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Effortful cognitive performance is theoretically expected to depend on the formation of a global neuronal workspace. We tested specific
predictions of workspace theory, using graph theoretical measures of network topology and physical distance of synchronization, in
magnetoencephalographic data recorded from healthy adult volunteers (N � 13) during performance of a working memory task at
several levels of difficulty. We found that greater cognitive effort caused emergence of a more globally efficient, less clustered, and less
modular network configuration, with more long-distance synchronization between brain regions. This pattern of task-related workspace
configuration was more salient in the �-band (16 –32 Hz) and �-band (32– 63 Hz) networks, compared with both lower (�-band; 8 –16 Hz)
and higher (high �-band; 63–125 Hz) frequency intervals. Workspace configuration of �-band networks was also greater in faster
performing participants (with correct response latency less than the sample median) compared with slower performing participants.
Processes of workspace formation and relaxation in relation to time-varying demands for cognitive effort could be visualized occurring
in the course of task trials lasting �2 s. These experimental results provide support for workspace theory in terms of complex network
metrics and directly demonstrate how cognitive effort breaks modularity to make human brain functional networks transiently adopt a
more efficient but less economical configuration.

Introduction
How are human brain networks configured to support higher
cognitive functions, such as working memory, that demand con-
scious effort for successful performance? According to global
workspace theory (Baars, 1988, 2002; Dehaene and Naccache,
2001; Shanahan, 2010), conscious mental states depend on inte-
grated activity of many elements of the nervous system. Phase
synchronization of neuronal oscillations, especially in the � and �
frequency intervals, has been identified as a mechanism for coor-
dination of information processing among a set of anatomically
distributed neurons (Gross et al., 2004; Fries, 2005; Melloni et al.,
2007; Womelsdorf et al., 2007; Gaillard et al., 2009). A dynamic
model of workspace formation has been proposed whereby a
community structure of locally synchronized, modular subsys-
tems for unconscious processing can be suddenly replaced by the
ignition of a globally synchronized system representing the con-
sciously attended stimulus (Dehaene and Changeux, 2005). Such

dynamic transitions from modular to global synchronization
have been demonstrated in computational models based on the
anatomical connectivity of the cat’s brain (Gómez-Gardeñes et
al., 2010).

These predictions of workspace theory can now be tested di-
rectly in humans using the mathematical concepts and tools of
complex systems science (Albert and Barabási, 2002) to measure
the organization of brain networks experimentally (Bullmore and
Sporns, 2009; He and Evans, 2010; Sporns, 2010; Bullmore and Bas-
sett, 2011). It has been shown that nervous systems generally have
the small-world property of high local clustering or cliquishness
of connections, as well as short path length between any pair of
neuronal or regional nodes (Watts and Strogatz, 1998; Latora and
Marchiori, 2001; Sporns et al., 2004; Achard et al., 2006; Achard
and Bullmore, 2007). Short path length confers high global effi-
ciency of parallel information transfer in brain networks and
these metrics have been negatively and positively correlated, re-
spectively, with accuracy of executive task performance and gen-
eral intelligence, (van den Heuvel et al., 2009; Li et al., 2009).
Nervous systems also have the complementary topological prop-
erty of modularity, meaning that the network is nearly decom-
posable (Simon, 1962) into a set of modules comprising nodes
that are densely connected to each other and sparsely connected
to nodes in other modules (Newman, 2006; Chen et al., 2008; Fair
et al., 2009; Meunier et al., 2009, 2010; Pan et al., 2010).

The convergence of workspace theory and complex systems
science generates the following testable hypotheses: performance
of cognitively effortful tasks will be associated with more integra-
tion of processing, topologically measurable in brain networks by
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increased global efficiency or reduced minimum path length; and
less segregation of processing, measurable by reduced clustering
or modularity. Additionally, it is expected that these topological
shifts from local to global network organization will be accompa-
nied by synchronization over longer physical distances, especially
in functional networks oscillating at � and � frequency intervals.

We tested these hypotheses in healthy human participants
using magnetoencephalography (MEG) to measure changes in
the brain’s magnetic field during performance of a verbal work-
ing memory (N-back) task at several levels of difficulty (zero-,
one-, and two-back). We estimated phase synchronization be-
tween each pair of sensors in each of the following frequency
intervals (Kitzbichler et al., 2009): �, 8 –16 Hz; �, 16 –32 Hz; �,
32– 63 Hz; and high �, 63–125 Hz. From the resulting synchro-
nization matrices, we constructed weighted, undirected graphs
that represented the most synchronized connections between
sensors as edges between nodes of a brain functional network. We
measured four key hypothesis-driven topological and physical
properties of these networks and investigated changes in network
configuration related to experimentally controlled variation of
task difficulty and to individual differences in speed of accurate
task performance.

Materials and Methods
Sample. Sixteen neurologically healthy, young adult volunteers (mean
age � 29.5 years, SD � 7.9 years; 10 male) were recruited as part of a
larger project approved by a local ethics committee (LREC 07/H0306/
120) and were compensated for their time. The MEG and/or behavioral
datasets from three participants did not pass quality criteria (see below)
and had to be discarded, leaving 13 datasets available for analysis.

Working memory task. The N-back task is a test of working memory. In
the version used here, it requires a continual working memory response
from the participant during continual presentation of incoming stimuli
(for more details, see Winterer et al., 2004). In brief, participants per-
formed a series of brief trials: in each trial, one of the numbers 1, 2, 3, or
4 was visually displayed and the participant’s task was to indicate, by
pressing one of four different buttons, the integer that was currently
displayed (zero-back), the integer displayed in the previous trial (one-
back), or the integer displayed in the trial before the previous trial (two-
back). Stimuli were presented for 200 ms with an interstimulus interval
of 1800 ms. There were six blocks of 14 trials for each level of difficulty,
with each block separated by 5 s during which instructions for the next
block were presented. The whole task lasted for �9 min.

