result corroborates our
conjecture that the improvement in classification ability with the
binned responses is attributable to the response modulations linked
to between-condition differences in the body poses of the walker

during the action. When these differences
are randomized between trials, the benefit
gained from the temporal response modu-
lation to classification will disappear. The
remaining classification of forward versus
backward is then attributable to a signal re-
lated to body pose sequence (i.e., the tempo-
ral context of the body pose or motion
information). Thus, the data show that, in
addition to a momentary body pose mech-
anism, a body pose sequence mechanism is
also present in visual temporal cortex.

Responses to full- and half-body
configurations compared
We asked whether the responses of the
neurons required the whole-body config-
uration or just parts of the body. To an-
swer this question, we measured the
responses of 42 neurons that responded to
the full-body locomotion, to three stimu-
lus conditions including the movie of the
effective full-body locomotion and the
same locomotion, but with only the upper
or lower body half visible (Fig. 14a). A
large majority of the neurons (31 of 42;
74%) showed a significant effect of con-
figuration (one-way ANOVA with three
configuration conditions, p � 0.05). An
example of such a neuron is shown in Fig-
ure 14b. This neuron responded much less
strongly to the upper-body configuration
than to the two other conditions, while re-
sponding equally well to the lower- and the
full-body locomotions. This was typical
since 27 of the 31 configuration-selective
neurons preferred the lower-body over the
upper-body configuration.

To quantitatively assess the effect of con-
figuration on the response of each neuron,
we computed two indices (upper- and
lower-body indices) in which the net re-
sponse to the full-body was subtracted from
the responses to the upper- or lower-body

half, respectively. This difference was then divided by the sum of the
two responses. We computed these indices only when the net re-
sponses in either condition were at least 5 spikes/s, to avoid any
inflated values. The median index contrasting lower and full body
was �0.02 (n � 38), not significantly different from 0 (Wilcoxon’s
test, p � 0.08) indicating overall similar responses to lower- and
full-body locomotions. In contrast, the median index comparing
upper and full body was �0.49, significantly less than 0 (Wilcox-
on’s test, p � 0.0001; n � 38), indicating a response to the upper
half reduced to only a third of that for the full body. Notably, the
presence of a markedly reduced response to the upper-body con-
figuration, combined with a response that was little affected by
the presentation of only the lower half of the body, was most
pronounced in the A neurons (Fig. 14c) [median upper-body
index, �0.55 ( p � 0.05; n � 11); median lower-body index, 0.02
(n � 12; p � 0.7334)]. The responses of the SA neurons could be
reduced by removing either body half (Fig. 14d), although there
was less reduction in the response for presentations of the lower half
of the body (median lower-body index, �0.20; p � 0.01; n � 24)

Figure 14. Neuronal responses to full- and half-body configurations compared. a, The three body configurations presented in
the half-body test: lower, upper, and full bodies. b, Example neuron (same neuron as in Figs. 3c, 9a). c, d, Mean normalized
response to the half- and full-body configurations for the tested population of A (n � 14) (c) and SA neurons (n � 26) (d).
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compared with the upper half (median upper-body index, �0.47;
p � 0.005; n � 26). Only six neurons had both lower- and upper-
body indices smaller than �0.33, indicating that only a minority of
the neurons responded at least twice as strongly to the full-body than
to both the lower- and upper-body halves.

These analyses indicate that the presentation of the full body
was not required to elicit a strong response from most neurons,
and that the majority of the neurons responded more strongly to
the lower- than to the upper-body half.

Discussion
We found that the mean firing rates of STS/IT neurons discrim-
inated locomotion direction quite accurately if walkers faced dif-
ferent directions, whereas only a minority of the neurons
discriminated forward and backward walking (same snapshots,
different sequence). Taking into account the response modula-
tions during the locomotion, however, markedly improved the
ability of the neuronal population to signal locomotion direction
in displays differing only in snapshot sequence. The classification
of walking direction was highly nonstationary and could even
reverse during the course of the action. These findings suggest
that most of the discriminatory signal is carried by momentary
differences between action snippets. Comparing responses be-
tween static snapshots and the dynamic locomotion showed that
discrimination between actions was driven by motion in some
neurons but, in the majority, was based mostly on momentary
differences between body poses. Randomizing the start frames of
locomotion sequences, however, showed that neurons respond-
ing to static snapshots can carry sequence information.

Our findings agree with existing computational models of ac-
tion recognition. Giese and Poggio (2003) proposed two parallel
pathways, a motion and a form pathway, for analyzing actions
(Schindler and Van Gool, 2008). The former is driven by motion
and analyzes motion patterns providing information with which
to discriminate among actions. It is tempting to identify the A
neurons as part of the motion pathway of the computational
models since these neurons by definition respond stronger to
motion than static form. Alternatively, these A neurons may be
part of the form pathway, corresponding to neurons that selec-
tively respond to pose sequence but receiving form input [as
postulated in the form-based pathway of the Giese and Poggio
(2003) and Lange and Lappe (2006) models]. To decide among
these alternatives, one needs to know whether the A neurons
receive input from motion- or form-selective neurons. Also, one
cannot exclude the possibility that these neurons integrate form
and motion signals, as suggested previously for upper bank STS
neurons (Oram and Perrett, 1996; Jellema and Perrett, 2003,
2006). The responses of most A neurons were modulated in a
cyclic fashion during the course of the walking cycle, indicating
sensitivity to action segments. The SVM analyses show that A
neurons discriminate forward from backward locomotion well
but, paradoxically, tend to confuse facing directions along the
same axes (e.g., 0F vs 180F). These A neurons also respond more
strongly to motion in lower- than upper-body features, reflecting
the fact that most of the information that can distinguish forward
from backward walking is present in the movements of the lower
limbs. Psychophysical studies of biological motion have also
pointed to the importance of the lower limbs in the perception of
locomotion direction (Troje and Westhoff, 2006; Chang and
Troje, 2009; Vangeneugden et al., 2010).