Only data from correctly performed trials were included in subsequent
analysis. The number of correct trials was constrained to be identical for
each participant at all levels of difficulty by subsampling the larger num-
ber of correct trials at zero- and one-back to match the number of correct
trials at the two-back level (resulting in 38 trials per level of difficulty for
each participant on average).

MEG data acquisition and preprocessing. The MEG data were recorded
from a 306-channel Vectorview system (Elekta Neuromag) at the Medi-
cal Research Council Cognition and Brain Sciences Unit, Cambridge,
which combines two orthogonal, planar gradiometers and one magne-
tometer at each of 102 sensors within a hemispherical array situated in a
magnetically shielded room. The data were recorded at 1 kHz using a
bandpass filter of 0.03–330 Hz. The position of the head, relative to the
sensor array, was monitored continuously by four or five head-position
indicator (HPI) coils attached to the scalp.

The gradiometric data in two orthogonal directions were combined
into an overall amplitude, A � �xBz

2 � �yBz
2, equivalent to the electric flux

�Jxy�
2 � A in the plane of the cortex (assuming Bx � By � 0). The electric

flux strength is assumed to be a measure of the firing intensity of an
ensemble of neurons in the cortex immediately beneath the sensor loca-
tion and thus the local cortical activity.

Before the experiment, the four to five HPI coils were attached to each
participant (one on each mastoid, two on the forehead, and the fifth,
when present, on the crown of the head). Two bipolar electrodes were

attached above and below the left eye to record vertical electro-
oculogram (EOG), two bipolar electrodes were attached at the outer
canthi of each eye to record horizontal EOG, and one electrode was
attached to the lower cheek (ground). The location of each of the HPI
coils was defined using a 3D digitizer (Fastrak Polhemus) with respect to
three anatomical (fiducial) locations: the nasion and the left and right
preauricular points.

External noise was removed from the MEG data using the temporal
extension of Signal-Space Separation (tSSS) (Taulu and Kajola, 2005) as
implemented with the MaxFilter software (version 2.0, Elekta-
Neuromag). The data were subsequently adjusted for head movement
every 200 ms, notch-filtered to remove mains (50 Hz and harmonics),
downsampled to 250 Hz, and transformed into a common space by
aligning the origin and axes as defined by the fiducials with those defined
by the MEG helmet. A handful of poor quality channels were detected by
visual inspection or automated methods within MaxFilter and their data
were recreated using tSSS. The data were then read into the SPM5 soft-
ware package (http://www.fil.ion.ucl.ac.uk/spm/), implemented in Mat-
lab (MathWorks). Independent component analysis, as implemented in
EEGLAB (http://sccn.ucsd.edu/eeglab/), was applied to the data; compo-
nents that correlated highly with the recorded electro-oculogram were
projected out of the data.

Before further analysis, 15 of 102 gradiometer pairs located in the
lower posterior hemisphere of the skull (in the vicinity of neck muscles)
were excluded because they contributed only very low-amplitude but
highly synchronized signals, likely to be muscular rather than neuronal in
origin.

Time series analysis. The time series analysis was based on estimating
the instantaneous phase synchronization of all pairs of sensors during
each trial by each participant. These data were then averaged or stacked
over all trials of the same task and either averaged over time to estimate
the stationary synchronization between sensors over the course of the
whole trial or smoothed with a sliding window to generate a time series of
changing levels of synchronization between each pair of sensors over the
course of the trial.

To characterize the time series and network statistics under the null
hypothesis of coherence between random processes, we also used a
phase-scrambling algorithm (Davison and Hinkley, 1997) to generate 10
independent sets of surrogate time series for each sensor and then we
estimated synchronization between each pair of surrogate time series
using exactly the same methods (described below) as were applied to the
experimental data.

The standard phase-scrambling algorithm is comprised of the follow-
ing steps: (1) input the original data into an array: x[t], t � 1, 2, …, N; (2)
compute the discrete Fourier transform (DFT): z[f] � DFT(x[t]), which
is generally complex, i.e., has real and imaginary components; (3) ran-
domize the phases z�[f] � z[f] � e i�[f ] with �[f] uniformly distributed in
[0, 2�]; (4) to obtain a real inverse Fourier transform, symmetrize the
phases such that ℜ (z�[f]) � ℜ (z�[f] � z�[N � 1 � f])/2 and ℑ (z�[f]) �
ℑ (z�[f] � z�[N � 1 � f])/2, where ℜ and ℑ are the real and imaginary
parts of a complex number, respectively; and (5) invert the DFT: x�[t] �
DFT �1(z�[f]).

The resulting time series x�[t] is the surrogate data. This algorithm
maintains the linear covariance structure of the data, but it may not
emulate nonlinear, non-normal, or nonstationary properties correctly.
We thus also explored an alternative way of generating surrogate data by
simply shuffling trials arbitrarily between task conditions. The results are
not presented here in detail but were essentially very similar to the sur-
rogate data generated by the Fourier phase-scrambling algorithm.

Hilbert wavelet transform. Wavelet-based techniques have the advan-
tage over classical Fourier-based spectral measures in that they are more
adapted to nonstationary time series that commonly occur in biological
systems (Bullmore et al., 2004; Whitcher et al., 2005). Additionally, com-
pared with more traditional measures of association, like correlation,
wavelet synchronization has the benefit of being sensitive to different
frequency bands or wavelet scales, which were chosen here to approxi-
mately match conventional frequency intervals, i.e., �, �, �, and high-�
bands in EEG/MEG. However, there were insufficient data points avail-
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able within the course of each 1.8 s trial to provide precise estimates of
synchronization at frequencies lower than the � band.

Synchronization was measured as phase coherence between the wavelet
transforms of two time series. This can be expressed as the phase difference
between their instantaneous complex phase vectors, as follows:

Cij	t
 �
Wk	Fi


†Wk	Fj


�Wk	Fi
��Wk	Fj
� � e i	�i��j
�k. (1)

Here, Wk denotes the kth scale of a Hilbert wavelet transform, † denotes
the complex conjugate, and �i(t) is the instantaneous phase of signal
Fi(t).

To estimate nonstationary or dynamic synchronization changes over
time, we used a sliding window technique, as follows:

C� ij	t
 �
	 Wk	Fi


†Wk	Fj
 


� 	 �Wk	Fi
�2 
	 �Wk	Fj
�2 

. (2)

This corresponds to averaging ���t over the interval [t, t � �t] with �t �
Lwin � 2k � 4 ms (sampling frequency f � 250 Hz, 1/f � 4 ms). The
window size Lwin expressed in units of wavelet scale determines the num-
ber of cycles over which the average is taken and was chosen as Lwin � 16
(Kitzbichler et al., 2009).

For both stationary and nonstationary (sliding window) analysis,
phase synchronization data were stacked or collapsed over multiple trials
of the same task by averaging the modulus squared of the synchroniza-
tion measure C� ij(t) over all the individual synchronization time series for
each correctly performed trial, locked to the time of trial onset, to esti-
mate one group mean synchronization time series for each level of task
difficulty.

We chose not to average over the complex phase vector but over its
modulus instead because, in the case of nonstationary synchronization, it
cannot be assumed that the coherence is simultaneously phase and time
accurate between two trials. Since typical phase differences for the fre-
quency ranges considered here correspond to time delays of 10 ms, aver-
aging of the phase vector could lead to doubt about whether one should
align the trials in time, indexed by stimulus presentation, or button press
response. It is true that, in the analysis of stationary synchronization,
where the time dimension is collapsed and there is only one coherence
vector per trial, a complex average would have probably increased sensi-
tivity due to better noise cancellation (Siegel et al., 2009). However, we
did not want to use different methods for analysis of stationary and
nonstationary synchronization, so we preferred to average the modulus
of the coherence consistently in both cases.

Sensor space and volume conduction. It has been shown that functional
networks based on synchronization of MEG sensors are qualitatively
similar to networks calculated from the same data after reconstruction of
sources in anatomical space (S. Palva et al., 2010), even though the latter
approach may be more sensitive to frequency dependence. Yet it has also
been noted that MEG and other available techniques for whole human
brain electrophysiological recording will severely undersample electrical
activity at a neuronal level. Therefore, the topology of a network derived
from surface field recordings will not inevitably reflect the topology of the
underlying network of neuronal sources (Antiqueira et al., 2010) or the
network of anatomical connections between them (Ponten et al., 2010).
Source reconstruction promises greater anatomical resolution of electri-
cal activity but multisource MEG reconstruction is a challenging area of
active methodological development and at least some reconstruction
algorithms can severely perturb patterns of synchronization or covari-
ance in the sensor data (Bullmore and Bassett, 2011). Given this back-
ground context and our theoretical emphasis on a relativistic analysis of
brain functional networks recorded under different experimental condi-
tions, we decided that the promise of greater anatomical resolution was
outweighed by the possibility of biasing the covariance structure of the
sensor data by source reconstruction. Networks were therefore con-
structed from sensor data rather than from anatomically reconstructed
sources.

However, to mitigate volume conduction effects and to emphasize
neurophysiological rather than instrumental sources of synchronization

between sensors, we recentered the synchronization distribution of each
pair of sensors around zero by subtracting the average synchronization
from each synchronization time series. This correction assumes that syn-
chronization between neighboring sensors attributable to volume con-
duction will be stationary or unchanging over time. We also assumed that
synchronization between sensors due to volume conduction will always
have zero (or �) phase lag (field retardation due to the finite speed of light
being obviously negligible at all frequencies below several gigahertz) to
further refine the method by only correcting for the real part of the phase
vector, as previously described (Stam et al., 2007). Explicitly, this correc-
tion for volume conduction was applied to the modulus squared of the
phase vector in the form C�2 � C 2 � ℜ 2( V), where ℜ denotes the real
part of a complex number and is applied to the average synchronization
V approximating volume conduction.

Network analysis overview. From static or time-resolved synchronization
matrices, we constructed weighted and undirected graphs by applying a
threshold so that only the most highly synchronized pairs of sensors had a
line or edge drawn between the corresponding nodes of the graph. The
topological and physical properties of these networks were then measured by
the following metrics: average physical (geodesic) distance (Bassett et al.,
2006), topological global efficiency, local efficiency (Latora and Marchiori,
2001), and modularity (Newman and Girvan, 2004). All metrics in the MEG
networks were normalized by their median values in 10 random networks
matched for degree distribution (Bullmore and Bassett, 2011).

Thresholding and weighting of networks. Each matrix of 87 � 87 instan-
taneous synchronization time series was converted into an adjacency
matrix A by applying an arbitrary threshold such that the number of
edges in the adjacency matrix was fixed according to a predefined con-
nection density (or topological cost). This was required to allow a com-
parison of network properties at different times, frequency bands or
wavelet scales, and levels of cognitive load, while controlling for effects of
connection density on network topology.