The form pathway in the models of Giese and Poggio (2003) and
Lange and Lappe (2006) computes momentary body pose, followed
by a sequence-specific integration of these poses. The momentary

pose mechanism can differentiate among actions comprised of dif-
ferent body poses (e.g., different facing directions or walking vs
jumping), whereas the pose sequence mechanism is needed to dif-
ferentiate between actions differing only in their sequences of poses
(e.g., forward vs backward). Both mechanisms are present in our
STS/IT neurons. Importantly, sensitivity to pose sequence was also
present in some neurons that responded well to static presentations:
the pose-selective response of these neurons was modulated by the
locomotion sequence in which it occurred. Thus, pose sequence sen-
sitivity is not a unique property of the motion system but is also
present in some form-sensitive neurons.

The population SVM analyses suggest that the momentary-pose
signal is stronger than the pose sequence mechanism. This might
explain why our monkeys required longer training to categorize for-
ward versus backward walking compared with facing-direction
stimuli (Vangeneugden et al., 2010). Human psychophysical studies
and computational studies have also shown that forward-backward
discrimination is more difficult than the discrimination of facing
direction (Beintema et al., 2006). Interestingly, the neuronal
classification accuracy for both facing direction and forward
versus backward was greater for trained than for untrained stimuli.
Performance levels for the three trained actions was also greater than
for the untrained 180B, which is either a mirror image (0B) or se-
quence reversal (180F) of the trained stimuli. Thus, the better accu-
racy for the trained stimuli does not merely reflect differences in
stimulus similarity. Also, stimulus similarity cannot explain why
more facing-direction-selective cells preferred the trained stimuli.
Thus, it is tempting to conclude that part of the response selectivities
are induced by the categorization training. Also, the sequence sensi-
tivity that we observed in SA neurons might result from the extensive
training. Thus, the pose sequence mechanism might operate only for
highly familiar actions, whereas other actions are represented by
their poses or motion-snippet description.

The SVM analyses showed that the neurons could differenti-
ate poses that occurred �100 ms apart in the context of an action,
in agreement with an indirectly estimated STS integration dura-
tion for action sequences of �120 ms (Singer and Sheinberg,
2010). This is also in line with rapid serial visual presentation
studies showing that IT neuronal selectivity is still present at stim-
ulus onset asynchronies of 100 ms (De Baene et al., 2007) and less
(Keysers et al., 2001). Note that estimated integration times de-
pend on how different the successive snapshots are relative to the
tuning width of the neuron. For sequences of natural actions in
which successive snapshots differ little, the estimated integration
times might exceed the real values. Some SA neurons also signal
the sequence in which the pose occurs, implying sensitivity to
temporal context. IT and STS neurons are known to be influ-
enced by stimulus history, with adaptation effects being the clear-
est example (Baylis and Rolls, 1987; Miller et al., 1991; Sawamura
et al., 2006; Liu et al., 2009; Perrett et al., 2009; De Baene and
Vogels, 2010). A fast adaptation mechanism may at least partially
explain sensitivity to reversals of the same sequence (Singer and
Sheinberg, 2010; our data), but the sensitivity to the sequence per
se (independent of start frame position) shown here is likely at-
tributable to different mechanisms (e.g., temporally asymmetric,
leaky integrators of neurons tuned to different snapshots) (Giese
and Poggio, 2003). Alternatively, the pose sequence sensitivity
might also depend on input from the motion pathway (e.g., from
dorsal STS “motion neurons”). Unlike those of Singer and Shein-
berg (2010), our monkeys could not free view but were required
to maintain fixation during stimulus presentation. This prevents
eye movement patterns that can differ between stimulus se-
quences, causing response modulations.
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The A and SA neurons were to some extent anatomically segre-
gated, with A neurons being predominantly present in the upper
bank/fundus of the STS. The segregation was less pronounced, with
relatively more SA neurons in the STS upper bank/fundus, than
reported by Vangeneugden et al. (2009) for more simple stimuli.
This agrees with other reports of strong responses to static, complex
images in the upper bank of the STS (Jellema and Perrett, 2003;
Barraclough et al., 2006; Singer and Sheinberg, 2010).

Our stimuli were less natural and complex than those used in
previous single-cell studies of locomotion (Oram and Perrett,
1994, 1996; Jellema et al., 2004; Barraclough et al., 2006). We have
observed similar weak selectivity to forward versus backward lo-
comotion using movies of a nontranslatory, real human walker
(J. Vangeneugden, N. E. Barraclough, R. Vogels, unpublished
observations), suggesting that our conclusions also hold for more
complex and natural images. Oram and Perrett (1994, 1996) and
Jellema and Perrett (2006) found stronger selectivity for forward
versus backward walking in the STS, but in that study, the agent
walked across the room. It is likely that the apparent forward-
backward selectivity is attributable to the strong translatory compo-
nent in their locomotion stimuli. Our humanoid walkers are more
complex than the point light displays used in most human biological
motion studies. Apart from this difference in format, our stationary
walkers are similar to those used in human studies and modeled in
computational work. Thus, we believe that our data are relevant for
understanding mechanisms of biological motion perception.

Our data suggest that actions are analyzed by temporal cortical
neurons using distinct mechanisms. The predominant signal is a
pose-based form signal, which is useful in everyday action recogni-
tion, since actions and body poses usually correlate. In addition to
this pose-based mechanism, temporal cortical neurons, including
those responding to static pose, are sensitive to pose sequences that
can contribute to signaling learned action sequences.
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