Values above the threshold were preserved and carried through the sub-
sequent steps of the analysis as edge weights. Formally, this corresponds to

A3sup{A�C�, 0} (3)

where sup{x, 0} � x if x  0 and sup{x, 0} � 0 if x � 0. For each
synchronization matrix, the threshold C� was adjusted to define the pro-
portion of nonzero elements, or connection density, in the correspond-

ing adjacency matrix: p �
��A 
 C��

n	n  1

. Initially, we fixed connection

density at 10% based on the Erdös-Rényi model (Erdös and Rényi, 1961)
of random graphs, G(n, p), having n nodes, which predicts that almost all
G(n, p) are fully connected if the connection density p � 2lnn/n, giving
p � 0.1 for 87 nodes. However, we also constructed networks over a
wider range of connection densities, from 2% to 20% of maximum con-
nection density. On this basis, we were able to plot key topological and
other metrics for each task-related network and for the surrogate net-
works as a function of topological cost or connection density.

Physical distance and sensor location mapping in 2D. The intrinsic sensor
locations in 3D were mapped into a planar coordinate system using an azi-
muthal equidistant projection and approximating the skull as a sphere. In
this plane, cartesian distances from the center correspond to geodesic dis-
tances on the surface of the skull, which are assumed to be rough estimates of
the physical distances between neuronal groups represented by different
sensors. The physical distance measure reported for each network is simply
the mean cartesian distance of all edges in the graph.

We accept that geodesic distance on the scalp surface is an approxi-
mate measure of connection distance in MEG networks. But we consider
that it is nonetheless useful as a first approximation for measuring the
distances between synchronized sensors on a relatively coarse spatial
scale compared with the finer-grained convolutions of underlying corti-
cal anatomy. Future work can be expected to validate new and more
sophisticated measures of connection distance in space, or conduction
delay in time, for pairs of functionally coherent sensors or sources in
electrophysiological data.
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Global and local efficiencies. The average global efficiency of informa-
tion transfer in graph � having n nodes can be calculated from the inverse
of the edge distances, dij:

E	�
 �
1

n	n  1
 �i�j��

1

dij
(4)

The topological distance, dij, between nodes i and j is the minimum
number of edges one has to traverse to get from one node to the other, or,
in the case of a weighted network, the sum over the weights of the mini-
mum path.

Whereas the quantity above is a measure of the global efficiency of
information transfer for the whole graph �, there is also a local efficiency
for each node i measuring how efficiently its neighbors can communicate
when node i is removed. If the subgraph of all neighbors of i is denoted by
�i, then its local efficiency E(�i) is approximately equivalent to the clus-
tering coefficient (Achard and Bullmore, 2007).

To show that results for global efficiency and local efficiency are anal-
ogous to the equivalent results obtained using classical small-world met-
rics of path length and clustering, respectively, we also estimated path
length and clustering in these data (Watts and Strogatz, 1998) (Table 1).

Modularity. A modularity measure of graph � with n nodes, N edges,
and nodal degrees ki can be defined on the basis of its adjacency matrix A,
as follows (Newman, 2006):

Q �
1

2N�
ij
	Aij�

kikj

2N
�	ci, cj
, (5)

where ci is the module to which node i belongs and � is the Kronecker
delta. This function was maximized by a computationally expedient
greedy algorithm (Meunier et al., 2010). The maximum value of Q is

essentially a measure of the fraction of edges that fall within the given
modules minus the expected fraction if edges were distributed randomly,
preserving nodal degrees. An extension to the weighted case follows nat-
urally by using a weighted adjacency matrix A and nodal weights instead
of degrees (where correct normalization instead of the canonical 1/2 N
has to be ensured).

Statistical methods: factorial analysis and resampling. We used repeated-
measures ANOVA models for statistical analysis of the synchronization
threshold C� and each of the key network parameters considered separately
as the dependent variable, with frequency band, task difficulty, and task-by-
frequency as within-subject fixed effects, and participant as a random effect
(Table 1). We also tested dynamic effects on network parameters within
the course of each trial by splitting the trials into first (response genera-
tion) and second (working memory) halves and using paired t tests to
identify significant task-related differences in metrics measured in each
half of the trials.

We used surrogate data to compare the distributions of synchroniza-
tion and key network metrics in experimental MEG data to an appropri-
ate null distribution. MEG segments comparable to single trials in the
experimental data were resampled using a Fourier-based algorithm (Da-
vison and Hinkley, 1997), which preserves the amplitude distribution
and autocorrelation function of each time series but disrupts the phase
synchronization between pairs of time series. This therefore provides an
appropriate point of reference to evaluate coherence estimates in exper-
imental multivariate time series compared with the null hypothesis of
random multivariate (1/f ) noise (Achard et al., 2008), while controlling
for any possible estimation bias attributable to autocorrelation or ampli-
tude changes in the observed time series. An alternative approach to the
same statistical issues has been to construct an innovative estimator of
pairwise phase consistency (Vinck et al., 2010) that is an analytically
unbiased and consistent estimator of population parameters of oscilla-
tions, but does not address the problem of amplitude-related bias.

Although the sample of participants and trials available was relatively
small (and future studies might profitably consider larger samples), by
normalizing with matched random networks and comparing to surro-
gate datasets, we found statistically significant changes in brain network
organization as a function of cognitive demand (see below).

Results
Behavioral measures of task performance
The relative difficulty of the tasks is indicated by the mean accu-
racy of performance: for zero-back, 97.3 � 2.9%; one-back,
75.8 � 18.4%; and two-back, 54.3 � 22.6% (chance � 25%).
Most participants who responded correctly to presentation of a
target letter did so within the first half of the trial: mean latency
for correct (all) trials was 719 ms (718 ms) for zero-back, 688 ms
(739 ms) for one-back, and 661 ms (766 ms) for two-back. We
inferred that cognitive effort in the first half of each trial was
probably dedicated to motor response generation processes,
which were similar between all versions of the task. In the second
half of each trial, however, the cognitive differences between tasks
were more marked. The zero-back task is relatively effortless after
the button press has been executed, whereas in the one- and
two-back tasks, active short-term memory processes must be en-
gaged to update the identity of the numbers presented in previous
trials, one of which becomes the new target number for the next
trial. The second half, or working memory phase, of each trial is
therefore considerably more effortful for the one- and two-back
versions than the zero-back version of the task.

Task-related effects on functional network organization
We found that greater cognitive effort, i.e., the progression from
zero-back to one- and two-back versions of the working memory
task, was associated with highly significant effects on global net-
work topology and geometry. Global efficiency of parallel infor-
mation transfer was increased, indicating a more integrated,

Table 1. Effects of task difficulty (zero-back, one-back, or two-back), frequency
band (�, �, � or high �), and task � frequency interaction, on brain functional
network metrics.

Sum of
squares SSError df F P P�

Synchronization threshold
Task difficulty 0.000101 8.74 � 10 �5 2, 24 13.9 0.000 0.000
Frequency band 0.333 0.000754 3, 36 5.3 � 10 3 0.000 0.000
Task � frequency 2.14 � 10 �5 0.000134 6, 72 1.91 0.090 0.082

Path length
Task difficulty 0.00912 0.0115 2, 24 9.52 0.001 0.006
Frequency band 0.0961 0.0239 3, 36 48.3 0.000 0.000
Task � frequency 0.00369 0.0192 6, 72 2.3 0.043 0.090

Clustering
Task difficulty 1.22 1.01 2, 24 14.4 0.000 0.000
Frequency band 6.59 1.02 3, 36 77.8 0.000 0.000
Task � frequency 0.289 1.23 6, 72 2.84 0.016 0.012

Global efficiency
Task difficulty 0.00568 0.00643 2, 24 10.6 0.001 0.004
Frequency band 0.03 0.00768 3, 36 46.8 0.000 0.000
Task � frequency 0.000949 0.012 6, 72 0.947 0.467 0.039

Local efficiency
Task difficulty 1.47 1.16 2, 24 15.2 0.000 0.000
Frequency band 8.26 1.34 3, 36 73.9 0.000 0.000
Task � frequency 0.353 1.39 6, 72 3.03 0.011 0.035

Physical distance
Task difficulty 0.084 0.0809 2, 24 12.4 0.000 0.001
Frequency band 2.01 0.129 3, 36 188 0.000 0.000
Task � frequency 0.0462 0.101 6, 72 5.5 0.000 0.003

Modularity
Task difficulty 0.185 0.263 2, 24 8.47 0.002 0.053
Frequency band 5.52 0.622 3, 36 107 0.000 0.000
Task � frequency 0.047 0.536 6, 72 1.05 0.399 0.667

Detailed ANOVA statistics are presented for two-way mixed effect models estimated with the connection density
held constant across all conditions at 10% of maximum connection density. For comparison, the P� values are given
for the same analyses repeated for networks with the synchronization threshold C� held constant across conditions,
allowing some variation of connection density around 10%.
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isotropic, or random network architecture, whereas local efficiency
or clustering was decreased (Fig. 1; Table 1). These task-related
changes in network topology were associated with the emergence of
more long-distance synchronization between anatomically sepa-
rated sensors. Greater task difficulty was also associated with a less
modular community structure of the networks (Figs. 1, 2; Table 1).
Significant task-related differences in topology and synchronization
distance were also evident at a nodal level of analysis. Increased de-
gree and physical distance of synchronization, and reduced propor-
tion of intramodular edges, were seen mainly in central and anterior
sensors during performance of the two-back task compared with the
zero-back task (Fig. 1).

We will refer to this theoretically predicted pattern of task-
related changes in key network parameters as workspace con-

figuration. It could also be described as a shift of network
architecture to a more random configuration at higher levels of task
difficulty. However, brain network topology was never completely
randomized or dominated by random noise. This is evident by
the comparison between network metrics estimated in experi-
mental MEG data and the same metrics estimated in surrogate
data generated by random resampling of the observed time series
(Fig. 2). These results show that, although higher levels of task
difficulty are indeed associated with a trend toward more random
network organization, there are significant differences between
surrogate data and experimental MEG data in all metrics at all
levels of difficulty in the � and � frequency bands. These results
strongly suggest that the emergence of workspace configuration
in networks during performance of more demanding cognitive
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Figure 1. Brain functional network changes associated with differently effortful cognitive tasks (zero-, one-, and two-back working memory trials) in the �-band frequency interval (16 –32 Hz).
A, Thresholded synchronization matrices can be represented graphically as a network in anatomical space (F, front; L, left, R, right): each node represents an MEG sensor and there is a line or edge
drawn between nodes if �-band oscillations are highly synchronized between sensors. The diameter of each node indicates its degree; nodes are colored to indicate their membership of topological
modules. B, Node size indicates local efficiency or clustering coefficient, a measure of segregated network topology. C, Long-distance connections, at least as long as the 95th percentile of the
distance distribution in the two-back network, are highlighted as black edges. D, Modularity is represented by color-coding the connections between nodes: intermodular connections are red and
intramodular connections are gray. Right column, Statistical significance of task-related differences in local (nodal) network properties are shown for local efficiency (B), physical distance (C), and
proportion of intramodular edges (D). In these panels, the size of each node corresponds to the log P value for a t test of the null hypothesis that the task-related difference in network metrics is zero.
The most effortful two-back task is associated with less clustering, longer-distance synchronization, and a larger proportion of intermodular connections compared with the least effortful zero-back
task.
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tasks is not simply attributable to random noise predominating
in the data acquired during more effortful tasks.

The task-related changes in brain network organization de-
scribed so far were estimated on the basis of networks thresholded at
a particular, fairly sparse connection density (10%). To test the ro-
bustness of these results to a reasonable degree of variation in con-
nection density, we estimated all key metrics for each task-related
network and for the surrogate networks over a range of thresholds
corresponding to connection densities in the range of 2–20% (Fig.
3). These results show that the key findings at 10% connection den-
sity are broadly conserved: greater cognitive effort was typically as-
sociated with greater workspace configuration of brain networks;
and under all task conditions, brain networks remained somewhat
less than fully randomized by comparison to surrogate networks. As
connection density was increased and more edges representing less
strongly synchronized pairs of sensors were added to the graphs
brain network metrics naturally tended to converge on their limit-
ing values in the surrogate networks; this process of convergence
was most evident in the lowest frequency �-band networks.

Workspace configuration of thresholded network topology was
accompanied by some changes in magnitude of the synchronization

threshold between sensors (Table 1). However, task-related differ-
ences in synchronization strength were relatively small in degree and
synchronization was significantly greater in experimental data re-
corded under the two-back condition than in the surrogate data (Fig.
2). This indicates that the relatively low level of synchronization in
data recorded during the most difficult (two-back) task does not
represent the substitution of neurophysiological signals by random
multivariate noise. To further test this null hypothesis, we repeated
the analysis of task difficulty effects on network topology by
applying the same threshold value of synchronization to gen-
erate graphs from the task-specific synchronization matrices.
This approach ensures that all edges in each graph represent at
least the same minimum strength of synchronization, although it
allows a minor degree of variation in the number of edges be-
tween graphs. However, the results of this graph analysis control-
ling for task-related variability in synchronization strength were
very similar to the previously reported results of analysis control-
ling for connection density of the thresholded graphs (Table 1).
This indicates that variation in synchronization strength between
levels of task difficulty is not sufficient to account for the observed
differences in network topology.

Figure 2. Effects of task difficulty on synchronization and workspace configuration of brain functional networks operating at different frequency intervals. A, Over all frequencies in the broadband
interval 8 –125 Hz, there are significant differences in organization of zero-back (red box), one-back (green box), and two-back (blue box) brain networks compared with the equivalent metrics
estimated in comparable surrogate (S) data representing fully randomized networks (gray box). B–E, Considering four narrowband frequency intervals separately, task-related network differences
indicating workspace configuration are most salient in �- and �-bands. ***p � 0.001, **p � 0.01, and *p � 0.05 for the null hypothesis that two-back brain network organization is identical to
network organization in other task conditions or in surrogate networks.
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Task-related network effects at different frequencies
Task-related workspace configuration was evident to some extent
in networks oscillating at all frequency intervals; it is illustrated
graphically for the �-band network in Figure 1; but similar results
were obtained for all other frequency intervals. The main effect of
task difficulty (regardless of frequency band) on all four key net-
work parameters was in the theoretically expected direction and
statistically significant (Fig. 2; Table 1). Thus, there was some
evidence for scale invariance of task-related reconfiguration of
brain functional networks (Bassett et al., 2006) over the range of
frequencies or wavelet scales considered.

However, there were also some significant differences between
networks at different frequencies. Regardless of variation in task dif-
ficulty, the main effect of frequency was significant for all four net-
work parameters; lower frequency networks, e.g., �-band, had
greater global efficiency, longer physical connection distance, lower
clustering, and lower modularity than higher frequency networks,
e.g., �-band. Additionally, there were significant differences be-
tween networks oscillating at different frequencies in how mark-
edly they demonstrated topological changes in configuration as a
function of increasing task difficulty. For example, there was a
significant task-by-frequency interaction for most of the network
parameters (Table 1) and, considering each frequency band sep-

arately in a post hoc analysis, task-related differences in workspace
configuration were identified more clearly in the intermediate
frequency range of �- and �-band networks than in networks
oscillating at lower (�) or higher (high �) frequencies (Fig. 2).

Workspace configuration and cognitive performance
To test our prediction that superior individual performance on ef-
fortful cognitive tests would be associated with stronger emergence
of workspace configurations, we split the sample into fast- and slow-
performing subgroups (defined by individual mean latency of accu-
rate response greater or less than the sample median latency) and
compared task-related change in network parameters between the
differently performing subgroups. We found that fast-performing par-
ticipants showed clearer evidence for workspace configuration of
�-band networks under conditions of increased task difficulty.
Specifically, fast-performing participants, compared with slow-
performing participants, demonstrated significantly greater
difficulty-related increase in physical distance, and greater
difficulty-related decrease in clustering (Fig. 4).

Dynamic network changes within a single trial
The results presented so far have confirmed that, on average over
the 1800 ms duration of each trial, human brain networks are

Figure 3. Effects of task difficulty on workspace configuration of brain functional networks at different frequency intervals over a range of network connection densities. A–E, Over all frequencies
(A) and in each frequency interval (B–E), mean brain network metrics with 95% confidence interval (dotted lines) for zero-back (red line), one-back (green line), and two-back (blue line) tasks tend
to converge on their values in surrogate networks (gray line) as connection density is increased from 2% to 20% of possible edges. The vertical dotted lines indicates the connection density of 10%
chosen for ANOVA modeling. Asterisks denote significant difference at p � 0.05 between two-back and surrogate networks.
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differentially configured as workspaces during performance of
tasks demanding different degrees of cognitive effort, and that
faster-performing individuals tend to show clearer evidence of
task-related workspace configuration. This supports the work-
space theory but provides a rather static picture of network dif-
ferences that are expected to emerge dynamically in response to
momentarily changing experimental (or environmental) de-
mands for processing. To further test the hypothesis that work-
space reconfiguration is dynamically related to cognitive effort,
we measured network properties in overlapping time windows
running consecutively from the start to the end of each trial. This
allowed us to track time-related changes in network properties
during performance of the zero- and two-back tasks, and to relate
these changes to the different degrees of cognitive effort entailed
by the tasks over the course of a single trial.

We found that during the first 900 ms of each trial, both zero-
and two-back brain networks demonstrated high global effi-
ciency, long physical connection distance, low clustering, and low
modularity. However, during the second half of each trial, while
the two-back network maintained workspace configuration, pre-
sumably in support of ongoing working memory processes, the
zero-back network rapidly adopted a more crystallized configu-
ration, indicated by relatively low global efficiency, short physical
connection distance, higher clustering, and modularity (Fig. 5).
This time-related change in network configuration under differ-
ent task conditions was further represented by significant differ-
ences between zero-, one-, and two-back networks in the �- and
�-band frequencies during the second half (working memory
phase) of the trial but not during the first half (response genera-
tion phase) (Fig. 6). The observation that the most significant
differences between task-related networks were found in the sec-
ond, working memory phase of the trials discounts the possible
contribution of stimulus-evoked responses (which will be great-
est during the response generation phase) to the pattern of task-
related change in network organization.

Discussion
These results provide new evidence in support of the predictions
of global neuronal workspace theory and demonstrate how the
mathematical tools of complex network analysis can be used to
demonstrate rapid, task-related changes in functional networks
derived from human MEG data.

Complex networks and workspace theory
We have shown that greater cognitive effort was associated with
the emergence of a more efficient, less modular, and less clustered
network topology. This topological workspace configuration was
associated with greater long-distance synchronization between
some pairs of anatomically separated sensors. Anatomically ex-
tensive coactivation of multiple cortical regions and long-range
interareal synchronization between cortical areas have been fre-
quently reported as neurophysiological correlates of conscious or
effortful states elicited by a wide range of experimental paradigms
(for review, see Baars, 2002). For example, greater synchroniza-
tion of left prefrontal, right posterior parietal, and temporal areas
was reported in the context of the attentional blink paradigm,
specifically when a second target stimulus was correctly identified
292 ms after presentation of a first target stimulus, but not when
the stimulus onset asynchrony between stimuli was reduced (to
146 ms) and the second target was not identified (Gross et al.,
2004). Long-range synchronization has also been reported in the
context of working memory task performance (J. M. Palva et al.,
2010) and during conscious perception of unmasked words com-
pared with unconscious processing of masked words (Gaillard et
al., 2009).

The new insight provided by our results in this context is that
the innovative use of graph analysis has allowed us to see more
clearly how task-related changes in long-range synchronization
are related to the overall topological organization of brain net-
works. As cognitive effort increases, emergent long-range syn-
chronization provides topological short-cuts between cortical
areas that are relatively segregated from each other in the more
modular configuration of the network under cognitively unde-
manding conditions, and so increases the global efficiency of the
network for parallel information transfer.

A special role for �-band oscillations in
workspace reconfiguration?
Phase synchronization between rhythmic oscillations in ana-
tomically distributed neuronal populations has been widely
accepted as a key neurophysiological mechanism to coordinate
information processing between components of large-scale brain
functional networks (Varela et al., 2001; Fries, 2005; Buzsáki, 2006).
Our results demonstrate that workspace formation is a fairly broad-
band or scale-invariant phenomenon: there is some evidence for
task-related increases in global efficiency and physical distance, as
well as task-related decreases in clustering and modularity, across all
frequency intervals considered (collectively encompassing the range
of 8–120 Hz). This is compatible with various prior reports high-
lighting the significance of �-, �-, and �-band synchronization as
mechanisms for communication between distributed neuronal
groups (Rodriguez et al., 1999; Doesburg et al., 2009; S. Palva et al.,
2010).

However, our results also suggest that synchronization in the
�-band specifically plays a crucial role in workspace formation.
This claim is supported by greater statistical significance of task-
related effects in the �-band on average over the whole duration
of each 1800 ms trial (Fig. 2); more significant task-by-time in-
teraction, indicating that rapid workspace relaxation, specifically
during the second half of the zero-back trial, is especially marked
in �-band networks (Fig. 6); as well as evidence that variability in
individual performance is most clearly related to parameters of
workspace configuration in �-band networks (Fig. 4).

The special significance of �-band oscillations for long range
synchronization is also supported by several lines of prior evi-
dence. For example, biophysical models have demonstrated that
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the longer period length of �-band oscillations, compared with �,
is more appropriate for synchronization over greater physical
distances, which impart appreciable conduction delay (Kopell et
al., 2000). Coherence and Granger causal interactions between
components of a large-scale motor control network were also
strongest in the � frequency interval (Brovelli et al., 2004). The
topological cost efficiency (Latora and Marchiori, 2001) of brain
functional networks oscillating at �-band frequencies was shown to
be more strongly correlated with variability of performance on a
working memory task than the cost efficiency of networks operating

at other frequencies (Bassett et al., 2009).
Working memory task-related changes in
synchronization likelihood and small-
worldness of MEG networks were most sa-
lient in �- and �-bands (Micheloyannis et
al., 2009). Together, it seems that �-band
synchronization is very likely a key mecha-
nism in the task-related workspace configu-
ration of large-scale brain functional
networks.

Dynamic workspace reconfiguration:
critical and economical
Topological analysis of structural and
functional brain networks, in many spe-
cies and in all modalities of neuroimaging
data, has previously demonstrated that
brain networks generally have the prop-
erty of small-worldness (Bassett et al.,
2006; Bullmore and Sporns, 2009). This
has long seemed theoretically attractive
for understanding how brain networks
support cognitive function because small-
world architecture is potentially able to
deliver both segregated or local processing
as well as distributed or global processing
(Sporns et al., 2004). Our analysis of time-
resolved changes in topology over the
course of a single cognitive trial lasting
�2 s shows how quickly brain functional
networks can shift from a relatively random
configuration when the demand for distrib-
uted processing is high to a more crystalline
configuration when cognitive demands are
reduced. This process of workspace relax-
ation occurred over an interval of 10–100
ms after completion of the response gener-
ation phase of the least demanding zero-
back task and was not seen in the second
(working memory) phase of the two-back
trials (Fig. 5). Clearly, functional networks
can vary rapidly on a small-world spectrum
of possible topologies rather than being lo-
cated persistently at a single fixed point be-
tween lattice and random architectures.
Many of the task-related changes in network
organization predicted by workspace theory
can be topologically described as a shift to-
ward randomization, but the surrogate data
show that brain networks typically remain
more modular than randomly synchro-
nized networks, even under conditions of
greatest cognitive effort.

This rapidity of network reconfiguration in response to
changing environmental demands is compatible with theory and
data suggesting that neuronal dynamics exist in a critical state,
i.e., a physical state close to the point of a phase transition (Chi-
alvo, 2004; Roa et al., 2007; Beggs, 2008). Electrophysiological
studies have found that neuronal firing in cortical slices (Beggs
and Plenz, 2003), local field potentials in awake monkey cortex
(Petermann et al., 2009), and phase synchronization in resting-
state MEG data (Kitzbichler et al., 2009) all demonstrate power
law scaling behavior compatible with criticality. Dynamically
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critical systems have the capacity to change configuration spon-
taneously, as well as rapidly in response to external perturbation,
and computational and animal models have demonstrated that
critical networks are optimal for information processing and
storage (Shew et al., 2009). Specifically in relation to workspace
theory, it has already been suggested that the moment of ignition,
when locally modular processing of some stimulus becomes gen-
eralized by formation of a global workspace, is a phase transition,
and that cortical systems can be driven to this critical point by
increasing levels of ascending neuromodulatory input from
brainstem nuclei (Dehaene and Changeux, 2005). More gener-
ally, it may be that the self-organized criticality of spontaneous
cortical dynamics favors rapid transitions between different
states of the system, supporting the adaptive emergence and dis-
appearance of global workspaces in response to changing de-
mands, without tuning of an external driving parameter such as
ascending neuromodulatory input.

If criticality provides a possible answer to the question of how
brain workspaces can rapidly reconfigure in response to external
perturbation, what about the question of why release of cognitive
effort should be associated with such a rapid lattice crystalliza-
tion, or relaxation of workspace architecture? One hypothetically
plausible driver could be an economical principle. The small-
world topology of spatially embedded networks like brains tends
to be associated with economical if not minimal wiring costs

(Bassett et al., 2010). Brain regions or neurons that have clustered
interconnectivity tend to be spatial as well as topological neigh-
bors. So high clustering of brain networks is associated with low
wiring cost and we can infer that conservation of wiring cost may
have been an important selection factor in the evolution of ner-
vous systems (Chen et al., 2006). However, it is known that al-
though brain wiring costs are low, they are not minimal, as they
would be if the brain was topologically arranged as a lattice (Kai-
ser and Hilgetag, 2006). The existence of relatively few long dis-
tance connections between anatomically separate and otherwise
topologically remote regions reduces path length at the expense
of more than minimal wiring cost. Thus, the physical instantia-
tion of small-world topology can be regarded as the outcome of
selection by competitive criteria: minimization of wiring cost ver-
sus maximization of efficiency of information transfer (Bassett et
al., 2006; Bullmore and Sporns, 2009; Sporns, 2010; Fornito et al.,
2011).

It is conceivable that workspace formation and relaxation rep-
resents the same economy/efficiency trade-off in operation dy-
namically. The metabolic costs of the brain are generally large
(�20%) in proportion to the total energy budget of the body, and
the largest single cost is that of ATP-dependent active transport
systems required to restore neuronal membrane potentials after
depolarization (Niven and Laughlin, 2008). Thus, metabolic de-
mands would be expected to increase with longer-range commu-

Figure 6. Time-resolved changes in �- and �-band network topology during zero- and two-back tasks. Networks oscillating at �- and �-band frequencies demonstrate significant task-related
differences in network metrics during the second half (working memory phase) of each trial but not during the first half (response generation phase). ***p � 0.001, **p � 0.01, and *p � 0.05 for
the null hypothesis that metrics are not different in the zero-back (red box), one-back (green box), or surrogate (S; gray box) networks compared with the two-back networks (blue box). Box sizes
represent first and third quartile; whiskers show extent of distribution; black dot is the median and blue dots are outliers.
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nication, such that the capacity to rapidly attenuate long distance
connectivity when it is no longer functionally required would be
advantageous. So, assuming that the metabolic costs of synchro-
nized oscillations scale with the physical distance between syn-
chronized regions, we can say that the human brain breaks
modularity (Dehaene and Naccache, 2001) to adopt a more effi-
cient workspace configuration when necessary in response to
cognitive demands, but it wastes little time in reverting to a more
economical and modular state when the demand for cognitive
effort is reduced.

Notes
Supplemental material for this article is available at
http://sms.cam.ac.uk/media/1587355: a movie of dynamic network
changes during performance of zero- and two-back working memory
tasks. This material has not been peer reviewed.
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